HUNTINGTIN (HTT) iRNA AGENT COMPOSITIONS AND METHODS OF USE THEREOF

Abstract
The disclosure relates to double stranded ribonucleic acid (dsRNAi) agents and compositions targeting a Huntingtin (HTT) gene, e.g., exon 1 of an HTT gene, as well as methods of inhibiting expression of an HTT gene and methods of treating subjects having an HTT-associated disease or disorder, e.g., Huntington's disease, using such dsRNAi agents and compositions.
Description
SEQUENCE LISTING

The instant application contains a Sequence Listing which has been submitted electronically in ASCII format and is hereby incorporated by reference in its entirety. Said ASCII copy, created on Apr. 27, 2022, is named 121301_10302_SL.txt and is 1,468,973 bytes in size.


BACKGROUND OF THE INVENTION

Huntington's disease is a progressive neurodegenerative disorder characterized by motor disturbance, cognitive loss and psychiatric manifestations (Martin and Gusella (1986) N. Engl. J. Med. 315:1267-1276). It is inherited in an autosomal dominant fashion, and affects about 1/10,000 individuals in most populations of European origin (Harper, P. S. et al., in Huntington's Disease, W. B. Saunders, Philadelphia, 1991). The hallmark of Huntington's disease is a distinctive choreic movement disorder that typically has a subtle, insidious onset in the fourth to fifth decade of life and gradually worsens over a course of 10 to 20 years until death. Occasionally, Huntington's disease is expressed in juveniles typically manifesting with more severe symptoms including rigidity and a more rapid course. Juvenile onset of Huntington's disease is associated with a preponderance of paternal transmission of the disease allele. The neuropathology of Huntington's disease also displays a distinctive pattern, with selective loss of neurons that is most severe in the caudate and putamen regions of the brain.


Huntington's disease has been shown to be caused by an expanding glutamine repeat in exon 1 of a gene termed IT15 or Huntingtin (HTT). Although this gene is widely expressed and is required for normal development, the pathology of Huntington's disease is restricted to the brain, for reasons that remain poorly understood. In patients having HD (an autosomal dominant disease), the expansion of the poyglutamine repeat results in a wild-type transcript, a full-length mutant transcript having the expanded polyglutamine repeat, as well as a truncated mutant transcript having the expanded polyglutamine repeat. It has been shown that, although the Huntingtin gene product is expressed at similar levels in patients and controls, it is the expansion of the polyglutamine repeat and the presence of the full-length mutant transcript and the truncated mutant transcript that induces toxicity


Effective treatment for Huntington's disease is currently not available. The choreic movements and agitated behaviors may be suppressed, usually only partially, by antipsychotics (e.g., chlorpromazine) or reserpine until adverse effects of lethargy, hypotension, or parkinsonism occur. In addition, despite significant advances in the field of RNAi and Huntington's disease treatment, there remains a need for an agent that can selectively and efficiently silence the HD gene using the cell's own RNAi machinery that has both high biological activity and in vivo stability, and that can effectively inhibit expression of a target Huntingtin gene.


BRIEF SUMMARY OF THE INVENTION

The present disclosure provides RNAi agent compositions which effect the RNA-induced silencing complex (RISC)-mediated cleavage of RNA transcripts of a huntingin (HTT) gene. The HTT gene may be within a cell, e.g., a cell within a subject, such as a human. The present disclosure also provides methods of using the RNAi agent compositions of the disclosure for inhibiting the expression of an HTT gene or for treating a subject who would benefit from inhibiting or reducing the expression of an HTT gene, e.g., a subject suffering or prone to suffering from an HTT-associated disease.


In one aspect, the present invention provides a double stranded ribonucleic acid (dsRNA) agent for inhibiting expression of Huntingtin (HTT), wherein the dsRNA agent comprises a sense strand and an antisense strand forming a double stranded region, wherein the sense strand comprises at least 15, 16, 17, 18, 19, 20, or 21 contiguous nucleotides differing by no more than 3, 2, 1, or 0 nucleotides from the nucleotide sequence of SEQ ID NO: 1 and the antisense strand comprises at least 15, 16, 17, 18, 19, 20, or 21 contiguous nucleotides differing by no more than 3, 2, 1, or 0 nucleotides from the nucleotide sequence of SEQ ID NO: 6, and wherein one or more lipophilic moieties are conjugated to one or more internal positions on at least one strand.


In some embodiments, the nucleotide sequence of the sense strand comprises any one of the sense strand nucleotide sequences in any one of Tables 2, 3, 5, 6, 8, 9, 11, 12, 14, 15, 17, 18, 20, 21, 24, 25, 27-30, 32 and 33.


In some embodiments, the sense strand comprises at least 15 contiguous nucleotides differing by no more than 0, 1, 2, or 3 nucleotides from any one of the nucleotide sequence of nucleotides 618-640, 1215-1237, 1248-1270, 1403-1425, 4051-4073, 4393-4415, 4398-4420, 4403-4425, 4441-4463, 4518-4540, 4548-4570, 5105-5127, 5215-5237, 5217-5239, 5221-5243, 5222-5244, 5366-5388, 5372-5394, 5450-5472, 5509-5531, 5883-5905, 6009-6031, 6010-6032, 6011-6033, 6012-6034, 6013-6035, 6014-6036, 6015-6037, 6347-6369, 6512-6534, 7523-7545, 7525-7547, 7526-7548, 9127-9149, 9531-9553, or 9538-9560 of SEQ ID NO:1.


In some embodiments, the antisense strand comprises at least 15 contiguous nucleotides differing by nor more than 0, 1, 2, or 3 nucleotides from any one of the antisense strand nucleotide sequences of a duplex selected from the group consisting of AD-953769.1, AD-953778.1, AD-953784.1, AD-953786.1, AD-953849.1, AD-953854.1, AD-953855.1, AD-953857.1, AD-953862.1, AD-953866.1, AD-953867.1, AD-953880.1, AD-953883.1, AD-953884.1, AD-953885.1, AD-953886.1, AD-953887.1, AD-953888.1, AD-953889.1, AD-953891.1, AD-953896.1, AD-953898.1, AD-953899.1, AD-953900.1, AD-953901.1, AD-953902.1, AD-953903.1, AD-953904.1, AD-953907.1, AD-953911.1, AD-953921.1, AD-953923.1, AD-953924.1, AD-953932.1, and AD-953933.1, AD-953937.1.


In some embodiments, the lipophilic moiety is conjugated via a linker or a carrier.


In another aspect, the present invention provides a double stranded ribonucleic acid (dsRNA) for inhibiting expression of Huntingtin (HTT) in a cell, wherein the dsRNA comprises a sense strand and an antisense strand forming a double stranded region, wherein the antisense strand comprises a region of complementarity to an mRNA encoding HTT, and wherein the region of complementarity comprises at least 15, e.g., 15, 16, 17, 18, 19, 20, or 21, contiguous nucleotides differing by no more than 3, 2, 1, or 0 nucleotides from any one of the antisense nucleotide sequences in any one of Tables 2, 3, 5, 6, 8, 9, 11, 12, 14, 15, 17, 18, 20, 21, 24, 25, 27-30, 32 and 33.


The sense strand, the antisense strand, or both the sense strand and the antisense strand may be conjugated to one or more lipophilic moieties. In some embodiments, the lipophilic moiety is conjugated to one or more internal positions in the double stranded region of the dsRNA agent, e.g., the one or more lipophilic moieties may be conjugated to one or more internal positions on the antisense strand. In some embodiments, the one or more lipophilic moieties are conjugated to one or more internal positions on at least one strand via a linker or carrier.


In some embodiments, lipophilicity of the lipophilic moiety, measured by log Kow, exceeds 0.


In some embodiments, the hydrophobicity of the dsRNA agent, measured by the unbound fraction in a plasma protein binding assay of the dsRNA agent, exceeds 0.2. In some embodiments, the plasma protein binding assay is an electrophoretic mobility shift assay using human serum albumin protein.


In some embodiments, the internal positions include all positions except the terminal two positions from each end of the sense strand or the antisense strand. In other embodiments, the internal positions include all positions except the terminal three positions from each end of the sense strand or the antisense strand.


In some embodiments, the internal positions exclude a cleavage site region of the sense strand, such as the internal positions include all positions except positions 9-12, counting from the 5′-end of the sense strand or the internal positions include all positions except positions 11-13, counting from the 3′-end of the sense strand.


In some embodiments, the internal positions exclude a cleavage site region of the antisense strand. In other embodiments, the internal positions include all positions except positions 12-14, counting from the 5′-end of the antisense strand. In some embodiments, the internal positions include all positions except positions 11-13 on the sense strand, counting from the 3′-end, and positions 12-14 on the antisense strand, counting from the 5′-end.


In some embodiments, the one or more lipophilic moieties are conjugated to one or more of the internal positions selected from the group consisting of positions 4-8 and 13-18 on the sense strand, and positions 6-10 and 15-18 on the antisense strand, counting from the 5′end of each strand.


In some embodiments, the one or more lipophilic moieties are conjugated to one or more of the internal positions selected from the group consisting of positions 5, 6, 7, 15, and 17 on the sense strand, and positions 15 and 17 on the antisense strand, counting from the 5′-end of each strand.


In some embodiments, the positions in the double stranded region exclude a cleavage site region of the sense strand.


In some embodiments, the sense strand is 21 nucleotides in length, the antisense strand is 23 nucleotides in length, and the lipophilic moiety is conjugated to position 20, position 15, position 1, position 7, position 6, or position 2 of the sense strand or position 16 of the antisense strand.


In other embodiments, the sense strand is 21 nucleotides in length, the antisense strand is 23 nucleotides in length, and the lipophilic moiety is conjugated to position 21, position 20, position 15, position 1, position 7, position 6, or position 2 of the sense strand or position 16 of the antisense strand.


In some embodiments, the lipophilic moiety is an aliphatic, alicyclic, or polyalicyclic compound.


In some embodiments, the lipophilic moiety is selected from the group consisting of lipid, cholesterol, retinoic acid, cholic acid, adamantane acetic acid, 1-pyrene butyric acid, dihydrotestosterone, 1,3-bis-O(hexadecyl)glycerol, geranyloxyhexyanol, hexadecylglycerol, borneol, menthol, 1,3-propanediol, heptadecyl group, palmitic acid, myristic acid, O3-(oleoyl)lithocholic acid, O3-(oleoyl)cholenic acid, dimethoxytrityl, or phenoxazine.


In some embodiments, the lipophilic moiety contains a saturated or unsaturated C4-C30 hydrocarbon chain, and an optional functional group selected from the group consisting of hydroxyl, amine, carboxylic acid, sulfonate, phosphate, thiol, azide, and alkyne.


In some embodiments, the lipophilic moiety contains a saturated or unsaturated C6-C18 hydrocarbon chain.


In some embodiments, the lipophilic moiety contains a saturated or unsaturated C16 hydrocarbon chain. In some embodiments, the saturated or unsaturated C16 hydrocarbon chain is conjugated to position 6, counting from the 5′-end of the strand.


In some embodiments, the lipophilic moiety is conjugated via a carrier that replaces one or more nucleotide(s) in the internal position(s) or the double stranded region. In some embodiments, the carrier is a cyclic group selected from the group consisting of pyrrolidinyl, pyrazolinyl, pyrazolidinyl, imidazolinyl, imidazolidinyl, piperidinyl, piperazinyl, [1,3]dioxolanyl, oxazolidinyl, isoxazolidinyl, morpholinyl, thiazolidinyl, isothiazolidinyl, quinoxalinyl, pyridazinonyl, tetrahydrofuranyl, and decalinyl; or is an acyclic moiety based on a serinol backbone or a diethanolamine backbone.


In some embodiments, the lipophilic moiety is conjugated to the dsRNA agent via a linker containing an ether, thioether, urea, carbonate, amine, amide, maleimide-thioether, disulfide, phosphodiester, sulfonamide linkage, a product of a click reaction, or carbamate.


In some embodiments, the lipophilic moiety is conjugated to a nucleobase, sugar moiety, or internucleosidic linkage.


In some embodiments, the dsRNA agent comprises at least one modified nucleotide. In some embodiments, no more than five of the sense strand nucleotides and no more than five of the nucleotides of the antisense strand are unmodified nucleotides. In other embodiments, all of the nucleotides of the sense strand and all of the nucleotides of the antisense strand comprise a modification.


In some embodiments, at least one of the modified nucleotides is selected from the group a deoxy-nucleotide, a 3′-terminal deoxy-thymine (dT) nucleotide, a 2′-O-methyl modified nucleotide, a 2′-fluoro modified nucleotide, a 2′-deoxy-modified nucleotide, a locked nucleotide, an unlocked nucleotide, a conformationally restricted nucleotide, a constrained ethyl nucleotide, an abasic nucleotide, a 2′-amino-modified nucleotide, a 2′-O-allyl-modified nucleotide, 2′-C-alkyl-modified nucleotide, 2′-hydroxyl-modified nucleotide, a 2′-methoxyethyl modified nucleotide, a 2′-O-alkyl-modified nucleotide, a morpholino nucleotide, a phosphoramidate, a non-natural base comprising nucleotide, a tetrahydropyran modified nucleotide, a 1,5-anhydrohexitol modified nucleotide, a cyclohexenyl modified nucleotide, a nucleotide comprising a 5′-phosphorothioate group, a nucleotide comprising a 5′-methylphosphonate group, a nucleotide comprising a 5′ phosphate or 5′ phosphate mimic, a nucleotide comprising vinyl phosphonate, a nucleotide comprising adenosine-glycol nucleic acid (GNA), a nucleotide comprising thymidine-glycol nucleic acid (GNA) S-Isomer, a nucleotide comprising 2-hydroxymethyl-tetrahydrofurane-5-phosphate, a nucleotide comprising 2′-deoxythymidine-3′phosphate, a nucleotide comprising 2′-deoxyguanosine-3′-phosphate, and a terminal nucleotide linked to a cholesteryl derivative and a dodecanoic acid bisdecylamide group; and combinations thereof.


In other embodiments, the modified nucleotide is selected from the group consisting of a 2′-deoxy-2′-fluoro modified nucleotide, a 2′-deoxy-modified nucleotide, 3′-terminal deoxy-thymine nucleotides (dT), a locked nucleotide, an abasic nucleotide, a 2′-amino-modified nucleotide, a 2′-alkyl-modified nucleotide, a morpholino nucleotide, a phosphoramidate, and a non-natural base comprising nucleotide.


In some embodiments, at least one of the modified nucleotides is selected from the group consisting of a deoxy-nucleotide, a 2′-O-methyl modified nucleotide, a 2′-fluoro modified nucleotide, a 2′-deoxy-modified nucleotide, a glycol modified nucleotide (GNA), and, a vinyl-phosphonate nucleotide; and combinations thereof.


In some embodiments, at least one of the modifications on the nucleotides is a thermally destabilizing nucleotide modification. In some embodiments, the thermally destabilizing nucleotide modification is selected from the group consisting of an abasic modification; a mismatch with the opposing nucleotide in the duplex; and destabilizing sugar modification, a 2′-deoxy modification, an acyclic nucleotide, an unlocked nucleic acids (UNA), and a glycerol nucleic acid (GNA)


In some embodiments, the modified nucleotide comprises a short sequence of 3′-terminal deoxy-thymine nucleotides (dT).


In some embodiments, the modifications on the nucleotides are 2′-O-methyl, GNA and 2′fluoro modifications.


In some embodiments, the dsRNA agent further comprises at least one phosphorothioate internucleotide linkage. In some embodiments, the dsRNA agent comprises 6-8 phosphorothioate internucleotide linkages. In one embodiment, the phosphorothioate or methylphosphonate internucleotide linkage is at the 3′-terminus of one strand. Optionally, the strand is the antisense strand. In another embodiment, the strand is the sense strand. In a related embodiment, the phosphorothioate or methylphosphonate internucleotide linkage is at the 5′-terminus of one strand. Optionally, the strand is the antisense strand. In another embodiment, the strand is the sense strand. In another embodiment, the phosphorothioate or methylphosphonate internucleotide linkage is at the both the 5′- and 3′-terminus of one strand. Optionally, the strand is the antisense strand. In another embodiment, the strand is the sense strand.


In some embodiments, each strand is no more than 30 nucleotides in length.


In some embodiments, at least one strand comprises a 3′ overhang of at least 1 nucleotide or a 3′ overhang of at least 2 nucleotides.


The double stranded region may be 15-30 nucleotide pairs in length; 17-23 nucleotide pairs in length; 17-25 nucleotide pairs in length; 23-27 nucleotide pairs in length; 19-21 nucleotide pairs in length; or 21-23 nucleotide pairs in length.


Each strand may be 19-30 nucleotides; 19-23 nucleotides; or 21-23 nucleotides.


In some embodiments, the dsRNA agent further comprises a targeting ligand that targets a liver tissue. In some embodiments, the targeting ligand is a GalNAc conjugate.


In certain embodiments, the double-stranded RNAi agent further includes a targeting ligand that targets a receptor which mediates delivery to a CNS tissue, e.g., a hydrophilic ligand.


In certain embodiments, the targeting ligand is a C16 ligand. In one embodiment, the ligand is




embedded image


where B is a nucleotide base or a nucleotide base analog, optionally where B is adenine, guanine, cytosine, thymine or uracil.


In some embodiments, the lipophilic moeity or targeting ligand is conjugated via a bio-clevable linker selected from the group consisting of DNA, RNA, disulfide, amide, funtionalized monosaccharides or oligosaccharides of galactosamine, glucosamine, glucose, galactose, mannose, and combinations thereof.


In some embodiments, the 3′ end of the sense strand is protected via an end cap which is a cyclic group having an amine, said cyclic group being selected from the group consisting of pyrrolidinyl, pyrazolinyl, pyrazolidinyl, imidazolinyl, imidazolidinyl, piperidinyl, piperazinyl, [1,3]dioxolanyl, oxazolidinyl, isoxazolidinyl, morpholinyl, thiazolidinyl, isothiazolidinyl, quinoxalinyl, pyridazinonyl, tetrahydrofuranyl, and decalinyl.


In some embodiments, the dsRNA agent further comprises a terminal, chiral modification occurring at the first internucleotide linkage at the 3′ end of the antisense strand, having the linkage phosphorus atom in Sp configuration, a terminal, chiral modification occurring at the first internucleotide linkage at the 5′ end of the antisense strand, having the linkage phosphorus atom in Rp configuration, and a terminal, chiral modification occurring at the first internucleotide linkage at the 5′ end of the sense strand, having the linkage phosphorus atom in either Rp configuration or Sp configuration.


In some embodiments, the dsRNA agent further comprises a terminal, chiral modification occurring at the first and second internucleotide linkages at the 3′ end of the antisense strand, having the linkage phosphorus atom in Sp configuration, a terminal, chiral modification occurring at the first internucleotide linkage at the 5′ end of the antisense strand, having the linkage phosphorus atom in Rp configuration, and a terminal, chiral modification occurring at the first internucleotide linkage at the 5′ end of the sense strand, having the linkage phosphorus atom in either Rp or Sp configuration.


In some embodiments, the dsRNA agent further comprises a terminal, chiral modification occurring at the first, second and third internucleotide linkages at the 3′ end of the antisense strand, having the linkage phosphorus atom in Sp configuration, a terminal, chiral modification occurring at the first internucleotide linkage at the 5′ end of the antisense strand, having the linkage phosphorus atom in Rp configuration, and a terminal, chiral modification occurring at the first internucleotide linkage at the 5′ end of the sense strand, having the linkage phosphorus atom in either Rp or Sp configuration.


In some embodiments, the dsRNA agent further comprises a terminal, chiral modification occurring at the first, and second internucleotide linkages at the 3′ end of the antisense strand, having the linkage phosphorus atom in Sp configuration, a terminal, chiral modification occurring at the third internucleotide linkages at the 3′ end of the antisense strand, having the linkage phosphorus atom in Rp configuration, a terminal, chiral modification occurring at the first internucleotide linkage at the 5′ end of the antisense strand, having the linkage phosphorus atom in Rp configuration, and a terminal, chiral modification occurring at the first internucleotide linkage at the 5′ end of the sense strand, having the linkage phosphorus atom in either Rp or Sp configuration.


In some embodiments, the dsRNA agent further comprises a terminal, chiral modification occurring at the first, and second internucleotide linkages at the 3′ end of the antisense strand, having the linkage phosphorus atom in Sp configuration, a terminal, chiral modification occurring at the first, and second internucleotide linkages at the 5′ end of the antisense strand, having the linkage phosphorus atom in Rp configuration, and a terminal, chiral modification occurring at the first internucleotide linkage at the 5′ end of the sense strand, having the linkage phosphorus atom in either Rp or Sp configuration.


In some embodiments, the dsRNA agent further comprises a phosphate or phosphate mimic at the 5′-end of the antisense strand. In some embodiments, the phosphate mimic is a 5′-vinyl phosphonate (VP).


In some embodiments, the base pair at the 1 position of the 5′-end of the antisense strand of the duplex is an AU base pair.


In some embodiments, the sense strand has a total of 21 nucleotides and the antisense strand has a total of 23 nucleotides.


An additional aspect of the instant disclosure provides a double stranded RNAi agent for inhibiting expression of a huntingtin (HTT) gene, where the double stranded RNAi agent targeted to HTT includes a sense strand and an antisense strand forming a double stranded region, where the sense strand includes at least 15, e.g., 15, 16, 17, 18, 19, or 20, contiguous nucleotides differing by no more than 3 nucleotides (i.e., differing by 3, 2, 1, or 0 nucleotides) from any one of the nucleotide sequences of SEQ ID NOs: 1-5 and the antisense strand includes at least 15, e.g., 15, 16, 17, 18, 19, or 20, contiguous nucleotides differing by no more than 3 nucleotides (i.e., differing by 3, 2, 1, or 0 nucleotides) from any one of the nucleotide sequences of SEQ ID NOs: 6-10; where a substitution of a uracil for any thymine in the sequences provided in the SEQ ID NOs: 1-10 (when comparing aligned sequences) does not count as a difference that contributes to the differing by no more than 3 nucleotides from any one of the nucleotide sequences provided in SEQ ID NOs: 1-10, where substantially all of the nucleotides of the sense strand include a modification that is a 2′-O-methyl modification, a GNA or a 2′-fluoro modification, where the sense strand includes two phosphorothioate internucleotide linkages at the 5′-terminus, where substantially all of the nucleotides of the antisense strand include a modification selected from the group consisting of a 2′-O-methyl modification and a 2′-fluoro modification, where the antisense strand includes two phosphorothioate internucleotide linkages at the 5′-terminus and two phosphorothioate internucleotide linkages at the 3′-terminus, and where the sense strand is conjugated to one or more lipophilic, e.g., C16, ligands.


Another aspect of the instant disclosure provides a double stranded RNAi agent for inhibiting expression of a huntingtin (HTT) gene, where the double stranded RNAi agent targeted to HTT includes a sense strand and an antisense strand forming a double stranded region, where the sense strand includes at least 15, e.g., 15, 16, 17, 18, 19, or 20, contiguous nucleotides differing by no more than 3 nucleotides (i.e., differing by 3, 2, 1, or 0 nucleotides) from any one of the nucleotide sequences of SEQ ID NOs: 1-5 and the antisense strand includes at least 15 contiguous nucleotides differing by no more than 3 nucleotides (i.e., differing by 3, 2, 1, or 0 nucleotides) from any one of the nucleotide sequences of SEQ ID NOs: 6-10, where a substitution of a uracil for any thymine in the sequences provided in the SEQ ID NOs: 1-10 (when comparing aligned sequences) does not count as a difference that contributes to the differing by no more than 3 nucleotides from any one of the nucleotide sequences provided in SEQ ID NOs:1-10; where the sense strand includes at least one 3′-terminal deoxy-thymine nucleotide (dT), and where the antisense strand includes at least one 3′-terminal deoxy-thymine nucleotide (dT).


An additional aspect of the instant disclosure provides a double stranded ribonucleic acid (RNAi) agent for inhibiting expression of a huntingtin (HTT) gene, where the RNAi agent possesses a sense strand and an antisense strand, and where the antisense strand includes a region of complementarity which includes at least 15 contiguous nucleotides differing by no more than 3 nucleotides (i.e., differing by 3, 2, 1, or 0 nucleotides), e.g., at least 15 nucleotides (i.e., differing by 3, 2, 1, or 0 nucleotides), at least 19 nucleotides (i.e., differing by 3, 2, 1, or 0 nucleotides), from any one of the antisense strand nucleobase sequences of Tables 2, 3, 5, 6, 8, 9, 11, 12, 14, 15, 17, 18, 20, 21, 24, 25, 27-30, 32 and 33. In one embodiment, the RNAi agent includes one or more of the following modifications: a 2′-O-methyl modified nucleotide, a 2′-fluoro modified nucleotide, a 2′-C-alkyl-modified nucleotide, a nucleotide comprising a glycol nucleic acid (GNA), a phosphorothioate (PS) and a vinyl phosphonate (VP). Optionally, the RNAi agent includes at least one of each of the following modifications: a 2′-O-methyl modified nucleotide, a 2′-fluoro modified nucleotide, a 2′-C-alkyl-modified nucleotide, a nucleotide comprising a glycol nucleic acid (GNA), a phosphorothioate and a vinyl phosphonate (VP).


In another embodiment, the RNAi agent includes four or more PS modifications, optionally six to ten PS modifications, optionally eight PS modifications.


In an additional embodiment, each of the sense strand and the antisense strand of the RNAi agent possesses a 5′-terminus and a 3′-terminus, and the RNAi agent includes eight PS modifications positioned at each of the penultimate and ultimate internucleotide linkages from the respective 3′- and 5′-termini of each of the sense and antisense strands of the RNAi agent.


In another embodiment, each of the sense strand and the antisense strand of the RNAi agent includes a 5′-terminus and a 3′-terminus, and the RNAi agent includes only one nucleotide including a GNA. Optionally, the nucleotide including a GNA is positioned on the antisense strand at the seventh nucleobase residue from the 5′-terminus of the antisense strand.


In an additional embodiment, each of the sense strand and the antisense strand of the RNAi agent includes a 5′-terminus and a 3′-terminus, and the RNAi agent includes one to four 2′-C-alkyl-modified nucleotides. Optionally, the 2′-C-alkyl-modified nucleotide is a 2′-C16-modified nucleotide. Optionally, the RNAi agent includes a single 2′-C-alkyl, e.g., C16-modified nucleotide. Optionally, the single 2′-C-alkyl, e.g., C16-modified nucleotide is located on the sense strand at the sixth nucleobase position from the 5′-terminus of the sense strand.


In another embodiment, each of the sense strand and the antisense strand of the RNAi agent includes a 5′-terminus and a 3′-terminus, and the RNAi agent includes two or more 2′-fluoro modified nucleotides. Optionally, each of the sense strand and the antisense strand of the RNAi agent includes two or more 2′-fluoro modified nucleotides. Optionally, the 2′-fluoro modified nucleotides are located on the sense strand at nucleobase positions 7, 9, 10 and 11 from the 5′-terminus of the sense strand and on the antisense strand at nucleobase positions 2, 14 and 16 from the 5′-terminus of the antisense strand.


In an additional embodiment, each of the sense strand and the antisense strand of the RNAi agent includes a 5′-terminus and a 3′-terminus, and the RNAi agent includes one or more VP modifications. Optionally, the RNAi agent includes a single VP modification at the 5′-terminus of the antisense strand.


In another embodiment, each of the sense strand and the antisense strand of the RNAi agent includes a 5′-terminus and a 3′-terminus, and the RNAi agent includes two or more 2′-O-methyl modified nucleotides. Optionally, the RNAi agent includes 2′-O-methyl modified nucleotides at all nucleobase locations not modified by a 2′-fluoro, a 2′-C-alkyl or a glycol nucleic acid (GNA). Optionally, the two or more 2′-O-methyl modified nucleotides are located on the sense strand at positions 1, 2, 3, 4, 5, 8, 12, 13, 14, 15, 16, 17, 18, 19, 20 and 21 from the 5′-terminus of the sense strand and on the antisense strand at positions 1, 3, 4, 5, 6, 8, 9, 10, 11, 12, 13, 15, 17, 18, 19, 20, 21, 22 and 23 from the 5′-terminus of the antisense strand.


In one embodiment, all of the nucleotides of the sense strand and all of the nucleotides of the antisense strand are modified nucleotides.


In another embodiment, each strand has 19-30 nucleotides.


In certain embodiments, the antisense strand of the RNAi agent includes at least one thermally destabilizing modification of the duplex within the first 9 nucleotide positions of the 5′ region or a precursor thereof. Optionally, the thermally destabilizing modification of the duplex is one or more of




embedded image


where B is nucleobase.


The present invention further provides cells containing any of the dsRNA agents of the invention and pharmaceutical compositions for inhibiting expression of a gene encoding HTT, comprising any of the dsRNA agents of the invention.


In one embodiment, the double stranded RNAi agent is in an unbuffered solution. Optionally, the unbuffered solution is saline or water. In another embodiment, the double stranded RNAi agent is in a buffer solution. Optionally, the buffer solution includes acetate, citrate, prolamine, carbonate, or phosphate or any combination thereof. In another embodiment, the buffer solution is phosphate buffered saline (PBS). Another aspect of the disclosure provides a pharmaceutical composition that includes a double stranded RNAi agent of the instant disclosure and a lipid formulation. In one embodiment, the lipid formulation includes a lipid nanoparticle (LNP).


An additional aspect of the disclosure provides a method of inhibiting expression of an HTT gene in a cell, the method including (a) contacting the cell with a double stranded RNAi agent of the instant disclosure or a pharmaceutical composition of the instant disclosure; and (b) maintaining the cell produced in step (a) for a time sufficient to obtain degradation of the mRNA transcript of an HTT gene, thereby inhibiting expression of the HTT gene in the cell.


In one embodiment, the cell is within a subject. Optionally, the subject is a human.


In certain embodiments, the subject is a rhesus monkey, a cynomolgous monkey, a mouse, or a rat. In certain embodiments HTT expression is inhibited by at least about 50% by the RNAi agent.


In certain embodiments, the human subject has been diagnosed with an HTT-associated disease, e.g., Huntington's disease.


Another aspect of the disclosure provides a method of treating a subject diagnosed with an HTT-associated disease, e.g., Huntington's disease, the method including administering to the subject a therapeutically effective amount of a double stranded RNAi agent of the disclosure or a pharmaceutical composition of the disclosure, thereby treating the subject.


In one embodiment, treating comprises amelioration of at least on sign or symptom of the disease. In another embodiment, treating comprises prevention of progression of the disease.


In some embodiments, the dsRNA agent is administered to the subject at a dose of about 0.01 mg/kg to about 50 mg/kg.


In some embodiments, the dsRNA agent is administered to the subject intrathecally. In one embodiment, the method reduces the expression of an HTT gene in a brain (e.g., striatum) or spine tissue. Optionally, the brain or spine tissue is striatum, cortex, cerebellum, cervical spine, lumbar spine, or thoracic spine.


In some embodiments, the method further comprises measuring a level of HTT in a sample obtained from the subject.


Another aspect of the instant disclosure provides a method of inhibiting the expression of huntingtin (HTT) in a subject, the method involving: administering to the subject a therapeutically effective amount of a double stranded RNAi agent of the disclosure or a pharmaceutical composition of the disclosure, thereby inhibiting the expression of HTT in the subject.


In some embodiment, the method further comprises administering to the subject an additional agent suitable for treatment or prevention of an HTT-associated disorder.





BRIEF DESCRIPTIONS OF THE FIGURES


FIG. 1 is a graph showing wild-type human HTT mRNA levels in the livers of mice expressing a portion of wild-type human HTT (via AAV). These mice were subcutaneously administered a single 3 mg/kg dose of the indicated dsRNA duplexes targeting exon 1 of the human HTT transcript at Day 14 post AAV dose. Human HTT levels shown are normalized to AAV treated controls 14 days post siRNA dose.



FIG. 2 is a graph showing wild-type human HTT mRNA levels in the livers of mice expressing a portion of wild-type human HTT (via AAV). These mice were subcutaneously administered a single 3 mg/kg dose of the indicated dsRNA duplexes targeting exon 1 of the human HTT transcript at Day 14 post AAV dose. Human HTT levels shown are normalized to AAV treated controls 14 days post siRNA dose.



FIG. 3A is a graph showing full length mutant human HTT mRNA levels in the livers of YAC128 mice and subcutaneously administered a single 10 mg/kg dose of the indicated dsRNA duplexes targeting exon 1 of the human HTT transcript at Day 7 post-dose. Human HTT levels shown are normalized to PBS treatment levels.



FIG. 3B is a Western Blot showing mutant human HTT protein and wildtype mouse HTT protein levels in the livers of YAC128 mice, subcutaneously administered a single 10 mg/kg dose of the indicated dsRNA duplexes targeting exon 1 of the human HTT transcript at Day 7 post-dose.



FIG. 3C is a bar graph showing mutant human HTT protein levels in the livers of YAC128 mice subcutaneously administered a single 10 mg/kg dose of the indicated dsRNA duplexes targeting exon 1 of the human HTT transcript at Day 7 post-dose. Mutant human HTT levels shown are normalized to PBS treatment levels.



FIG. 4A is a graph showing full-length mutant HTT mRNA levels in the livers of YAC128 mice subcutaneously administered a single 10 mg/kg dose of the indicated dsRNA duplexes targeting exon 1 of the HTT transcript at Day 7 post-dose. Full-length mutant human HTT levels shown are normalized to PBS treatment levels.



FIG. 4B is a bar graph showing quantification of mutant HTT protein levels in the livers of YAC128 mice subcutaneously administered a single 10 mg/kg dose of the indicated dsRNA duplexes targeting exon 1 of the HTT transcript at Day 7 post-dose. Mutant human HTT levels shown are normalized to PBS treatment levels.



FIG. 5 is a graph showing full-length mutant human HTT mRNA levels in the livers of YAC128 mice subcutaneously administered a single 10 mg/kg dose of the indicated dsRNA duplexes targeting exon 1 of the HTT transcript at Day 7 post-dose. Human HTT levels shown are normalized to PBS treatment levels.



FIG. 6 is a graph showing full-length mutant human HTT mRNA levels in YAC128 mice subcutaneously administered a single 10 mg/kg dose of the indicated dsRNA duplexes at Day 7 post-dose and the corresponding full-length mutant human HTT protein levels in the livers. Mutant human mRNA and protein HTT levels shown are normalized to PBS treatment levels.



FIG. 7 is a graph showing mutant full-length human HTT mRNA levels in YAC128 mice subcutaneously administered a single 10 mg/kg dose of the indicated dsRNA duplexes at Day 7 post-dose. Mutant human HTT levels shown are normalized to PBS treatment levels.



FIGS. 8A and 8B are graphs showing full-length human HTT mRNA levels in human fibroblasts transfected with 10 nM or 50 nM of the indicated dsRNA duplexes targeting various exons or exon 1 specifically of human HTT. Fibroblasts were obtained from Coriell, adult healthy control patient (“Control”, GM02153), an HD patient with adult disease onset (“Adult”, GM04478″) and an HD patient with juvenile disease onset (“Juvenile”, GM09197″). HTT levels shown are normalized to mock transfected controls.



FIGS. 9A and 9B are graphs showing full-length human HTT mRNA levels in human fibroblasts transfected with 10 nM or 50 nM of the indicated dsRNA duplexes targeting various exons or exon 1 specifically of human HTT. Fibroblasts were obtained from Coriell, adult healthy control patient (“Control”, GM02153), an HD patient with adult disease onset (“Adult”, GM04478″) and an HD patient with juvenile disease onset (“Juvenile”, GM09197″). HTT levels shown are normalized to mock transfected controls.



FIGS. 10A-10D a are graphs showing full-length human HTT mRNA levels in human fibroblasts transfected with 10 nM or 50 nM of the indicated dsRNA duplexes targeting various exons or exon 1 specifically of human HTT. Fibroblasts were obtained from Coriell, adult healthy control patient (“Control”, GM02153), an HD patient with adult disease onset (“Adult”, GM04478″) and an HD patient with juvenile disease onset (“Juvenile”, GM09197″). HTT levels shown are normalized to mock transfected controls.



FIGS. 11A-11D are graphs showing full-length HTT mRNA mRNA levels in human fibroblasts transfected with 10 nM or 50 nM of the indicated dsRNA duplexes targeting various exons or exon 1 specifically of human HTT. Fibroblasts were obtained from Coriell, adult healthy control patient (“Control”, GM02153), an HD patient with adult disease onset (“Adult”, GM04478″) and an HD patient with juvenile disease onset (“Juvenile”, GM09197″). HTT levels shown are normalized to mock transfected controls.



FIG. 12 is a graph showing full-length mutant human HTT mRNA levels in the livers of YAC 128 mice or wildtype mice expressing a portion of human wild-type HTT (“AAV”) and subcutaneously administered a single dose of the indicated dsRNA duplexes targeting the full length HTT transcript at the indicated days post dose. HTT levels shown are normalized to PBS treatment levels.



FIGS. 13A-D are graphs showing full-length human HTT mRNA levels in the livers of mice expressing a portion of human wild-type HTT via AAV. These mice were subcutaneously administered a single 3 mg/kg dose of the indicated dsRNA duplexes targeting the full length HTT transcript at 14 days post-dose. HTT levels are shown relative to AAV treated control levels 14 days post siRNA dose.





DETAILED DESCRIPTION OF THE INVENTION

The present disclosure provides RNAi compositions, which effect the RNA-induced silencing complex (RISC)-mediated cleavage of RNA transcripts of a huntingtin (HTT) gene. The HTT gene may be within a cell, e.g., a cell within a subject, such as a human. The use of these iRNAs enables the targeted degradation of mRNAs of the corresponding gene (HTT gene) in mammals.


The iRNAs of the invention have been designed to target an HTT gene, including portions of the gene that are conserved in the HTT orthologs of other mammalian species. The iRNAs of the invention have also been designed to target a particular portion of an HTT gene, exon 1, e.g., thereby targeting the full-length wild-type transcript, the full-length mutant transcript, as well as the truncated mutant transcript. Without intending to be limited by theory, it is believed that a combination or sub-combination of the foregoing properties and the specific target sites, e.g., exon 1, or the specific modifications in these iRNAs confer to the iRNAs of the invention improved efficacy, stability, potency, durability, and safety.


Accordingly, the present disclosure also provides methods of using the RNAi compositions of the disclosure for inhibiting the expression of an HTT gene or for treating a subject having a disorder that would benefit from inhibiting or reducing the expression of an HTT gene, e.g., an HTT-associated disesase, for example, Huntington's disease (HD).


The RNAi agents of the disclosure include an RNA strand (the antisense strand) having a region which is about 30 nucleotides or less in length, e.g., 15-30, 15-29, 15-28, 15-27, 15-26, 15-25, 15-24, 15-23, 15-22, 15-21, 15-20, 15-19, 15-18, 15-17, 18-30, 18-29, 18-28, 18-27, 18-26, 18-25, 18-24, 18-23, 18-22, 18-21, 18-20, 19-30, 19-29, 19-28, 19-27, 19-26, 19-25, 19-24, 19-23, 19-22, 19-21, 19-20, 20-30, 20-29, 20-28, 20-27, 20-26, 20-25, 20-24, 20-23, 20-22, 20-21, 21-30, 21-29, 21-28, 21-27, 21-26, 21-25, 21-24, 21-23, or 21-22 nucleotides in length, which region is substantially complementary to at least part of an mRNA transcript of an HTT gene. In certain embodiments, the RNAi agents of the disclosure include an RNA strand (the antisense strand) having a region which is about 21-23 nucleotides in length, which region is substantially complementary to at least part of an mRNA transcript of an HTT gene.


In certain embodiments, the RNAi agents of the disclosure include an RNA strand (the antisense strand) which can include longer lengths, for example up to 66 nucleotides, e.g., 36-66, 26-36, 25-36, 31-60, 22-43, 27-53 nucleotides in length with a region of at least 19 contiguous nucleotides that is substantially complementary to at least a part of an mRNA transcript of an HTT gene. These RNAi agents with the longer length antisense strands preferably include a second RNA strand (the sense strand) of 20-60 nucleotides in length wherein the sense and antisense strands form a duplex of 18-30 contiguous nucleotides.


The use of these RNAi agents enables the targeted degradation of mRNAs of an HTT gene in mammals. Thus, methods and compositions including these RNAi agents are useful for treating a subject who would benefit by a reduction in the levels or activity of an HTT protein, such as a subject having an HTT-associated disease, such as Huntington's disease (HD).


The following detailed description discloses how to make and use compositions containing RNAi agents to inhibit the expression of an HTT gene, as well as compositions and methods for treating subjects having diseases and disorders that would benefit from inhibition or reduction of the expression of the genes.


I. Definitions

In order that the present disclosure may be more readily understood, certain terms are first defined. In addition, it should be noted that whenever a value or range of values of a parameter are recited, it is intended that values and ranges intermediate to the recited values are also intended to be part of this disclosure.


The articles “a” and “an” are used herein to refer to one or to more than one (i.e., to at least one) of the grammatical object of the article. By way of example, “an element” means one element or more than one element, e.g., a plurality of elements.


The term “including” is used herein to mean, and is used interchangeably with, the phrase “including but not limited to”. The term “or” is used herein to mean, and is used interchangeably with, the term “and/or,” unless context clearly indicates otherwise.


The term “about” is used herein to mean within the typical ranges of tolerances in the art. For example, “about” can be understood as about 2 standard deviations from the mean. In certain embodiments, about means±10%. In certain embodiments, about means±5%. When about is present before a series of numbers or a range, it is understood that “about” can modify each of the numbers in the series or range.


The term “at least” prior to a number or series of numbers is understood to include the number adjacent to the term “at least”, and all subsequent numbers or integers that could logically be included, as clear from context. For example, the number of nucleotides in a nucleic acid molecule must be an integer. For example, “at least 18 nucleotides of a 21 nucleotide nucleic acid molecule” means that 18, 19, 20, or 21 nucleotides have the indicated property. When at least is present before a series of numbers or a range, it is understood that “at least” can modify each of the numbers in the series or range.


As used herein, “no more than” or “less than” is understood as the value adjacent to the phrase and logical lower values or intergers, as logical from context, to zero. For example, a duplex with an overhang of “no more than 2 nucleotides” has a 2, 1, or 0 nucleotide overhang. When “no more than” is present before a series of numbers or a range, it is understood that “no more than” can modify each of the numbers in the series or range.


As used herein, methods of detection can include determination that the amount of analyte present is below the level of detection of the method.


In the event of a conflict between an indicated target site and the nucleotide sequence for a sense or antisense strand, the indicated sequence takes precedence.


In the event of a conflict between a chemical structure and a chemical name, the chemical structure takes precedence.


The term “HTT” or “huntingtin”, also known as “Huntingtin,” “Huntington Disease Protein,” “IT15,” “HD,” HD Protein,” or “LOMARS,” refers to the well-known gene that encodes the protein, HTT, that is widely expressed, required for normal development and the disease gene linked to Huntington's disease, a neurodegenerative disorder characterized by loss of striatal neurons caused by an expanded, unstable trinucleotide (CAG) repeat in the huntingtin gene, which translates as a polyglutamine repeat in the protein product.


Exemplary nucleotide and amino acid sequences of HTT can be found, for example, at GenBank Accession No. NM_002111.8 (Homo sapiens HTT, SEQ ID NO: 1, reverse complement, SEQ ID NO: 6); GenBank Accession No. NM_010414.3 (Mus musculus HTT, SEQ ID NO: 2; reverse complement, SEQ ID NO: 7); GenBank Accession No.: NM_024357.3 (Rattus norvegicus HTT, SEQ ID NO: 3, reverse complement, SEQ ID NO: 8); GenBank Accession No.: XM_015449989.1 (Macaca fascicularis HTT, SEQ ID NO: 4, reverse complement, SEQ ID NO: 9); and GenBank Accession No.: XM_028848247.1 (Macaca mulatta HTT, SEQ ID NO: 5, reverse complement, SEQ ID NO: 10).


Additional examples of HTT sequences can be found in publically available databases, for example, GenBank, OMIM, and UniProt.


Further information on HTT can be found, for example, at www.ncbi.nlm.nih.gov/gene/3064.


The entire contents of each of the foregoing GenBank Accession numbers and the Gene database numbers are incorporated herein by reference as of the date of filing this application.


The term HTT, as used herein, also refers to variations of the HTT gene including variants provided in the SNP database. Numerous sequence variations within the HTT gene have been identified and may be found at, for example, NCBI dbSNP and UniProt (see, e.g., www.ncbi.nlm.nih.gov/snp/?LinkName=gene_snp&from_uid=3064, the entire contents of which is incorporated herein by reference as of the date of filing this application.


As used herein, “target sequence” refers to a contiguous portion of the nucleotide sequence of an mRNA molecule formed during the transcription of an HTT gene, including mRNA that is a product of RNA processing of a primary transcription product. In one embodiment, the target portion of the sequence will be at least long enough to serve as a substrate for RNAi-directed cleavage at or near that portion of the nucleotide sequence of an mRNA molecule formed during the transcription of an HTT gene.


The target sequence is about 15-30 nucleotides in length. For example, the target sequence can be from about 15-30 nucleotides, 15-29, 15-28, 15-27, 15-26, 15-25, 15-24, 15-23, 15-22, 15-21, 15-20, 15-19, 15-18, 15-17, 18-30, 18-29, 18-28, 18-27, 18-26, 18-25, 18-24, 18-23, 18-22, 18-21, 18-20, 19-30, 19-29, 19-28, 19-27, 19-26, 19-25, 19-24, 19-23, 19-22, 19-21, 19-20, 20-30, 20-29, 20-28, 20-27, 20-26, 20-25, 20-24, 20-23, 20-22, 20-21, 21-30, 21-29, 21-28, 21-27, 21-26, 21-25, 21-24, 21-23, or 21-22 nucleotides in length. In certain embodiments, the target sequence is 19-23 nucleotides in length, optionally 21-23 nucleotides in length. Ranges and lengths intermediate to the above recited ranges and lengths are also contemplated to be part of the disclosure.


As used herein, the term “strand comprising a sequence” refers to an oligonucleotide comprising a chain of nucleotides that is described by the sequence referred to using the standard nucleotide nomenclature.


“G,” “C,” “A,” “T”, and “U” each generally stand for a nucleotide that contains guanine, cytosine, adenine, thymidine, and uracil as a base, respectively in the context of a modified or unmodified nucleotide. However, it will be understood that the term “ribonucleotide” or “nucleotide” can also refer to a modified nucleotide, as further detailed below, or a surrogate replacement moiety (see, e.g., Table 1). The skilled person is well aware that guanine, cytosine, adenine, thymidine, and uracil can be replaced by other moieties without substantially altering the base pairing properties of an oligonucleotide comprising a nucleotide bearing such replacement moiety. For example, without limitation, a nucleotide comprising inosine as its base can base pair with nucleotides containing adenine, cytosine, or uracil. Hence, nucleotides containing uracil, guanine, or adenine can be replaced in the nucleotide sequences of dsRNA featured in the disclosure by a nucleotide containing, for example, inosine. In another example, adenine and cytosine anywhere in the oligonucleotide can be replaced with guanine and uracil, respectively to form G-U Wobble base pairing with the target mRNA. Sequences containing such replacement moieties are suitable for the compositions and methods featured in the disclosure.


The terms “iRNA”, “RNAi agent,” “iRNA agent,” “RNA interference agent” as used interchangeably herein, refer to an agent that contains RNA as that term is defined herein, and which mediates the targeted cleavage of an RNA transcript via an RNA-induced silencing complex (RISC) pathway. RNA interference (RNAi) is a process that directs the sequence-specific degradation of mRNA. RNAi modulates, e.g., inhibits, the expression of HTT in a cell, e.g., a cell within a subject, such as a mammalian subject.


In one embodiment, an RNAi agent of the disclosure includes a single stranded RNAi that interacts with a target RNA sequence, e.g., an HTT target mRNA sequence, to direct the cleavage of the target RNA. Without wishing to be bound by theory it is believed that long double stranded RNA introduced into cells is broken down into double-stranded short interfering RNAs (siRNAs) comprising a sense strand and an antisense strand by a Type III endonuclease known as Dicer (Sharp et al. (2001) Genes Dev. 15:485). Dicer, a ribonuclease-III-like enzyme, processes these dsRNA into 19-23 base pair short interfering RNAs with characteristic two base 3′ overhangs (Bernstein, et al., (2001) Nature 409:363). These siRNAs are then incorporated into an RNA-induced silencing complex (RISC) where one or more helicases unwind the siRNA duplex, enabling the complementary antisense strand to guide target recognition (Nykanen, et al., (2001) Cell 107:309). Upon binding to the appropriate target mRNA, one or more endonucleases within the RISC cleave the target to induce silencing (Elbashir, et al., (2001) Genes Dev. 15:188). Thus, in one aspect the disclosure relates to a single stranded RNA (ssRNA) (the antisense strand of a siRNA duplex) generated within a cell and which promotes the formation of a RISC complex to effect silencing of the target gene, i.e., an HTT gene. Accordingly, the term “siRNA” is also used herein to refer to an RNAi as described above.


In another embodiment, the RNAi agent may be a single-stranded RNA that is introduced into a cell or organism to inhibit a target mRNA. Single-stranded RNAi agents bind to the RISC endonuclease, Argonaute 2, which then cleaves the target mRNA. The single-stranded siRNAs are generally 15-30 nucleotides and are chemically modified. The design and testing of single-stranded RNAs are described in U.S. Pat. No. 8,101,348 and in Lima et al., (2012) Cell 150:883-894, the entire contents of each of which are hereby incorporated herein by reference. Any of the antisense nucleotide sequences described herein may be used as a single-stranded siRNA as described herein or as chemically modified by the methods described in Lima et al., (2012) Cell 150:883-894.


In another embodiment, a “RNAi agent” for use in the compositions and methods of the disclosure is a double stranded RNA and is referred to herein as a “double stranded RNAi agent,” “double stranded RNA (dsRNA) molecule,” “dsRNA agent,” or “dsRNA”. The term “dsRNA” refers to a complex of ribonucleic acid molecules, having a duplex structure comprising two anti-parallel and substantially complementary nucleic acid strands, referred to as having “sense” and “antisense” orientations with respect to a target RNA, i.e., an HTT gene. In some embodiments of the disclosure, a double stranded RNA (dsRNA) triggers the degradation of a target RNA, e.g., an mRNA, through a post-transcriptional gene-silencing mechanism referred to herein as RNA interference or RNAi.


In general, a dsRNA molecule can include ribonucleotides, but as described in detail herein, each or both strands can also include one or more non-ribonucleotides, e.g., a deoxyribonucleotide, a modified nucleotide. In addition, as used in this specification, an “RNAi agent” may include ribonucleotides with chemical modifications; an RNAi agent may include substantial modifications at multiple nucleotides. As used herein, the term “modified nucleotide” refers to a nucleotide having, independently, a modified sugar moiety, a modified internucleotide linkage, or a modified nucleobase. Thus, the term modified nucleotide encompasses substitutions, additions or removal of, e.g., a functional group or atom, to internucleoside linkages, sugar moieties, or nucleobases. The modifications suitable for use in the agents of the disclosure include all types of modifications disclosed herein or known in the art. Any such modifications, as used in a siRNA type molecule, are encompassed by “RNAi agent” for the purposes of this specification and claims.


In certain embodiments of the instant disclosure, inclusion of a deoxy-nucleotide if present within an RNAi agent can be considered to constitute a modified nucleotide.


The duplex region may be of any length that permits specific degradation of a desired target RNA through a RISC pathway, and may range from about 15-36 base pairs in length, for example, about 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, or 36 base pairs in length, such as about 15-30, 15-29, 15-28, 15-27, 15-26, 15-25, 15-24, 15-23, 15-22, 15-21, 15-20, 15-19, 15-18, 15-17, 18-30, 18-29, 18-28, 18-27, 18-26, 18-25, 18-24, 18-23, 18-22, 18-21, 18-20, 19-30, 19-29, 19-28, 19-27, 19-26, 19-25, 19-24, 19-23, 19-22, 19-21, 19-20, 20-30, 20-29, 20-28, 20-27, 20-26, 20-25, 20-24, 20-23, 20-22, 20-21, 21-30, 21-29, 21-28, 21-27, 21-26, 21-25, 21-24, 21-23, or 21-22 base pairs in length. In certain embodiments, the duplex region is 19-21 base pairs in length, e.g., 21 base pairs in length. Ranges and lengths intermediate to the above recited ranges and lengths are also contemplated to be part of the disclosure.


The two strands forming the duplex structure may be different portions of one larger RNA molecule, or they may be separate RNA molecules. Where the two strands are part of one larger molecule, and therefore are connected by an uninterrupted chain of nucleotides between the 3′-end of one strand and the 5′-end of the respective other strand forming the duplex structure, the connecting RNA chain is referred to as a “hairpin loop.” A hairpin loop can comprise at least one unpaired nucleotide. In some embodiments, the hairpin loop can comprise at least 4, at least 5, at least 6, at least 7, at least 8, at least 9, at least 10, at least 20, at least 23 or more unpaired nucleotides or nucleotides not directed to the target site of the dsRNA. In some embodiments, the hairpin loop can be 10 or fewer nucleotides. In some embodiments, the hairpin loop can be 8 or fewer unpaired nucleotides. In some embodiments, the hairpin loop can be 4-10 unpaired nucleotides. In some embodiments, the hairpin loop can be 4-8 nucleotides.


Where the two substantially complementary strands of a dsRNA are comprised by separate RNA molecules, those molecules need not, but can be covalently connected. In certain embodiments where the two strands are connected covalently by means other than an uninterrupted chain of nucleotides between the 3′-end of one strand and the 5′-end of the respective other strand forming the duplex structure, the connecting structure is referred to as a “linker” (though it is noted that certain other structures defined elsewhere herein can also be referred to as a “linker”). The RNA strands may have the same or a different number of nucleotides. The maximum number of base pairs is the number of nucleotides in the shortest strand of the dsRNA minus any overhangs that are present in the duplex. In addition to the duplex structure, an RNAi may comprise one or more nucleotide overhangs. In one embodiment of the RNAi agent, at least one strand comprises a 3′ overhang of at least 1 nucleotide. In another embodiment, at least one strand comprises a 3′ overhang of at least 2 nucleotides, e.g., 2, 3, 4, 5, 6, 7, 9, 10, 11, 12, 13, 14, or 15 nucleotides. In other embodiments, at least one strand of the RNAi agent comprises a 5′ overhang of at least 1 nucleotide. In certain embodiments, at least one strand comprises a 5′ overhang of at least 2 nucleotides, e.g., 2, 3, 4, 5, 6, 7, 9, 10, 11, 12, 13, 14, or 15 nucleotides. In still other embodiments, both the 3′ and the 5′ end of one strand of the RNAi agent comprise an overhang of at least 1 nucleotide.


In one embodiment, an RNAi agent of the disclosure is a dsRNA, each strand of which independently comprises 19-23 nucleotides, that interacts with a target RNA sequence, e.g., an HTT target mRNA sequence, to direct the cleavage of the target RNA.


As used herein, the term “nucleotide overhang” refers to at least one unpaired nucleotide that protrudes from the duplex structure of an RNAi agent, e.g., a dsRNA. For example, when a 3′-end of one strand of a dsRNA extends beyond the 5′-end of the other strand, or vice versa, there is a nucleotide overhang. A dsRNA can comprise an overhang of at least one nucleotide; alternatively, the overhang can comprise at least two nucleotides, at least three nucleotides, at least four nucleotides, at least five nucleotides or more. A nucleotide overhang can comprise or consist of a nucleotide/nucleoside analog, including a deoxynucleotide/nucleoside. The overhang(s) can be on the sense strand, the antisense strand or any combination thereof. Furthermore, the nucleotide(s) of an overhang can be present on the 5′-end, 3′-end or both ends of either an antisense or sense strand of a dsRNA.


In one embodiment, the antisense strand of a dsRNA has a 1-10 nucleotide, e.g., a 1, 2, 3, 4, 5, 6, 7, 8, 9, or 10 nucleotide, overhang at the 3′-end or the 5′-end. In one embodiment, the sense strand of a dsRNA has a 1-10 nucleotide, e.g., a 1, 2, 3, 4, 5, 6, 7, 8, 9, or 10 nucleotide, overhang at the 3′-end or the 5′-end. In another embodiment, one or more of the nucleotides in the overhang is replaced with a nucleoside thiophosphate.


In certain embodiments, the antisense strand of a dsRNA has a 1-10 nucleotide, e.g., 0-3, 1-3, 2-4, 2-5, 4-10, 5-10, e.g., a 1, 2, 3, 4, 5, 6, 7, 8, 9, or 10 nucleotide, overhang at the 3′-end or the 5′-end. In one embodiment, the sense strand of a dsRNA has a 1-10 nucleotide, e.g., a 1, 2, 3, 4, 5, 6, 7, 8, 9, or 10 nucleotide, overhang at the 3′-end or the 5′-end. In another embodiment, one or more of the nucleotides in the overhang is replaced with a nucleoside thiophosphate.


In certain embodiments, the overhang on the sense strand or the antisense strand, can include extended lengths longer than 10 nucleotides, e.g., 1-30 nucleotides, 2-30 nucleotides, 10-30 nucleotides, or 10-15 nucleotides in length. In certain embodiments, an extended overhang is on the sense strand of the duplex. In certain embodiments, an extended overhang is present on the 3′end of the sense strand of the duplex. In certain embodiments, an extended overhang is present on the 5′end of the sense strand of the duplex. In certain embodiments, an extended overhang is on the antisense strand of the duplex. In certain embodiments, an extended overhang is present on the 3′end of the antisense strand of the duplex. In certain embodiments, an extended overhang is present on the 5′end of the antisense strand of the duplex. In certain embodiments, one or more of the nucleotides in the overhang is replaced with a nucleoside thiophosphate. In certain embodiments, the overhang includes a self-complementary portion such that the overhang is capable of forming a hairpin structure that is stable under physiological conditions.


In certain embodiments, at least one end of at least one strand is extended beyond a duplex targeting region, including structures where one of the strands includes a thermodynamically-stabilizing tetraloop structure (see, e.g., U.S. Pat. Nos. 8,513,207 and 8,927,705, as well as WO2010033225, the entire contents of each of which are incorporated by reference herein). Such structures may include single-stranded extensions (on one or both sides of the molecule) as well as double-stranded extensions.


In certain embodiments, the 3′ end of the sense strand and the 5′ end of the antisense strand are joined by a polynucleotide sequence comprising ribonucleotides, deoxyribonucleotides or both, optionally wherein the polynucleotide sequence comprises a tetraloop sequence. In certain embodiments, the sense strand is 25-35 nucleotides in length.


A tetraloop may contain ribonucleotides, deoxyribonucleotides, modified nucleotides, and combinations thereof. Typically, a tetraloop has 4 to 5 nucleotides. In some embodiments, the loop comprises a sequence set forth as GAAA. In some embodiments, at least one of the nucleotide of the loop (GAAA) comprises a nucleotide modification. In some embodiments, the modified nucleotide comprises a 2′-modification. In some embodiments, the 2 ‘-modification is a modification selected from the group consisting of 2’-aminoethyl, 2′-fluoro, 2′-O-methyl, 2′-O-methoxyethyl, 2′-aminodiethoxymethanol, 2′-adem, and 2′-deoxy-2′-fhioro--d-arabinonucleic acid. In some embodiments, all of the nucleotides of the loop are modified. In some embodiments, the G in the GAAA sequence comprises a 2′-OH. In some embodiments, each of the nucleotides in the GAAA sequence comprises a 2′-O-methyl modification. In some embodiments, each of the A in the GAAA sequence comprises a 2′-OH and the G in the GAAA sequence comprises a 2′-O-methyl modification. In preferred embodiments, In some embodiments, each of the A in the GAAA sequence comprises a 2′-O-methoxyethyl (MOE) modification and the G in the GAAA sequence comprises a 2′-O-methyl modification; or each of the A in the GAAA sequence comprises a 2′-adem modification and the G in the GAAA sequence comprises a 2′-O-methyl modification. See, e.g., PCT Publication No. WO 2020/206350, the entire contents of which are incorporated herein by reference.


An exemplary 2′ adem modified nucleotide is shown below:




embedded image


The terms “blunt” or “blunt ended” as used herein in reference to a dsRNA mean that there are no unpaired nucleotides or nucleotide analogs at a given terminal end of a dsRNA, i.e., no nucleotide overhang. One or both ends of a dsRNA can be blunt. Where both ends of a dsRNA are blunt, the dsRNA is said to be blunt ended. To be clear, a “blunt ended” dsRNA is a dsRNA that is blunt at both ends, i.e., no nucleotide overhang at either end of the molecule. Most often such a molecule will be double stranded over its entire length.


The term “antisense strand” or “guide strand” refers to the strand of an RNAi agent, e.g., a dsRNA, which includes a region that is substantially complementary to a target sequence, e.g., an HTT mRNA.


As used herein, the term “region of complementarity” refers to the region on the antisense strand that is substantially complementary to a sequence, for example a target sequence, e.g., an HTT nucleotide sequence, as defined herein. Where the region of complementarity is not fully complementary to the target sequence, the mismatches can be in the internal or terminal regions of the molecule. Generally, the most tolerated mismatches are in the terminal regions, e.g., within 5, 4, 3, or 2 nucleotides of the 5′- or 3′-terminus of the RNAi agent. In some embodiments, a double stranded RNA agent of the invention includes a nucleotide mismatch in the antisense strand. In some embodiments, the antisense strand of the double stranded RNA agent of the invention includes no more than 4 mismatches with the target mRNA, e.g., the antisense strand includes 4, 3, 2, 1, or 0 mismatches with the target mRNA. In some embodiments, the antisense strand double stranded RNA agent of the invention includes no more than 4 mismatches with the sense strand, e.g., the antisense strand includes 4, 3, 2, 1, or 0 mismatches with the sense strand. In some embodiments, a double stranded RNA agent of the invention includes a nucleotide mismatch in the sense strand. In some embodiments, the sense strand of the double stranded RNA agent of the invention includes no more than 4 mismatches with the antisense strand, e.g., the sense strand includes 4, 3, 2, 1, or 0 mismatches with the antisense strand. In some embodiments, the nucleotide mismatch is, for example, within 5, 4, 3 nucleotides from the 3′-end of the iRNA. In another embodiment, the nucleotide mismatch is, for example, in the 3′-terminal nucleotide of the iRNA agent. In some embodiments, the mismatch(s) is not in the seed region.


Thus, an RNAi agent as described herein can contain one or more mismatches to the target sequence. In one embodiment, an RNAi agent as described herein contains no more than 3 mismatches (i.e., 3, 2, 1, or 0 mismatches). In one embodiment, an RNAi agent as described herein contains no more than 2 mismatches. In one embodiment, an RNAi agent as described herein contains no more than 1 mismatch. In one embodiment, an RNAi agent as described herein contains 0 mismatches. In certain embodiments, if the antisense strand of the RNAi agent contains mismatches to the target sequence, the mismatch can optionally be restricted to be within the last 5 nucleotides from either the 5′- or 3′-end of the region of complementarity. For example, in such embodiments, for a 23 nucleotide RNAi agent, the strand which is complementary to a region of an HTT gene, generally does not contain any mismatch within the central 13 nucleotides. The methods described herein or methods known in the art can be used to determine whether an RNAi agent containing a mismatch to a target sequence is effective in inhibiting the expression of an HTT gene. Consideration of the efficacy of RNAi agents with mismatches in inhibiting expression of an HTT gene is important, especially if the particular region of complementarity in an HTT gene is known to have polymorphic sequence variation within the population.


The term “sense strand” or “passenger strand” as used herein, refers to the strand of an RNAi agent that includes a region that is substantially complementary to a region of the antisense strand as that term is defined herein.


As used herein, the term “cleavage region” refers to a region that is located immediately adjacent to the cleavage site. The cleavage site is the site on the target at which cleavage occurs. In some embodiments, the cleavage region comprises three bases on either end of, and immediately adjacent to, the cleavage site. In some embodiments, the cleavage region comprises two bases on either end of, and immediately adjacent to, the cleavage site. In some embodiments, the cleavage site specifically occurs at the site bound by nucleotides 10 and 11 of the antisense strand, and the cleavage region comprises nucleotides 11, 12 and 13.


As used herein, and unless otherwise indicated, the term “complementary,” when used to describe a first nucleotide sequence in relation to a second nucleotide sequence, refers to the ability of an oligonucleotide or polynucleotide comprising the first nucleotide sequence to hybridize and form a duplex structure under certain conditions with an oligonucleotide or polynucleotide comprising the second nucleotide sequence, as will be understood by the skilled person.


Complementary sequences within an RNAi agent, e.g., within a dsRNA as described herein, include base-pairing of the oligonucleotide or polynucleotide comprising a first nucleotide sequence to an oligonucleotide or polynucleotide comprising a second nucleotide sequence over the entire length of one or both nucleotide sequences. Such sequences can be referred to as “fully complementary” with respect to each other herein. However, where a first sequence is referred to as “substantially complementary” with respect to a second sequence herein, the two sequences can be fully complementary, or they can form one or more, but generally not more than 5, 4, 3 or 2 mismatched base pairs upon hybridization for a duplex up to 30 base pairs, while retaining the ability to hybridize under the conditions most relevant to their ultimate application, e.g., inhibition of gene expression via a RISC pathway. However, where two oligonucleotides are designed to form, upon hybridization, one or more single stranded overhangs, such overhangs shall not be regarded as mismatches with regard to the determination of complementarity. For example, a dsRNA comprising one oligonucleotide 21 nucleotides in length and another oligonucleotide 23 nucleotides in length, wherein the longer oligonucleotide comprises a sequence of 21 nucleotides that is fully complementary to the shorter oligonucleotide, can yet be referred to as “fully complementary” for the purposes described herein.


“Complementary” sequences, as used herein, can also include, or be formed entirely from, non-Watson-Crick base pairs or base pairs formed from non-natural and modified nucleotides, in so far as the above requirements with respect to their ability to hybridize are fulfilled. Such non-Watson-Crick base pairs include, but are not limited to, G:U Wobble or Hoogstein base pairing.


The terms “complementary,” “fully complementary” and “substantially complementary” herein can be used with respect to the base matching between the sense strand and the antisense strand of a dsRNA, or between the antisense strand of an RNAi agent and a target sequence, as will be understood from the context of their use.


As used herein, a polynucleotide that is “substantially complementary to at least part of” a messenger RNA (mRNA) refers to a polynucleotide that is substantially complementary to a contiguous portion of the mRNA of interest (e.g., an mRNA encoding HTT). For example, a polynucleotide is complementary to at least a part of an HTT mRNA if the sequence is substantially complementary to a non-interrupted portion of an mRNA encoding HTT.


Accordingly, in some embodiments, the antisense polynucleotides disclosed herein are fully complementary to the target HTT sequence. In other embodiments, the antisense polynucleotides disclosed herein are substantially complementary to the target complement component HTT sequence and comprise a contiguous nucleotide sequence which is at least 80% complementary over its entire length to the equivalent region of the nucleotide sequence of any one of SEQ ID NOs:1-5, or a fragment of any one of SEQ ID NOs:1-5, such as about 85%, about 90%, about 91%, about 92%, about 93%, about 94%, about 95%, about 96%, about 97%, about 98%, or about 99% complementary.


In other embodiments, the antisense polynucleotides disclosed herein are substantially complementary to the target HTT sequence and comprise a contiguous nucleotide sequence which is at least about 80% complementary over its entire length to any one of the sense strand nucleotide sequences in any one of any one of Tables 2, 3, 5, 6, 8, 9, 11, 12, 14, 15, 17, 18, 20, 21, 24, 25, 27-30, 32 and 33, or a fragment of any one of the sense strand nucleotide sequences in any one of Tables 2, 3, 5, 6, 8, 9, 11, 12, 14, 15, 17, 18, 20, 21, 24, 25, 27-30, 32 and 33, such as about 85%, about 90%, about 91%, about 92%, about 93%, about 94%, about 95%, about 96%, about 97%, about 98%, about 99%, or 100% complementary.


In one embodiment, an RNAi agent of the disclosure includes a sense strand that is substantially complementary to an antisense polynucleotide which, in turn, is the same as a target HTT sequence, and wherein the sense strand polynucleotide comprises a contiguous nucleotide sequence which is at least about 80% complementary over its entire length to the equivalent region of the nucleotide sequence of SEQ ID NOs: 6-10, or a fragment of any one of SEQ ID NOs:6-10, such as about 85%, about 90%, about 91%, about 92%, about 93%, about 94%, about 95%, about 96%, about 97%, about 98%, about 99%, or 100% complementary.


In some embodiments, an iRNA of the invention includes a sense strand that is substantially complementary to an antisense polynucleotide which, in turn, is complementary to a target HTT sequence, and wherein the sense strand polynucleotide comprises a contiguous nucleotide sequence which is at least about 80% complementary over its entire length to any one of the antisense strand nucleotide sequences in any one of any one of Tables 2, 3, 5, 6, 8, 9, 11, 12, 14, 15, 17, 18, 20, 21, 24, 25, 27-30, 32 and 33, or a fragment of any one of the antisense strand nucleotide sequences in any one of Tables 2, 3, 5, 6, 8, 9, 11, 12, 14, 15, 17, 18, 20, 21, 24, 25, 27-30, 32 and 33, such as about 85%, about 90%, about 91%, about 92%, about 93%, about 94%, about 95%, about 96%, about 97%, about 98%, about 99%, or 100% complementary


In one embodiment, at least partial suppression of the expression of an HTT gene, is assessed by a reduction of the amount of HTT mRNA which can be isolated from or detected in a first cell or group of cells in which an HTT gene is transcribed and which has or have been treated such that the expression of an HTT gene is inhibited, as compared to a second cell or group of cells substantially identical to the first cell or group of cells but which has or have not been so treated (control cells). The degree of inhibition may be expressed in terms of:










(

mRNA


in


control


cells

)

-

(

mRNA


in


treated


cells

)



(

mRNA


in



control


cells


)


·
100


%




The phrase “contacting a cell with an RNAi agent,” such as a dsRNA, as used herein, includes contacting a cell by any possible means. Contacting a cell with an RNAi agent includes contacting a cell in vitro with the RNAi agent or contacting a cell in vivo with the RNAi agent. The contacting may be done directly or indirectly. Thus, for example, the RNAi agent may be put into physical contact with the cell by the individual performing the method, or alternatively, the RNAi agent may be put into a situation that will permit or cause it to subsequently come into contact with the cell.


Contacting a cell in vitro may be done, for example, by incubating the cell with the RNAi agent. Contacting a cell in vivo may be done, for example, by injecting the RNAi agent into or near the tissue where the cell is located, or by injecting the RNAi agent into another area, e.g., the central nervous system (CNS), optionally via intrathecal, intravitreal or other injection, or to the bloodstream or the subcutaneous space, such that the agent will subsequently reach the tissue where the cell to be contacted is located. For example, the RNAi agent may contain or be coupled to a ligand, e.g., a lipophilic moiety or moieties as described below and further detailed, e.g., in PCT/US2019/031170, which is incorporated herein by reference, that directs or otherwise stabilizes the RNAi agent at a site of interest, e.g., the CNS. Combinations of in vitro and in vivo methods of contacting are also possible. For example, a cell may also be contacted in vitro with an RNAi agent and subsequently transplanted into a subject.


In one embodiment, contacting a cell with an RNAi agent includes “introducing” or “delivering the RNAi agent into the cell” by facilitating or effecting uptake or absorption into the cell. Absorption or uptake of an RNAi agent can occur through unaided diffusive or active cellular processes, or by auxiliary agents or devices. Introducing an RNAi agent into a cell may be in vitro or in vivo. For example, for in vivo introduction, an RNAi agent can be injected into a tissue site or administered systemically. In vitro introduction into a cell includes methods known in the art such as electroporation and lipofection. Further approaches are described herein below or are known in the art.


The term “lipophile” or “lipophilic moiety” broadly refers to any compound or chemical moiety having an affinity for lipids. One way to characterize the lipophilicity of the lipophilic moiety is by the octanol-water partition coefficient, log Kow, where Kow is the ratio of a chemical's concentration in the octanol-phase to its concentration in the aqueous phase of a two-phase system at equilibrium. The octanol-water partition coefficient is a laboratory-measured property of a substance. However, it may also be predicted by using coefficients attributed to the structural components of a chemical which are calculated using first-principle or empirical methods (see, for example, Tetko et al., J. Chem. Inf. Comput. Sci. 41:1407-21 (2001), which is incorporated herein by reference in its entirety). It provides a thermodynamic measure of the tendency of the substance to prefer a non-aqueous or oily milieu rather than water (i.e. its hydrophilic/lipophilic balance). In principle, a chemical substance is lipophilic in character when its log Kow exceeds 0. Typically, the lipophilic moiety possesses a log Kow exceeding 1, exceeding 1.5, exceeding 2, exceeding 3, exceeding 4, exceeding 5, or exceeding 10. For instance, the log Kow of 6-amino hexanol, for instance, is predicted to be approximately 0.7. Using the same method, the log Kow of cholesteryl N-(hexan-6-ol) carbamate is predicted to be 10.7.


The lipophilicity of a molecule can change with respect to the functional group it carries. For instance, adding a hydroxyl group or amine group to the end of a lipophilic moiety can increase or decrease the partition coefficient (e.g., log Kow) value of the lipophilic moiety.


Alternatively, the hydrophobicity of the double-stranded RNAi agent, conjugated to one or more lipophilic moieties, can be measured by its protein binding characteristics. For instance, in certain embodiments, the unbound fraction in the plasma protein binding assay of the double-stranded RNAi agent could be determined to positively correlate to the relative hydrophobicity of the double-stranded RNAi agent, which could then positively correlate to the silencing activity of the double-stranded RNAi agent.


In one embodiment, the plasma protein binding assay determined is an electrophoretic mobility shift assay (EMSA) using human serum albumin protein. An exemplary protocol of this binding assay is illustrated in detail in, e.g., PCT/US2019/031170. The hydrophobicity of the double-stranded RNAi agent, measured by fraction of unbound siRNA in the binding assay, exceeds 0.15, exceeds 0.2, exceeds 0.25, exceeds 0.3, exceeds 0.35, exceeds 0.4, exceeds 0.45, or exceeds 0.5 for an enhanced in vivo delivery of siRNA.


Accordingly, conjugating the lipophilic moieties to the internal position(s) of the double-stranded RNAi agent provides optimal hydrophobicity for the enhanced in vivo delivery of siRNA.


The term “lipid nanoparticle” or “LNP” is a vesicle comprising a lipid layer encapsulating a pharmaceutically active molecule, such as a nucleic acid molecule, e.g., a rNAi agent or a plasmid from which an RNAi agent is transcribed. LNPs are described in, for example, U.S. Pat. Nos. 6,858,225, 6,815,432, 8,158,601, and 8,058,069, the entire contents of which are hereby incorporated herein by reference.


As used herein, a “subject” is an animal, such as a mammal, including a primate (such as a human, a non-human primate, e.g., a monkey, and a chimpanzee), or a non-primate (such as a a rat, or a mouse). In a preferred embodiment, the subject is a human, such as a human being treated or assessed for a disease, disorder, or condition that would benefit from reduction in HTT expression; a human at risk for a disease, disorder, or condition that would benefit from reduction in HTT expression; a human having a disease, disorder, or condition that would benefit from reduction in HTT expression; or human being treated for a disease, disorder, or condition that would benefit from reduction in HTT expression as described herein. In some embodiments, the subject is a female human. In other embodiments, the subject is a male human. In one embodiment, the subject is an adult subject. In one embodiment, the subject is a pediatric subject. In another embodiment, the subject is a juvenile subject, i.e., a subject below 20 years of age.


As used herein, the terms “treating” or “treatment” refer to a beneficial or desired result including, but not limited to, alleviation or amelioration of one or more signs or symptoms associated with HTT gene expression or HTT protein production, e.g., HTT-associated diseases, such as Huntington's disease. “Treatment” can also mean prolonging survival as compared to expected survival in the absence of treatment.


The term “lower” in the context of the level of HTT in a subject or a disease marker or symptom refers to a statistically significant decrease in such level. The decrease can be, for example, at least 10%, 15%, 20%, 25%, 30%, %, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, or more. In certain embodiments, a decrease is at least 20%. In certain embodiments, the decrease is at least 50% in a disease marker, e.g., protein or gene expression level. “Lower” in the context of the level of HTT in a subject is preferably down to a level accepted as within the range of normal for an individual without such disorder. In certain embodiments, “lower” is the decrease in the difference between the level of a marker or symptom for a subject suffering from a disease and a level accepted within the range of normal for an individual, e.g., the level of decrease in bodyweight between an obese individual and an individual having a weight accepted within the range of normal.


As used herein, “prevention” or “preventing,” when used in reference to a disease, disorder, or condition thereof, that would benefit from a reduction in expression of an HTT gene or production of an HTT protein, refers to a reduction in the likelihood that a subject will develop a symptom associated with such a disease, disorder, or condition, e.g., a symptom of an HTT-associated disease. The failure to develop a disease, disorder, or condition, or the reduction in the development of a symptom associated with such a disease, disorder, or condition (e.g., by at least about 10% on a clinically accepted scale for that disease or disorder), or the exhibition of delayed symptoms delayed (e.g., by days, weeks, months or years) is considered effective prevention.


As used herein, the term “HTT-associated disease” or “HTT-associated disorder” is understood as any disease or disorder that would benefit from reduction in the expression and/or activity of HTT. Exemplary HTT-associated diseases include Huntington's disease.


“Huntington's disease,” also known as HD, Huntington's Chorea, Chorea Maior, Chronic Progressive Chorea, and Hereditary Chorea, is an autosomal dominant genetic disorder characterized by choreiform movements and progressive intellectual deterioration, usually beginning in middle age (35 to 50 yr). The disease affects both sexes equally. The caudate nucleus atrophies, the small-cell population degenerates, and levels of the neurotransmitters gamma-aminobutyric acid (GAB A) and substance P decrease. This degeneration results in characteristic “boxcar ventricles” seen on CT scans. Symptoms and signs of HD develop insidiously. HD's most obvious symptoms are abnormal body movements called chorea and lack of coordination, but it also affects a number of mental abilities and some aspects of personality. These physical symptoms commonly become noticeable in a person's forties, but can occur at any age. If the age of onset is below 20 years then it is known as Juvenile HD.


Dementia or psychiatric disturbances, ranging from apathy and irritability to full-blown bipolar or schizophreniform disorder, may precede the movement disorder or develop during its course. Anhedonia or asocial behavior may be the first behavioral manifestation. Motor manifestations include flicking movements of the extremities, a lilting gait, motor impersistence (inability to sustain a motor act, such as tongue protrusion), facial grimacing, ataxia, and dystonia.


HD is caused by a trinucleotide repeat expansion in the Huntingtin (HTT) gene, and is one of several polyglutamine expansion (or PolyQ expansion) diseases. This produces an extended form of the mutant Huntingtin protein (mHtt), which causes cell death in selective areas of the brain.


“Therapeutically effective amount,” as used herein, is intended to include the amount of an RNAi agent that, when administered to a subject having an HTT-associated disease, is sufficient to effect treatment of the disease (e.g., by diminishing, ameliorating, or maintaining the existing disease or one or more symptoms of disease). The “therapeutically effective amount” may vary depending on the RNAi agent, how the agent is administered, the disease and its severity and the history, age, weight, family history, genetic makeup, the types of preceding or concomitant treatments, if any, and other individual characteristics of the subject to be treated.


“Prophylactically effective amount,” as used herein, is intended to include the amount of an RNAi agent that, when administered to a subject having an HTT-associated disorder, is sufficient to prevent or ameliorate the disease or one or more symptoms of the disease. Ameliorating the disease includes slowing the course of the disease or reducing the severity of later-developing disease. The “prophylactically effective amount” may vary depending on the RNAi agent, how the agent is administered, the degree of risk of disease, and the history, age, weight, family history, genetic makeup, the types of preceding or concomitant treatments, if any, and other individual characteristics of the patient to be treated.


A “therapeutically-effective amount” or “prophylacticaly effective amount” also includes an amount of an RNAi agent that produces some desired local or systemic effect at a reasonable benefit/risk ratio applicable to any treatment. An RNAi agent employed in the methods of the present disclosure may be administered in a sufficient amount to produce a reasonable benefit/risk ratio applicable to such treatment.


The phrase “pharmaceutically acceptable” is employed herein to refer to those compounds, materials, compositions, or dosage forms which are, within the scope of sound medical judgment, suitable for use in contact with the tissues of human subjects and animal subjects without excessive toxicity, irritation, allergic response, or other problem or complication, commensurate with a reasonable benefit/risk ratio.


The phrase “pharmaceutically-acceptable carrier” as used herein means a pharmaceutically-acceptable material, composition or vehicle, such as a liquid or solid filler, diluent, excipient, manufacturing aid (e.g., lubricant, talc magnesium, calcium or zinc stearate, or steric acid), or solvent encapsulating material, involved in carrying or transporting the subject compound from one organ, or portion of the body, to another organ, or portion of the body. Each carrier must be “acceptable” in the sense of being compatible with the other ingredients of the formulation and not injurious to the subject being treated. Some examples of materials which can serve as pharmaceutically-acceptable carriers include: (1) sugars, such as lactose, glucose and sucrose; (2) starches, such as corn starch and potato starch; (3) cellulose, and its derivatives, such as sodium carboxymethyl cellulose, ethyl cellulose and cellulose acetate; (4) powdered tragacanth; (5) malt; (6) gelatin; (7) lubricating agents, such as magnesium state, sodium lauryl sulfate and talc; (8) excipients, such as cocoa butter and suppository waxes; (9) oils, such as peanut oil, cottonseed oil, safflower oil, sesame oil, olive oil, corn oil and soybean oil; (10) glycols, such as propylene glycol; (11) polyols, such as glycerin, sorbitol, mannitol and polyethylene glycol; (12) esters, such as ethyl oleate and ethyl laurate; (13) agar; (14) buffering agents, such as magnesium hydroxide and aluminum hydroxide; (15) alginic acid; (16) pyrogen-free water; (17) isotonic saline; (18) Ringer's solution; (19) ethyl alcohol; (20) pH buffered solutions; (21) polyesters, polycarbonates or polyanhydrides; (22) bulking agents, such as polypeptides and amino acids (23) serum component, such as serum albumin, HDL and LDL; and (22) other non-toxic compatible substances employed in pharmaceutical formulations.


The term “sample,” as used herein, includes a collection of similar fluids, cells, or tissues isolated from a subject, as well as fluids, cells, or tissues present within a subject. Examples of biological fluids include blood, serum and serosal fluids, plasma, cerebrospinal fluid, ocular fluids, lymph, urine, saliva, and the like. Tissue samples may include samples from tissues, organs or localized regions. For example, samples may be derived from particular organs, parts of organs, or fluids or cells within those organs. In certain embodiments, samples may be derived from the brain (e.g., whole brain or certain segments of brain, e.g., striatum, or certain types of cells in the brain, such as, e.g., neurons and glial cells (astrocytes, oligodendrocytes, microglial cells)). In some embodiments, a “sample derived from a subject” refers to blood drawn from the subject or plasma or serum derived therefrom. In further embodiments, a “sample derived from a subject” refers to brain tissue (or subcomponents thereof) or retinal tissue (or subcomponents thereof) derived from the subject.


II. RNAi Agents of the Disclosure

Described herein are RNAi agents which inhibit the expression of an HTT gene. In one embodiment, the RNAi agent includes double stranded ribonucleic acid (dsRNA) molecules for inhibiting the expression of an HTT gene in a cell, such as a cell within a subject, e.g., a mammal, such as a human having an HTT-associated disease, e.g., Huntington's disease. The dsRNA includes an antisense strand having a region of complementarity which is complementary to at least a part of an mRNA formed in the expression of an HTT gene, The region of complementarity is about 15-30 nucleotides or less in length. Upon contact with a cell expressing the HTT gene, the RNAi agent inhibits the expression of the HTT gene (e.g., a human gene, a primate gene, a non-primate gene) by at least 50% as assayed by, for example, a PCR or branched DNA (bDNA)-based method, or by a protein-based method, such as by immunofluorescence analysis, using, for example, western blotting or flow cytometric techniques. In one, the level of knockdown is assayed in Cos7 cells using a Dual-Luciferase assay method.


A dsRNA includes two RNA strands that are complementary and hybridize to form a duplex structure under conditions in which the dsRNA will be used. One strand of a dsRNA (the antisense strand) includes a region of complementarity that is substantially complementary, and generally fully complementary, to a target sequence. The target sequence can be derived from the sequence of an mRNA formed during the expression of an HTT gene. The other strand (the sense strand) includes a region that is complementary to the antisense strand, such that the two strands hybridize and form a duplex structure when combined under suitable conditions. As described elsewhere herein and as known in the art, the complementary sequences of a dsRNA can also be contained as self-complementary regions of a single nucleic acid molecule, as opposed to being on separate oligonucleotides.


Generally, the duplex structure is 15 to 30 base pairs in length, e.g., 15-29, 15-28, 15-27, 15-26, 15-25, 15-24, 15-23, 15-22, 15-21, 15-20, 15-19, 15-18, 15-17, 18-30, 18-29, 18-28, 18-27, 18-26, 18-25, 18-24, 18-23, 18-22, 18-21, 18-20, 19-30, 19-29, 19-28, 19-27, 19-26, 19-25, 19-24, 19-23, 19-22, 19-21, 19-20, 20-30, 20-29, 20-28, 20-27, 20-26, 20-25, 20-24, 20-23, 20-22, 20-21, 21-30, 21-29, 21-28, 21-27, 21-26, 21-25, 21-24, 21-23, or 21-22 base pairs in length. In certain preferred embodiments, the duplex structure is 18 to 25 base pairs in length, e.g., 18-25, 18-24, 18-23, 18-22, 18-21, 18-20, 19-25, 19-24, 19-23, 19-22, 19-21, 19-20, 20-25, 20-24, 20-23, 20-22, 20-21, 21-25, 21-24, 21-23, 21-22, 22-25, 22-24, 22-23, 23-25, 23-24 or 24-25 base pairs in length, for example, 19-21 basepairs in length. Ranges and lengths intermediate to the above recited ranges and lengths are also contemplated to be part of the disclosure.


Similarly, the region of complementarity to the target sequence is 15 to 30 nucleotides in length, e.g., 15-29, 15-28, 15-27, 15-26, 15-25, 15-24, 15-23, 15-22, 15-21, 15-20, 15-19, 15-18, 15-17, 18-30, 18-29, 18-28, 18-27, 18-26, 18-25, 18-24, 18-23, 18-22, 18-21, 18-20, 19-30, 19-29, 19-28, 19-27, 19-26, 19-25, 19-24, 19-23, 19-22, 19-21, 19-20, 20-30, 20-29, 20-28, 20-27, 20-26, 20-25, 20-24,20-23, 20-22, 20-21, 21-30, 21-29, 21-28, 21-27, 21-26, 21-25, 21-24, 21-23, or 21-22 nucleotides in length, for example 19-23 nucleotides in length or 21-23 nucleotides in length. Ranges and lengths intermediate to the above recited ranges and lengths are also contemplated to be part of the disclosure.


In some embodiments, the duplex structure is 19 to 30 base pairs in length. Similarly, the region of complementarity to the target sequence is 19 to 30 nucleotides in length.


In some embodiments, the dsRNA is 15 to 23 nucleotides in length, 19 to 23 nucleotides in length, or 25 to 30 nucleotides in length. In general, the dsRNA is long enough to serve as a substrate for the Dicer enzyme. For example, it is well known in the art that dsRNAs longer than about 21-23 nucleotides can serve as substrates for Dicer. As the ordinarily skilled person will also recognize, the region of an RNA targeted for cleavage will most often be part of a larger RNA molecule, often an mRNA molecule. Where relevant, a “part” of an mRNA target is a contiguous sequence of an mRNA target of sufficient length to allow it to be a substrate for RNAi-directed cleavage (i.e., cleavage through a RISC pathway).


One of skill in the art will also recognize that the duplex region is a primary functional portion of a dsRNA, e.g., a duplex region of about 15 to 36 base pairs, e.g., 15-36, 15-35, 15-34, 15-33, 15-32, 15-31, 15-30, 15-29, 15-28, 15-27, 15-26, 15-25, 15-24, 15-23, 15-22, 15-21, 15-20, 15-19, 15-18, 15-17, 18-30, 18-29, 18-28, 18-27, 18-26, 18-25, 18-24, 18-23, 18-22, 18-21, 18-20, 19-30, 19-29, 19-28, 19-27, 19-26, 19-25, 19-24, 19-23, 19-22, 19-21, 19-20, 20-30, 20-29, 20-28, 20-27, 20-26, 20-25, 20-24, 20-23, 20-22, 20-21, 21-30, 21-29, 21-28, 21-27, 21-26, 21-25, 21-24, 21-23, or 21-22 base pairs, for example, 19-21 base pairs. Thus, in one embodiment, to the extent that it becomes processed to a functional duplex, of e.g., 15-30 base pairs, that targets a desired RNA for cleavage, an RNA molecule or complex of RNA molecules having a duplex region greater than 30 base pairs is a dsRNA. Thus, an ordinarily skilled artisan will recognize that in one embodiment, a miRNA is a dsRNA. In another embodiment, a dsRNA is not a naturally occurring miRNA. In another embodiment, an RNAi agent useful to target HTT expression is not generated in the target cell by cleavage of a larger dsRNA.


A dsRNA as described herein can further include one or more single-stranded nucleotide overhangs e.g., 1, 2, 3, or 4 nucleotides. A nucleotide overhang can comprise or consist of a nucleotide/nucleoside analog, including a deoxynucleotide/nucleoside. The overhang(s) can be on the sense strand, the antisense strand or any combination thereof. Furthermore, the nucleotide(s) of an overhang can be present on the 5′-end, 3′-end or both ends of either an antisense or sense strand of a dsRNA.


A dsRNA can be synthesized by standard methods known in the art. Double stranded RNAi compounds of the invention may be prepared using a two-step procedure. First, the individual strands of the double stranded RNA molecule are prepared separately. Then, the component strands are annealed. The individual strands of the siRNA compound can be prepared using solution-phase or solid-phase organic synthesis or both. Organic synthesis offers the advantage that the oligonucleotide strands comprising unnatural or modified nucleotides can be easily prepared. Similarly, single-stranded oligonucleotides of the invention can be prepared using solution-phase or solid-phase organic synthesis or both.


In one aspect, a dsRNA of the disclosure includes at least two nucleotide sequences, a sense sequence and an antisense sequence. The sense strand sequence for HTT may be selected from the group of sequences provided in any one of Tables 2, 3, 5, 6, 8, 9, 11, 12, 14, 15, 17, 18, 20, 21, 24, 25, 27-30, 32 and 33, and the corresponding nucleotide sequence of the antisense strand of the sense strand may be selected from the group of sequences of any one of Tables 2, 3, 5, 6, 8, 9, 11, 12, 14, 15, 17, 18, 20, 21, 24, 25, 27-30, 32 and 33. In this aspect, one of the two sequences is complementary to the other of the two sequences, with one of the sequences being substantially complementary to a sequence of an mRNA generated in the expression of an HTT gene. As such, in this aspect, a dsRNA will include two oligonucleotides, where one oligonucleotide is described as the sense strand (passenger strand) in any one of Tables 2, 3, 5, 6, 8, 9, 11, 12, 14, 15, 17, 18, 20, 21, 24, 25, 27-30, 32 and 33, and the second oligonucleotide is described as the corresponding antisense strand (guide strand) of the sense strand in any one of Tables 2, 3, 5, 6, 8, 9, 11, 12, 14, 15, 17, 18, 20, 21, 24, 25, 27-30, 32 and 33.


In one embodiment, the substantially complementary sequences of the dsRNA are contained on separate oligonucleotides. In another embodiment, the substantially complementary sequences of the dsRNA are contained on a single oligonucleotide.


It will be understood that, although the sequences in Tables 2, 3, 5, 6, 8, 9, 11, 12, 14, 15, 17, 18, 20, 21, 24, 25, 27-30, 32 and 33 are described as modified or conjugated sequences, the RNA of the RNAi agent of the disclosure e.g., a dsRNA of the disclosure, may comprise any one of the sequences set forth in any one of Tables 2, 3, 5, 6, 8, 9, 11, 12, 14, 15, 17, 18, 20, 21, 24, 25, 27-30, 32 and 33 that is un-modified, un-conjugated, or modified or conjugated differently than described therein. For example, although the sense strands of the agents of the invention shown in Tables 3, 9, 12, 15, 17, 27, 29 and 32 are conjugated to a GalNAc ligand, these agents may be conjugated to a moiety that directs delivery to the CNS, e.g., a C16 ligand, as described herein. A lipophilic ligand can be included in any of the positions provided in the instant application.


The skilled person is well aware that dsRNAs having a duplex structure of about 20 to 23 base pairs, e.g., 21, base pairs have been hailed as particularly effective in inducing RNA interference (Elbashir et al., (2001) EMBO J., 20:6877-6888). However, others have found that shorter or longer RNA duplex structures can also be effective (Chu and Rana (2007) RNA 14:1714-1719; Kim et al. (2005) Nat Biotech 23:222-226). In the embodiments described above, by virtue of the nature of the oligonucleotide sequences provided herein, dsRNAs described herein can include at least one strand of a length of minimally 21 nucleotides. It can be reasonably expected that shorter duplexes minus only a few nucleotides on one or both ends can be similarly effective as compared to the dsRNAs described above. Hence, dsRNAs having a sequence of at least 15, 16, 17, 18, 19, 20, or more contiguous nucleotides derived from one of the sequences provided herein, and differing in their ability to inhibit the expression of an HTT gene by not more than 10, 15, 20, 25, or 30% inhibition from a dsRNA comprising the full sequence using the in vitro assay with Cos7 and a 10 nM concentration of the RNA agent and the PCR assay as provided in the examples herein, are contemplated to be within the scope of the present disclosure.


In addition, the RNAs described herein identify a site(s) in an HTT transcript that is susceptible to RISC-mediated cleavage. As such, the present disclosure further features RNAi agents that target within this site(s). As used herein, an RNAi agent is said to target within a particular site of an RNA transcript if the RNAi agent promotes cleavage of the transcript anywhere within that particular site. Such an RNAi agent will generally include at least about 15 contiguous nucleotides, preferably at least 19 nucleotides, from one of the sequences provided herein coupled to additional nucleotide sequences taken from the region contiguous to the selected sequence in an HTT gene.


III. Modified RNAi Agents of the Disclosure

In one embodiment, the RNA of the RNAi agent of the disclosure e.g., a dsRNA, is un-modified, and does not comprise, e.g., chemical modifications or conjugations known in the art and described herein. In preferred embodiments, the RNA of an RNAi agent of the disclosure, e.g., a dsRNA, is chemically modified to enhance stability or other beneficial characteristics. In certain embodiments of the disclosure, substantially all of the nucleotides of an RNAi agent of the disclosure are modified. In other embodiments of the disclosure, all of the nucleotides of an RNAi agent of the disclosure are modified. RNAi agents of the disclosure in which “substantially all of the nucleotides are modified” are largely but not wholly modified and can include not more than 5, 4, 3, 2, or unmodified nucleotides. In still other embodiments of the disclosure, RNAi agents of the disclosure can include not more than 5, 4, 3, 2 or 1 modified nucleotides.


The nucleic acids featured in the disclosure can be synthesized or modified by methods well established in the art, such as those described in “Current protocols in nucleic acid chemistry,” Beaucage, S. L. et al. (Edrs.), John Wiley & Sons, Inc., New York, N.Y., USA, which is hereby incorporated herein by reference. Modifications include, for example, end modifications, e.g., 5′-end modifications (phosphorylation, conjugation, inverted linkages) or 3′-end modifications (conjugation, DNA nucleotides, inverted linkages, etc.); base modifications, e.g., replacement with stabilizing bases, destabilizing bases, or bases that base pair with an expanded repertoire of partners, removal of bases (abasic nucleotides), or conjugated bases; sugar modifications (e.g., at the 2′-position or 4′-position) or replacement of the sugar; or backbone modifications, including modification or replacement of the phosphodiester linkages. Specific examples of RNAi agents useful in the embodiments described herein include, but are not limited to, RNAs containing modified backbones or no natural internucleoside linkages. RNAs having modified backbones include, among others, those that do not have a phosphorus atom in the backbone. For the purposes of this specification, and as sometimes referenced in the art, modified RNAs that do not have a phosphorus atom in their internucleoside backbone can also be considered to be oligonucleosides. In some embodiments, a modified RNAi agent will have a phosphorus atom in its internucleoside backbone.


Modified RNA backbones include, for example, phosphorothioates, chiral phosphorothioates, phosphorodithioates, phosphotriesters, aminoalkylphosphotriesters, methyl and other alkyl phosphonates including 3′-alkylene phosphonates and chiral phosphonates, phosphinates, phosphoramidates including 3′-amino phosphoramidate and aminoalkylphosphoramidates, thionophosphoramidates, thionoalkylphosphonates, thionoalkylphosphotriesters, and boranophosphates having normal 3′-5′ linkages, 2′-5′-linked analogs of these, and those having inverted polarity wherein the adjacent pairs of nucleoside units are linked 3′-5′ to 5′-3′ or 2′-5′ to 5′-2′. Various salts, mixed salts and free acid forms are also included. In some embodiments of the invention, the dsRNA agents of the invention are in a free acid form. In other embodiments of the invention, the dsRNA agents of the invention are in a salt form. In one embodiment, the dsRNA agents of the invention are in a sodium salt form. In certain embodiments, when the dsRNA agents of the invention are in the sodium salt form, sodium ions are present in the agent as counterions for substantially all of the phosphodiester and/or phosphorothiotate groups present in the agent. Agents in which substantially all of the phosphodiester and/or phosphorothioate linkages have a sodium counterion include not more than 5, 4, 3, 2, or 1 phosphodiester and/or phosphorothioate linkages without a sodium counterion. In some embodiments, when the dsRNA agents of the invention are in the sodium salt form, sodium ions are present in the agent as counterions for all of the phosphodiester and/or phosphorothiotate groups present in the agent.


Representative U.S. patents that teach the preparation of the above phosphorus-containing linkages include, but are not limited to, U.S. Pat. Nos. 3,687,808; 4,469,863; 4,476,301; 5,023,243; 5,177,195; 5,188,897; 5,264,423; 5,276,019; 5,278,302; 5,286,717; 5,321,131; 5,399,676; 5,405,939; 5,453,496; 5,455,233; 5,466,677; 5,476,925; 5,519,126; 5,536,821; 5,541,316; 5,550,111; 5,563,253; 5,571,799; 5,587,361; 5,625,050; 6,028,188; 6,124,445; 6,160,109; 6,169,170; 6,172,209; 6,239,265; 6,277,603; 6,326,199; 6,346,614; 6,444,423; 6,531,590; 6,534,639; 6,608,035; 6,683,167; 6,858,715; 6,867,294; 6,878,805; 7,015,315; 7,041,816; 7,273,933; 7,321,029; and U.S. Pat. RE39464, the entire contents of each of which are hereby incorporated herein by reference.


Modified RNA backbones that do not include a phosphorus atom therein have backbones that are formed by short chain alkyl or cycloalkyl internucleoside linkages, mixed heteroatoms and alkyl or cycloalkyl internucleoside linkages, or one or more short chain heteroatomic or heterocyclic internucleoside linkages. These include those having morpholino linkages (formed in part from the sugar portion of a nucleoside); siloxane backbones; sulfide, sulfoxide and sulfone backbones; formacetyl and thioformacetyl backbones; methylene formacetyl and thioformacetyl backbones; alkene containing backbones; sulfamate backbones; methyleneimino and methylenehydrazino backbones; sulfonate and sulfonamide backbones; amide backbones; and others having mixed N, O, S and CH2 component parts.


Representative U.S. patents that teach the preparation of the above oligonucleosides include, but are not limited to, U.S. Pat. Nos. 5,034,506; 5,166,315; 5,185,444; 5,214,134; 5,216,141; 5,235,033; 5,64,562; 5,264,564; 5,405,938; 5,434,257; 5,466,677; 5,470,967; 5,489,677; 5,541,307; 5,561,225; 5,596,086; 5,602,240; 5,608,046; 5,610,289; 5,618,704; 5,623,070; 5,663,312; 5,633,360; 5,677,437; and, 5,677,439, the entire contents of each of which are hereby incorporated herein by reference.


In other embodiments, suitable RNA mimetics are contemplated for use in RNAi agents, in which both the sugar and the internucleoside linkage, i.e., the backbone, of the nucleotide units are replaced with novel groups. The base units are maintained for hybridization with an appropriate nucleic acid target compound. One such oligomeric compound, a RNA mimetic that has been shown to have excellent hybridization properties, is referred to as a peptide nucleic acid (PNA). In PNA compounds, the sugar backbone of an RNA is replaced with an amide containing backbone, in particular an aminoethylglycine backbone. The nucleobases are retained and are bound directly or indirectly to aza nitrogen atoms of the amide portion of the backbone. Representative U.S. patents that teach the preparation of PNA compounds include, but are not limited to, U.S. Pat. Nos. 5,539,082; 5,714,331; and 5,719,262, the entire contents of each of which are hereby incorporated herein by reference. Additional PNA compounds suitable for use in the RNAi agents of the disclosure are described in, for example, in Nielsen et al., Science, 1991, 254, 1497-1500.


Some embodiments featured in the disclosure include RNAs with phosphorothioate backbones and oligonucleosides with heteroatom backbones, and in particular —CH2—NH—CH2—, —CH2—N(CH3)—O—CH2—[known as a methylene (methylimino) or MMI backbone], —CH2—O—N(CH3)—CH2—, —CH2—N(CH3)—N(CH3)—CH2— and —N(CH3)—CH2—CH2—[wherein the native phosphodiester backbone is represented as —O—P—O—CH2—] of the above-referenced U.S. Pat. No. 5,489,677, and the amide backbones of the above-referenced U.S. Pat. No. 5,602,240. In some embodiments, the RNAs featured herein have morpholino backbone structures of the above-referenced U.S. Pat. No. 5,034,506.


Modified RNAs can also contain one or more substituted sugar moieties. The RNAi agents, e.g., dsRNAs, featured herein can include one of the following at the 2′-position: OH; F; O-, S-, or N-alkyl; O-, S-, or N-alkenyl; O-, S- or N-alkynyl; or O-alkyl-O-alkyl, wherein the alkyl, alkenyl and alkynyl can be substituted or unsubstituted C1 to C10 alkyl or C2 to C10 alkenyl and alkynyl. Exemplary suitable modifications include O[(CH2)nO]mCH3, O(CH2)nOCH3, O(CH2)nNH2, O(CH2) nCH3, O(CH2)nONH2, and O(CH2)nON[(CH2)nCH3)]2, where n and m are from 1 to about 10. In other embodiments, dsRNAs include one of the following at the 2′ position: C1 to C10 lower alkyl, substituted lower alkyl, alkaryl, aralkyl, O-alkaryl or O-aralkyl, SH, SCH3, OCN, Cl, Br, CN, CF3, OCF3, SOCH3, SO2CH3, ONO2, NO2, N3, NH2, heterocycloalkyl, heterocycloalkaryl, aminoalkylamino, polyalkylamino, substituted silyl, an RNA cleaving group, a reporter group, an intercalator, a group for improving the pharmacokinetic properties of an RNAi agent, or a group for improving the pharmacodynamic properties of an RNAi agent, and other substituents having similar properties. In some embodiments, the modification includes a 2′-methoxyethoxy (2′-O—CH2CH2OCH3, also known as 2′-O-(2-methoxyethyl) or 2′-MOE) (Martin et al., Helv. Chim. Acta, 1995, 78:486-504) i.e., an alkoxy-alkoxy group. Another exemplary modification is 2′-dimethylaminooxyethoxy, i.e., a O(CH2)2ON(CH3)2 group, also known as 2′-DMAOE, as described in examples herein below, and 2′-dimethylaminoethoxyethoxy (also known in the art as 2′-O-dimethylaminoethoxyethyl or 2′-DMAEOE), i.e., 2′-O—CH2—O—CH2—N(CH2)2. Further exemplary modifications include: 5′-Me-2′-F nucleotides, 5′-Me-2′-OMe nucleotides, 5′-Me-2′-deoxynucleotides, (both R and S isomers in these three families); 2′-alkoxyalkyl; and 2′-NMA (N-methylacetamide).


Other modifications include 2′-methoxy (2′-OCH3), 2′-aminopropoxy (2′-OCH2CH2CH2NH2), 2′-O-hexadecyl, and 2′-fluoro (2′-F). Similar modifications can also be made at other positions on the RNA of an RNAi agent, particularly the 3′ position of the sugar on the 3′ terminal nucleotide or in 2′-5′ linked dsRNAs and the 5′ position of 5′ terminal nucleotide. RNAi agents can also have sugar mimetics such as cyclobutyl moieties in place of the pentofuranosyl sugar. Representative U.S. patents that teach the preparation of such modified sugar structures include, but are not limited to, U.S. Pat. Nos. 4,981,957; 5,118,800; 5,319,080; 5,359,044; 5,393,878; 5,446,137; 5,466,786; 5,514,785; 5,519,134; 5,567,811; 5,576,427; 5,591,722; 5,597,909; 5,610,300; 5,627,053; 5,639,873; 5,646,265; 5,658,873; 5,670,633; and 5,700,920, certain of which are commonly owned with the instant application. The entire contents of each of the foregoing are hereby incorporated herein by reference.


An RNAi agent of the disclosure can also include nucleobase (often referred to in the art simply as “base”) modifications or substitutions. As used herein, “unmodified” or “natural” nucleobases include the purine bases adenine (A) and guanine (G), and the pyrimidine bases thymine (T), cytosine (C) and uracil (U). Modified nucleobases include other synthetic and natural nucleobases such as 5-methylcytosine (5-me-C), 5-hydroxymethyl cytosine, xanthine, hypoxanthine, 2-aminoadenine, 6-methyl and other alkyl derivatives of adenine and guanine, 2-propyl and other alkyl derivatives of adenine and guanine, 2-thiouracil, 2-thiothymine and 2-thiocytosine, 5-halouracil and cytosine, 5-propynyl uracil and cytosine, 6-azo uracil, cytosine and thymine, 5-uracil (pseudouracil), 4-thiouracil, 8-halo, 8-amino, 8-thiol, 8-thioalkyl, 8-hydroxyl anal other 8-substituted adenines and guanines, 5-halo, particularly 5-bromo, 5-trifluoromethyl and other 5-substituted uracils and cytosines, 7-methylguanine and 7-methyladenine, 8-azaguanine and 8-azaadenine, 7-deazaguanine and 7-daazaadenine and 3-deazaguanine and 3-deazaadenine. Further nucleobases include those disclosed in U.S. Pat. No. 3,687,808, those disclosed in Modified Nucleosides in Biochemistry, Biotechnology and Medicine, Herdewijn, P. ed. Wiley-VCH, 2008; those disclosed in The Concise Encyclopedia Of Polymer Science And Engineering, pages 858-859, Kroschwitz, J. L, ed. John Wiley & Sons, 1990, these disclosed by Englisch et al., (1991) Angewandte Chemie, International Edition, 30:613, and those disclosed by Sanghvi, Y S., Chapter 15, dsRNA Research and Applications, pages 289-302, Crooke, S. T. and Lebleu, B., Ed., CRC Press, 1993. Certain of these nucleobases are particularly useful for increasing the binding affinity of the oligomeric compounds featured in the disclosure. These include 5-substituted pyrimidines, 6-azapyrimidines and N-2, N-6 and 0-6 substituted purines, including 2-aminopropyladenine, 5-propynyluracil and 5-propynylcytosine. 5-methylcytosine substitutions have been shown to increase nucleic acid duplex stability by 0.6-1.2° C. (Sanghvi, Y. S., Crooke, S. T. and Lebleu, B., Eds., dsRNA Research and Applications, CRC Press, Boca Raton, 1993, pp. 276-278) and are exemplary base substitutions, even more particularly when combined with 2′-O-methoxyethyl sugar modifications.


Representative U.S. patents that teach the preparation of certain of the above noted modified nucleobases as well as other modified nucleobases include, but are not limited to, the above noted U.S. Pat. Nos. 3,687,808, 4,845,205; 5,130,30; 5,134,066; 5,175,273; 5,367,066; 5,432,272; 5,457,187; 5,459,255; 5,484,908; 5,502,177; 5,525,711; 5,552,540; 5,587,469; 5,594,121, 5,596,091; 5,614,617; 5,681,941; 5,750,692; 6,015,886; 6,147,200; 6,166,197; 6,222,025; 6,235,887; 6,380,368; 6,528,640; 6,639,062; 6,617,438; 7,045,610; 7,427,672; and 7,495,088, the entire contents of each of which are hereby incorporated herein by reference.


An RNAi agent of the disclosure can also be modified to include one or more locked nucleic acids (LNA). A locked nucleic acid is a nucleotide having a modified ribose moiety in which the ribose moiety comprises an extra bridge connecting the 2′ and 4′ carbons. This structure effectively “locks” the ribose in the 3′-endo structural conformation. The addition of locked nucleic acids to siRNAs has been shown to increase siRNA stability in serum, and to reduce off-target effects (Elmen, J. et al., (2005) Nucleic Acids Research 33(1):439-447; Mook, O R. et al., (2007) Mol Canc Ther 6(3):833-843; Grunweller, A. et al., (2003) Nucleic Acids Research 31(12):3185-3193).


An RNAi agent of the disclosure can also be modified to include one or more bicyclic sugar moities. A “bicyclic sugar” is a furanosyl ring modified by the bridging of two atoms. A “bicyclic nucleoside” (“BNA”) is a nucleoside having a sugar moiety comprising a bridge connecting two carbon atoms of the sugar ring, thereby forming a bicyclic ring system. In certain embodiments, the bridge connects the 4′-carbon and the 2′-carbon of the sugar ring. Thus, in some embodiments an agent of the disclosure may include one or more locked nucleic acids (LNA). A locked nucleic acid is a nucleotide having a modified ribose moiety in which the ribose moiety comprises an extra bridge connecting the 2′ and 4′ carbons. In other words, an LNA is a nucleotide comprising a bicyclic sugar moiety comprising a 4′-CH2-O-2′ bridge. This structure effectively “locks” the ribose in the 3′-endo structural conformation. The addition of locked nucleic acids to siRNAs has been shown to increase siRNA stability in serum, and to reduce off-target effects (Elmen, J. et al., (2005) Nucleic Acids Research 33(1):439-447; Mook, O R. et al., (2007) Mol Canc Ther 6(3):833-843; Grunweller, A. et al., (2003) Nucleic Acids Research 31(12):3185-3193). Examples of bicyclic nucleosides for use in the polynucleotides of the disclosure include without limitation nucleosides comprising a bridge between the 4′ and the 2′ ribosyl ring atoms. In certain embodiments, the antisense polynucleotide agents of the disclosure include one or more bicyclic nucleosides comprising a 4′ to 2′ bridge. Examples of such 4′ to 2′ bridged bicyclic nucleosides, include but are not limited to 4′-(CH2)-O-2′ (LNA); 4′-(CH2)-S-2′; 4′-(CH2)2-O-2′ (ENA); 4′-CH(CH3)-O-2′ (also referred to as “constrained ethyl” or “cEt”) and 4′-CH(CH2OCH3)-O-2′ (and analogs thereof; see, e.g., U.S. Pat. No. 7,399,845); 4′-C(CH3)(CH3)-O-2′ (and analogs thereof; see e.g., U.S. Pat. No. 8,278,283); 4′-CH2-N(OCH3)-2′ (and analogs thereof; see e.g., U.S. Pat. No. 8,278,425); 4′-CH2-O—N(CH3)-2′ (see, e.g., U.S. Patent Publication No. 2004/0171570); 4′-CH2-N(R)—O-2′, wherein R is H, C1-C12 alkyl, or a protecting group (see, e.g., U.S. Pat. No. 7,427,672); 4′-CH2-C(H)(CH3)-2′ (see, e.g., Chattopadhyaya et al., J. Org. Chem., 2009, 74, 118-134); and 4′-CH2-C(═CH2)-2′ (and analogs thereof; see, e.g., U.S. Pat. No. 8,278,426). The entire contents of each of the foregoing are hereby incorporated herein by reference.


Additional representative US patents and US Patent Publications that teach the preparation of locked nucleic acid nucleotides include, but are not limited to, the following: U.S. Pat. Nos. 6,268,490; 6,525,191; 6,670,461; 6,770,748; 6,794,499; 6,998,484; 7,053,207; 7,034,133; 7,084,125; 7,399,845; 7,427,672; 7,569,686; 7,741,457; 8,022,193; 8,030,467; 8,278,425; 8,278,426; 8,278,283; US 2008/0039618; and US 2009/0012281, the entire contents of each of which are hereby incorporated herein by reference.


Any of the foregoing bicyclic nucleosides can be prepared having one or more stereochemical sugar configurations including for example α-L-ribofuranose and β-D-ribofuranose (see WO 99/14226).


An RNAi agent of the disclosure can also be modified to include one or more constrained ethyl nucleotides. As used herein, a “constrained ethyl nucleotide” or “cEt” is a locked nucleic acid comprising a bicyclic sugar moiety comprising a 4′-CH(CH3)-O-2′ bridge. In one embodiment, a constrained ethyl nucleotide is in the S conformation referred to herein as “S-cEt.”


An RNAi agent of the disclosure may also include one or more “conformationally restricted nucleotides” (“CRN”). CRN are nucleotide analogs with a linker connecting the C2′ and C4′ carbons of ribose or the C3 and —C5′ carbons of ribose. CRN lock the ribose ring into a stable conformation and increase the hybridization affinity to mRNA. The linker is of sufficient length to place the oxygen in an optimal position for stability and affinity resulting in less ribose ring puckering.


Representative publications that teach the preparation of certain of the above noted CRN include, but are not limited to, US 2013/0190383; and WO 2013/036868, the entire contents of each of which are hereby incorporated herein by reference.


In some embodiments, an RNAi agent of the disclosure comprises one or more monomers that are UNA (unlocked nucleic acid) nucleotides. UNA is unlocked acyclic nucleic acid, wherein any of the bonds of the sugar has been removed, forming an unlocked “sugar” residue. In one example, UNA also encompasses monomer with bonds between C1′-C4′ have been removed (i.e. the covalent carbon-oxygen-carbon bond between the C1′ and C4′ carbons). In another example, the C2′-C3′ bond (i.e. the covalent carbon-carbon bond between the C2′ and C3′ carbons) of the sugar has been removed (see Nuc. Acids Symp. Series, 52, 133-134 (2008) and Fluiter et al., Mol. Biosyst., 2009, 10, 1039 hereby incorporated by reference).


Representative U.S. publications that teach the preparation of UNA include, but are not limited to, U.S. Pat. No. 8,314,227; and US Patent Publication Nos. 2013/0096289; 2013/0011922; and 2011/0313020, the entire contents of each of which are hereby incorporated herein by reference.


Potentially stabilizing modifications to the ends of RNA molecules can include N-(acetylaminocaproyl)-4-hydroxyprolinol (Hyp-C6-NHAc), N-(caproyl-4-hydroxyprolinol (Hyp-C6), N-(acetyl-4-hydroxyprolinol (Hyp-NHAc), thymidine-2′-O-deoxythymidine (ether), N-(aminocaproyl)-4-hydroxyprolinol (Hyp-C6-amino), 2-docosanoyl-uridine-3″-phosphate, inverted base dT(idT) and others. Disclosure of this modification can be found in WO 2011/005861.


Other modifications of an RNAi agent of the disclosure include a 5′ phosphate or 5′ phosphate mimic, e.g., a 5′-terminal phosphate or phosphate mimic on the antisense strand of an RNAi agent. Suitable phosphate mimics are disclosed in, for example US 2012/0157511, the entire contents of which are incorporated herein by reference.


A. Modified RNAi Agents Comprising Motifs of the Disclosure


In certain aspects of the disclosure, the double-stranded RNAi agents of the disclosure include agents with chemical modifications as disclosed, for example, in WO 2013/075035, the entire contents of which are incorporated herein by reference. As shown herein and in WO 2013/075035, a superior result may be obtained by introducing one or more motifs of three identical modifications on three consecutive nucleotides into a sense strand or antisense strand of an RNAi agent, particularly at or near the cleavage site. In some embodiments, the sense strand and antisense strand of the RNAi agent may otherwise be completely modified. The introduction of these motifs interrupts the modification pattern, if present, of the sense or antisense strand. The RNAi agent may be optionally conjugated with a lipophilic ligand, e.g., a C16 ligand, for instance on the sense strand. The RNAi agent may be optionally modified with a (S)-glycol nucleic acid (GNA) modification, for instance on one or more residues of the antisense strand. The resulting RNAi agents present superior gene silencing activity.


Accordingly, the disclosure provides double stranded RNAi agents capable of inhibiting the expression of a target gene (i.e., an HTT gene) in vivo. The RNAi agent comprises a sense strand and an antisense strand. Each strand of the RNAi agent may be 15-30 nucleotides in length. For example, each strand may be 16-30 nucleotides in length, 17-30 nucleotides in length, 25-30 nucleotides in length, 27-30 nucleotides in length, 17-23 nucleotides in length, 17-21 nucleotides in length, 17-19 nucleotides in length, 19-25 nucleotides in length, 19-23 nucleotides in length, 19-21 nucleotides in length, 21-25 nucleotides in length, or 21-23 nucleotides in length. In certain embodiments, each strand is 19-23 nucleotides in length.


The sense strand and antisense strand typically form a duplex double stranded RNA (“dsRNA”), also referred to herein as an “RNAi agent.” The duplex region of an RNAi agent may be 15-30 nucleotide pairs in length. For example, the duplex region can be 16-30 nucleotide pairs in length, 17-30 nucleotide pairs in length, 27-30 nucleotide pairs in length, 17-23 nucleotide pairs in length, 17-21 nucleotide pairs in length, 17-19 nucleotide pairs in length, 19-25 nucleotide pairs in length, 19-23 nucleotide pairs in length, 19-21 nucleotide pairs in length, 21-25 nucleotide pairs in length, or 21-23 nucleotide pairs in length. In another example, the duplex region is selected from 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, and 27 nucleotides in length. In preferred embodiments, the duplex region is 19-21 nucleotide pairs in length.


In one embodiment, the RNAi agent may contain one or more overhang regions or capping groups at the 3′-end, 5′-end, or both ends of one or both strands. The overhang can be 1-6 nucleotides in length, for instance 2-6 nucleotides in length, 1-5 nucleotides in length, 2-5 nucleotides in length, 1-4 nucleotides in length, 2-4 nucleotides in length, 1-3 nucleotides in length, 2-3 nucleotides in length, or 1-2 nucleotides in length. In preferred embodiments, the nucleotide overhang region is 2 nucleotides in length. The overhangs can be the result of one strand being longer than the other, or the result of two strands of the same length being staggered. The overhang can form a mismatch with the target mRNA or it can be complementary to the gene sequences being targeted or can be another sequence. The first and second strands can also be joined, e.g., by additional bases to form a hairpin, or by other non-base linkers.


In one embodiment, the nucleotides in the overhang region of the RNAi agent can each independently be a modified or unmodified nucleotide including, but no limited to 2′-sugar modified, such as, 2-F, 2′-O-methyl, thymidine (T), and any combinations thereof.


For example, TT can be an overhang sequence for either end on either strand. The overhang can form a mismatch with the target mRNA or it can be complementary to the gene sequences being targeted or can be another sequence.


The 5′- or 3′-overhangs at the sense strand, antisense strand or both strands of the RNAi agent may be phosphorylated. In some embodiments, the overhang region(s) contains two nucleotides having a phosphorothioate between the two nucleotides, where the two nucleotides can be the same or different. In one embodiment, the overhang is present at the 3′-end of the sense strand, antisense strand, or both strands. In one embodiment, this 3′-overhang is present in the antisense strand. In one embodiment, this 3′-overhang is present in the sense strand.


The RNAi agent may contain only a single overhang, which can strengthen the interference activity of the RNAi, without affecting its overall stability. For example, the single-stranded overhang may be located at the 3′-terminal end of the sense strand or, alternatively, at the 3′-terminal end of the antisense strand. The RNAi may also have a blunt end, located at the 5′-end of the antisense strand (or the 3′-end of the sense strand) or vice versa. Generally, the antisense strand of the RNAi has a nucleotide overhang at the 3′-end, and the 5′-end is blunt. While not wishing to be bound by theory, the asymmetric blunt end at the 5′-end of the antisense strand and 3′-end overhang of the antisense strand favor the guide strand loading into RISC process.


In one embodiment, the RNAi agent is a double ended bluntmer of 19 nucleotides in length, wherein the sense strand contains at least one motif of three 2′-F modifications on three consecutive nucleotides at positions 7, 8, 9 from the 5′end. The antisense strand contains at least one motif of three 2′-O-methyl modifications on three consecutive nucleotides at positions 11, 12, 13 from the 5′end.


In another embodiment, the RNAi agent is a double ended bluntmer of 20 nucleotides in length, wherein the sense strand contains at least one motif of three 2′-F modifications on three consecutive nucleotides at positions 8, 9, 10 from the 5′end. The antisense strand contains at least one motif of three 2′-O-methyl modifications on three consecutive nucleotides at positions 11, 12, 13 from the 5′end.


In yet another embodiment, the RNAi agent is a double ended bluntmer of 21 nucleotides in length, wherein the sense strand contains at least one motif of three 2′-F modifications on three consecutive nucleotides at positions 9, 10, 11 from the 5′end. The antisense strand contains at least one motif of three 2′-O-methyl modifications on three consecutive nucleotides at positions 11, 12, 13 from the 5′end.


In one embodiment, the RNAi agent comprises a 21 nucleotide sense strand and a 23 nucleotide antisense strand, wherein the sense strand contains at least one motif of three 2′-F modifications on three consecutive nucleotides at positions 9, 10, 11 from the 5′ end; the antisense strand contains at least one motif of three 2′-O-methyl modifications on three consecutive nucleotides at positions 11, 12, 13 from the 5′end, wherein one end of the RNAi agent is blunt, while the other end comprises a 2 nucleotide overhang. Preferably, the 2 nucleotide overhang is at the 3′-end of the antisense strand. When the 2 nucleotide overhang is at the 3′-end of the antisense strand, there may be two phosphorothioate internucleotide linkages between the terminal three nucleotides, wherein two of the three nucleotides are the overhang nucleotides, and the third nucleotide is a paired nucleotide next to the overhang nucleotide. In one embodiment, the RNAi agent additionally has two phosphorothioate internucleotide linkages between the terminal three nucleotides at both the 5′-end of the sense strand and at the 5′-end of the antisense strand. In one embodiment, every nucleotide in the sense strand and the antisense strand of the RNAi agent, including the nucleotides that are part of the motifs are modified nucleotides. In one embodiment each residue is independently modified with a 2′-O-methyl or 3′-fluoro, e.g., in an alternating motif. Optionally, the RNAi agent further comprises a ligand (e.g., a lipophilic ligand, optionally a C16 ligand).


In one embodiment, the RNAi agent comprises a sense and an antisense strand, wherein the sense strand is 25-30 nucleotide residues in length, wherein starting from the 5′ terminal nucleotide (position 1) positions 1 to 23 of the first strand comprise at least 8 ribonucleotides; the antisense strand is 36-66 nucleotide residues in length and, starting from the 3′ terminal nucleotide, comprises at least 8 ribonucleotides in the positions paired with positions 1-23 of sense strand to form a duplex; wherein at least the 3 ‘ terminal nucleotide of antisense strand is unpaired with sense strand, and up to 6 consecutive 3’ terminal nucleotides are unpaired with sense strand, thereby forming a 3′ single stranded overhang of 1-6 nucleotides; wherein the 5′ terminus of antisense strand comprises from 10-30 consecutive nucleotides which are unpaired with sense strand, thereby forming a 10-30 nucleotide single stranded 5′ overhang; wherein at least the sense strand 5′ terminal and 3′ terminal nucleotides are base paired with nucleotides of antisense strand when sense and antisense strands are aligned for maximum complementarity, thereby forming a substantially duplexed region between sense and antisense strands; and antisense strand is sufficiently complementary to a target RNA along at least 19 ribonucleotides of antisense strand length to reduce target gene expression when the double stranded nucleic acid is introduced into a mammalian cell; and wherein the sense strand contains at least one motif of three 2′-F modifications on three consecutive nucleotides, where at least one of the motifs occurs at or near the cleavage site. The antisense strand contains at least one motif of three 2′-O-methyl modifications on three consecutive nucleotides at or near the cleavage site.


In one embodiment, the RNAi agent comprises sense and antisense strands, wherein the RNAi agent comprises a first strand having a length which is at least 25 and at most 29 nucleotides and a second strand having a length which is at most 30 nucleotides with at least one motif of three 2′-O-methyl modifications on three consecutive nucleotides at position 11, 12, 13 from the 5′ end; wherein the 3′ end of the first strand and the 5′ end of the second strand form a blunt end and the second strand is 1˜4 nucleotides longer at its 3′ end than the first strand, wherein the duplex region region which is at least 25 nucleotides in length, and the second strand is sufficiently complemenatary to a target mRNA along at least 19 nucleotide of the second strand length to reduce target gene expression when the RNAi agent is introduced into a mammalian cell, and wherein dicer cleavage of the RNAi agent preferentially results in an siRNA comprising the 3′ end of the second strand, thereby reducing expression of the target gene in the mammal. Optionally, the RNAi agent further comprises a ligand.


In one embodiment, the sense strand of the RNAi agent contains at least one motif of three identical modifications on three consecutive nucleotides, where one of the motifs occurs at the cleavage site in the sense strand.


In one embodiment, the antisense strand of the RNAi agent can also contain at least one motif of three identical modifications on three consecutive nucleotides, where one of the motifs occurs at or near the cleavage site in the antisense strand.


For an RNAi agent having a duplex region of 17-23 nucleotide in length, the cleavage site of the antisense strand is typically around the 10, 11 and 12 positions from the 5′-end. Thus the motifs of three identical modifications may occur at the 9, 10, 11 positions; 10, 11, 12 positions; 11, 12, 13 positions; 12, 13, 14 positions; or 13, 14, 15 positions of the antisense strand, the count starting from the 1st nucleotide from the 5′-end of the antisense strand, or, the count starting from the 1st paired nucleotide within the duplex region from the 5′-end of the antisense strand. The cleavage site in the antisense strand may also change according to the length of the duplex region of the RNAi from the 5′-end.


The sense strand of the RNAi agent may contain at least one motif of three identical modifications on three consecutive nucleotides at the cleavage site of the strand; and the antisense strand may have at least one motif of three identical modifications on three consecutive nucleotides at or near the cleavage site of the strand. When the sense strand and the antisense strand form a dsRNA duplex, the sense strand and the antisense strand can be so aligned that one motif of the three nucleotides on the sense strand and one motif of the three nucleotides on the antisense strand have at least one nucleotide overlap, i.e., at least one of the three nucleotides of the motif in the sense strand forms a base pair with at least one of the three nucleotides of the motif in the antisense strand. Alternatively, at least two nucleotides may overlap, or all three nucleotides may overlap.


In one embodiment, the sense strand of the RNAi agent may contain more than one motif of three identical modifications on three consecutive nucleotides. The first motif may occur at or near the cleavage site of the strand and the other motifs may be a wing modification. The term “wing modification” herein refers to a motif occurring at another portion of the strand that is separated from the motif at or near the cleavage site of the same strand. The wing modification is either adjacent to the first motif or is separated by at least one or more nucleotides. When the motifs are immediately adjacent to each other then the chemistry of the motifs are distinct from each other and when the motifs are separated by one or more nucleotide than the chemistries can be the same or different. Two or more wing modifications may be present. For instance, when two wing modifications are present, each wing modification may occur at one end relative to the first motif which is at or near cleavage site or on either side of the lead motif.


Like the sense strand, the antisense strand of the RNAi agent may contain more than one motif of three identical modifications on three consecutive nucleotides, with at least one of the motifs occurring at or near the cleavage site of the strand. This antisense strand may also contain one or more wing modifications in an alignment similar to the wing modifications that may be present on the sense strand.


In one embodiment, the wing modification on the sense strand or antisense strand of the RNAi agent typically does not include the first one or two terminal nucleotides at the 3′-end, 5′-end or both ends of the strand.


In another embodiment, the wing modification on the sense strand or antisense strand of the RNAi agent typically does not include the first one or two paired nucleotides within the duplex region at the 3′-end, 5′-end or both ends of the strand.


When the sense strand and the antisense strand of the RNAi agent each contain at least one wing modification, the wing modifications may fall on the same end of the duplex region, and have an overlap of one, two or three nucleotides.


When the sense strand and the antisense strand of the RNAi agent each contain at least two wing modifications, the sense strand and the antisense strand can be so aligned that two modifications each from one strand fall on one end of the duplex region, having an overlap of one, two or three nucleotides; two modifications each from one strand fall on the other end of the duplex region, having an overlap of one, two or three nucleotides; two modifications one strand fall on each side of the lead motif, having an overlap of one, two, or three nucleotides in the duplex region.


In one embodiment, the RNAi agent comprises mismatch(es) with the target, within the duplex, or combinations thereof. The mistmatch may occur in the overhang region or the duplex region. The base pair may be ranked on the basis of their propensity to promote dissociation or melting (e.g., on the free energy of association or dissociation of a particular pairing, the simplest approach is to examine the pairs on an individual pair basis, though next neighbor or similar analysis can also be used). In terms of promoting dissociation: A:U is preferred over G:C; G:U is preferred over G:C; and I:C is preferred over G:C (I=inosine). Mismatches, e.g., non-canonical or other than canonical pairings (as described elsewhere herein) are preferred over canonical (A:T, A:U, G:C) pairings; and pairings which include a universal base are preferred over canonical pairings.


In one embodiment, the RNAi agent comprises at least one of the first 1, 2, 3, 4, or 5 base pairs within the duplex regions from the 5′-end of the antisense strand independently selected from the group of: A:U, G:U, I:C, and mismatched pairs, e.g., non-canonical or other than canonical pairings or pairings which include a universal base, to promote the dissociation of the antisense strand at the 5′-end of the duplex.


In one embodiment, the nucleotide at the 1 position within the duplex region from the 5′-end in the antisense strand is selected from the group consisting of A, dA, dU, U, and dT. Alternatively, at least one of the first 1, 2 or 3 base pair within the duplex region from the 5′-end of the antisense strand is an AU base pair. For example, the first base pair within the duplex region from the 5′-end of the antisense strand is an AU base pair.


In another embodiment, the nucleotide at the 3′-end of the sense strand is deoxy-thymine (dT). In another embodiment, the nucleotide at the 3′-end of the antisense strand is deoxy-thymine (dT). In one embodiment, there is a short sequence of deoxy-thymine nucleotides, for example, two dT nucleotides on the 3′-end of the sense or antisense strand.


In one embodiment, the sense strand sequence may be represented by formula (I):





5′np-Na—(XXX)i—Nb—YYY—Nb—(ZZZ)j—Na-nq3′  (I)


wherein:


i and j are each independently 0 or 1;


p and q are each independently 0-6;


each Na independently represents an oligonucleotide sequence comprising 0-25 modified nucleotides, each sequence comprising at least two differently modified nucleotides;


each Nb independently represents an oligonucleotide sequence comprising 0-10 modified nucleotides;


each np and nq independently represent an overhang nucleotide;


wherein Nb and Y do not have the same modification; and


XXX, YYY and ZZZ each independently represent one motif of three identical modifications on three consecutive nucleotides. Preferably YYY is all 2′-F modified nucleotides.


In one embodiment, the Na or Nb comprise modifications of alternating pattern.


In one embodiment, the YYY motif occurs at or near the cleavage site of the sense strand. For example, when the RNAi agent has a duplex region of 17-23 nucleotides in length, the YYY motif can occur at or the vicinity of the cleavage site (e.g.: can occur at positions 6, 7, 8, 7, 8, 9, 8, 9, 10, 9, 10, 11, 10, 11, 12 or 11, 12, 13) of-the sense strand, the count starting from the 1st nucleotide, from the 5′-end; or optionally, the count starting at the 1st paired nucleotide within the duplex region, from the 5′-end.


In one embodiment, i is 1 and j is 0, or i is 0 and j is 1, or both i and j are 1. The sense strand can therefore be represented by the following formulas:





5′np-Na—YYY—Nb—ZZZ—Na-nq3′  (Ib);





5′np-Na—XXX—Nb—YYY—Na-nq3′  (Ic); or





5′np-Na—XXX—Nb—YYY—Nb—ZZZ—Na-nq3′  (Id).


When the sense strand is represented by formula (Ib), Nb represents an oligonucleotide sequence comprising 0-10, 0-7, 0-5, 0-4, 0-2 or 0 modified nucleotides.


Each Na independently can represent an oligonucleotide sequence comprising 2-20, 2-15, or 2-10 modified nucleotides.


When the sense strand is represented as formula (Ic), Nb represents an oligonucleotide sequence comprising 0-10, 0-7, 0-10, 0-7, 0-5, 0-4, 0-2 or 0 modified nucleotides. Each Na can independently represent an oligonucleotide sequence comprising 2-20, 2-15, or 2-10 modified nucleotides.


When the sense strand is represented as formula (Id), each Nb independently represents an oligonucleotide sequence comprising 0-10, 0-7, 0-5, 0-4, 0-2 or 0 modified nucleotides. Preferably, Nb is 0, 1, 2, 3, 4, 5 or 6. Each Na can independently represent an oligonucleotide sequence comprising 2-20, 2-15, or 2-10 modified nucleotides.


Each of X, Y and Z may be the same or different from each other.


In other embodiments, i is 0 and j is 0, and the sense strand may be represented by the formula:





5′np-Na—YYY—Na-nq3′  (Ia).


When the sense strand is represented by formula (Ia), each Na independently can represent an oligonucleotide sequence comprising 2-20, 2-15, or 2-10 modified nucleotides.


In one embodiment, the antisense strand sequence of the RNAi may be represented by formula (II):





5′nq′-Na′—(Z′Z′Z′)k—Nb′—Y′Y′Y′—Nb′—(X′X′X′)l—Na′-np′3′  (II)


wherein:


k and 1 are each independently 0 or 1;


p′ and q′ are each independently 0-6;


each Na′ independently represents an oligonucleotide sequence comprising 0-25 modified nucleotides, each sequence comprising at least two differently modified nucleotides;


each Nb′ independently represents an oligonucleotide sequence comprising 0-10 modified nucleotides;


each np′ and nq′ independently represent an overhang nucleotide;


wherein Nb′ and Y′ do not have the same modification;


and


X′X′X′, Y′Y′Y′ and Z′Z′Z′ each independently represent one motif of three identical modifications on three consecutive nucleotides.


In one embodiment, the Na′ or Nb′ comprise modifications of alternating pattern.


The Y′Y′Y′ motif occurs at or near the cleavage site of the antisense strand. For example, when the RNAi agent has a duplex region of 17-23 nucleotide in length, the Y′Y′Y′ motif can occur at positions 9, 10, 11; 10, 11, 12; 11, 12, 13; 12, 13, 14; or 13, 14, 15 of the antisense strand, with the count starting from the 1st nucleotide, from the 5′-end; or optionally, the count starting at the 1st paired nucleotide within the duplex region, from the 5′-end. Preferably, the Y′Y′Y′ motif occurs at positions 11, 12, 13.


In one embodiment, Y′Y′Y′ motif is all 2′-OMe modified nucleotides.


In one embodiment, k is 1 and l is 0, or k is 0 and l is 1, or both k and l are 1.


The antisense strand can therefore be represented by the following formulas:





5′nq′-Na′—Z′Z′Z′—Nb′—Y′Y′Y′—Na′-np′3′  (IIb);





5′nq′-Na′—Y′Y′Y′—Nb′—X′X′X′-np′3′  (IIc); or





5′nq′-Na′—Z′Z′Z′—Nb′—Y′Y′Y′—Nb′—X′X′X′—Na′-np′3′  (IId).


When the antisense strand is represented by formula (IIb), Nb′ represents an oligonucleotide sequence comprising 0-10, 0-7, 0-10, 0-7, 0-5, 0-4, 0-2 or 0 modified nucleotides. Each Na′ independently represents an oligonucleotide sequence comprising 2-20, 2-15, or 2-10 modified nucleotides.


When the antisense strand is represented as formula (IId), Nb′ represents an oligonucleotide sequence comprising 0-10, 0-7, 0-10, 0-7, 0-5, 0-4, 0-2 or 0 modified nucleotides. Each Na′ independently represents an oligonucleotide sequence comprising 2-20, 2-15, or 2-10 modified nucleotides.


When the antisense strand is represented as formula (IId), each Nb′ independently represents an oligonucleotide sequence comprising 0-10, 0-7, 0-10, 0-7, 0-5, 0-4, 0-2 or 0 modified nucleotides. Each Na′ independently represents an oligonucleotide sequence comprising 2-20, 2-15, or 2-10 modified nucleotides. Preferably, Nb is 0, 1, 2, 3, 4, 5 or 6.


In other embodiments, k is 0 and l is 0 and the antisense strand may be represented by the formula:





5′np′-Na′—Y′Y′Y′—Na′-nq′3′  (Ia).


When the antisense strand is represented as formula (IIa), each Na′ independently represents an oligonucleotide sequence comprising 2-20, 2-15, or 2-10 modified nucleotides.


Each of X′, Y′ and Z′ may be the same or different from each other.


Each nucleotide of the sense strand and antisense strand may be independently modified with LNA, HNA, CeNA, 2′-methoxyethyl, 2′-O-methyl, 2′-O-allyl, 2′-C-allyl, 2′-hydroxyl, or 2′-fluoro. For example, each nucleotide of the sense strand and antisense strand is independently modified with 2′-O-methyl or 2′-fluoro. Each X, Y, Z, X′, Y′ and Z′, in particular, may represent a 2′-O-methyl modification or a 2′-fluoro modification.


In one embodiment, the sense strand of the RNAi agent may contain YYY motif occurring at 9, 10 and 11 positions of the strand when the duplex region is 21 nt, the count starting from the 1st nucleotide from the 5′-end, or optionally, the count starting at the 1st paired nucleotide within the duplex region, from the 5′-end; and Y represents 2′-F modification. The sense strand may additionally contain XXX motif or ZZZ motifs as wing modifications at the opposite end of the duplex region; and XXX and ZZZ each independently represents a 2′-OMe modification or 2′-F modification.


In one embodiment the antisense strand may contain Y′Y′Y′ motif occurring at positions 11, 12, 13 of the strand, the count starting from the 1st nucleotide from the 5′-end, or optionally, the count starting at the 1st paired nucleotide within the duplex region, from the 5′-end; and Y′ represents 2′-O-methyl modification. The antisense strand may additionally contain X′X′X′ motif or Z′Z′Z′ motifs as wing modifications at the opposite end of the duplex region; and X′X′X′ and Z′Z′Z′ each independently represents a 2′-OMe modification or 2′-F modification.


The sense strand represented by any one of the above formulas (Ia), (Ib), (Ic), and (Id) forms a duplex with a antisense strand being represented by any one of formulas (IIa), (IIb), (IIc), and (IId), respectively.


Accordingly, the RNAi agents for use in the methods of the disclosure may comprise a sense strand and an antisense strand, each strand having 14 to 30 nucleotides, the RNAi duplex represented by formula (III):





sense:5′np-Na—(XXX)i—Nb—YYY—Nb—(ZZZ)j—Na-nq3′





antisense:3′np′-Na′—(X′X′X′)k—Nb′—Y′Y′Y′—Nb′—(Z′Z′Z′)l—Na′-nq′5′  (III)


wherein:


j, k, and l are each independently 0 or 1;


p, p′, q, and q′ are each independently 0-6;


each Na and Na′ independently represents an oligonucleotide sequence comprising 0-25 modified nucleotides, each sequence comprising at least two differently modified nucleotides;


each Nb and Nb′ independently represents an oligonucleotide sequence comprising 0-10 modified nucleotides;


wherein


each np′, np, nq′, and nq, each of which may or may not be present, independently represents an overhang nucleotide; and


XXX, YYY, ZZZ, X′X′X′, Y′Y′Y′, and Z′Z′Z′ each independently represent one motif of three identical modifications on three consecutive nucleotides.


In one embodiment, i is 0 and j is 0; or i is 1 and j is 0; or i is 0 and j is 1; or both i and j are 0; or both i and j are 1. In another embodiment, k is 0 and l is 0; or k is 1 and l is 0; k is 0 and l is 1; or both k and l are 0; or both k and l are 1.


Exemplary combinations of the sense strand and antisense strand forming an RNAi duplex include the formulas below:





5′np-Na—YYY—Na-nq3′





3′np′-Na′—Y′Y′Y′—Na′nq′5′  (IIIa)





5′np-Na—YYY—Nb—ZZZ—Na-nq3′





3′np′-Na′—Y′Y′Y′—Nb′—Z′Z′Z′—Na′nq′5′  (IIIb)





5′np-Na—XXX—Nb—YYY—Na-nq3′





3′np′-Na′—X′X′X′—Nb′—Y′Y′Y′—Na′-nq′5′  (IIIc)





5′np-Na—XXX—Nb—YYY—Nb—ZZZ—Na-nq3′





3′np′-Na′—X′X′X′—Nb′—Y′Y′Y′—Nb′—Z′Z′Z′—Na-nq′5′  (IIId)


When the RNAi agent is represented by formula (IIIa), each Na independently represents an oligonucleotide sequence comprising 2-20, 2-15, or 2-10 modified nucleotides.


When the RNAi agent is represented by formula (IIIb), each Nb independently represents an oligonucleotide sequence comprising 1-10, 1-7, 1-5 or 1-4 modified nucleotides. Each Na independently represents an oligonucleotide sequence comprising 2-20, 2-15, or 2-10 modified nucleotides.


When the RNAi agent is represented as formula (IIIc), each Nb, Nb′ independently represents an oligonucleotide sequence comprising 0-10, 0-7, 0-10, 0-7, 0-5, 0-4, 0-2 or 0 modified nucleotides. Each Na independently represents an oligonucleotide sequence comprising 2-20, 2-15, or 2-10 modified nucleotides.


When the RNAi agent is represented as formula (IIId), each Nb, Nb′ independently represents an oligonucleotide sequence comprising 0-10, 0-7, 0-10, 0-7, 0-5, 0-4, 0-2 or 0 modified nucleotides. Each Na, Na′ independently represents an oligonucleotide sequence comprising 2-20, 2-15, or 2-10 modified nucleotides. Each of Na, Na′, Nb and Nb′ independently comprises modifications of alternating pattern.


In one embodiment, when the RNAi agent is represented by formula (IIId), the Na modifications are 2′-O-methyl or 2′-fluoro modifications. In another embodiment, when the RNAi agent is represented by formula (IIId), the Na modifications are 2′-O-methyl or 2′-fluoro modifications and np′>0 and at least one np′ is linked to a neighboring nucleotide a via phosphorothioate linkage. In yet another embodiment, when the RNAi agent is represented by formula (IIId), the Na modifications are 2′-O-methyl or 2′-fluoro modifications, np′>0 and at least one np′ is linked to a neighboring nucleotide via phosphorothioate linkage, and the sense strand is conjugated to one or more C16 (or related) moieties attached through a bivalent or trivalent branched linker (described below). In another embodiment, when the RNAi agent is represented by formula (IIId), the Na modifications are 2′-O-methyl or 2′-fluoro modifications, np′>0 and at least one np′ is linked to a neighboring nucleotide via phosphorothioate linkage, the sense strand comprises at least one phosphorothioate linkage, and the sense strand is conjugated to one or more lipophilic, e.g., C16 (or related) moieties, optionally attached through a bivalent or trivalent branched linker.


In one embodiment, when the RNAi agent is represented by formula (IIIa), the Na modifications are 2′-O-methyl or 2′-fluoro modifications, np′>0 and at least one np′ is linked to a neighboring nucleotide via phosphorothioate linkage, the sense strand comprises at least one phosphorothioate linkage, and the sense strand is conjugated to one or more lipophilic, e.g., C16 (or related) moieties attached through a bivalent or trivalent branched linker.


In one embodiment, the RNAi agent is a multimer containing at least two duplexes represented by formula (III), (IIIa), (IIIb), (IIIc), and (IIId), wherein the duplexes are connected by a linker. The linker can be cleavable or non-cleavable. Optionally, the multimer further comprises a ligand. Each of the duplexes can target the same gene or two different genes; or each of the duplexes can target same gene at two different target sites.


In one embodiment, the RNAi agent is a multimer containing three, four, five, six or more duplexes represented by formula (III), (IIIa), (IIIb), (IIIc), and (IIId), wherein the duplexes are connected by a linker. The linker can be cleavable or non-cleavable. Optionally, the multimer further comprises a ligand. Each of the duplexes can target the same gene or two different genes; or each of the duplexes can target same gene at two different target sites.


In one embodiment, two RNAi agents represented by formula (III), (IIIa), (IIIb), (IIIc), and (IIId) are linked to each other at the 5′ end, and one or both of the 3′ ends and are optionally conjugated to a ligand. Each of the agents can target the same gene or two different genes; or each of the agents can target same gene at two different target sites.


Various publications describe multimeric RNAi agents that can be used in the methods of the disclosure. Such publications include WO2007/091269, WO2010/141511, WO2007/117686, WO2009/014887, and WO2011/031520; and U.S. Pat. No. 7,858,769, the entire contents of each of which are hereby incorporated herein by reference.


In certain embodiments, the compositions and methods of the disclosure include a vinyl phosphonate (VP) modification of an RNAi agent as described herein. In exemplary embodiments, a vinyl phosphonate of the disclosure has the following structure:




embedded image


A vinyl phosphonate of the instant disclosure may be attached to either the antisense or the sense strand of a dsRNA of the disclosure. In certain preferred embodiments, a vinyl phosphonate of the instant disclosure is attached to the antisense strand of a dsRNA, optionally at the 5′ end of the antisense strand of the dsRNA.


Vinyl phosphate modifications are also contemplated for the compositions and methods of the instant disclosure. An exemplary vinyl phosphate structure is:




embedded image


i. Thermally Destabilizing Modifications


In certain embodiments, a dsRNA molecule can be optimized for RNA interference by incorporating thermally destabilizing modifications in the seed region of the antisense strand (i.e., at positions 2-9 of the 5′-end of the antisense strand) to reduce or inhibit off-target gene silencing. It has been discovered that dsRNAs with an antisense strand comprising at least one thermally destabilizing modification of the duplex within the first 9 nucleotide positions, counting from the 5′ end, of the antisense strand have reduced off-target gene silencing activity. Accordingly, in some embodiments, the antisense strand comprises at least one (e.g., one, two, three, four, five or more) thermally destabilizing modification of the duplex within the first 9 nucleotide positions of the 5′ region of the antisense strand. In some embodiments, one or more thermally destabilizing modification(s) of the duplex is/are located in positions 2-9, or preferably positions 4-8, from the 5′-end of the antisense strand. In some further embodiments, the thermally destabilizing modification(s) of the duplex is/are located at position 6, 7 or 8 from the 5′-end of the antisense strand. In still some further embodiments, the thermally destabilizing modification of the duplex is located at position 7 from the 5′-end of the antisense strand. The term “thermally destabilizing modification(s)” includes modification(s) that would result with a dsRNA with a lower overall melting temperature (Tm) (preferably a Tm with one, two, three or four degrees lower than the Tm of the dsRNA without having such modification(s). In some embodiments, the thermally destabilizing modification of the duplex is located at position 2, 3, 4, 5 or 9 from the 5′-end of the antisense strand.


The thermally destabilizing modifications can include, but are not limited to, abasic modification; mismatch with the opposing nucleotide in the opposing strand; and sugar modification such as 2′-deoxy modification or acyclic nucleotide, e.g., unlocked nucleic acids (UNA) or glycol nucleic acid (GNA).


Exemplified abasic modifications include, but are not limited to the following:




embedded image


Wherein R═H, Me, Et or OMe; R′═H, Me, Et or OMe; R″═H, Me, Et or OMe



embedded image


wherein B is a modified or unmodified nucleobase.


Exemplified sugar modifications include, but are not limited to the following:




embedded image


wherein B is a modified or unmodified nucleobase.


In some embodiments the thermally destabilizing modification of the duplex is selected from the group consisting of:




embedded image


wherein B is a modified or unmodified nucleobase and the asterisk on each structure represents either R, S or racemic.


The term “acyclic nucleotide” refers to any nucleotide having an acyclic ribose sugar, for example, where any of bonds between the ribose carbons (e.g., C1′-C2′, C2′-C3′, C3′-C4′, C4′-O4′, or C1′-O4′) is absent or at least one of ribose carbons or oxygen (e.g., C1′, C2′, C3′, C4′ or O4′) are independently or in combination absent from the nucleotide. In some embodiments, acyclic nucleotide is




embedded image


wherein B is a modified or unmodified nucleobase, R1 and R2 independently are H, halogen, OR3, or alkyl; and R3 is H, alkyl, cycloalkyl, aryl, aralkyl, heteroaryl or sugar). The term “UNA” refers to unlocked acyclic nucleic acid, wherein any of the bonds of the sugar has been removed, forming an unlocked “sugar” residue. In one example, UNA also encompasses monomers with bonds between C1′-C4′ being removed (i.e. the covalent carbon-oxygen-carbon bond between the C1′ and C4′ carbons). In another example, the C2′-C3′ bond (i.e. the covalent carbon-carbon bond between the C2′ and C3′ carbons) of the sugar is removed (see Mikhailov et. al., Tetrahedron Letters, 26 (17): 2059 (1985); and Fluiter et al., Mol. Biosyst., 10: 1039 (2009), which are hereby incorporated by reference in their entirety). The acyclic derivative provides greater backbone flexibility without affecting the Watson-Crick pairings. The acyclic nucleotide can be linked via 2′-5′ or 3′-5′ linkage.


The term ‘GNA’ refers to glycol nucleic acid which is a polymer similar to DNA or RNA but differing in the composition of its “backbone” in that is composed of repeating glycerol units linked by phosphodiester bonds:




embedded image


The thermally destabilizing modification of the duplex can be mismatches (i.e., noncomplementary base pairs) between the thermally destabilizing nucleotide and the opposing nucleotide in the opposite strand within the dsRNA duplex. Exemplary mismatch base pairs include G:G, G:A, G:U, G:T, A:A, A:C, C:C, C:U, C:T, U:U, T:T, U:T, or a combination thereof. Other mismatch base pairings known in the art are also amenable to the present invention. A mismatch can occur between nucleotides that are either naturally occurring nucleotides or modified nucleotides, i.e., the mismatch base pairing can occur between the nucleobases from respective nucleotides independent of the modifications on the ribose sugars of the nucleotides. In certain embodiments, the dsRNA molecule contains at least one nucleobase in the mismatch pairing that is a 2′-deoxy nucleobase; e.g., the 2′-deoxy nucleobase is in the sense strand.


In some embodiments, the thermally destabilizing modification of the duplex in the seed region of the antisense strand includes nucleotides with impaired W—C H-bonding to complementary base on the target mRNA, such as:




embedded image


More examples of abasic nucleotide, acyclic nucleotide modifications (including UNA and GNA), and mismatch modifications have been described in detail in WO 2011/133876, which is herein incorporated by reference in its entirety.


The thermally destabilizing modifications may also include universal base with reduced or abolished capability to form hydrogen bonds with the opposing bases, and phosphate modifications.


In some embodiments, the thermally destabilizing modification of the duplex includes nucleotides with non-canonical bases such as, but not limited to, nucleobase modifications with impaired or completely abolished capability to form hydrogen bonds with bases in the opposite strand. These nucleobase modifications have been evaluated for destabilization of the central region of the dsRNA duplex as described in WO 2010/0011895, which is herein incorporated by reference in its entirety. Exemplary nucleobase modifications are:




embedded image


In some embodiments, the thermally destabilizing modification of the duplex in the seed region of the antisense strand includes one or more α-nucleotide complementary to the base on the target mRNA, such as:




embedded image


wherein R is H, OH, OCH3, F, NH2, NHMe, NMe2 or O-alkyl.


Exemplary phosphate modifications known to decrease the thermal stability of dsRNA duplexes compared to natural phosphodiester linkages are:




embedded image


The alkyl for the R group can be a C1-C6alkyl. Specific alkyls for the R group include, but are not limited to methyl, ethyl, propyl, isopropyl, butyl, pentyl and hexyl.


As the skilled artisan will recognize, in view of the functional role of nucleobases is defining specificity of an RNAi agent of the disclosure, while nucleobase modifications can be performed in the various manners as described herein, e.g., to introduce destabilizing modifications into an RNAi agent of the disclosure, e.g., for purpose of enhancing on-target effect relative to off-target effect, the range of modifications available and, in general, present upon RNAi agents of the disclosure tends to be much greater for non-nucleobase modifications, e.g., modifications to sugar groups or phosphate backbones of polyribonucleotides. Such modifications are described in greater detail in other sections of the instant disclosure and are expressly contemplated for RNAi agents of the disclosure, either possessing native nucleobases or modified nucleobases as described above or elsewhere herein.


In addition to the antisense strand comprising a thermally destabilizing modification, the dsRNA can also comprise one or more stabilizing modifications. For example, the dsRNA can comprise at least two (e.g., two, three, four, five, six, seven, eight, nine, ten or more) stabilizing modifications. Without limitations, the stabilizing modifications all can be present in one strand. In some embodiments, both the sense and the antisense strands comprise at least two stabilizing modifications. The stabilizing modification can occur on any nucleotide of the sense strand or antisense strand. For instance, the stabilizing modification can occur on every nucleotide on the sense strand or antisense strand; each stabilizing modification can occur in an alternating pattern on the sense strand or antisense strand; or the sense strand or antisense strand comprises both stabilizing modification in an alternating pattern. The alternating pattern of the stabilizing modifications on the sense strand may be the same or different from the antisense strand, and the alternating pattern of the stabilizing modifications on the sense strand can have a shift relative to the alternating pattern of the stabilizing modifications on the antisense strand.


In some embodiments, the antisense strand comprises at least two (e.g., two, three, four, five, six, seven, eight, nine, ten or more) stabilizing modifications. Without limitations, a stabilizing modification in the antisense strand can be present at any positions. In some embodiments, the antisense comprises stabilizing modifications at positions 2, 6, 8, 9, 14, and 16 from the 5′-end. In some other embodiments, the antisense comprises stabilizing modifications at positions 2, 6, 14, and 16 from the 5′-end. In still some other embodiments, the antisense comprises stabilizing modifications at positions 2, 14, and 16 from the 5′-end.


In some embodiments, the antisense strand comprises at least one stabilizing modification adjacent to the destabilizing modification. For example, the stabilizing modification can be the nucleotide at the 5′-end or the 3′-end of the destabilizing modification, i.e., at position −1 or +1 from the position of the destabilizing modification. In some embodiments, the antisense strand comprises a stabilizing modification at each of the 5′-end and the 3′-end of the destabilizing modification, i.e., positions −1 and +1 from the position of the destabilizing modification.


In some embodiments, the antisense strand comprises at least two stabilizing modifications at the 3′-end of the destabilizing modification, i.e., at positions +1 and +2 from the position of the destabilizing modification.


In some embodiments, the sense strand comprises at least two (e.g., two, three, four, five, six, seven, eight, nine, ten or more) stabilizing modifications. Without limitations, a stabilizing modification in the sense strand can be present at any positions. In some embodiments, the sense strand comprises stabilizing modifications at positions 7, 10, and 11 from the 5′-end. In some other embodiments, the sense strand comprises stabilizing modifications at positions 7, 9, 10, and 11 from the 5′-end. In some embodiments, the sense strand comprises stabilizing modifications at positions opposite or complimentary to positions 11, 12, and 15 of the antisense strand, counting from the 5′-end of the antisense strand. In some other embodiments, the sense strand comprises stabilizing modifications at positions opposite or complimentary to positions 11, 12, 13, and 15 of the antisense strand, counting from the 5′-end of the antisense strand. In some embodiments, the sense strand comprises a block of two, three, or four stabilizing modifications.


In some embodiments, the sense strand does not comprise a stabilizing modification in position opposite or complimentary to the thermally destabilizing modification of the duplex in the antisense strand.


Exemplary thermally stabilizing modifications include, but are not limited to, 2′-fluoro modifications. Other thermally stabilizing modifications include, but are not limited to, LNA.


In some embodiments, the dsRNA of the disclosure comprises at least four (e.g., four, five, six, seven, eight, nine, ten, or more) 2′-fluoro nucleotides. Without limitations, the 2′-fluoro nucleotides all can be present in one strand. In some embodiments, both the sense and the antisense strands comprise at least two 2′-fluoro nucleotides. The 2′-fluoro modification can occur on any nucleotide of the sense strand or antisense strand. For instance, the 2′-fluoro modification can occur on every nucleotide on the sense strand or antisense strand; each 2′-fluoro modification can occur in an alternating pattern on the sense strand or antisense strand; or the sense strand or antisense strand comprises both 2′-fluoro modifications in an alternating pattern. The alternating pattern of the 2′-fluoro modifications on the sense strand may be the same or different from the antisense strand, and the alternating pattern of the 2′-fluoro modifications on the sense strand can have a shift relative to the alternating pattern of the 2′-fluoro modifications on the antisense strand.


In some embodiments, the antisense strand comprises at least two (e.g., two, three, four, five, six, seven, eight, nine, ten, or more) 2′-fluoro nucleotides. Without limitations, a 2′-fluoro modification in the antisense strand can be present at any positions. In some embodiments, the antisense comprises 2′-fluoro nucleotides at positions 2, 6, 8, 9, 14, and 16 from the 5′-end. In some other embodiments, the antisense comprises 2′-fluoro nucleotides at positions 2, 6, 14, and 16 from the 5′-end. In still some other embodiments, the antisense comprises 2′-fluoro nucleotides at positions 2, 14, and 16 from the 5′-end.


In some embodiments, the antisense strand comprises at least one 2′-fluoro nucleotide adjacent to the destabilizing modification. For example, the 2′-fluoro nucleotide can be the nucleotide at the 5′-end or the 3′-end of the destabilizing modification, i.e., at position −1 or +1 from the position of the destabilizing modification. In some embodiments, the antisense strand comprises a 2′-fluoro nucleotide at each of the 5′-end and the 3′-end of the destabilizing modification, i.e., positions −1 and +1 from the position of the destabilizing modification.


In some embodiments, the antisense strand comprises at least two 2′-fluoro nucleotides at the 3′-end of the destabilizing modification, i.e., at positions +1 and +2 from the position of the destabilizing modification.


In some embodiments, the sense strand comprises at least two (e.g., two, three, four, five, six, seven, eight, nine, ten or more) 2′-fluoro nucleotides. Without limitations, a 2′-fluoro modification in the sense strand can be present at any positions. In some embodiments, the antisense comprises 2′-fluoro nucleotides at positions 7, 10, and 11 from the 5′-end. In some other embodiments, the sense strand comprises 2′-fluoro nucleotides at positions 7, 9, 10, and 11 from the 5′-end. In some embodiments, the sense strand comprises 2′-fluoro nucleotides at positions opposite or complimentary to positions 11, 12, and 15 of the antisense strand, counting from the 5′-end of the antisense strand. In some other embodiments, the sense strand comprises 2′-fluoro nucleotides at positions opposite or complimentary to positions 11, 12, 13, and 15 of the antisense strand, counting from the 5′-end of the antisense strand. In some embodiments, the sense strand comprises a block of two, three or four 2′-fluoro nucleotides.


In some embodiments, the sense strand does not comprise a 2′-fluoro nucleotide in position opposite or complimentary to the thermally destabilizing modification of the duplex in the antisense strand.


In some embodiments, the dsRNA molecule of the disclosure comprises a 21 nucleotides (nt) sense strand and a 23 nucleotides (nt) antisense, wherein the antisense strand contains at least one thermally destabilizing nucleotide, where the at least one thermally destabilizing nucleotide occurs in the seed region of the antisense strand (i.e., at position 2-9 of the 5′-end of the antisense strand), wherein one end of the dsRNA is blunt, while the other end is comprises a 2 nt overhang, and wherein the dsRNA optionally further has at least one (e.g., one, two, three, four, five, six or all seven) of the following characteristics: (i) the antisense comprises 2, 3, 4, 5 or 6 2′-fluoro modifications; (ii) the antisense comprises 1, 2, 3, 4 or 5 phosphorothioate internucleotide linkages; (iii) the sense strand is conjugated with a ligand; (iv) the sense strand comprises 2, 3, 4 or 5 2′-fluoro modifications; (v) the sense strand comprises 1, 2, 3, 4 or 5 phosphorothioate internucleotide linkages; (vi) the dsRNA comprises at least four 2′-fluoro modifications; and (vii) the dsRNA comprises a blunt end at 5′-end of the antisense strand. Preferably, the 2 nt overhang is at the 3′-end of the antisense.


In some embodiments, the dsRNA molecule of the disclosure comprising a sense and antisense strands, wherein: the sense strand is 25-30 nucleotide residues in length, wherein starting from the 5′ terminal nucleotide (position 1), positions 1 to 23 of said sense strand comprise at least 8 ribonucleotides; antisense strand is 36-66 nucleotide residues in length and, starting from the 3′ terminal nucleotide, at least 8 ribonucleotides in the positions paired with positions 1-23 of sense strand to form a duplex; wherein at least the 3 ‘ terminal nucleotide of antisense strand is unpaired with sense strand, and up to 6 consecutive 3’ terminal nucleotides are unpaired with sense strand, thereby forming a 3′ single stranded overhang of 1-6 nucleotides; wherein the 5′ terminus of antisense strand comprises from 10-30 consecutive nucleotides which are unpaired with sense strand, thereby forming a 10-30 nucleotide single stranded 5′ overhang; wherein at least the sense strand 5′ terminal and 3′ terminal nucleotides are base paired with nucleotides of antisense strand when sense and antisense strands are aligned for maximum complementarity, thereby forming a substantially duplexed region between sense and antisense strands; and antisense strand is sufficiently complementary to a target RNA along at least 19 ribonucleotides of antisense strand length to reduce target gene expression when said double stranded nucleic acid is introduced into a mammalian cell; and wherein the antisense strand contains at least one thermally destabilizing nucleotide, where at least one thermally destabilizing nucleotide is in the seed region of the antisense strand (i.e. at position 2-9 of the 5′-end of the antisense strand). For example, the thermally destabilizing nucleotide occurs between positions opposite or complimentary to positions 14-17 of the 5′-end of the sense strand, and wherein the dsRNA optionally further has at least one (e.g., one, two, three, four, five, six or all seven) of the following characteristics: (i) the antisense comprises 2, 3, 4, 5, or 6 2′-fluoro modifications; (ii) the antisense comprises 1, 2, 3, 4, or 5 phosphorothioate internucleotide linkages; (iii) the sense strand is conjugated with a ligand; (iv) the sense strand comprises 2, 3, 4, or 5 2′-fluoro modifications; (v) the sense strand comprises 1, 2, 3, 4, or 5 phosphorothioate internucleotide linkages; and (vi) the dsRNA comprises at least four 2′-fluoro modifications; and (vii) the dsRNA comprises a duplex region of 12-30 nucleotide pairs in length.


In some embodiments, the dsRNA molecule of the disclosure comprises a sense and antisense strands, wherein said dsRNA molecule comprises a sense strand having a length which is at least 25 and at most 29 nucleotides and an antisense strand having a length which is at most 30 nucleotides with the sense strand comprises a modified nucleotide that is susceptible to enzymatic degradation at position 11 from the 5′end, wherein the 3′ end of said sense strand and the 5′ end of said antisense strand form a blunt end and said antisense strand is 1-4 nucleotides longer at its 3′ end than the sense strand, wherein the duplex region which is at least 25 nucleotides in length, and said antisense strand is sufficiently complementary to a target mRNA along at least 19 nt of said antisense strand length to reduce target gene expression when said dsRNA molecule is introduced into a mammalian cell, and wherein dicer cleavage of said dsRNA preferentially results in an siRNA comprising said 3′ end of said antisense strand, thereby reducing expression of the target gene in the mammal, wherein the antisense strand contains at least one thermally destabilizing nucleotide, where the at least one thermally destabilizing nucleotide is in the seed region of the antisense strand (i.e. at position 2-9 of the 5′-end of the antisense strand), and wherein the dsRNA optionally further has at least one (e.g., one, two, three, four, five, six or all seven) of the following characteristics: (i) the antisense comprises 2, 3, 4, 5, or 6 2′-fluoro modifications; (ii) the antisense comprises 1, 2, 3, 4, or 5 phosphorothioate internucleotide linkages; (iii) the sense strand is conjugated with a ligand; (iv) the sense strand comprises 2, 3, 4, or 5 2′-fluoro modifications; (v) the sense strand comprises 1, 2, 3, 4, or 5 phosphorothioate internucleotide linkages; and (vi) the dsRNA comprises at least four 2′-fluoro modifications; and (vii) the dsRNA has a duplex region of 12-29 nucleotide pairs in length.


In some embodiments, every nucleotide in the sense strand and antisense strand of the dsRNA molecule may be modified. Each nucleotide may be modified with the same or different modification which can include one or more alteration of one or both of the non-linking phosphate oxygens or of one or more of the linking phosphate oxygens; alteration of a constituent of the ribose sugar, e.g., of the 2′ hydroxyl on the ribose sugar; wholesale replacement of the phosphate moiety with “dephospho” linkers; modification or replacement of a naturally occurring base; and replacement or modification of the ribose-phosphate backbone.


As nucleic acids are polymers of subunits, many of the modifications occur at a position which is repeated within a nucleic acid, e.g., a modification of a base, or a phosphate moiety, or a non-linking 0 of a phosphate moiety. In some cases, the modification will occur at all of the subject positions in the nucleic acid but in many cases it will not. By way of example, a modification may only occur at a 3′ or 5′ terminal position, may only occur in a terminal region, e.g., at a position on a terminal nucleotide or in the last 2, 3, 4, 5, or 10 nucleotides of a strand. A modification may occur in a double strand region, a single strand region, or in both. A modification may occur only in the double strand region of an RNA or may only occur in a single strand region of an RNA. E.g., a phosphorothioate modification at a non-linking 0 position may only occur at one or both termini, may only occur in a terminal region, e.g., at a position on a terminal nucleotide or in the last 2, 3, 4, 5, or 10 nucleotides of a strand, or may occur in double strand and single strand regions, particularly at termini. The 5′ end or ends can be phosphorylated.


It may be possible, e.g., to enhance stability, to include particular bases in overhangs, or to include modified nucleotides or nucleotide surrogates, in single strand overhangs, e.g., in a 5′ or 3′ overhang, or in both. E.g., it can be desirable to include purine nucleotides in overhangs. In some embodiments all or some of the bases in a 3′ or 5′ overhang may be modified, e.g., with a modification described herein. Modifications can include, e.g., the use of modifications at the 2′ position of the ribose sugar with modifications that are known in the art, e.g., the use of deoxyribonucleotides, 2′-deoxy-2′-fluoro (2′-F) or 2′-O-methyl modified instead of the ribosugar of the nucleobase, and modifications in the phosphate group, e.g., phosphorothioate modifications. Overhangs need not be homologous with the target sequence.


In some embodiments, each residue of the sense strand and antisense strand is independently modified with LNA, HNA, CeNA, 2′-methoxyethyl, 2′-O-methyl, 2′-O-allyl, 2′-C-allyl, 2′-deoxy, or 2′-fluoro. The strands can contain more than one modification. In some embodiments, each residue of the sense strand and antisense strand is independently modified with 2′-O-methyl or 2′-fluoro. It is to be understood that these modifications are in addition to the at least one thermally destabilizing modification of the duplex present in the antisense strand.


At least two different modifications are typically present on the sense strand and antisense strand. Those two modifications may be the 2′-deoxy, 2′-O-methyl or 2′-fluoro modifications, acyclic nucleotides or others. In some embodiments, the sense strand and antisense strand each comprises two differently modified nucleotides selected from 2′-O-methyl or 2′-deoxy. In some embodiments, each residue of the sense strand and antisense strand is independently modified with 2′-O-methyl nucleotide, 2′-deoxy nucleotide, 2′-deoxy-2′-fluoro nucleotide, 2′-O—N-methylacetamido (2′-O-NMA) nucleotide, a 2′-O-dimethylaminoethoxyethyl (2′-O-DMAEOE) nucleotide, 2′-O-aminopropyl (2′-O-AP) nucleotide, or 2′-ara-F nucleotide. Again, it is to be understood that these modifications are in addition to the at least one thermally destabilizing modification of the duplex present in the antisense strand.


In some embodiments, the dsRNA molecule of the disclosure comprises modifications of an alternating pattern, particular in the B1, B2, B3, B1′, B2′, B3′, B4′ regions. The term “alternating motif” or “alternative pattern” as used herein refers to a motif having one or more modifications, each modification occurring on alternating nucleotides of one strand. The alternating nucleotide may refer to one per every other nucleotide or one per every three nucleotides, or a similar pattern. For example, if A, B and C each represent one type of modification to the nucleotide, the alternating motif can be “ABABABABABAB . . . ,” “AABBAABBAABB . . . ,” “AABAABAABAAB . . . ,” “AAABAAABAAAB . . . ,” “AAABBBAAABBB . . . ,” or “ABCABCABCABC . . . ,” etc. The type of modifications contained in the alternating motif may be the same or different. For example, if A, B, C, D each represent one type of modification on the nucleotide, the alternating pattern, i.e., modifications on every other nucleotide, may be the same, but each of the sense strand or antisense strand can be selected from several possibilities of modifications within the alternating motif such as “ABABAB . . . ”, “ACACAC . . . ” “BDBDBD . . . ” or “CDCDCD . . . ,” etc.


In some embodiments, the dsRNA molecule of the disclosure comprises the modification pattern for the alternating motif on the sense strand relative to the modification pattern for the alternating motif on the antisense strand is shifted. The shift may be such that the modified group of nucleotides of the sense strand corresponds to a differently modified group of nucleotides of the antisense strand and vice versa. For example, the sense strand when paired with the antisense strand in the dsRNA duplex, the alternating motif in the sense strand may start with “ABABAB” from 5′-3′ of the strand and the alternating motif in the antisense strand may start with “BABABA” from 3′-5′ of the strand within the duplex region. As another example, the alternating motif in the sense strand may start with “AABBAABB” from 5′-3′ of the strand and the alternating motif in the antisense strand may start with “BBAABBAA” from 3′-5′ of the strand within the duplex region, so that there is a complete or partial shift of the modification patterns between the sense strand and the antisense strand.


The dsRNA molecule of the disclosure may further comprise at least one phosphorothioate or methylphosphonate internucleotide linkage. The phosphorothioate or methylphosphonate internucleotide linkage modification may occur on any nucleotide of the sense strand or antisense strand or both in any position of the strand. For instance, the internucleotide linkage modification may occur on every nucleotide on the sense strand or antisense strand; each internucleotide linkage modification may occur in an alternating pattern on the sense strand or antisense strand; or the sense strand or antisense strand comprises both internucleotide linkage modifications in an alternating pattern. The alternating pattern of the internucleotide linkage modification on the sense strand may be the same or different from the antisense strand, and the alternating pattern of the internucleotide linkage modification on the sense strand may have a shift relative to the alternating pattern of the internucleotide linkage modification on the antisense strand.


In some embodiments, the dsRNA molecule comprises the phosphorothioate or methylphosphonate internucleotide linkage modification in the overhang region. For example, the overhang region comprises two nucleotides having a phosphorothioate or methylphosphonate internucleotide linkage between the two nucleotides. Internucleotide linkage modifications also may be made to link the overhang nucleotides with the terminal paired nucleotides within duplex region. For example, at least 2, 3, 4, or all the overhang nucleotides may be linked through phosphorothioate or methylphosphonate internucleotide linkage, and optionally, there may be additional phosphorothioate or methylphosphonate internucleotide linkages linking the overhang nucleotide with a paired nucleotide that is next to the overhang nucleotide. For instance, there may be at least two phosphorothioate internucleotide linkages between the terminal three nucleotides, in which two of the three nucleotides are overhang nucleotides, and the third is a paired nucleotide next to the overhang nucleotide. Preferably, these terminal three nucleotides may be at the 3′-end of the antisense strand.


In some embodiments, the sense strand of the dsRNA molecule comprises 1-10 blocks of two to ten phosphorothioate or methylphosphonate internucleotide linkages separated by 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, or 16 phosphate internucleotide linkages, wherein one of the phosphorothioate or methylphosphonate internucleotide linkages is placed at any position in the oligonucleotide sequence and the said sense strand is paired with an antisense strand comprising any combination of phosphorothioate, methylphosphonate and phosphate internucleotide linkages or an antisense strand comprising either phosphorothioate or methylphosphonate or phosphate linkage.


In some embodiments, the antisense strand of the dsRNA molecule comprises two blocks of two phosphorothioate or methylphosphonate internucleotide linkages separated by 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, or 18 phosphate internucleotide linkages, wherein one of the phosphorothioate or methylphosphonate internucleotide linkages is placed at any position in the oligonucleotide sequence and the said antisense strand is paired with a sense strand comprising any combination of phosphorothioate, methylphosphonate and phosphate internucleotide linkages or an antisense strand comprising either phosphorothioate or methylphosphonate or phosphate linkage.


In some embodiments, the antisense strand of the dsRNA molecule comprises two blocks of three phosphorothioate or methylphosphonate internucleotide linkages separated by 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, or 16 phosphate internucleotide linkages, wherein one of the phosphorothioate or methylphosphonate internucleotide linkages is placed at any position in the oligonucleotide sequence and the said antisense strand is paired with a sense strand comprising any combination of phosphorothioate, methylphosphonate and phosphate internucleotide linkages or an antisense strand comprising either phosphorothioate or methylphosphonate or phosphate linkage.


In some embodiments, the antisense strand of the dsRNA molecule comprises two blocks of four phosphorothioate or methylphosphonate internucleotide linkages separated by 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, or 14 phosphate internucleotide linkages, wherein one of the phosphorothioate or methylphosphonate internucleotide linkages is placed at any position in the oligonucleotide sequence and the said antisense strand is paired with a sense strand comprising any combination of phosphorothioate, methylphosphonate and phosphate internucleotide linkages or an antisense strand comprising either phosphorothioate or methylphosphonate or phosphate linkage.


In some embodiments, the antisense strand of the dsRNA molecule comprises two blocks of five phosphorothioate or methylphosphonate internucleotide linkages separated by 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, or 12 phosphate internucleotide linkages, wherein one of the phosphorothioate or methylphosphonate internucleotide linkages is placed at any position in the oligonucleotide sequence and the said antisense strand is paired with a sense strand comprising any combination of phosphorothioate, methylphosphonate and phosphate internucleotide linkages or an antisense strand comprising either phosphorothioate or methylphosphonate or phosphate linkage.


In some embodiments, the antisense strand of the dsRNA molecule comprises two blocks of six phosphorothioate or methylphosphonate internucleotide linkages separated by 1, 2, 3, 4, 5, 6, 7, 8, 9, or 10 phosphate internucleotide linkages, wherein one of the phosphorothioate or methylphosphonate internucleotide linkages is placed at any position in the oligonucleotide sequence and the said antisense strand is paired with a sense strand comprising any combination of phosphorothioate, methylphosphonate and phosphate internucleotide linkages or an antisense strand comprising either phosphorothioate or methylphosphonate or phosphate linkage.


In some embodiments, the antisense strand of the dsRNA molecule comprises two blocks of seven phosphorothioate or methylphosphonate internucleotide linkages separated by 1, 2, 3, 4, 5, 6, 7, or 8 phosphate internucleotide linkages, wherein one of the phosphorothioate or methylphosphonate internucleotide linkages is placed at any position in the oligonucleotide sequence and the said antisense strand is paired with a sense strand comprising any combination of phosphorothioate, methylphosphonate and phosphate internucleotide linkages or an antisense strand comprising either phosphorothioate or methylphosphonate or phosphate linkage.


In some embodiments, the antisense strand of the dsRNA molecule comprises two blocks of eight phosphorothioate or methylphosphonate internucleotide linkages separated by 1, 2, 3, 4, 5, or 6 phosphate internucleotide linkages, wherein one of the phosphorothioate or methylphosphonate internucleotide linkages is placed at any position in the oligonucleotide sequence and the said antisense strand is paired with a sense strand comprising any combination of phosphorothioate, methylphosphonate and phosphate internucleotide linkages or an antisense strand comprising either phosphorothioate or methylphosphonate or phosphate linkage.


In some embodiments, the antisense strand of the dsRNA molecule comprises two blocks of nine phosphorothioate or methylphosphonate internucleotide linkages separated by 1, 2, 3, or 4 phosphate internucleotide linkages, wherein one of the phosphorothioate or methylphosphonate internucleotide linkages is placed at any position in the oligonucleotide sequence and the said antisense strand is paired with a sense strand comprising any combination of phosphorothioate, methylphosphonate and phosphate internucleotide linkages or an antisense strand comprising either phosphorothioate or methylphosphonate or phosphate linkage.


In some embodiments, the dsRNA molecule of the disclosure further comprises one or more phosphorothioate or methylphosphonate internucleotide linkage modification within 1-10 of the termini position(s) of the sense or antisense strand. For example, at least 2, 3, 4, 5, 6, 7, 8, 9, or 10 nucleotides may be linked through phosphorothioate or methylphosphonate internucleotide linkage at one end or both ends of the sense or antisense strand.


In some embodiments, the dsRNA molecule of the disclosure further comprises one or more phosphorothioate or methylphosphonate internucleotide linkage modification within 1-10 of the internal region of the duplex of each of the sense or antisense strand. For example, at least 2, 3, 4, 5, 6, 7, 8, 9, or 10 nucleotides may be linked through phosphorothioate methylphosphonate internucleotide linkage at position 8-16 of the duplex region counting from the 5′-end of the sense strand; the dsRNA molecule can optionally further comprise one or more phosphorothioate or methylphosphonate internucleotide linkage modification within 1-10 of the termini position(s).


In some embodiments, the dsRNA molecule of the disclosure further comprises one to five phosphorothioate or methylphosphonate internucleotide linkage modification(s) within position 1-5 and one to five phosphorothioate or methylphosphonate internucleotide linkage modification(s) within position 18-23 of the sense strand (counting from the 5′-end), and one to five phosphorothioate or methylphosphonate internucleotide linkage modification at positions 1 and 2 and one to five within positions 18-23 of the antisense strand (counting from the 5′-end).


In some embodiments, the dsRNA molecule of the disclosure further comprises one phosphorothioate internucleotide linkage modification within position 1-5 and one phosphorothioate or methylphosphonate internucleotide linkage modification within position 18-23 of the sense strand (counting from the 5′-end), and one phosphorothioate internucleotide linkage modification at positions 1 and 2 and two phosphorothioate or methylphosphonate internucleotide linkage modifications within positions 18-23 of the antisense strand (counting from the 5′-end).


In some embodiments, the dsRNA molecule of the disclosure further comprises two phosphorothioate internucleotide linkage modifications within position 1-5 and one phosphorothioate internucleotide linkage modification within position 18-23 of the sense strand (counting from the 5′-end), and one phosphorothioate internucleotide linkage modification at positions 1 and 2 and two phosphorothioate internucleotide linkage modifications within positions 18-23 of the antisense strand (counting from the 5′-end).


In some embodiments, the dsRNA molecule of the disclosure further comprises two phosphorothioate internucleotide linkage modifications within position 1-5 and two phosphorothioate internucleotide linkage modifications within position 18-23 of the sense strand (counting from the 5′-end), and one phosphorothioate internucleotide linkage modification at positions 1 and 2 and two phosphorothioate internucleotide linkage modifications within positions 18-23 of the antisense strand (counting from the 5′-end).


In some embodiments, the dsRNA molecule of the disclosure further comprises two phosphorothioate internucleotide linkage modifications within position 1-5 and two phosphorothioate internucleotide linkage modifications within position 18-23 of the sense strand (counting from the 5′-end), and one phosphorothioate internucleotide linkage modification at positions 1 and 2 and one phosphorothioate internucleotide linkage modification within positions 18-23 of the antisense strand (counting from the 5′-end).


In some embodiments, the dsRNA molecule of the disclosure further comprises one phosphorothioate internucleotide linkage modification within position 1-5 and one phosphorothioate internucleotide linkage modification within position 18-23 of the sense strand (counting from the 5′-end), and two phosphorothioate internucleotide linkage modifications at positions 1 and 2 and two phosphorothioate internucleotide linkage modifications within positions 18-23 of the antisense strand (counting from the 5′-end).


In some embodiments, the dsRNA molecule of the disclosure further comprises one phosphorothioate internucleotide linkage modification within position 1-5 and one within position 18-23 of the sense strand (counting from the 5′-end), and two phosphorothioate internucleotide linkage modification at positions 1 and 2 and one phosphorothioate internucleotide linkage modification within positions 18-23 of the antisense strand (counting from the 5′-end).


In some embodiments, the dsRNA molecule of the disclosure further comprises one phosphorothioate internucleotide linkage modification within position 1-5 (counting from the 5′-end) of the sense strand, and two phosphorothioate internucleotide linkage modifications at positions 1 and 2 and one phosphorothioate internucleotide linkage modification within positions 18-23 of the antisense strand (counting from the 5′-end).


In some embodiments, the dsRNA molecule of the disclosure further comprises two phosphorothioate internucleotide linkage modifications within position 1-5 (counting from the 5′-end) of the sense strand, and one phosphorothioate internucleotide linkage modification at positions 1 and 2 and two phosphorothioate internucleotide linkage modifications within positions 18-23 of the antisense strand (counting from the 5′-end).


In some embodiments, the dsRNA molecule of the disclosure further comprises two phosphorothioate internucleotide linkage modifications within position 1-5 and one within position 18-23 of the sense strand (counting from the 5′-end), and two phosphorothioate internucleotide linkage modifications at positions 1 and 2 and one phosphorothioate internucleotide linkage modification within positions 18-23 of the antisense strand (counting from the 5′-end).


In some embodiments, the dsRNA molecule of the disclosure further comprises two phosphorothioate internucleotide linkage modifications within position 1-5 and one phosphorothioate internucleotide linkage modification within position 18-23 of the sense strand (counting from the 5′-end), and two phosphorothioate internucleotide linkage modifications at positions 1 and 2 and two phosphorothioate internucleotide linkage modifications within positions 18-23 of the antisense strand (counting from the 5′-end).


In some embodiments, the dsRNA molecule of the disclosure further comprises two phosphorothioate internucleotide linkage modifications within position 1-5 and one phosphorothioate internucleotide linkage modification within position 18-23 of the sense strand (counting from the 5′-end), and one phosphorothioate internucleotide linkage modification at positions 1 and 2 and two phosphorothioate internucleotide linkage modifications within positions 18-23 of the antisense strand (counting from the 5′-end).


In some embodiments, the dsRNA molecule of the disclosure further comprises two phosphorothioate internucleotide linkage modifications at position 1 and 2, and two phosphorothioate internucleotide linkage modifications at position 20 and 21 of the sense strand (counting from the 5′-end), and one phosphorothioate internucleotide linkage modification at positions 1 and one at position 21 of the antisense strand (counting from the 5′-end).


In some embodiments, the dsRNA molecule of the disclosure further comprises one phosphorothioate internucleotide linkage modification at position 1, and one phosphorothioate internucleotide linkage modification at position 21 of the sense strand (counting from the 5′-end), and two phosphorothioate internucleotide linkage modifications at positions 1 and 2 and two phosphorothioate internucleotide linkage modifications at positions 20 and 21 the antisense strand (counting from the 5′-end).


In some embodiments, the dsRNA molecule of the disclosure further comprises two phosphorothioate internucleotide linkage modifications at position 1 and 2, and two phosphorothioate internucleotide linkage modifications at position 21 and 22 of the sense strand (counting from the 5′-end), and one phosphorothioate internucleotide linkage modification at positions 1 and one phosphorothioate internucleotide linkage modification at position 21 of the antisense strand (counting from the 5′-end).


In some embodiments, the dsRNA molecule of the disclosure further comprises one phosphorothioate internucleotide linkage modification at position 1, and one phosphorothioate internucleotide linkage modification at position 21 of the sense strand (counting from the 5′-end), and two phosphorothioate internucleotide linkage modifications at positions 1 and 2 and two phosphorothioate internucleotide linkage modifications at positions 21 and 22 the antisense strand (counting from the 5′-end).


In some embodiments, the dsRNA molecule of the disclosure further comprises two phosphorothioate internucleotide linkage modifications at position 1 and 2, and two phosphorothioate internucleotide linkage modifications at position 22 and 23 of the sense strand (counting from the 5′-end), and one phosphorothioate internucleotide linkage modification at positions 1 and one phosphorothioate internucleotide linkage modification at position 21 of the antisense strand (counting from the 5′-end).


In some embodiments, the dsRNA molecule of the disclosure further comprises one phosphorothioate internucleotide linkage modification at position 1, and one phosphorothioate internucleotide linkage modification at position 21 of the sense strand (counting from the 5′-end), and two phosphorothioate internucleotide linkage modifications at positions 1 and 2 and two phosphorothioate internucleotide linkage modifications at positions 23 and 23 the antisense strand (counting from the 5′-end).


In some embodiments, compound of the disclosure comprises a pattern of backbone chiral centers. In some embodiments, a common pattern of backbone chiral centers comprises at least 5 internucleotidic linkages in the Sp configuration. In some embodiments, a common pattern of backbone chiral centers comprises at least 6 internucleotidic linkages in the Sp configuration. In some embodiments, a common pattern of backbone chiral centers comprises at least 7 internucleotidic linkages in the Sp configuration. In some embodiments, a common pattern of backbone chiral centers comprises at least 8 internucleotidic linkages in the Sp configuration. In some embodiments, a common pattern of backbone chiral centers comprises at least 9 internucleotidic linkages in the Sp configuration. In some embodiments, a common pattern of backbone chiral centers comprises at least 10 internucleotidic linkages in the Sp configuration. In some embodiments, a common pattern of backbone chiral centers comprises at least 11 internucleotidic linkages in the Sp configuration. In some embodiments, a common pattern of backbone chiral centers comprises at least 12 internucleotidic linkages in the Sp configuration. In some embodiments, a common pattern of backbone chiral centers comprises at least 13 internucleotidic linkages in the Sp configuration. In some embodiments, a common pattern of backbone chiral centers comprises at least 14 internucleotidic linkages in the Sp configuration. In some embodiments, a common pattern of backbone chiral centers comprises at least 15 internucleotidic linkages in the Sp configuration. In some embodiments, a common pattern of backbone chiral centers comprises at least 16 internucleotidic linkages in the Sp configuration. In some embodiments, a common pattern of backbone chiral centers comprises at least 17 internucleotidic linkages in the Sp configuration. In some embodiments, a common pattern of backbone chiral centers comprises at least 18 internucleotidic linkages in the Sp configuration. In some embodiments, a common pattern of backbone chiral centers comprises at least 19 internucleotidic linkages in the Sp configuration. In some embodiments, a common pattern of backbone chiral centers comprises no more than 8 internucleotidic linkages in the Rp configuration. In some embodiments, a common pattern of backbone chiral centers comprises no more than 7 internucleotidic linkages in the Rp configuration. In some embodiments, a common pattern of backbone chiral centers comprises no more than 6 internucleotidic linkages in the Rp configuration. In some embodiments, a common pattern of backbone chiral centers comprises no more than 5 internucleotidic linkages in the Rp configuration. In some embodiments, a common pattern of backbone chiral centers comprises no more than 4 internucleotidic linkages in the Rp configuration. In some embodiments, a common pattern of backbone chiral centers comprises no more than 3 internucleotidic linkages in the Rp configuration. In some embodiments, a common pattern of backbone chiral centers comprises no more than 2 internucleotidic linkages in the Rp configuration. In some embodiments, a common pattern of backbone chiral centers comprises no more than 1 internucleotidic linkages in the Rp configuration. In some embodiments, a common pattern of backbone chiral centers comprises no more than 8 internucleotidic linkages which are not chiral (as a non-limiting example, a phosphodiester). In some embodiments, a common pattern of backbone chiral centers comprises no more than 7 internucleotidic linkages which are not chiral. In some embodiments, a common pattern of backbone chiral centers comprises no more than 6 internucleotidic linkages which are not chiral. In some embodiments, a common pattern of backbone chiral centers comprises no more than 5 internucleotidic linkages which are not chiral. In some embodiments, a common pattern of backbone chiral centers comprises no more than 4 internucleotidic linkages which are not chiral. In some embodiments, a common pattern of backbone chiral centers comprises no more than 3 internucleotidic linkages which are not chiral. In some embodiments, a common pattern of backbone chiral centers comprises no more than 2 internucleotidic linkages which are not chiral. In some embodiments, a common pattern of backbone chiral centers comprises no more than 1 internucleotidic linkages which are not chiral. In some embodiments, a common pattern of backbone chiral centers comprises at least 10 internucleotidic linkages in the Sp configuration, and no more than 8 internucleotidic linkages which are not chiral. In some embodiments, a common pattern of backbone chiral centers comprises at least 11 internucleotidic linkages in the Sp configuration, and no more than 7 internucleotidic linkages which are not chiral. In some embodiments, a common pattern of backbone chiral centers comprises at least 12 internucleotidic linkages in the Sp configuration, and no more than 6 internucleotidic linkages which are not chiral. In some embodiments, a common pattern of backbone chiral centers comprises at least 13 internucleotidic linkages in the Sp configuration, and no more than 6 internucleotidic linkages which are not chiral. In some embodiments, a common pattern of backbone chiral centers comprises at least 14 internucleotidic linkages in the Sp configuration, and no more than 5 internucleotidic linkages which are not chiral. In some embodiments, a common pattern of backbone chiral centers comprises at least 15 internucleotidic linkages in the Sp configuration, and no more than 4 internucleotidic linkages which are not chiral. In some embodiments, the internucleotidic linkages in the Sp configuration are optionally contiguous or not contiguous. In some embodiments, the internucleotidic linkages in the Rp configuration are optionally contiguous or not contiguous. In some embodiments, the internucleotidic linkages which are not chiral are optionally contiguous or not contiguous.


In some embodiments, compound of the disclosure comprises a block is a stereochemistry block. In some embodiments, a block is an Rp block in that each internucleotidic linkage of the block is Rp. In some embodiments, a 5′-block is an Rp block. In some embodiments, a 3′-block is an Rp block. In some embodiments, a block is an Sp block in that each internucleotidic linkage of the block is Sp. In some embodiments, a 5′-block is an Sp block. In some embodiments, a 3′-block is an Sp block. In some embodiments, provided oligonucleotides comprise both Rp and Sp blocks. In some embodiments, provided oligonucleotides comprise one or more Rp but no Sp blocks. In some embodiments, provided oligonucleotides comprise one or more Sp but no Rp blocks. In some embodiments, provided oligonucleotides comprise one or more PO blocks wherein each internucleotidic linkage in a natural phosphate linkage.


In some embodiments, compound of the disclosure comprises a 5′-block is an Sp block wherein each sugar moiety comprises a 2′-F modification. In some embodiments, a 5′-block is an Sp block wherein each of internucleotidic linkage is a modified internucleotidic linkage and each sugar moiety comprises a 2′-F modification. In some embodiments, a 5′-block is an Sp block wherein each of internucleotidic linkage is a phosphorothioate linkage and each sugar moiety comprises a 2′-F modification. In some embodiments, a 5′-block comprises 4 or more nucleoside units. In some embodiments, a 5′-block comprises 5 or more nucleoside units. In some embodiments, a 5′-block comprises 6 or more nucleoside units. In some embodiments, a 5′-block comprises 7 or more nucleoside units. In some embodiments, a 3′-block is an Sp block wherein each sugar moiety comprises a 2′-F modification. In some embodiments, a 3′-block is an Sp block wherein each of internucleotidic linkage is a modified internucleotidic linkage and each sugar moiety comprises a 2′-F modification. In some embodiments, a 3′-block is an Sp block wherein each of internucleotidic linkage is a phosphorothioate linkage and each sugar moiety comprises a 2′-F modification. In some embodiments, a 3′-block comprises 4 or more nucleoside units. In some embodiments, a 3′-block comprises 5 or more nucleoside units. In some embodiments, a 3′-block comprises 6 or more nucleoside units. In some embodiments, a 3′-block comprises 7 or more nucleoside units.


In some embodiments, compound of the disclosure comprises a type of nucleoside in a region or an oligonucleotide is followed by a specific type of internucleotidic linkage, e.g., natural phosphate linkage, modified internucleotidic linkage, Rp chiral internucleotidic linkage, Sp chiral internucleotidic linkage, etc. In some embodiments, A is followed by Sp. In some embodiments, A is followed by Rp. In some embodiments, A is followed by natural phosphate linkage (PO). In some embodiments, U is followed by Sp. In some embodiments, U is followed by Rp. In some embodiments, U is followed by natural phosphate linkage (PO). In some embodiments, C is followed by Sp. In some embodiments, C is followed by Rp. In some embodiments, C is followed by natural phosphate linkage (PO). In some embodiments, G is followed by Sp. In some embodiments, G is followed by Rp. In some embodiments, G is followed by natural phosphate linkage (PO). In some embodiments, C and U are followed by Sp. In some embodiments, C and U are followed by Rp. In some embodiments, C and U are followed by natural phosphate linkage (PO). In some embodiments, A and G are followed by Sp. In some embodiments, A and G are followed by Rp.


In some embodiments, the antisense strand comprises phosphorothioate internucleotide linkages between nucleotide positions 21 and 22, and between nucleotide positions 22 and 23, wherein the antisense strand contains at least one thermally destabilizing modification of the duplex located in the seed region of the antisense strand (i.e., at position 2-9 of the 5′-end of the antisense strand), and wherein the dsRNA optionally further has at least one (e.g., one, two, three, four, five, six, seven or all eight) of the following characteristics: (i) the antisense comprises 2, 3, 4, 5 or 6 2′-fluoro modifications; (ii) the antisense comprises 3, 4 or 5 phosphorothioate internucleotide linkages; (iii) the sense strand is conjugated with a ligand; (iv) the sense strand comprises 2, 3, 4 or 5 2′-fluoro modifications; (v) the sense strand comprises 1, 2, 3, 4 or 5 phosphorothioate internucleotide linkages; (vi) the dsRNA comprises at least four 2′-fluoro modifications; (vii) the dsRNA comprises a duplex region of 12-40 nucleotide pairs in length; and (viii) the dsRNA has a blunt end at 5′-end of the antisense strand.


In some embodiments, the antisense strand comprises phosphorothioate internucleotide linkages between nucleotide positions 1 and 2, between nucleotide positions 2 and 3, between nucleotide positions 21 and 22, and between nucleotide positions 22 and 23, wherein the antisense strand contains at least one thermally destabilizing modification of the duplex located in the seed region of the antisense strand (i.e., at position 2-9 of the 5′-end of the antisense strand), and wherein the dsRNA optionally further has at least one (e.g., one, two, three, four, five, six, seven or all eight) of the following characteristics: (i) the antisense comprises 2, 3, 4, 5 or 6 2′-fluoro modifications; (ii) the sense strand is conjugated with a ligand; (iii) the sense strand comprises 2, 3, 4 or 5 2′-fluoro modifications; (iv) the sense strand comprises 1, 2, 3, 4 or 5 phosphorothioate internucleotide linkages; (v) the dsRNA comprises at least four 2′-fluoro modifications; (vi) the dsRNA comprises a duplex region of 12-40 nucleotide pairs in length; (vii) the dsRNA comprises a duplex region of 12-40 nucleotide pairs in length; and (viii) the dsRNA has a blunt end at 5′-end of the antisense strand.


In some embodiments, the sense strand comprises phosphorothioate internucleotide linkages between nucleotide positions 1 and 2, and between nucleotide positions 2 and 3, wherein the antisense strand contains at least one thermally destabilizing modification of the duplex located in the seed region of the antisense strand (i.e., at position 2-9 of the 5′-end of the antisense strand), and wherein the dsRNA optionally further has at least one (e.g., one, two, three, four, five, six, seven or all eight) of the following characteristics: (i) the antisense comprises 2, 3, 4, 5 or 6 2′-fluoro modifications; (ii) the antisense comprises 1, 2, 3, 4 or 5 phosphorothioate internucleotide linkages; (iii) the sense strand is conjugated with a ligand; (iv) the sense strand comprises 2, 3, 4 or 5 2′-fluoro modifications; (v) the sense strand comprises 3, 4 or 5 phosphorothioate internucleotide linkages; (vi) the dsRNA comprises at least four 2′-fluoro modifications; (vii) the dsRNA comprises a duplex region of 12-40 nucleotide pairs in length; and (viii) the dsRNA has a blunt end at 5′-end of the antisense strand.


In some embodiments, the sense strand comprises phosphorothioate internucleotide linkages between nucleotide positions 1 and 2, and between nucleotide positions 2 and 3, the antisense strand comprises phosphorothioate internucleotide linkages between nucleotide positions 1 and 2, between nucleotide positions 2 and 3, between nucleotide positions 21 and 22, and between nucleotide positions 22 and 23, wherein the antisense strand contains at least one thermally destabilizing modification of the duplex located in the seed region of the antisense strand (i.e., at position 2-9 of the 5′-end of the antisense strand), and wherein the dsRNA optionally further has at least one (e.g., one, two, three, four, five, six or all seven) of the following characteristics: (i) the antisense comprises 2, 3, 4, 5 or 6 2′-fluoro modifications; (ii) the sense strand is conjugated with a ligand; (iii) the sense strand comprises 2, 3, 4 or 5 2′-fluoro modifications; (iv) the sense strand comprises 3, 4 or 5 phosphorothioate internucleotide linkages; (v) the dsRNA comprises at least four 2′-fluoro modifications; (vi) the dsRNA comprises a duplex region of 12-40 nucleotide pairs in length; and (vii) the dsRNA has a blunt end at 5′-end of the antisense strand.


In some embodiments, the dsRNA molecule of the disclosure comprises mismatch(es) with the target, within the duplex, or combinations thereof. The mismatch can occur in the overhang region or the duplex region. The base pair can be ranked on the basis of their propensity to promote dissociation or melting (e.g., on the free energy of association or dissociation of a particular pairing, the simplest approach is to examine the pairs on an individual pair basis, though next neighbor or similar analysis can also be used). In terms of promoting dissociation: A:U is preferred over G:C; G:U is preferred over G:C; and I:C is preferred over G:C (I=inosine). Mismatches, e.g., non-canonical or other than canonical pairings (as described elsewhere herein) are preferred over canonical (A:T, A:U, G:C) pairings; and pairings which include a universal base are preferred over canonical pairings. In some embodiments, the dsRNA molecule of the disclosure comprises at least one of the first 1, 2, 3, 4, or 5 base pairs within the duplex regions from the 5′-end of the antisense strand can be chosen independently from the group of: A:U, G:U, I:C, and mismatched pairs, e.g., non-canonical or other than canonical pairings or pairings which include a universal base, to promote the dissociation of the antisense strand at the 5′-end of the duplex.


In some embodiments, the nucleotide at the 1 position within the duplex region from the 5′-end in the antisense strand is selected from the group consisting of A, dA, dU, U, and dT. Alternatively, at least one of the first 1, 2 or 3 base pair within the duplex region from the 5′-end of the antisense strand is an AU base pair. For example, the first base pair within the duplex region from the 5′-end of the antisense strand is an AU base pair.


It was found that introducing 4′-modified or 5′-modified nucleotide to the 3′-end of a phosphodiester (PO), phosphorothioate (PS), or phosphorodithioate (PS2) linkage of a dinucleotide at any position of single stranded or double stranded oligonucleotide can exert steric effect to the internucleotide linkage and, hence, protecting or stabilizing it against nucleases.


In some embodiments, 5′-modified nucleoside is introduced at the 3′-end of a dinucleotide at any position of single stranded or double stranded siRNA. For instance, a 5′-alkylated nucleoside may be introduced at the 3′-end of a dinucleotide at any position of single stranded or double stranded siRNA. The alkyl group at the 5′ position of the ribose sugar can be racemic or chirally pure R or S isomer. An exemplary 5′-alkylated nucleoside is 5′-methyl nucleoside. The 5′-methyl can be either racemic or chirally pure R or S isomer.


In some embodiments, 4′-modified nucleoside is introduced at the 3′-end of a dinucleotide at any position of single stranded or double stranded siRNA. For instance, a 4′-alkylated nucleoside may be introduced at the 3′-end of a dinucleotide at any position of single stranded or double stranded siRNA. The alkyl group at the 4′ position of the ribose sugar can be racemic or chirally pure R or S isomer. An exemplary 4′-alkylated nucleoside is 4′-methyl nucleoside. The 4′-methyl can be either racemic or chirally pure R or S isomer. Alternatively, a 4′-O-alkylated nucleoside may be introduced at the 3′-end of a dinucleotide at any position of single stranded or double stranded siRNA. The 4′-O-alkyl of the ribose sugar can be racemic or chirally pure R or S isomer. An exemplary 4′-O-alkylated nucleoside is 4′-O-methyl nucleoside. The 4′-O-methyl can be either racemic or chirally pure R or S isomer.


In some embodiments, 5′-alkylated nucleoside is introduced at any position on the sense strand or antisense strand of a dsRNA, and such modification maintains or improves potency of the dsRNA. The 5′-alkyl can be either racemic or chirally pure R or S isomer. An exemplary 5′-alkylated nucleoside is 5′-methyl nucleoside. The 5′-methyl can be either racemic or chirally pure R or S isomer.


In some embodiments, 4′-alkylated nucleoside is introduced at any position on the sense strand or antisense strand of a dsRNA, and such modification maintains or improves potency of the dsRNA. The 4′-alkyl can be either racemic or chirally pure R or S isomer. An exemplary 4′-alkylated nucleoside is 4′-methyl nucleoside. The 4′-methyl can be either racemic or chirally pure R or S isomer.


In some embodiments, 4′-O-alkylated nucleoside is introduced at any position on the sense strand or antisense strand of a dsRNA, and such modification maintains or improves potency of the dsRNA. The 5′-alkyl can be either racemic or chirally pure R or S isomer. An exemplary 4′-O-alkylated nucleoside is 4′-O-methyl nucleoside. The 4′-O-methyl can be either racemic or chirally pure R or S isomer.


In some embodiments, the dsRNA molecule of the disclosure can comprise 2′-5′ linkages (with 2′-H, 2′-OH and 2′-OMe and with P═O or P═S). For example, the 2′-5′ linkages modifications can be used to promote nuclease resistance or to inhibit binding of the sense to the antisense strand, or can be used at the 5′ end of the sense strand to avoid sense strand activation by RISC.


In another embodiment, the dsRNA molecule of the disclosure can comprise L sugars (e.g., L ribose, L-arabinose with 2′-H, 2′-OH and 2′-OMe). For example, these L sugars modifications can be used to promote nuclease resistance or to inhibit binding of the sense to the antisense strand, or can be used at the 5′ end of the sense strand to avoid sense strand activation by RISC.


Various publications describe multimeric siRNA which can all be used with the dsRNA of the disclosure. Such publications include WO2007/091269, U.S. Pat. No. 7,858,769, WO2010/141511, WO2007/117686, WO2009/014887, and WO2011/031520 which are hereby incorporated by their entirely.


As described in more detail below, the RNAi agent that contains conjugations of one or more carbohydrate moieties to an RNAi agent can optimize one or more properties of the RNAi agent. In many cases, the carbohydrate moiety will be attached to a modified subunit of the RNAi agent. For example, the ribose sugar of one or more ribonucleotide subunits of a dsRNA agent can be replaced with another moiety, e.g., a non-carbohydrate (preferably cyclic) carrier to which is attached a carbohydrate ligand. A ribonucleotide subunit in which the ribose sugar of the subunit has been so replaced is referred to herein as a ribose replacement modification subunit (RRMS). A cyclic carrier may be a carbocyclic ring system, i.e., all ring atoms are carbon atoms, or a heterocyclic ring system, i.e., one or more ring atoms may be a heteroatom, e.g., nitrogen, oxygen, sulfur. The cyclic carrier may be a monocyclic ring system, or may contain two or more rings, e.g. fused rings. The cyclic carrier may be a fully saturated ring system, or it may contain one or more double bonds.


The ligand may be attached to the polynucleotide via a carrier. The carriers include (i) at least one “backbone attachment point,” preferably two “backbone attachment points” and (ii) at least one “tethering attachment point.” A “backbone attachment point” as used herein refers to a functional group, e.g. a hydroxyl group, or generally, a bond available for, and that is suitable for incorporation of the carrier into the backbone, e.g., the phosphate, or modified phosphate, e.g., sulfur containing, backbone, of a ribonucleic acid. A “tethering attachment point” (TAP) in some embodiments refers to a constituent ring atom of the cyclic carrier, e.g., a carbon atom or a heteroatom (distinct from an atom which provides a backbone attachment point), that connects a selected moiety. The moiety can be, e.g., a carbohydrate, e.g. monosaccharide, disaccharide, trisaccharide, tetrasaccharide, oligosaccharide and polysaccharide. Optionally, the selected moiety is connected by an intervening tether to the cyclic carrier. Thus, the cyclic carrier will often include a functional group, e.g., an amino group, or generally, provide a bond, that is suitable for incorporation or tethering of another chemical entity, e.g., a ligand to the constituent ring.


The RNAi agents may be conjugated to a ligand via a carrier, wherein the carrier can be cyclic group or acyclic group; preferably, the cyclic group is selected from pyrrolidinyl, pyrazolinyl, pyrazolidinyl, imidazolinyl, imidazolidinyl, piperidinyl, piperazinyl, [1,3]dioxolane, oxazolidinyl, isoxazolidinyl, morpholinyl, thiazolidinyl, isothiazolidinyl, quinoxalinyl, pyridazinonyl, tetrahydrofuryl and decalin; preferably, the acyclic group is selected from serinol backbone or diethanolamine backbone.


In certain specific embodiments, the RNAi agent for use in the methods of the disclosure is an agent selected from the group of agents listed in any one of Tables 2, 3, 5, 6, 8, 9, 11, 12, 14, 15, 17, 18, 20, 21, 24, 25, 27-30, 32 and 33. These agents may further comprise a ligand.


IV. iRNAs Conjugated to Ligands

Another modification of the RNA of an iRNA of the invention involves chemically linking to the iRNA one or more ligands, moieties or conjugates that enhance the activity, cellular distribution or cellular uptake of the iRNA, e.g., into a cell. Such moieties include but are not limited to lipid moieties such as a cholesterol moiety (Letsinger et al., Proc. Natl. Acid. Sci. USA, 1989, 86: 6553-6556), cholic acid (Manoharan et al., Biorg. Med. Chem. Let., 1994, 4:1053-1060), a thioether, e.g., beryl-S-tritylthiol (Manoharan et al., Ann. N.Y. Acad. Sci., 1992, 660:306-309; Manoharan et al., Biorg. Med. Chem. Let., 1993, 3:2765-2770), a thiocholesterol (Oberhauser et al., Nucl. Acids Res., 1992, 20:533-538), an aliphatic chain, e.g., dodecandiol or undecyl residues (Saison-Behmoaras et al., EMBO J, 1991, 10:1111-1118; Kabanov et al., FEBS Lett., 1990, 259:327-330; Svinarchuk et al., Biochimie, 1993, 75:49-54), a phospholipid, e.g., di-hexadecyl-rac-glycerol or triethyl-ammonium 1,2-di-O-hexadecyl-rac-glycero-3-phosphonate (Manoharan et al., Tetrahedron Lett., 1995, 36:3651-3654; Shea et al., Nucl. Acids Res., 1990, 18:3777-3783), a polyamine or a polyethylene glycol chain (Manoharan et al., Nucleosides & Nucleotides, 1995, 14:969-973), or adamantane acetic acid (Manoharan et al., Tetrahedron Lett., 1995, 36:3651-3654), a palmityl moiety (Mishra et al., Biochim. Biophys. Acta, 1995, 1264:229-237), or an octadecylamine or hexylamino-carbonyloxycholesterol moiety (Crooke et al., J. Pharmacol. Exp. Ther., 1996, 277:923-937).


In certain embodiments, a ligand alters the distribution, targeting or lifetime of an iRNA agent into which it is incorporated. In some embodiments, a ligand provides an enhanced affinity for a selected target, e.g., molecule, cell or cell type, compartment, e.g., a cellular or organ compartment, tissue, organ or region of the body, as, e.g., compared to a species absent such a ligand. Typical ligands will not take part in duplex pairing in a duplexed nucleic acid.


Ligands can include a naturally occurring substance, such as a protein (e.g., human serum albumin (HSA), low-density lipoprotein (LDL), or globulin); carbohydrate (e.g., a dextran, pullulan, chitin, chitosan, inulin, cyclodextrin or hyaluronic acid); or a lipid. The ligand may also be a recombinant or synthetic molecule, such as a synthetic polymer, e.g., a synthetic polyamino acid. Examples of polyamino acids include polyamino acid is a polylysine (PLL), poly L-aspartic acid, poly L-glutamic acid, styrene-maleic acid anhydride copolymer, poly(L-lactide-co-glycolied) copolymer, divinyl ether-maleic anhydride copolymer, N-(2-hydroxypropyl)methacrylamide copolymer (HMPA), polyethylene glycol (PEG), polyvinyl alcohol (PVA), polyurethane, poly(2-ethylacryllic acid), N-isopropylacrylamide polymers, or polyphosphazine. Example of polyamines include: polyethylenimine, polylysine (PLL), spermine, spermidine, polyamine, pseudopeptide-polyamine, peptidomimetic polyamine, dendrimer polyamine, arginine, amidine, protamine, cationic lipid, cationic porphyrin, quaternary salt of a polyamine, or an a helical peptide.


Ligands can also include targeting groups, e.g., a cell or tissue targeting agent, e.g., a lectin, glycoprotein, lipid or protein, e.g., an antibody, that binds to a specified cell type such as a kidney cell. A targeting group can be a thyrotropin, melanotropin, lectin, glycoprotein, surfactant protein A, Mucin carbohydrate, multivalent lactose, multivalent galactose, N-acetyl-galactosamine, N-acetyl-glucosamine multivalent mannose, multivalent fucose, glycosylated polyaminoacids, multivalent galactose, transferrin, bisphosphonate, polyglutamate, polyaspartate, a lipid, cholesterol, a steroid, bile acid, folate, vitamin B12, biotin, or an RGD peptide or RGD peptide mimetic. In certain embodiments, the ligand is a multivalent galactose, e.g., an N-acetyl-galactosamine.


Other examples of ligands include dyes, intercalating agents (e.g. acridines), cross-linkers (e.g. psoralene, mitomycin C), porphyrins (TPPC4, texaphyrin, Sapphyrin), polycyclic aromatic hydrocarbons (e.g., phenazine, dihydrophenazine), artificial endonucleases (e.g. EDTA), lipophilic molecules, e.g., cholesterol, cholic acid, adamantane acetic acid, 1-pyrene butyric acid, dihydrotestosterone, 1,3-Bis-O(hexadecyl)glycerol, geranyloxyhexyl group, hexadecylglycerol, borneol, menthol, 1,3-propanediol, heptadecyl group, palmitic acid, myristic acid, O3-(oleoyl)lithocholic acid, O3-(oleoyl)cholenic acid, dimethoxytrityl, or phenoxazine) and peptide conjugates (e.g., antennapedia peptide, Tat peptide), alkylating agents, phosphate, amino, mercapto, PEG (e.g., PEG-40K), MPEG, [MPEG]2, polyamino, alkyl, substituted alkyl, radiolabeled markers, enzymes, haptens (e.g. biotin), transport/absorption facilitators (e.g., aspirin, vitamin E, folic acid), synthetic ribonucleases (e.g., imidazole, bisimidazole, histamine, imidazole clusters, acridine-imidazole conjugates, Eu3+ complexes of tetraazamacrocycles), dinitrophenyl, HRP, or AP.


Ligands can be proteins, e.g., glycoproteins, or peptides, e.g., molecules having a specific affinity for a co-ligand, or antibodies e.g., an antibody, that binds to a specified cell type such as a cancer cell, endothelial cell, or bone cell. Ligands may also include hormones and hormone receptors. They can also include non-peptidic species, such as lipids, lectins, carbohydrates, vitamins, cofactors, multivalent lactose, multivalent galactose, N-acetyl-galactosamine, N-acetyl-glucosamine multivalent mannose, or multivalent fucose. The ligand can be, for example, a lipopolysaccharide, an activator of P38 MAP kinase, or an activator of NF-κB.


The ligand can be a substance, e.g., a drug, which can increase the uptake of the iRNA agent into the cell, for example, by disrupting the cell's cytoskeleton, e.g., by disrupting the cell's microtubules, microfilaments, or intermediate filaments. The drug can be, for example, taxon, vincristine, vinblastine, cytochalasin, nocodazole, japlakinolide, latrunculin A, phalloidin, swinholide A, indanocine, or myoservin.


In some embodiments, a ligand attached to an iRNA as described herein acts as a pharmacokinetic modulator (PK modulator). PK modulators include lipophiles, bile acids, steroids, phospholipid analogues, peptides, protein binding agents, PEG, vitamins etc. Exemplary PK modulators include, but are not limited to, cholesterol, fatty acids, cholic acid, lithocholic acid, dialkylglycerides, diacylglyceride, phospholipids, sphingolipids, naproxen, ibuprofen, vitamin E, biotin etc. Oligonucleotides that comprise a number of phosphorothioate linkages are also known to bind to serum protein, thus short oligonucleotides, e.g., oligonucleotides of about 5 bases, 10 bases, 15 bases or 20 bases, comprising multiple of phosphorothioate linkages in the backbone are also amenable to the present invention as ligands (e.g. as PK modulating ligands). In addition, aptamers that bind serum components (e.g. serum proteins) are also suitable for use as PK modulating ligands in the embodiments described herein.


Ligand-conjugated iRNAs of the invention may be synthesized by the use of an oligonucleotide that bears a pendant reactive functionality, such as that derived from the attachment of a linking molecule onto the oligonucleotide (described below). This reactive oligonucleotide may be reacted directly with commercially-available ligands, ligands that are synthesized bearing any of a variety of protecting groups, or ligands that have a linking moiety attached thereto.


The oligonucleotides used in the conjugates of the present invention may be conveniently and routinely made through the well-known technique of solid-phase synthesis. Equipment for such synthesis is sold by several vendors including, for example, Applied Biosystems® (Foster City, Calif.). Any other means for such synthesis known in the art may additionally or alternatively be employed. It is also known to use similar techniques to prepare other oligonucleotides, such as the phosphorothioates and alkylated derivatives.


In the ligand-conjugated oligonucleotides and ligand-molecule bearing sequence-specific linked nucleosides of the present invention, the oligonucleotides and oligonucleosides may be assembled on a suitable DNA synthesizer utilizing standard nucleotide or nucleoside precursors, or nucleotide or nucleoside conjugate precursors that already bear the linking moiety, ligand-nucleotide or nucleoside-conjugate precursors that already bear the ligand molecule, or non-nucleoside ligand-bearing building blocks.


When using nucleotide-conjugate precursors that already bear a linking moiety, the synthesis of the sequence-specific linked nucleosides is typically completed, and the ligand molecule is then reacted with the linking moiety to form the ligand-conjugated oligonucleotide. In some embodiments, the oligonucleotides or linked nucleosides of the present invention are synthesized by an automated synthesizer using phosphoramidites derived from ligand-nucleoside conjugates in addition to the standard phosphoramidites and non-standard phosphoramidites that are commercially available and routinely used in oligonucleotide synthesis.


A. Lipid Conjugates


In certain embodiments, the ligand or conjugate is a lipid or lipid-based molecule. Such a lipid or lipid-based molecule can typically bind a serum protein, such as human serum albumin (HSA). An HSA binding ligand allows for distribution of the conjugate to a target tissue, e.g., a non-kidney target tissue of the body. For example, the target tissue can be the liver, including parenchymal cells of the liver. Other molecules that can bind HSA can also be used as ligands. For example, naproxen or aspirin can be used. A lipid or lipid-based ligand can (a) increase resistance to degradation of the conjugate, (b) increase targeting or transport into a target cell or cell membrane, or (c) can be used to adjust binding to a serum protein, e.g., HSA.


A lipid-based ligand can be used to modulate, e.g., control (e.g., inhibit) the binding of the conjugate to a target tissue. For example, a lipid or lipid-based ligand that binds to HSA more strongly will be less likely to be targeted to the kidney and therefore less likely to be cleared from the body. A lipid or lipid-based ligand that binds to HSA less strongly can be used to target the conjugate to the kidney.


In certain embodiments, the lipid-based ligand binds HSA. For example, the ligand can bind HSA with a sufficient affinity such that distribution of the conjugate to a non-kidney tissue is enhanced. However, the affinity is typically not so strong that the HSA-ligand binding cannot be reversed.


In certain embodiments, the lipid-based ligand binds HSA weakly or not at all, such that distribution of the conjugate to the kidney is enhanced. Other moieties that target to kidney cells can also be used in place of or in addition to the lipid-based ligand.


In another aspect, the ligand is a moiety, e.g., a vitamin, which is taken up by a target cell, e.g., a proliferating cell. These are particularly useful for treating disorders characterized by unwanted cell proliferation, e.g., of the malignant or non-malignant type, e.g., cancer cells. Exemplary vitamins include vitamin A, E, and K. Other exemplary vitamins include are B vitamin, e.g., folic acid, B12, riboflavin, biotin, pyridoxal or other vitamins or nutrients taken up by cancer cells. Also included are HSA and low density lipoprotein (LDL).


B. Cell Permeation Agents


In another aspect, the ligand is a cell-permeation agent, such as a helical cell-permeation agent. In certain embodiments, the agent is amphipathic. An exemplary agent is a peptide such as tat or antennopedia. If the agent is a peptide, it can be modified, including a peptidylmimetic, invertomers, non-peptide or pseudo-peptide linkages, and use of D-amino acids. The helical agent is typically an α-helical agent and can have a lipophilic and a lipophobic phase.


The ligand can be a peptide or peptidomimetic. A peptidomimetic (also referred to herein as an oligopeptidomimetic) is a molecule capable of folding into a defined three-dimensional structure similar to a natural peptide. The attachment of peptide and peptidomimetics to iRNA agents can affect pharmacokinetic distribution of the iRNA, such as by enhancing cellular recognition and absorption. The peptide or peptidomimetic moiety can be about 5-50 amino acids long, e.g., about 5, 10, 15, 20, 25, 30, 35, 40, 45, or 50 amino acids long.


A peptide or peptidomimetic can be, for example, a cell permeation peptide, cationic peptide, amphipathic peptide, or hydrophobic peptide (e.g., consisting primarily of Tyr, Trp, or Phe). The peptide moiety can be a dendrimer peptide, constrained peptide or crosslinked peptide. In another alternative, the peptide moiety can include a hydrophobic membrane translocation sequence (MTS). An exemplary hydrophobic MTS-containing peptide is RFGF having the amino acid sequence AAVALLPAVLLALLAP (SEQ ID NO: 11). An RFGF analogue (e.g., amino acid sequence AALLPVLLAAP (SEQ ID NO: 12)) containing a hydrophobic MTS can also be a targeting moiety. The peptide moiety can be a “delivery” peptide, which can carry large polar molecules including peptides, oligonucleotides, and protein across cell membranes. For example, sequences from the HIV Tat protein (GRKKRRQRRRPPQ (SEQ ID NO: 13)) and the Drosophila Antennapedia protein (RQIKIWFQNRRMKWKK (SEQ ID NO: 14)) have been found to be capable of functioning as delivery peptides. A peptide or peptidomimetic can be encoded by a random sequence of DNA, such as a peptide identified from a phage-display library, or one-bead-one-compound (OB OC) combinatorial library (Lam et al., Nature, 354:82-84, 1991). Typically, the peptide or peptidomimetic tethered to a dsRNA agent via an incorporated monomer unit is a cell targeting peptide such as an arginine-glycine-aspartic acid (RGD)-peptide, or RGD mimic A peptide moiety can range in length from about 5 amino acids to about 40 amino acids. The peptide moieties can have a structural modification, such as to increase stability or direct conformational properties. Any of the structural modifications described below can be utilized.


An RGD peptide for use in the compositions and methods of the invention may be linear or cyclic, and may be modified, e.g., glycosylated or methylated, to facilitate targeting to a specific tissue(s). RGD-containing peptides and peptidiomimemtics may include D-amino acids, as well as synthetic RGD mimics. In addition to RGD, one can use other moieties that target the integrin ligand. Preferred conjugates of this ligand target PECAM-1 or VEGF.


An RGD peptide moiety can be used to target a particular cell type, e.g., a tumor cell, such as an endothelial tumor cell or a breast cancer tumor cell (Zitzmann et al., Cancer Res., 62:5139-43, 2002). An RGD peptide can facilitate targeting of an dsRNA agent to tumors of a variety of other tissues, including the lung, kidney, spleen, or liver (Aoki et al., Cancer Gene Therapy 8:783-787, 2001). Typically, the RGD peptide will facilitate targeting of an iRNA agent to the kidney. The RGD peptide can be linear or cyclic, and can be modified, e.g., glycosylated or methylated to facilitate targeting to specific tissues. For example, a glycosylated RGD peptide can deliver an iRNA agent to a tumor cell expressing αvβ3 (Haubner et al., Jour. Nucl. Med., 42:326-336, 2001).


A “cell permeation peptide” is capable of permeating a cell, e.g., a microbial cell, such as a bacterial or fungal cell, or a mammalian cell, such as a human cell. A microbial cell-permeating peptide can be, for example, an α-helical linear peptide (e.g., LL-37 or Ceropin P1), a disulfide bond-containing peptide (e.g., α-defensin, β-defensin or bactenecin), or a peptide containing only one or two dominating amino acids (e.g., PR-39 or indolicidin). A cell permeation peptide can also include a nuclear localization signal (NLS). For example, a cell permeation peptide can be a bipartite amphipathic peptide, such as MPG, which is derived from the fusion peptide domain of HIV-1 gP41 and the NLS of SV40 large T antigen (Simeoni et al., Nucl. Acids Res. 31:2717-2724, 2003).


C. Carbohydrate Conjugates


In some embodiments of the compositions and methods of the invention, an iRNA further comprises a carbohydrate. The carbohydrate conjugated iRNA are advantageous for the in vivo delivery of nucleic acids, as well as compositions suitable for in vivo therapeutic use, as described herein. As used herein, “carbohydrate” refers to a compound which is either a carbohydrate per se made up of one or more monosaccharide units having at least 6 carbon atoms (which can be linear, branched or cyclic) with an oxygen, nitrogen or sulfur atom bonded to each carbon atom; or a compound having as a part thereof a carbohydrate moiety made up of one or more monosaccharide units each having at least six carbon atoms (which can be linear, branched or cyclic), with an oxygen, nitrogen or sulfur atom bonded to each carbon atom. Representative carbohydrates include the sugars (mono-, di-, tri- and oligosaccharides containing from about 4, 5, 6, 7, 8, or 9 monosaccharide units), and polysaccharides such as starches, glycogen, cellulose and polysaccharide gums. Specific monosaccharides include C5 and above (e.g., C5, C6, C7, or C8) sugars; di- and tri-saccharides include sugars having two or three monosaccharide units (e.g., C5, C6, C7, or C8).


In certain embodiments, a carbohydrate conjugate comprises a monosaccharide.


In certain embodiments, the monosaccharide is an N-acetylgalactosamine (GalNAc). GalNAc conjugates, which comprise one or more N-acetylgalactosamine (GalNAc) derivatives, are described, for example, in U.S. Pat. No. 8,106,022, the entire content of which is hereby incorporated herein by reference. In some embodiments, the GalNAc conjugate serves as a ligand that targets the iRNA to particular cells. In some embodiments, the GalNAc conjugate targets the iRNA to liver cells, e.g., by serving as a ligand for the asialoglycoprotein receptor of liver cells (e.g., hepatocytes).


In some embodiments, the carbohydrate conjugate comprises one or more GalNAc derivatives. The GalNAc derivatives may be attached via a linker, e.g., a bivalent or trivalent branched linker. In some embodiments the GalNAc conjugate is conjugated to the 3′ end of the sense strand. In some embodiments, the GalNAc conjugate is conjugated to the iRNA agent (e.g., to the 3′ end of the sense strand) via a linker, e.g., a linker as described herein. In some embodiments the GalNAc conjugate is conjugated to the 5′ end of the sense strand. In some embodiments, the GalNAc conjugate is conjugated to the iRNA agent (e.g., to the 5′ end of the sense strand) via a linker, e.g., a linker as described herein.


In certain embodiments of the invention, the GalNAc or GalNAc derivative is attached to an iRNA agent of the invention via a monovalent linker. In some embodiments, the GalNAc or GalNAc derivative is attached to an iRNA agent of the invention via a bivalent linker. In yet other embodiments of the invention, the GalNAc or GalNAc derivative is attached to an iRNA agent of the invention via a trivalent linker. In other embodiments of the invention, the GalNAc or GalNAc derivative is attached to an iRNA agent of the invention via a tetravalent linker.


In certain embodiments, the double stranded RNAi agents of the invention comprise one GalNAc or GalNAc derivative attached to the iRNA agent. In certain embodiments, the double stranded RNAi agents of the invention comprise a plurality (e.g., 2, 3, 4, 5, or 6) GalNAc or GalNAc derivatives, each independently attached to a plurality of nucleotides of the double stranded RNAi agent through a plurality of monovalent linkers.


In some embodiments, for example, when the two strands of an iRNA agent of the invention are part of one larger molecule connected by an uninterrupted chain of nucleotides between the 3′-end of one strand and the 5′-end of the respective other strand forming a hairpin loop comprising, a plurality of unpaired nucleotides, each unpaired nucleotide within the hairpin loop may independently comprise a GalNAc or GalNAc derivative attached via a monovalent linker. The hairpin loop may also be formed by an extended overhang in one strand of the duplex.


In some embodiments, for example, when the two strands of an iRNA agent of the invention are part of one larger molecule connected by an uninterrupted chain of nucleotides between the 3′-end of one strand and the 5′-end of the respective other strand forming a hairpin loop comprising, a plurality of unpaired nucleotides, each unpaired nucleotide within the hairpin loop may independently comprise a GalNAc or GalNAc derivative attached via a monovalent linker. The hairpin loop may also be formed by an extended overhang in one strand of the duplex.


In some embodiments, the GalNAc conjugate is




embedded image


In some embodiments, the RNAi agent is attached to the carbohydrate conjugate via a linker as shown in the following schematic, wherein X is O or S




embedded image


In some embodiments, the RNAi agent is conjugated to L96 as defined in Table 1 and shown below:




embedded image


In certain embodiments, a carbohydrate conjugate for use in the compositions and methods of the invention is selected from the group consisting of:




embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


In certain embodiments, a carbohydrate conjugate for use in the compositions and methods of the invention is a monosaccharide. In certain embodiments, the monosaccharide is an N-acetylgalactosamine, such as




embedded image


Another representative carbohydrate conjugate for use in the embodiments described herein includes, but is not limited to,




embedded image


when one of X or Y is an oligonucleotide, the other is a hydrogen.


In some embodiments, a suitable ligand is a ligand disclosed in WO 2019/055633, the entire contents of which are incorporated herein by reference. In one embodiment the ligand comprises the structure below:




embedded image


In certain embodiments, the RNAi agents of the disclosure may include GalNAc ligands, even if such GalNAc ligands are currently projected to be of limited value for the preferred intrathecal/CNS delivery route(s) of the instant disclosure.


In certain embodiments of the invention, the GalNAc or GalNAc derivative is attached to an iRNA agent of the invention via a monovalent linker. In some embodiments, the GalNAc or GalNAc derivative is attached to an iRNA agent of the invention via a bivalent linker. In yet other embodiments of the invention, the GalNAc or GalNAc derivative is attached to an iRNA agent of the invention via a trivalent linker.


In one embodiment, the double stranded RNAi agents of the invention comprise one or more GalNAc or GalNAc derivative attached to the iRNA agent. The GalNAc may be attached to any nucleotide via a linker on the sense strand or antsisense strand. The GalNac may be attached to the 5′-end of the sense strand, the 3′ end of the sense strand, the 5′-end of the antisense strand, or the 3′-end of the antisense strand. In one embodiment, the GalNAc is attached to the 3′ end of the sense strand, e.g., via a trivalent linker.


In other embodiments, the double stranded RNAi agents of the invention comprise a plurality (e.g., 2, 3, 4, 5, or 6) GalNAc or GalNAc derivatives, each independently attached to a plurality of nucleotides of the double stranded RNAi agent through a plurality of linkers, e.g., monovalent linkers.


In some embodiments, for example, when the two strands of an iRNA agent of the invention is part of one larger molecule connected by an uninterrupted chain of nucleotides between the 3′-end of one strand and the 5′-end of the respective other strand forming a hairpin loop comprising, a plurality of unpaired nucleotides, each unpaired nucleotide within the hairpin loop may independently comprise a GalNAc or GalNAc derivative attached via a monovalent linker.


In some embodiments, the carbohydrate conjugate further comprises one or more additional ligands as described above, such as, but not limited to, a PK modulator or a cell permeation peptide.


Additional carbohydrate conjugates and linkers suitable for use in the present invention include those described in WO 2014/179620 and WO 2014/179627, the entire contents of each of which are incorporated herein by reference.


D. Linkers


In some embodiments, the conjugate or ligand described herein can be attached to an iRNA oligonucleotide with various linkers that can be cleavable or non-cleavable.


The term “linker” or “linking group” means an organic moiety that connects two parts of a compound, e.g., covalently attaches two parts of a compound. Linkers typically comprise a direct bond or an atom such as oxygen or sulfur, a unit such as NRB, C(O), C(O)NH, SO, SO2, SO2NH or a chain of atoms, such as, but not limited to, substituted or unsubstituted alkyl, substituted or unsubstituted alkenyl, substituted or unsubstituted alkynyl, arylalkyl, arylalkenyl, arylalkynyl, heteroarylalkyl, heteroarylalkenyl, heteroarylalkynyl, heterocyclylalkyl, heterocyclylalkenyl, heterocyclylalkynyl, aryl, heteroaryl, heterocyclyl, cycloalkyl, cycloalkenyl, alkylarylalkyl, alkylarylalkenyl, alkylarylalkynyl, alkenylarylalkyl, alkenylarylalkenyl, alkenylarylalkynyl, alkynylarylalkyl, alkynylarylalkenyl, alkynylarylalkynyl, alkylheteroarylalkyl, alkylheteroarylalkenyl, alkylheteroarylalkynyl, alkenylheteroarylalkyl, alkenylheteroarylalkenyl, alkenylheteroarylalkynyl, alkynylheteroarylalkyl, alkynylheteroarylalkenyl, alkynylheteroarylalkynyl, alkylheterocyclylalkyl, alkylheterocyclylalkenyl, alkylhererocyclylalkynyl, alkenylheterocyclylalkyl, alkenylheterocyclylalkenyl, alkenylheterocyclylalkynyl, alkynylheterocyclylalkyl, alkynylheterocyclylalkenyl, alkynylheterocyclylalkynyl, alkylaryl, alkenylaryl, alkynylaryl, alkylheteroaryl, alkenylheteroaryl, alkynylhereroaryl, which one or more methylenes can be interrupted or terminated by O, S, S(O), SO2, N(R8), C(O), substituted or unsubstituted aryl, substituted or unsubstituted heteroaryl, substituted or unsubstituted heterocyclic; where R8 is hydrogen, acyl, aliphatic or substituted aliphatic. In certain embodiments, the linker is between about 1-24 atoms, 2-24, 3-24, 4-24, 5-24, 6-24, 6-18, 7-18, 8-18 atoms, 7-17, 8-17, 6-16, 7-16, or 8-16 atoms.


A cleavable linking group is one which is sufficiently stable outside the cell, but which upon entry into a target cell is cleaved to release the two parts the linker is holding together. In a preferred embodiment, the cleavable linking group is cleaved at least about 10 times, 20, times, 30 times, 40 times, 50 times, 60 times, 70 times, 80 times, 90 times or more, or at least about 100 times faster in a target cell or under a first reference condition (which can, e.g., be selected to mimic or represent intracellular conditions) than in the blood of a subject, or under a second reference condition (which can, e.g., be selected to mimic or represent conditions found in the blood or serum).


Cleavable linking groups are susceptible to cleavage agents, e.g., pH, redox potential or the presence of degradative molecules. Generally, cleavage agents are more prevalent or found at higher levels or activities inside cells than in serum or blood. Examples of such degradative agents include: redox agents which are selected for particular substrates or which have no substrate specificity, including, e.g., oxidative or reductive enzymes or reductive agents such as mercaptans, present in cells, that can degrade a redox cleavable linking group by reduction; esterases; endosomes or agents that can create an acidic environment, e.g., those that result in a pH of five or lower; enzymes that can hydrolyze or degrade an acid cleavable linking group by acting as a general acid, peptidases (which can be substrate specific), and phosphatases.


A cleavable linkage group, such as a disulfide bond can be susceptible to pH. The pH of human serum is 7.4, while the average intracellular pH is slightly lower, ranging from about 7.1-7.3. Endosomes have a more acidic pH, in the range of 5.5-6.0, and lysosomes have an even more acidic pH at around 5.0. Some linkers will have a cleavable linking group that is cleaved at a preferred pH, thereby releasing a cationic lipid from the ligand inside the cell, or into the desired compartment of the cell.


A linker can include a cleavable linking group that is cleavable by a particular enzyme. The type of cleavable linking group incorporated into a linker can depend on the cell to be targeted. For example, a liver-targeting ligand can be linked to a cationic lipid through a linker that includes an ester group. Liver cells are rich in esterases, and therefore the linker will be cleaved more efficiently in liver cells than in cell types that are not esterase-rich. Other cell-types rich in esterases include cells of the lung, renal cortex, and testis.


Linkers that contain peptide bonds can be used when targeting cell types rich in peptidases, such as liver cells and synoviocytes.


In general, the suitability of a candidate cleavable linking group can be evaluated by testing the ability of a degradative agent (or condition) to cleave the candidate linking group. It will also be desirable to also test the candidate cleavable linking group for the ability to resist cleavage in the blood or when in contact with other non-target tissue. Thus, one can determine the relative susceptibility to cleavage between a first and a second condition, where the first is selected to be indicative of cleavage in a target cell and the second is selected to be indicative of cleavage in other tissues or biological fluids, e.g., blood or serum. The evaluations can be carried out in cell free systems, in cells, in cell culture, in organ or tissue culture, or in whole animals. It can be useful to make initial evaluations in cell-free or culture conditions and to confirm by further evaluations in whole animals. In preferred embodiments, useful candidate compounds are cleaved at least about 2, 4, 10, 20, 30, 40, 50, 60, 70, 80, 90, or about 100 times faster in the cell (or under in vitro conditions selected to mimic intracellular conditions) as compared to blood or serum (or under in vitro conditions selected to mimic extracellular conditions).


i. Redox Cleavable Linking Groups


In certain embodiments, a cleavable linking group is a redox cleavable linking group that is cleaved upon reduction or oxidation. An example of reductively cleavable linking group is a disulphide linking group (—S—S—). To determine if a candidate cleavable linking group is a suitable “reductively cleavable linking group,” or for example is suitable for use with a particular iRNA moiety and particular targeting agent one can look to methods described herein. For example, a candidate can be evaluated by incubation with dithiothreitol (DTT), or other reducing agent using reagents know in the art, which mimic the rate of cleavage which would be observed in a cell, e.g., a target cell. The candidates can also be evaluated under conditions which are selected to mimic blood or serum conditions. In one, candidate compounds are cleaved by at most about 10% in the blood. In other embodiments, useful candidate compounds are degraded at least about 2, 4, 10, 20, 30, 40, 50, 60, 70, 80, 90, or about 100 times faster in the cell (or under in vitro conditions selected to mimic intracellular conditions) as compared to blood (or under in vitro conditions selected to mimic extracellular conditions). The rate of cleavage of candidate compounds can be determined using standard enzyme kinetics assays under conditions chosen to mimic intracellular media and compared to conditions chosen to mimic extracellular media.


ii. Phosphate-Based Cleavable Linking Groups


In certain embodiments, a cleavable linker comprises a phosphate-based cleavable linking group. A phosphate-based cleavable linking group is cleaved by agents that degrade or hydrolyze the phosphate group. An example of an agent that cleaves phosphate groups in cells are enzymes such as phosphatases in cells. Examples of phosphate-based linking groups are —O—P(O)(ORk)-O—, —O—P(S)(ORk)-O—, —O—P(S)(SRk)-O—, —S—P(O)(ORk)-O—, —O—P(O)(ORk)-S—, —S—P(O)(ORk)-S—, —O—P(S)(ORk)-S—, —S—P(S)(ORk)-O—, —O—P(O)(Rk)-O—, —O—P(S)(Rk)-O—, —S—P(O)(Rk)-O—, —S—P(S)(Rk)-O—, —S—P(O)(Rk)-S—, —O—P(S)(Rk)-S—. Preferred embodiments are —O—P(O)(OH)—O—, —O—P(S)(OH)—O—, —O—P(S)(SH)—O—, —S—P(O)(OH)—O—, —O—P(O)(OH)—S—, —S—P(O)(OH)—S—, —O—P(S)(OH)—S—, —S—P(S)(OH)—O—, —O—P(O)(H)—O—, —O—P(S)(H)—O—, —S—P(O)(H)—O, —S—P(S)(H)—O—, —S—P(O)(H)—S—, —O—P(S)(H)—S—. A preferred embodiment is —O—P(O)(OH)—O—. These candidates can be evaluated using methods analogous to those described above.


iii. Acid Cleavable Linking Groups


In certain embodiments, a cleavable linker comprises an acid cleavable linking group. An acid cleavable linking group is a linking group that is cleaved under acidic conditions. In preferred embodiments acid cleavable linking groups are cleaved in an acidic environment with a pH of about 6.5 or lower (e.g., about 6.0, 5.75, 5.5, 5.25, 5.0, or lower), or by agents such as enzymes that can act as a general acid. In a cell, specific low pH organelles, such as endosomes and lysosomes can provide a cleaving environment for acid cleavable linking groups. Examples of acid cleavable linking groups include but are not limited to hydrazones, esters, and esters of amino acids. Acid cleavable groups can have the general formula —C═NN—, C(O)O, or —OC(O). A preferred embodiment is when the carbon attached to the oxygen of the ester (the alkoxy group) is an aryl group, substituted alkyl group, or tertiary alkyl group such as dimethyl pentyl or t-butyl. These candidates can be evaluated using methods analogous to those described above.


iv. Ester-Based Cleavable Linking Groups


In certain embodiments, a cleavable linker comprises an ester-based cleavable linking group. An ester-based cleavable linking group is cleaved by enzymes such as esterases and amidases in cells. Examples of ester-based cleavable linking groups include but are not limited to esters of alkylene, alkenylene and alkynylene groups. Ester cleavable linking groups have the general formula —C(O)O—, or —OC(O)—. These candidates can be evaluated using methods analogous to those described above.


v. Peptide-Based Cleavable Linking Groups


In yet another embodiment, a cleavable linker comprises a peptide-based cleavable linking group. A peptide-based cleavable linking group is cleaved by enzymes such as peptidases and proteases in cells. Peptide-based cleavable linking groups are peptide bonds formed between amino acids to yield oligopeptides (e.g., dipeptides, tripeptides etc.) and polypeptides. Peptide-based cleavable groups do not include the amide group (—C(O)NH—). The amide group can be formed between any alkylene, alkenylene or alkynelene. A peptide bond is a special type of amide bond formed between amino acids to yield peptides and proteins. The peptide based cleavage group is generally limited to the peptide bond (i.e., the amide bond) formed between amino acids yielding peptides and proteins and does not include the entire amide functional group. Peptide-based cleavable linking groups have the general formula —NHCHRAC(O)NHCHRBC(O)—, where RA and RB are the R groups of the two adjacent amino acids. These candidates can be evaluated using methods analogous to those described above.


In some embodiments, an iRNA of the invention is conjugated to a carbohydrate through a linker. Non-limiting examples of iRNA carbohydrate conjugates with linkers of the compositions and methods of the invention include, but are not limited to.




embedded image


embedded image


embedded image


when one of X or Y is an oligonucleotide, the other is a hydrogen.


In certain embodiments of the compositions and methods of the invention, a ligand is one or more “GalNAc” (N-acetylgalactosamine) derivatives attached through a bivalent or trivalent branched linker.


In certain embodiments, a dsRNA of the invention is conjugated to a bivalent or trivalent branched linker selected from the group of structures shown in any of formula (XLV)-(XLVI):




embedded image


wherein:


q2A, q2B, q3A, q3B, q4A, q4B, q5A, q5B and q5C represent independently for each occurrence 0-20 and wherein the repeating unit can be the same or different;


P2A, P2B, P3A, P3B, P4A, P4B, P5A, P5B, P5C, T2A, T2B, T3A, T3B, T4A, T4B, T4A, T5B, T5C are each independently for each occurrence absent, CO, NH, O, S, OC(O), NHC(O), CM, CH2NH or CH2O;


Q2A, Q2B, Q3A, Q3B, Q4A, Q4B, Q5A, Q5B, Q5C are independently for each occurrence absent, alkylene, substituted alkylene wherein one or more methylenes can be interrupted or terminated by one or more of O, S, S(O), SO2, N(RN), C(R′)═C(R″), C≡C or C(O);


R2A, R2B, R3A, R3B, R4A, R4B, R5A, R5B, R5C are each independently for each occurrence absent, NH, O, S, CH2, C(O)O, C(O)NH, NHCH(Ra)C(O), —C(O)—CH(Ra)—NH—, CO, CH═N—O,




embedded image


or heterocyclyl;


L2A, L2B, L3A, L3B, L4A, L4B, L5A, L5B and L5C represent the ligand; i.e. each independently for each occurrence a monosaccharide (such as GalNAc), disaccharide, trisaccharide, tetrasaccharide, oligosaccharide, or polysaccharide; and Ra is H or amino acid side chain. Trivalent conjugating GalNAc derivatives are particularly useful for use with RNAi agents for inhibiting the expression of a target gene, such as those of formula (XLIX):




embedded image


wherein L5A, L5B and L5C represent a monosaccharide, such as GalNAc derivative.


Examples of suitable bivalent and trivalent branched linker groups conjugating GalNAc derivatives include, but are not limited to, the structures recited above as formulas II, VII, XI, X, and XIII.


Representative U.S. patents that teach the preparation of RNA conjugates include, but are not limited to, U.S. Pat. Nos. 4,828,979; 4,948,882; 5,218,105; 5,525,465; 5,541,313; 5,545,730; 5,552,538; 5,578,717, 5,580,731; 5,591,584; 5,109,124; 5,118,802; 5,138,045; 5,414,077; 5,486,603; 5,512,439; 5,578,718; 5,608,046; 4,587,044; 4,605,735; 4,667,025; 4,762,779; 4,789,737; 4,824,941; 4,835,263; 4,876,335; 4,904,582; 4,958,013; 5,082,830; 5,112,963; 5,214,136; 5,082,830; 5,112,963; 5,214,136; 5,245,022; 5,254,469; 5,258,506; 5,262,536; 5,272,250; 5,292,873; 5,317,098; 5,371,241, 5,391,723; 5,416,203, 5,451,463; 5,510,475; 5,512,667; 5,514,785; 5,565,552; 5,567,810; 5,574,142; 5,585,481; 5,587,371; 5,595,726; 5,597,696; 5,599,923; 5,599,928; 5,688,941; 6,294,664; 6,320,017; 6,576,752; 6,783,931; 6,900,297; 7,037,646; and 8,106,022, the entire contents of each of which are hereby incorporated herein by reference.


It is not necessary for all positions in a given compound to be uniformly modified, and in fact more than one of the aforementioned modifications can be incorporated in a single compound or even at a single nucleoside within an iRNA. The present invention also includes iRNA compounds that are chimeric compounds.


“Chimeric” iRNA compounds or “chimeras,” in the context of this invention, are iRNA compounds, preferably dsRNA agents, that contain two or more chemically distinct regions, each made up of at least one monomer unit, i.e., a nucleotide in the case of a dsRNA compound. These iRNAs typically contain at least one region wherein the RNA is modified so as to confer upon the iRNA increased resistance to nuclease degradation, increased cellular uptake, or increased binding affinity for the target nucleic acid. An additional region of the iRNA can serve as a substrate for enzymes capable of cleaving RNA:DNA or RNA:RNA hybrids. By way of example, RNase H is a cellular endonuclease which cleaves the RNA strand of an RNA:DNA duplex. Activation of RNase H, therefore, results in cleavage of the RNA target, thereby greatly enhancing the efficiency of iRNA inhibition of gene expression. Consequently, comparable results can often be obtained with shorter iRNAs when chimeric dsRNAs are used, compared to phosphorothioate deoxy dsRNAs hybridizing to the same target region. Cleavage of the RNA target can be routinely detected by gel electrophoresis and, if necessary, associated nucleic acid hybridization techniques known in the art.


In certain instances, the RNA of an iRNA can be modified by a non-ligand group. A number of non-ligand molecules have been conjugated to iRNAs in order to enhance the activity, cellular distribution or cellular uptake of the iRNA, and procedures for performing such conjugations are available in the scientific literature. Such non-ligand moieties have included lipid moieties, such as cholesterol (Kubo, T. et al., Biochem. Biophys. Res. Comm., 2007, 365(1):54-61; Letsinger et al., Proc. Natl. Acad. Sci. USA, 1989, 86:6553), cholic acid (Manoharan et al., Bioorg. Med. Chem. Lett., 1994, 4:1053), a thioether, e.g., hexyl-S-tritylthiol (Manoharan et al., Ann. N.Y. Acad. Sci., 1992, 660:306; Manoharan et al., Bioorg. Med. Chem. Let., 1993, 3:2765), a thiocholesterol (Oberhauser et al., Nucl. Acids Res., 1992, 20:533), an aliphatic chain, e.g., dodecandiol or undecyl residues (Saison-Behmoaras et al., EMBO J., 1991, 10:111; Kabanov et al., FEBS Lett., 1990, 259:327; Svinarchuk et al., Biochimie, 1993, 75:49), a phospholipid, e.g., di-hexadecyl-rac-glycerol or triethylammonium 1,2-di-O-hexadecyl-rac-glycero-3-H-phosphonate (Manoharan et al., Tetrahedron Lett., 1995, 36:3651; Shea et al., Nucl. Acids Res., 1990, 18:3777), a polyamine or a polyethylene glycol chain (Manoharan et al., Nucleosides & Nucleotides, 1995, 14:969), or adamantane acetic acid (Manoharan et al., Tetrahedron Lett., 1995, 36:3651), a palmityl moiety (Mishra et al., Biochim. Biophys. Acta, 1995, 1264:229), or an octadecylamine or hexylamino-carbonyl-oxycholesterol moiety (Crooke et al., J. Pharmacol. Exp. Ther., 1996, 277:923). Representative United States patents that teach the preparation of such RNA conjugates have been listed above. Typical conjugation protocols involve the synthesis of RNAs bearing an aminolinker at one or more positions of the sequence. The amino group is then reacted with the molecule being conjugated using appropriate coupling or activating reagents. The conjugation reaction can be performed either with the RNA still bound to the solid support or following cleavage of the RNA, in solution phase. Purification of the RNA conjugate by HPLC typically affords the pure conjugate.


V. Delivery of an RNAi Agent of the Disclosure

The delivery of an RNAi agent of the disclosure to a cell e.g., a cell within a subject, such as a human subject (e.g., a subject in need thereof, such as a subject having an HTT-associated disorder, e.g., Huntington's disease, can be achieved in a number of different ways. For example, delivery may be performed by contacting a cell with an RNAi agent of the disclosure either in vitro or in vivo. In vivo delivery may also be performed directly by administering a composition comprising an RNAi agent, e.g., a dsRNA, to a subject. Alternatively, in vivo delivery may be performed indirectly by administering one or more vectors that encode and direct the expression of the RNAi agent. These alternatives are discussed further below.


In general, any method of delivering a nucleic acid molecule (in vitro or in vivo) can be adapted for use with an RNAi agent of the disclosure (see e.g., Akhtar S. and Julian R L., (1992) Trends Cell. Biol. 2(5):139-144 and WO94/02595, which are incorporated herein by reference in their entireties). For in vivo delivery, factors to consider in order to deliver an RNAi agent include, for example, biological stability of the delivered agent, prevention of non-specific effects, and accumulation of the delivered agent in the target tissue. The non-specific effects of an RNAi agent can be minimized by local administration, for example, by direct injection or implantation into a tissue or topically administering the preparation. Local administration to a treatment site maximizes local concentration of the agent, limits the exposure of the agent to systemic tissues that can otherwise be harmed by the agent or that can degrade the agent, and permits a lower total dose of the RNAi agent to be administered. Several studies have shown successful knockdown of gene products when an RNAi agent is administered locally. For example, intraocular delivery of a VEGF dsRNA by intravitreal injection in cynomolgus monkeys (Tolentino, M J. et al., (2004) Retina 24:132-138) and subretinal injections in mice (Reich, S J. et al. (2003) Mol. Vis. 9:210-216) were both shown to prevent neovascularization in an experimental model of age-related macular degeneration. In addition, direct intratumoral injection of a dsRNA in mice reduces tumor volume (Pille, J. et al. (2005) Mol. Ther. 11:267-274) and can prolong survival of tumor-bearing mice (Kim, W J. et al., (2006) Mol. Ther. 14:343-350; Li, S. et al., (2007) Mol. Ther. 15:515-523). RNA interference has also shown success with local delivery to the CNS by direct injection (Dorn, G. et al., (2004) Nucleic Acids 32:e49; Tan, P H. et al. (2005) Gene Ther. 12:59-66; Makimura, H. et a.l (2002) BMC Neurosci. 3:18; Shishkina, G T., et al. (2004) Neuroscience 129:521-528; Thakker, E R., et al. (2004) Proc. Natl. Acad. Sci. U.S.A. 101:17270-17275; Akaneya, Y., et al. (2005) J. Neurophysiol. 93:594-602) and to the lungs by intranasal administration (Howard, K A. et al., (2006) Mol. Ther. 14:476-484; Zhang, X. et al., (2004) J. Biol. Chem. 279:10677-10684; Bitko, V. et al., (2005) Nat. Med. 11:50-55). For administering an RNAi agent systemically for the treatment of a disease, the RNA can be modified or alternatively delivered using a drug delivery system; both methods act to prevent the rapid degradation of the dsRNA by endo- and exo-nucleases in vivo. Modification of the RNA or the pharmaceutical carrier can also permit targeting of the RNAi agent to the target tissue and avoid undesirable off-target effects (e.g., without wishing to be bound by theory, use of GNAs as described herein has been identified to destabilize the seed region of a dsRNA, resulting in enhanced preference of such dsRNAs for on-target effectiveness, relative to off-target effects, as such off-target effects are significantly weakened by such seed region destabilization). RNAi agents can be modified by chemical conjugation to lipophilic groups such as cholesterol to enhance cellular uptake and prevent degradation. For example, an RNAi agent directed against ApoB conjugated to a lipophilic cholesterol moiety was injected systemically into mice and resulted in knockdown of apoB mRNA in both the liver and jejunum (Soutschek, J. et al., (2004) Nature 432:173-178). Conjugation of an RNAi agent to an aptamer has been shown to inhibit tumor growth and mediate tumor regression in a mouse model of prostate cancer (McNamara, J O. et al., (2006) Nat. Biotechnol. 24:1005-1015). In an alternative embodiment, the RNAi agent can be delivered using drug delivery systems such as a nanoparticle, a dendrimer, a polymer, liposomes, or a cationic delivery system. Positively charged cationic delivery systems facilitate binding of molecule RNAi agent (negatively charged) and also enhance interactions at the negatively charged cell membrane to permit efficient uptake of an RNAi agent by the cell. Cationic lipids, dendrimers, or polymers can either be bound to an RNAi agent, or induced to form a vesicle or micelle (see e.g., Kim S H. et al., (2008) Journal of Controlled Release 129(2):107-116) that encases an RNAi agent. The formation of vesicles or micelles further prevents degradation of the RNAi agent when administered systemically. Methods for making and administering cationic-RNAi agent complexes are well within the abilities of one skilled in the art (see e.g., Sorensen, D R., et al. (2003) J. Mol. Biol 327:761-766; Verma, U N. et al., (2003) Clin. Cancer Res. 9:1291-1300; Arnold, A S et al. (2007) J. Hypertens. 25:197-205, which are incorporated herein by reference in their entirety). Some non-limiting examples of drug delivery systems useful for systemic delivery of RNAi agents include DOTAP (Sorensen, D R., et al (2003), supra; Verma, U N. et al., (2003), supra), Oligofectamine, “solid nucleic acid lipid particles” (Zimmermann, T S. et al., (2006) Nature 441:111-114), cardiolipin (Chien, P Y. et al., (2005) Cancer Gene Ther. 12:321-328; Pal, A. et al., (2005) Int J. Oncol. 26:1087-1091), polyethyleneimine (Bonnet M E. et al., (2008) Pharm. Res. August 16 Epub ahead of print; Aigner, A. (2006) J. Biomed. Biotechnol. 71659), Arg-Gly-Asp (RGD) peptides (Liu, S. (2006) Mol. Pharm. 3:472-487), and polyamidoamines (Tomalia, D A. et al., (2007) Biochem. Soc. Trans. 35:61-67; Yoo, H. et al., (1999) Pharm. Res. 16:1799-1804). In some embodiments, an RNAi agent forms a complex with cyclodextrin for systemic administration. Methods for administration and pharmaceutical compositions of RNAi agents and cyclodextrins can be found in U.S. Pat. No. 7,427, 605, which is herein incorporated by reference in its entirety.


Certain aspects of the instant disclosure relate to a method of reducing the expression of an HTT target gene in a cell, comprising contacting said cell with the double-stranded RNAi agent of the disclosure. In one embodiment, the cell is an extraheptic cell, optionally a CNS cell.


Another aspect of the disclosure relates to a method of reducing the expression of an HTT target gene in a subject, comprising administering to the subject the double-stranded RNAi agent of the disclosure.


Another aspect of the disclosure relates to a method of treating a subject having a CNS disorder, comprising administering to the subject a therapeutically effective amount of the double-stranded HTT-targeting RNAi agent of the disclosure, thereby treating the subject. Exemplary CNS disorders that can be treated by the method of the disclosure include Huntington's disease.


In one embodiment, the double-stranded RNAi agent is administered intrathecally. By intrathecal administration of the double-stranded RNAi agent, the method can reduce the expression of an HTT target gene in a brain (e.g., striatum) or spine tissue, for instance, cortex, cerebellum, cervical spine, lumbar spine, and thoracic spine.


For ease of exposition the formulations, compositions and methods in this section are discussed largely with regard to modified siRNA compounds. It may be understood, however, that these formulations, compositions and methods can be practiced with other siRNA compounds, e.g., unmodified siRNA compounds, and such practice is within the disclosure. A composition that includes an RNAi agent can be delivered to a subject by a variety of routes. Exemplary routes include: intrathecal, intravenous, topical, rectal, anal, vaginal, nasal, pulmonary, and ocular.


The RNAi agents of the disclosure can be incorporated into pharmaceutical compositions suitable for administration. Such compositions typically include one or more species of RNAi agent and a pharmaceutically acceptable carrier. As used herein the language “pharmaceutically acceptable carrier” is intended to include any and all solvents, dispersion media, coatings, antibacterial and antifungal agents, isotonic and absorption delaying agents, and the like, compatible with pharmaceutical administration. The use of such media and agents for pharmaceutically active substances is well known in the art. Except insofar as any conventional media or agent is incompatible with the active compound, use thereof in the compositions is contemplated. Supplementary active compounds can also be incorporated into the compositions.


The pharmaceutical compositions of the present disclosure may be administered in a number of ways depending upon whether local or systemic treatment is desired and upon the area to be treated. Administration may be topical (including ophthalmic, vaginal, rectal, intranasal, transdermal), oral, or parenteral. Parenteral administration includes intravenous drip, subcutaneous, intraperitoneal or intramuscular injection, or intrathecal or intraventricular administration.


The route and site of administration may be chosen to enhance targeting. For example, to target muscle cells, intramuscular injection into the muscles of interest would be a logical choice. Lung cells might be targeted by administering the RNAi agent in aerosol form. The vascular endothelial cells could be targeted by coating a balloon catheter with the RNAi agent and mechanically introducing the RNA.


Formulations for topical administration may include transdermal patches, ointments, lotions, creams, gels, drops, suppositories, sprays, liquids, and powders. Conventional pharmaceutical carriers, aqueous, powder or oily bases, thickeners and the like may be necessary or desirable. Coated condoms, gloves and the like may also be useful.


Compositions for oral administration include powders or granules, suspensions or solutions in water, syrups, elixirs or non-aqueous media, tablets, capsules, lozenges, or troches. In the case of tablets, carriers that can be used include lactose, sodium citrate and salts of phosphoric acid. Various disintegrants such as starch, and lubricating agents such as magnesium stearate, sodium lauryl sulfate and talc, are commonly used in tablets. For oral administration in capsule form, useful diluents are lactose and high molecular weight polyethylene glycols. When aqueous suspensions are required for oral use, the nucleic acid compositions can be combined with emulsifying and suspending agents. If desired, certain sweetening or flavoring agents can be added.


Compositions for intrathecal or intraventricular administration may include sterile aqueous solutions which may also contain buffers, diluents, and other suitable additives.


Formulations for parenteral administration may include sterile aqueous solutions which may also contain buffers, diluents, and other suitable additives. Intraventricular injection may be facilitated by an intraventricular catheter, for example, attached to a reservoir. For intravenous use, the total concentration of solutes may be controlled to render the preparation isotonic.


In one embodiment, the administration of the siRNA compound, e.g., a double-stranded siRNA compound, or ssiRNA compound, composition is parenteral, e.g., intravenous (e.g., as a bolus or as a diffusible infusion), intradermal, intraperitoneal, intramuscular, intrathecal, intraventricular, intracranial, subcutaneous, transmucosal, buccal, sublingual, endoscopic, rectal, oral, vaginal, topical, pulmonary, intranasal, urethral, or ocular. Administration can be provided by the subject or by another person, e.g., a health care provider. The medication can be provided in measured doses or in a dispenser which delivers a metered dose. Selected modes of delivery are discussed in more detail below.


A. Intrathecal Administration.


In one embodiment, the double-stranded RNAi agent is delivered by intrathecal injection (i.e., injection into the spinal fluid which bathes the brain and spinal cord tissue). Intrathecal injection of RNAi agents into the spinal fluid can be performed as a bolus injection or via minipumps which can be implanted beneath the skin, providing a regular and constant delivery of siRNA into the spinal fluid. The circulation of the spinal fluid from the choroid plexus, where it is produced, down around the spinal chord and dorsal root ganglia and subsequently up past the cerebellum and over the cortex to the arachnoid granulations, where the fluid can exit the CNS, that, depending upon size, stability, and solubility of the compounds injected, molecules delivered intrathecally could hit targets throughout the entire CNS.


In some embodiments, the intrathecal administration is via a pump. The pump may be a surgically implanted osmotic pump. In one embodiment, the osmotic pump is implanted into the subarachnoid space of the spinal canal to facilitate intrathecal administration.


In some embodiments, the intrathecal administration is via an intrathecal delivery system for a pharmaceutical including a reservoir containing a volume of the pharmaceutical agent, and a pump configured to deliver a portion of the pharmaceutical agent contained in the reservoir. More details about this intrathecal delivery system may be found in WO 2015/116658, which is incorporated by reference in its entirety.


The amount of intrathecally injected RNAi agents may vary from one target gene to another target gene and the appropriate amount that has to be applied may have to be determined individually for each target gene. Typically, this amount ranges from 10 μg to 2 mg, preferably 50 μg to 1500 μg, more preferably 100 μg to 1000 μg.


B. Vector Encoded RNAi Agents of the Disclosure


RNAi agents targeting the HTT gene can be expressed from transcription units inserted into DNA or RNA vectors (see, e.g., Couture, A, et al., TIG. (1996), 12:5-10; WO 00/22113, WO 00/22114, and U.S. Pat. No. 6,054,299). Expression is preferably sustained (months or longer), depending upon the specific construct used and the target tissue or cell type. These transgenes can be introduced as a linear construct, a circular plasmid, or a viral vector, which can be an integrating or non-integrating vector. The transgene can also be constructed to permit it to be inherited as an extrachromosomal plasmid (Gassmann, et al., (1995) Proc. Natl. Acad. Sci. USA 92:1292).


The individual strand or strands of an RNAi agent can be transcribed from a promoter on an expression vector. Where two separate strands are to be expressed to generate, for example, a dsRNA, two separate expression vectors can be co-introduced (e.g., by transfection or infection) into a target cell. Alternatively, each individual strand of a dsRNA can be transcribed by promoters both of which are located on the same expression plasmid. In one embodiment, a dsRNA is expressed as inverted repeat polynucleotides joined by a linker polynucleotide sequence such that the dsRNA has a stem and loop structure.


RNAi agent expression vectors are generally DNA plasmids or viral vectors. Expression vectors compatible with eukaryotic cells, preferably those compatible with vertebrate cells, can be used to produce recombinant constructs for the expression of an RNAi agent as described herein. Delivery of RNAi agent expressing vectors can be systemic, such as by intravenous or intramuscular administration, by administration to target cells ex-planted from the patient followed by reintroduction into the patient, or by any other means that allows for introduction into a desired target cell.


Viral vector systems which can be utilized with the methods and compositions described herein include, but are not limited to, (a) adenovirus vectors; (b) retrovirus vectors, including but not limited to lentiviral vectors, moloney murine leukemia virus, etc.; (c) adeno-associated virus vectors; (d) herpes simplex virus vectors; (e) SV 40 vectors; (f) polyoma virus vectors; (g) papilloma virus vectors; (h) picornavirus vectors; (i) pox virus vectors such as an orthopox, e.g., vaccinia virus vectors or avipox, e.g. canary pox or fowl pox; and (j) a helper-dependent or gutless adenovirus. Replication-defective viruses can also be advantageous. Different vectors will or will not become incorporated into the cells' genome. The constructs can include viral sequences for transfection, if desired. Alternatively, the construct can be incorporated into vectors capable of episomal replication, e.g. EPV and EBV vectors. Constructs for the recombinant expression of an RNAi agent will generally require regulatory elements, e.g., promoters, enhancers, etc., to ensure the expression of the RNAi agent in target cells. Other aspects to consider for vectors and constructs are known in the art.


VI. Pharmaceutical Compositions of the Invention

The present disclosure also includes pharmaceutical compositions and formulations which include the RNAi agents of the disclosure. In one embodiment, provided herein are pharmaceutical compositions containing an RNAi agent, as described herein, and a pharmaceutically acceptable carrier. The pharmaceutical compositions containing the RNAi agent are useful for treating a disease or disorder associated with the expression or activity of HTT, e.g., Huntington's disease.


In some embodiments, the pharmaceutical compositions of the invention are sterile. In another embodiment, the pharmaceutical compositions of the invention are pyrogen free or non-pyrogenic.


Such pharmaceutical compositions are formulated based on the mode of delivery. One example is compositions that are formulated for systemic administration via parenteral delivery, e.g., by intravenous (IV), intramuscular (IM), or for subcutaneous (subQ) delivery. Another example is compositions that are formulated for direct delivery into the CNS, e.g., by intrathecal or intravitreal routes of injection, optionally by infusion into the brain (e.g., striatum), such as by continuous pump infusion.


The pharmaceutical compositions of the disclosure may be administered in dosages sufficient to inhibit expression of an HTT gene. In general, a suitable dose of an RNAi agent of the disclosure will be in the range of about 0.001 to about 200.0 milligrams per kilogram body weight of the recipient per day, generally in the range of about 1 to 50 mg per kilogram body weight per day.


A repeat-dose regimen may include administration of a therapeutic amount of an RNAi agent on a regular basis, such as monthly to once every six months. In certain embodiments, the RNAi agent is administered about once per quarter (i.e., about once every three months) to about twice per year.


After an initial treatment regimen (e.g., loading dose), the treatments can be administered on a less frequent basis.


In other embodiments, a single dose of the pharmaceutical compositions can be long lasting, such that subsequent doses are administered at not more than 1, 2, 3, or 4 or more month intervals. In some embodiments of the disclosure, a single dose of the pharmaceutical compositions of the disclosure is administered once per month. In other embodiments of the disclosure, a single dose of the pharmaceutical compositions of the disclosure is administered once per quarter to twice per year.


The skilled artisan will appreciate that certain factors can influence the dosage and timing required to effectively treat a subject, including but not limited to the severity of the disease or disorder, previous treatments, the general health or age of the subject, and other diseases present. Moreover, treatment of a subject with a therapeutically effective amount of a composition can include a single treatment or a series of treatments.


Advances in mouse genetics have generated a number of mouse models for the study of various human diseases, such as HD that would benefit from reduction in the expression of HTT. Such models can be used for in vivo testing of RNAi agents, as well as for determining a therapeutically effective dose. Suitable rodent models are known in the art and include, for example, those described in, for example, Cepeda, et al. (ASN Neuro (2010) 2(2):e00033) and Pouladi, et al. (Nat Reviews (2013) 14:708).


The pharmaceutical compositions of the present disclosure can be administered in a number of ways depending upon whether local or systemic treatment is desired and upon the area to be treated. Administration can be topical (e.g., by a transdermal patch), pulmonary, e.g., by inhalation or insufflation of powders or aerosols, including by nebulizer; intratracheal, intranasal, epidermal and transdermal, oral or parenteral. Parenteral administration includes intravenous, intraarterial, subcutaneous, intraperitoneal or intramuscular injection or infusion; subdermal, e.g., via an implanted device; or intracranial, e.g., by intraparenchymal, intrathecal or intraventricular, administration.


The RNAi agents can be delivered in a manner to target a particular tissue, such as the CNS (e.g., neuronal, glial or vascular tissue of the brain).


Pharmaceutical compositions and formulations for topical administration can include transdermal patches, ointments, lotions, creams, gels, drops, suppositories, sprays, liquids and powders. Conventional pharmaceutical carriers, aqueous, powder or oily bases, thickeners and the like can be necessary or desirable. Coated condoms, gloves and the like can also be useful. Suitable topical formulations include those in which the RNAi agents featured in the disclosure are in admixture with a topical delivery agent such as lipids, liposomes, fatty acids, fatty acid esters, steroids, chelating agents and surfactants. Suitable lipids and liposomes include neutral (e.g., dioleoylphosphatidyl DOPE ethanolamine, dimyristoylphosphatidyl choline DMPC, distearolyphosphatidyl choline) negative (e.g., dimyristoylphosphatidyl glycerol DMPG) and cationic (e.g., dioleoyltetramethylaminopropyl DOTAP and dioleoylphosphatidyl ethanolamine DOTMA). RNAi agents featured in the disclosure can be encapsulated within liposomes or can form complexes thereto, in particular to cationic liposomes. Alternatively, RNAi agents can be complexed to lipids, in particular to cationic lipids. Suitable fatty acids and esters include but are not limited to arachidonic acid, oleic acid, eicosanoic acid, lauric acid, caprylic acid, capric acid, myristic acid, palmitic acid, stearic acid, linoleic acid, linolenic acid, dicaprate, tricaprate, monoolein, dilaurin, glyceryl 1-monocaprate, 1-dodecylazacycloheptan-2-one, an acylcarnitine, an acylcholine, or a C1-20 alkyl ester (e.g., isopropylmyristate IPM), monoglyceride, diglyceride or pharmaceutically acceptable salt thereof. Topical formulations are described in detail in U.S. Pat. No. 6,747,014, which is incorporated herein by reference.


A. RNAi Agent Formulations Comprising Membranous Molecular Assemblies


An RNAi agent for use in the compositions and methods of the disclosure can be formulated for delivery in a membranous molecular assembly, e.g., a liposome or a micelle. As used herein, the term “liposome” refers to a vesicle composed of amphiphilic lipids arranged in at least one bilayer, e.g., one bilayer or a plurality of bilayers. Liposomes include unilamellar and multilamellar vesicles that have a membrane formed from a lipophilic material and an aqueous interior. The aqueous portion contains the RNAi agent composition. The lipophilic material isolates the aqueous interior from an aqueous exterior, which typically does not include the RNAi agent composition, although in some examples, it may. Liposomes are useful for the transfer and delivery of active ingredients to the site of action. Because the liposomal membrane is structurally similar to biological membranes, when liposomes are applied to a tissue, the liposomal bilayer fuses with bilayer of the cellular membranes. As the merging of the liposome and cell progresses, the internal aqueous contents that include the RNAi agent are delivered into the cell where the RNAi agent can specifically bind to a target RNA and can mediate RNAi. In some cases the liposomes are also specifically targeted, e.g., to direct the RNAi agent to particular cell types.


A liposome containing an RNAi agent can be prepared by a variety of methods. In one example, the lipid component of a liposome is dissolved in a detergent so that micelles are formed with the lipid component. For example, the lipid component can be an amphipathic cationic lipid or lipid conjugate. The detergent can have a high critical micelle concentration and may be nonionic. Exemplary detergents include cholate, CHAPS, octylglucoside, deoxycholate, and lauroyl sarcosine. The RNAi agent preparation is then added to the micelles that include the lipid component. The cationic groups on the lipid interact with the RNAi agent and condense around the RNAi agent to form a liposome. After condensation, the detergent is removed, e.g., by dialysis, to yield a liposomal preparation of RNAi agent.


If necessary a carrier compound that assists in condensation can be added during the condensation reaction, e.g., by controlled addition. For example, the carrier compound can be a polymer other than a nucleic acid (e.g., spermine or spermidine). pH can also adjusted to favor condensation.


Methods for producing stable polynucleotide delivery vehicles, which incorporate a polynucleotide/cationic lipid complex as structural components of the delivery vehicle, are further described in, e.g., WO 96/37194, the entire contents of which are incorporated herein by reference. Liposome formation can also include one or more aspects of exemplary methods described in Felgner, P. L. et al., (1987) Proc. Natl. Acad. Sci. USA 8:7413-7417; U.S. Pat. Nos. 4,897,355; 5,171,678; Bangham et al., (1965) M. Mol. Biol. 23:238; Olson et al., (1979) Biochim. Biophys. Acta 557:9; Szoka et al., (1978) Proc. Natl. Acad. Sci. 75: 4194; Mayhew et al., (1984) Biochim. Biophys. Acta 775:169; Kim et al., (1983) Biochim. Biophys. Acta 728:339; and Fukunaga et al., (1984) Endocrinol. 115:757. Commonly used techniques for preparing lipid aggregates of appropriate size for use as delivery vehicles include sonication and freeze-thaw plus extrusion (see, e.g., Mayer et al., (1986) Biochim. Biophys. Acta 858:161. Microfluidization can be used when consistently small (50 to 200 nm) and relatively uniform aggregates are desired (Mayhew et al., (1984) Biochim. Biophys. Acta 775:169. These methods are readily adapted to packaging RNAi agent preparations into liposomes.


Liposomes fall into two broad classes. Cationic liposomes are positively charged liposomes which interact with the negatively charged nucleic acid molecules to form a stable complex. The positively charged nucleic acid/liposome complex binds to the negatively charged cell surface and is internalized in an endosome. Due to the acidic pH within the endosome, the liposomes are ruptured, releasing their contents into the cell cytoplasm (Wang et al. (1987) Biochem. Biophys. Res. Commun., 147:980-985).


Liposomes, which are pH-sensitive or negatively charged, entrap nucleic acids rather than complex with them. Since both the nucleic acid and the lipid are similarly charged, repulsion rather than complex formation occurs. Nevertheless, some nucleic acid is entrapped within the aqueous interior of these liposomes. pH sensitive liposomes have been used to deliver nucleic acids encoding the thymidine kinase gene to cell monolayers in culture. Expression of the exogenous gene was detected in the target cells (Zhou et al. (1992) Journal of Controlled Release, 19:269-274).


One major type of liposomal composition includes phospholipids other than naturally-derived phosphatidylcholine. Neutral liposome compositions, for example, can be formed from dimyristoyl phosphatidylcholine (DMPC) or dipalmitoyl phosphatidylcholine (DPPC). Anionic liposome compositions generally are formed from dimyristoyl phosphatidylglycerol, while anionic fusogenic liposomes are formed primarily from dioleoyl phosphatidylethanolamine (DOPE). Another type of liposomal composition is formed from phosphatidylcholine (PC) such as, for example, soybean PC, and egg PC. Another type is formed from mixtures of phospholipid or phosphatidylcholine or cholesterol.


Examples of other methods to introduce liposomes into cells in vitro and in vivo include U.S. Pat. Nos. 5,283,185; 5,171,678; WO 94/00569; WO 93/24640; WO 91/16024; Felgner, (1994) J. Biol. Chem. 269:2550; Nabel, (1993) Proc. Natl. Acad. Sci. 90:11307; Nabel, (1992) Human Gene Ther. 3:649; Gershon, (1993) Biochem. 32:7143; and Strauss, (1992) EMBO J. 11:417.


Non-ionic liposomal systems have also been examined to determine their utility in the delivery of drugs to the skin, in particular systems comprising non-ionic surfactant and cholesterol. Non-ionic liposomal formulations comprising Novasome™ I (glyceryl dilaurate/cholesterol/polyoxyethylene-10-stearyl ether) and Novasome™ II (glyceryl distearate/cholesterol/polyoxyethylene-10-stearyl ether) were used to deliver cyclosporin-A into the dermis of mouse skin. Results indicated that such non-ionic liposomal systems were effective in facilitating the deposition of cyclosporine A into different layers of the skin (Hu et al., (1994) S.T.P. Pharma. Sci., 4(6):466).


Liposomes also include “sterically stabilized” liposomes, a term which, as used herein, refers to liposomes comprising one or more specialized lipids that, when incorporated into liposomes, result in enhanced circulation lifetimes relative to liposomes lacking such specialized lipids. Examples of sterically stabilized liposomes are those in which part of the vesicle-forming lipid portion of the liposome (A) comprises one or more glycolipids, such as monosialoganglioside Gmi, or (B) is derivatized with one or more hydrophilic polymers, such as a polyethylene glycol (PEG) moiety. While not wishing to be bound by any particular theory, it is thought in the art that, at least for sterically stabilized liposomes containing gangliosides, sphingomyelin, or PEG-derivatized lipids, the enhanced circulation half-life of these sterically stabilized liposomes derives from a reduced uptake into cells of the reticuloendothelial system (RES) (Allen et al., (1987) FEBS Letters, 223:42; Wu et al., (1993) Cancer Research, 53:3765).


Various liposomes comprising one or more glycolipids are known in the art. Papahadjopoulos et al. (Ann. N.Y. Acad. Sci., (1987), 507:64) reported the ability of monosialoganglioside GM1, galactocerebroside sulfate and phosphatidylinositol to improve blood half-lives of liposomes. These findings were expounded upon by Gabizon et al. (Proc. Natl. Acad. Sci. U.S.A., (1988), 85:6949). U.S. Pat. No. 4,837,028 and WO 88/04924, both to Allen et al., disclose liposomes comprising (1) sphingomyelin and (2) the ganglioside GM1 or a galactocerebroside sulfate ester. U.S. Pat. No. 5,543,152 (Webb et al.) discloses liposomes comprising sphingomyelin. Liposomes comprising 1,2-sn-dimyristoylphosphatidylcholine are disclosed in WO 97/13499 (Lim et al).


In one embodiment, cationic liposomes are used. Cationic liposomes possess the advantage of being able to fuse to the cell membrane. Non-cationic liposomes, although not able to fuse as efficiently with the plasma membrane, are taken up by macrophages in vivo and can be used to deliver RNAi agents to macrophages.


Further advantages of liposomes include: liposomes obtained from natural phospholipids are biocompatible and biodegradable; liposomes can incorporate a wide range of water and lipid soluble drugs; liposomes can protect encapsulated RNAi agents in their internal compartments from metabolism and degradation (Rosoff, in “Pharmaceutical Dosage Forms,” Lieberman, Rieger and Banker (Eds.), 1988, volume 1, p. 245). Important considerations in the preparation of liposome formulations are the lipid surface charge, vesicle size and the aqueous volume of the liposomes.


A positively charged synthetic cationic lipid, N-[1-(2,3-dioleyloxy)propyl]-N,N,N-trimethylammonium chloride (DOTMA) can be used to form small liposomes that interact spontaneously with nucleic acid to form lipid-nucleic acid complexes which are capable of fusing with the negatively charged lipids of the cell membranes of tissue culture cells, resulting in delivery of RNAi agent (see, e.g., Felgner, P. L. et al., (1987) Proc. Natl. Acad. Sci. USA 8:7413-7417, and U.S. Pat. No. 4,897,355 for a description of DOTMA and its use with DNA).


A DOTMA analogue, 1,2-bis(oleoyloxy)-3-(trimethylammonia)propane (DOTAP) can be used in combination with a phospholipid to form DNA-complexing vesicles. Lipofectin™ Bethesda Research Laboratories, Gaithersburg, Md.) is an effective agent for the delivery of highly anionic nucleic acids into living tissue culture cells that comprise positively charged DOTMA liposomes which interact spontaneously with negatively charged polynucleotides to form complexes. When enough positively charged liposomes are used, the net charge on the resulting complexes is also positive. Positively charged complexes prepared in this way spontaneously attach to negatively charged cell surfaces, fuse with the plasma membrane, and efficiently deliver functional nucleic acids into, for example, tissue culture cells. Another commercially available cationic lipid, 1,2-bis(oleoyloxy)-3,3-(trimethylammonia)propane (“DOTAP”) (Boehringer Mannheim, Indianapolis, Ind.) differs from DOTMA in that the oleoyl moieties are linked by ester, rather than ether linkages.


Other reported cationic lipid compounds include those that have been conjugated to a variety of moieties including, for example, carboxyspermine which has been conjugated to one of two types of lipids and includes compounds such as 5-carboxyspermylglycine dioctaoleoylamide (“DOGS”) (Transfectam™, Promega, Madison, Wis.) and dipalmitoylphosphatidylethanolamine 5-carboxyspermyl-amide (“DPPES”) (see, e.g., U.S. Pat. No. 5,171,678).


Another cationic lipid conjugate includes derivatization of the lipid with cholesterol (“DC-Chol”) which has been formulated into liposomes in combination with DOPE (See, Gao, X. and Huang, L., (1991) Biochim. Biophys. Res. Commun. 179:280). Lipopolylysine, made by conjugating polylysine to DOPE, has been reported to be effective for transfection in the presence of serum (Zhou, X. et al., (1991) Biochim. Biophys. Acta 1065:8). For certain cell lines, these liposomes containing conjugated cationic lipids, are said to exhibit lower toxicity and provide more efficient transfection than the DOTMA-containing compositions. Other commercially available cationic lipid products include DMRIE and DMRIE-HP (Vical, La Jolla, Calif.) and Lipofectamine (DOSPA) (Life Technology, Inc., Gaithersburg, Md.). Other cationic lipids suitable for the delivery of oligonucleotides are described in WO 98/39359 and WO 96/37194.


Liposomal formulations are particularly suited for topical administration, liposomes present several advantages over other formulations. Such advantages include reduced side effects related to high systemic absorption of the administered drug, increased accumulation of the administered drug at the desired target, and the ability to administer RNAi agent into the skin. In some implementations, liposomes are used for delivering RNAi agent to epidermal cells and also to enhance the penetration of RNAi agent into dermal tissues, e.g., into skin. For example, the liposomes can be applied topically. Topical delivery of drugs formulated as liposomes to the skin has been documented (see, e.g., Weiner et al., (1992) Journal of Drug Targeting, vol. 2, 405-410 and du Plessis et al., (1992) Antiviral Research, 18:259-265; Mannino, R. J. and Fould-Fogerite, S., (1998) Biotechniques 6:682-690; Itani, T. et al., (1987) Gene 56:267-276; Nicolau, C. et al. (1987) Meth. Enzymol. 149:157-176; Straubinger, R. M. and Papahadjopoulos, D. (1983) Meth. Enzymol. 101:512-527; Wang, C. Y. and Huang, L., (1987) Proc. Natl. Acad. Sci. USA 84:7851-7855).


Non-ionic liposomal systems have also been examined to determine their utility in the delivery of drugs to the skin, in particular systems comprising non-ionic surfactant and cholesterol. Non-ionic liposomal formulations comprising Novasome I (glyceryl dilaurate/cholesterol/polyoxyethylene-10-stearyl ether) and Novasome II (glyceryl distearate/cholesterol/polyoxyethylene-10-stearyl ether) were used to deliver a drug into the dermis of mouse skin. Such formulations with RNAi agent are useful for treating a dermatological disorder.


Liposomes that include RNAi agents can be made highly deformable. Such deformability can enable the liposomes to penetrate through pore that are smaller than the average radius of the liposome. For example, transfersomes are a type of deformable liposomes. Transferosomes can be made by adding surface edge activators, usually surfactants, to a standard liposomal composition. Transfersomes that include RNAi agent can be delivered, for example, subcutaneously by infection in order to deliver RNAi agent to keratinocytes in the skin. In order to cross intact mammalian skin, lipid vesicles must pass through a series of fine pores, each with a diameter less than 50 nm, under the influence of a suitable transdermal gradient. In addition, due to the lipid properties, these transferosomes can be self-optimizing (adaptive to the shape of pores, e.g., in the skin), self-repairing, and can frequently reach their targets without fragmenting, and often self-loading.


Other formulations amenable to the present disclosure are described in U.S. provisional application Ser. No. 61/018,616, filed Jan. 2, 2008; 61/018,611, filed Jan. 2, 2008; 61/039,748, filed Mar. 26, 2008; 61/047,087, filed Apr. 22, 2008 and 61/051,528, filed May 8, 2008. PCT application number PCT/US2007/080331, filed Oct. 3, 2007, also describes formulations that are amenable to the present disclosure.


Transfersomes, yet another type of liposomes, are highly deformable lipid aggregates which are attractive candidates for drug delivery vehicles. Transfersomes can be described as lipid droplets which are so highly deformable that they are easily able to penetrate through pores which are smaller than the droplet. Transfersomes are adaptable to the environment in which they are used, e.g., they are self-optimizing (adaptive to the shape of pores in the skin), self-repairing, frequently reach their targets without fragmenting, and often self-loading. To make transfersomes it is possible to add surface edge-activators, usually surfactants, to a standard liposomal composition. Transfersomes have been used to deliver serum albumin to the skin. The transfersome-mediated delivery of serum albumin has been shown to be as effective as subcutaneous injection of a solution containing serum albumin.


Surfactants find wide application in formulations such as those described herein, particularlay in emulsions (including microemulsions) and liposomes. The most common way of classifying and ranking the properties of the many different types of surfactants, both natural and synthetic, is by the use of the hydrophile/lipophile balance (HLB). The nature of the hydrophilic group (also known as the “head”) provides the most useful means for categorizing the different surfactants used in formulations (Rieger, in Pharmaceutical Dosage Forms, Marcel Dekker, Inc., New York, N.Y., 1988, p. 285).


If the surfactant molecule is not ionized, it is classified as a nonionic surfactant. Nonionic surfactants find wide application in pharmaceutical and cosmetic products and are usable over a wide range of pH values. In general, their HLB values range from 2 to about 18 depending on their structure. Nonionic surfactants include nonionic esters such as ethylene glycol esters, propylene glycol esters, glyceryl esters, polyglyceryl esters, sorbitan esters, sucrose esters, and ethoxylated esters. Nonionic alkanolamides and ethers such as fatty alcohol ethoxylates, propoxylated alcohols, and ethoxylated/propoxylated block polymers are also included in this class. The polyoxyethylene surfactants are the most popular members of the nonionic surfactant class.


If the surfactant molecule carries a negative charge when it is dissolved or dispersed in water, the surfactant is classified as anionic. Anionic surfactants include carboxylates such as soaps, acyl lactylates, acyl amides of amino acids, esters of sulfuric acid such as alkyl sulfates and ethoxylated alkyl sulfates, sulfonates such as alkyl benzene sulfonates, acyl isethionates, acyl taurates and sulfosuccinates, and phosphates. The most important members of the anionic surfactant class are the alkyl sulfates and the soaps.


If the surfactant molecule carries a positive charge when it is dissolved or dispersed in water, the surfactant is classified as cationic. Cationic surfactants include quaternary ammonium salts and ethoxylated amines. The quaternary ammonium salts are the most used members of this class.


If the surfactant molecule has the ability to carry either a positive or negative charge, the surfactant is classified as amphoteric. Amphoteric surfactants include acrylic acid derivatives, substituted alkylamides, N-alkylbetaines and phosphatides.


The use of surfactants in drug products, formulations and in emulsions has been reviewed (Rieger, in Pharmaceutical Dosage Forms, Marcel Dekker, Inc., New York, N.Y., 1988, p. 285).


The RNAi agent for use in the methods of the disclosure can also be provided as micellar formulations. “Micelles” are defined herein as a particular type of molecular assembly in which amphipathic molecules are arranged in a spherical structure such that all the hydrophobic portions of the molecules are directed inward, leaving the hydrophilic portions in contact with the surrounding aqueous phase. The converse arrangement exists if the environment is hydrophobic.


A mixed micellar formulation suitable for delivery through transdermal membranes may be prepared by mixing an aqueous solution of the siRNA composition, an alkali metal C8 to C22 alkyl sulphate, and a micelle forming compounds. Exemplary micelle forming compounds include lecithin, hyaluronic acid, pharmaceutically acceptable salts of hyaluronic acid, glycolic acid, lactic acid, chamomile extract, cucumber extract, oleic acid, linoleic acid, linolenic acid, monoolein, monooleates, monolaurates, borage oil, evening of primrose oil, menthol, trihydroxy oxo cholanyl glycine and pharmaceutically acceptable salts thereof, glycerin, polyglycerin, lysine, polylysine, triolein, polyoxyethylene ethers and analogues thereof, polidocanol alkyl ethers and analogues thereof, chenodeoxycholate, deoxycholate, and mixtures thereof. The micelle forming compounds may be added at the same time or after addition of the alkali metal alkyl sulphate. Mixed micelles will form with substantially any kind of mixing of the ingredients but vigorous mixing in order to provide smaller size micelles.


In one method a first micellar composition is prepared which contains the siRNA composition and at least the alkali metal alkyl sulphate. The first micellar composition is then mixed with at least three micelle forming compounds to form a mixed micellar composition. In another method, the micellar composition is prepared by mixing the siRNA composition, the alkali metal alkyl sulphate and at least one of the micelle forming compounds, followed by addition of the remaining micelle forming compounds, with vigorous mixing.


Phenol or m-cresol may be added to the mixed micellar composition to stabilize the formulation and protect against bacterial growth. Alternatively, phenol or m-cresol may be added with the micelle forming ingredients. An isotonic agent such as glycerin may also be added after formation of the mixed micellar composition.


For delivery of the micellar formulation as a spray, the formulation can be put into an aerosol dispenser and the dispenser is charged with a propellant. The propellant, which is under pressure, is in liquid form in the dispenser. The ratios of the ingredients are adjusted so that the aqueous and propellant phases become one, i.e., there is one phase. If there are two phases, it is necessary to shake the dispenser prior to dispensing a portion of the contents, e.g., through a metered valve. The dispensed dose of pharmaceutical agent is propelled from the metered valve in a fine spray.


Propellants may include hydrogen-containing chlorofluorocarbons, hydrogen-containing fluorocarbons, dimethyl ether and diethyl ether. In certain embodiments, HFA 134a (1,1,1,2 tetrafluoroethane) may be used.


The specific concentrations of the essential ingredients can be determined by relatively straightforward experimentation. For absorption through the oral cavities, it is often desirable to increase, e.g., at least double or triple, the dosage for through injection or administration through the gastrointestinal tract.


B. Lipid Particles


RNAi agents, e.g., dsRNAs of in the disclosure may be fully encapsulated in a lipid formulation, e.g., a LNP, or other nucleic acid-lipid particle.


As used herein, the term “LNP” refers to a stable nucleic acid-lipid particle. LNPs typically contain a cationic lipid, a non-cationic lipid, and a lipid that prevents aggregation of the particle (e.g., a PEG-lipid conjugate). LNPs are extremely useful for systemic applications, as they exhibit extended circulation lifetimes following intravenous (i.v.) injection and accumulate at distal sites (e.g., sites physically separated from the administration site). LNPs include “pSPLP,” which include an encapsulated condensing agent-nucleic acid complex as set forth in WO 00/03683. The particles of the present disclosure typically have a mean diameter of about 50 nm to about 150 nm, more typically about 60 nm to about 130 nm, more typically about 70 nm to about 110 nm, most typically about 70 nm to about 90 nm, and are substantially nontoxic. In addition, the nucleic acids when present in the nucleic acid-lipid particles of the present disclosure are resistant in aqueous solution to degradation with a nuclease. Nucleic acid-lipid particles and their method of preparation are disclosed in, e.g., U.S. Pat. Nos. 5,976,567; 5,981,501; 6,534,484; 6,586,410; 6,815,432; United States Patent publication No. 2010/0324120 and WO 96/40964.


In one embodiment, the lipid to drug ratio (mass/mass ratio) (e.g., lipid to dsRNA ratio) will be in the range of from about 1:1 to about 50:1, from about 1:1 to about 25:1, from about 3:1 to about 15:1, from about 4:1 to about 10:1, from about 5:1 to about 9:1, or about 6:1 to about 9:1. Ranges intermediate to the above recited ranges are also contemplated to be part of the disclosure.


Certain specific LNP formulations for delivery of RNAi agents have been described in the art, including, e.g., “LNP01” formulations as described in, e.g., WO 2008/042973, which is hereby incorporated by reference.


Additional exemplary lipid-dsRNA formulations are identified in the table below.

















cationic lipid/non-cationic




lipid/cholesterol/PEG-lipid conjugate



Ionizable/Cationic Lipid
Lipid:siRNA ratio


















SNALP-1
1,2-Dilinolenyloxy-N,N-
DLinDMA/DPPC/Cholesterol/PEG-cDMA



dimethylaminopropane (DLinDMA)
(57.1/7.1/34.4/1.4)




lipid:siRNA~7:1


2-XTC
2,2-Dilinoleyl-4-dimethylaminoethyl-[1,3]-
XTC/DPPC/Cholesterol/PEG-cDMA



dioxolane (XTC)
57.1/7.1/34.4/1.4




lipid:siRNA~7:1


LNP05
2,2-Dilinoleyl-4-dimethylaminoethyl-[1,3]-
XTC/DSPC/Cholesterol/PEG-DMG



dioxolane (XTC)
57.5/7.5/31.5/3.5




lipid:siRNA~6:1


LNP06
2,2-Dilinoleyl-4-dimethylaminoethyl-[1,3]-
XTC/DSPC/Cholesterol/PEG-DMG



dioxolane (XTC)
57.5/7.5/31.5/3.5




lipid:siRNA~11:1


LNP07
2,2-Dilinoleyl-4-dimethylaminoethyl-[1,3]-
XTC/DSPC/Cholesterol/PEG-DMG



dioxolane (XTC)
60/7.5/31/1.5,




lipid:siRNA~6:1


LNP08
2,2-Dilinoleyl-4-dimethylaminoethyl-[1,3]-
XTC/DSPC/Cholesterol/PEG-DMG



dioxolane (XTC)
60/7.5/31/1.5,




lipid:siRNA~11:1


LNP09
2,2-Dilinoleyl-4-dimethylaminoethyl-[1,3]-
XTC/DSPC/Cholesterol/PEG-DMG



dioxolane (XTC)
50/10/38.5/1.5




Lipid:siRNA 10:1


LNP10
(3aR,5s,6aS)-N,N-dimethyl-2,2-
ALN100/DSPC/Cholesterol/PEG-DMG



di((9Z,12Z)-octadeca-9,12-
50/10/38.5/1.5



dienyl)tetrahydro-3aH-
Lipid:siRNA 10:1



cyclopenta[d][1,3]dioxol-5-amine



(ALN100)


LNP11
(6Z,9Z,28Z,31Z)-heptatriaconta-6,9,28,31-
MC-3/DSPC/Cholesterol/PEG-DMG



tetraen-19-yl 4-(dimethylamino)butanoate
50/10/38.5/1.5



(MC3)
Lipid:siRNA 10:1


LNP12
1,1′-(2-(4-(2-((2-(bis(2-
Tech G1/DSPC/Cholesterol/PEG-DMG



hydroxydodecyl)amino)ethyl)(2-
50/10/38.5/1.5



hydroxydodecyl)amino)ethyl)piperazin-1-
Lipid:siRNA 10:1



yl)ethylazanediyl)didodecan-2-ol (Tech G1)


LNP13
XTC
XTC/DSPC/Chol/PEG-DMG




50/10/38.5/1.5




Lipid:siRNA: 33:1


LNP14
MC3
MC3/DSPC/Chol/PEG-DMG




40/15/40/5




Lipid:siRNA: 11:1


LNP15
MC3
MC3/DSPC/Chol/PEG-DSG/GalNAc-PEG-DSG




50/10/35/4.5/0.5




Lipid:siRNA: 11:1


LNP16
MC3
MC3/DSPC/Chol/PEG-DMG




50/10/38.5/1.5




Lipid:siRNA: 7:1


LNP17
MC3
MC3/DSPC/Chol/PEG-DSG




50/10/38.5/1.5




Lipid:siRNA: 10:1


LNP18
MC3
MC3/DSPC/Chol/PEG-DMG




50/10/38.5/1.5




Lipid:siRNA: 12:1


LNP19
MC3
MC3/DSPC/Chol/PEG-DMG




50/10/35/5




Lipid:siRNA: 8:1


LNP20
MC3
MC3/DSPC/Chol/PEG-DPG




50/10/38.5/1.5




Lipid:siRNA: 10:1


LNP21
C12-200
C12-200/DSPC/Chol/PEG-DSG




50/10/38.5/1.5




Lipid:siRNA: 7:1


LNP22
XTC
XTC/DSPC/Chol/PEG-DSG




50/10/38.5/1.5




Lipid:siRNA: 10:1





DSPC: distearoylphosphatidylcholine


DPPC: dipalmitoylphosphatidylcholine


PEG-DMG: PEG-didimyristoyl glycerol (C14-PEG, or PEG-C14) (PEG with avg mol wt of 2000)


PEG-DSG: PEG-distyryl glycerol (C18-PEG, or PEG-C18) (PEG with avg mol wt of 2000)


PEG-cDMA: PEG-carbamoyl-1,2-dimyristyloxypropylamine (PEG with avg mol wt of 2000)


SNALP (l,2-Dilinolenyloxy-N,N-dimethylaminopropane (DLinDMA)) comprising formulations are described in WO 2009/127060, which is hereby incorporated by reference.


XTC comprising formulations are described in WO 2010/088537, the entire contents of which are hereby incorporated herein by reference.


MC3 comprising formulations are described, e.g., in United States Patent Publication No. 2010/0324120, the entire contents of which are hereby incorporated by reference.


ALNY-100 comprising formulations are described in WO 2010/054406, the entire contents of which are hereby incorporated herein by reference.


C12-200 comprising formulations are described in WO 2010/129709, the entire contents of which are hereby incorporated herein by reference.








    • SNALP (1,2-Dilinolenyloxy-N,N-dimethylaminopropane (DLinDMA)) comprising formulations are described in WO 2009/127060, which is hereby incorporated by reference.

    • XTC comprising formulations are described in WO 2010/088537, the entire contents of which are hereby incorporated herein by reference.


      MC3 comprising formulations are described, e.g., in U.S. Patent Publication No. 2010/0324120, the entire contents of which are hereby incorporated by reference.

    • ALNY-100 comprising formulations are described in WO 2010/054406, the entire contents of which are hereby incorporated herein by reference.

    • C12-200 comprising formulations are described in WO 2010/129709, the entire contents of which are hereby incorporated herein by reference.





Compositions and formulations for oral administration include powders or granules, microparticulates, nanoparticulates, suspensions or solutions in water or non-aqueous media, capsules, gel capsules, sachets, tablets or minitablets. Thickeners, flavoring agents, diluents, emulsifiers, dispersing aids or binders can be desirable. In some embodiments, oral formulations are those in which dsRNAs featured in the disclosure are administered in conjunction with one or more penetration enhancer surfactants and chelators. Suitable surfactants include fatty acids or esters or salts thereof, bile acids or salts thereof. Suitable bile acids/salts include chenodeoxycholic acid (CDCA) and ursodeoxychenodeoxycholic acid (UDCA), cholic acid, dehydrocholic acid, deoxycholic acid, glucholic acid, glycholic acid, glycodeoxycholic acid, taurocholic acid, taurodeoxycholic acid, sodium tauro-24,25-dihydro-fusidate and sodium glycodihydrofusidate. Suitable fatty acids include arachidonic acid, undecanoic acid, oleic acid, lauric acid, caprylic acid, capric acid, myristic acid, palmitic acid, stearic acid, linoleic acid, linolenic acid, dicaprate, tricaprate, monoolein, dilaurin, glyceryl 1-monocaprate, 1-dodecylazacycloheptan-2-one, an acylcarnitine, an acylcholine, or a monoglyceride, a diglyceride or a pharmaceutically acceptable salt thereof (e.g., sodium). In some embodiments, combinations of penetration enhancers are used, for example, fatty acids/salts in combination with bile acids/salts. One exemplary combination is the sodium salt of lauric acid, capric acid and UDCA. Further penetration enhancers include polyoxyethylene-9-lauryl ether, polyoxyethylene-20-cetyl ether. DsRNAs featured in the disclosure can be delivered orally, in granular form including sprayed dried particles, or complexed to form micro or nanoparticles. DsRNA complexing agents include poly-amino acids; polyimines; polyacrylates; polyalkylacrylates, polyoxethanes, polyalkylcyanoacrylates; cationized gelatins, albumins, starches, acrylates, polyethyleneglycols (PEG) and starches; polyalkylcyanoacrylates; DEAE-derivatized polyimines, pollulans, celluloses and starches. Suitable complexing agents include chitosan, N-trimethylchitosan, poly-L-lysine, polyhistidine, polyornithine, polyspermines, protamine, polyvinylpyridine, polythiodiethylaminomethylethylene P(TDAE), polyaminostyrene (e.g., p-amino), poly(methylcyanoacrylate), poly(ethylcyanoacrylate), poly(butylcyanoacrylate), poly(isobutylcyanoacrylate), poly(isohexylcynaoacrylate), DEAE-methacrylate, DEAE-hexylacrylate, DEAE-acrylamide, DEAE-albumin and DEAE-dextran, polymethylacrylate, polyhexylacrylate, poly(D,L-lactic acid), poly(DL-lactic-co-glycolic acid (PLGA), alginate, and polyethyleneglycol (PEG). Oral formulations for dsRNAs and their preparation are described in detail in U.S. Pat. No. 6,887,906, U.S. 2003/0027780, and U.S. Pat. No. 6,747,014, each of which is incorporated herein by reference.


Compositions and formulations for parenteral, intraparenchymal (into the brain), intrathecal, intraventricular or intrahepatic administration can include sterile aqueous solutions which can also contain buffers, diluents and other suitable additives such as, but not limited to, penetration enhancers, carrier compounds and other pharmaceutically acceptable carriers or excipients.


Pharmaceutical compositions of the present disclosure include, but are not limited to, solutions, emulsions, and liposome-containing formulations. These compositions can be generated from a variety of components that include, but are not limited to, preformed liquids, self-emulsifying solids and self-emulsifying semisolids. Particularly preferred are formulations that target the brain when treating APP-associated diseases or disorders.


The pharmaceutical formulations of the present disclosure, which can conveniently be presented in unit dosage form, can be prepared according to conventional techniques well known in the pharmaceutical industry. Such techniques include the step of bringing into association the active ingredients with the pharmaceutical carrier(s) or excipient(s). In general, the formulations are prepared by uniformly and intimately bringing into association the active ingredients with liquid carriers or finely divided solid carriers or both, and then, if necessary, shaping the product.


The compositions of the present disclosure can be formulated into any of many possible dosage forms such as, but not limited to, tablets, capsules, gel capsules, liquid syrups, soft gels, suppositories, and enemas. The compositions of the present disclosure can also be formulated as suspensions in aqueous, non-aqueous or mixed media. Aqueous suspensions can further contain substances which increase the viscosity of the suspension including, for example, sodium carboxymethylcellulose, sorbitol or dextran. The suspension can also contain stabilizers.


C. Additional Formulations


i. Emulsions


The compositions of the present disclosure can be prepared and formulated as emulsions. Emulsions are typically heterogeneous systems of one liquid dispersed in another in the form of droplets usually exceeding 0.1 μm in diameter (see e.g., Ansel's Pharmaceutical Dosage Forms and Drug Delivery Systems, Allen, L V., Popovich N G., and Ansel H C., 2004, Lippincott Williams & Wilkins (8th ed.), New York, N.Y.; Idson, in Pharmaceutical Dosage Forms, Lieberman, Rieger and Banker (Eds.), 1988, Marcel Dekker, Inc., New York, N.Y., volume 1, p. 199; Rosoff, in Pharmaceutical Dosage Forms, Lieberman, Rieger and Banker (Eds.), 1988, Marcel Dekker, Inc., New York, N.Y., Volume 1, p. 245; Block in Pharmaceutical Dosage Forms, Lieberman, Rieger and Banker (Eds.), 1988, Marcel Dekker, Inc., New York, N.Y., volume 2, p. 335; Higuchi et al., in Remington's Pharmaceutical Sciences, Mack Publishing Co., Easton, Pa., 1985, p. 301). Emulsions are often biphasic systems comprising two immiscible liquid phases intimately mixed and dispersed with each other. In general, emulsions can be of either the water-in-oil (w/o) or the oil-in-water (o/w) variety. When an aqueous phase is finely divided into and dispersed as minute droplets into a bulk oily phase, the resulting composition is called a water-in-oil (w/o) emulsion. Alternatively, when an oily phase is finely divided into and dispersed as minute droplets into a bulk aqueous phase, the resulting composition is called an oil-in-water (o/w) emulsion. Emulsions can contain additional components in addition to the dispersed phases, and the active drug which can be present as a solution in either aqueous phase, oily phase or itself as a separate phase. Pharmaceutical excipients such as emulsifiers, stabilizers, dyes, and anti-oxidants can also be present in emulsions as needed. Pharmaceutical emulsions can also be multiple emulsions that are comprised of more than two phases such as, for example, in the case of oil-in-water-in-oil (o/w/o) and water-in-oil-in-water (w/o/w) emulsions. Such complex formulations often provide certain advantages that simple binary emulsions do not. Multiple emulsions in which individual oil droplets of an o/w emulsion enclose small water droplets constitute a w/o/w emulsion. Likewise, a system of oil droplets enclosed in globules of water stabilized in an oily continuous phase provides an o/w/o emulsion.


Emulsions are characterized by little or no thermodynamic stability. Often, the dispersed or discontinuous phase of the emulsion is well dispersed into the external or continuous phase and maintained in this form through the means of emulsifiers or the viscosity of the formulation. Either of the phases of the emulsion can be a semisolid or a solid, as is the case of emulsion-style ointment bases and creams Other means of stabilizing emulsions entail the use of emulsifiers that can be incorporated into either phase of the emulsion. Emulsifiers can broadly be classified into four categories: synthetic surfactants, naturally occurring emulsifiers, absorption bases, and finely dispersed solids (see e.g., Ansel's Pharmaceutical Dosage Forms and Drug Delivery Systems, Allen, L V., Popovich N G., and Ansel H C., 2004, Lippincott Williams & Wilkins (8th ed.), New York, N.Y.; Idson, in Pharmaceutical Dosage Forms, Lieberman, Rieger and Banker (Eds.), 1988, Marcel Dekker, Inc., New York, N.Y., volume 1, p. 199).


Synthetic surfactants, also known as surface active agents, have found wide applicability in the formulation of emulsions and have been reviewed in the literature (see e.g., Ansel's Pharmaceutical Dosage Forms and Drug Delivery Systems, Allen, L V., Popovich N G., and Ansel H C., 2004, Lippincott Williams & Wilkins (8th ed.), New York, N.Y.; Rieger, in Pharmaceutical Dosage Forms, Lieberman, Rieger and Banker (Eds.), 1988, Marcel Dekker, Inc., New York, N.Y., volume 1, p. 285; Idson, in Pharmaceutical Dosage Forms, Lieberman, Rieger and Banker (Eds.), Marcel Dekker, Inc., New York, N.Y., 1988, volume 1, p. 199). Surfactants are typically amphiphilic and comprise a hydrophilic and a hydrophobic portion. The ratio of the hydrophilic to the hydrophobic nature of the surfactant has been termed the hydrophile/lipophile balance (HLB) and is a valuable tool in categorizing and selecting surfactants in the preparation of formulations. Surfactants can be classified into different classes based on the nature of the hydrophilic group: nonionic, anionic, cationic and amphoteric (see e.g., Ansel's Pharmaceutical Dosage Forms and Drug Delivery Systems, Allen, L V., Popovich N G., and Ansel H C., 2004, Lippincott Williams & Wilkins (8th ed.), New York, N.Y. Rieger, in Pharmaceutical Dosage Forms, Lieberman, Rieger and Banker (Eds.), 1988, Marcel Dekker, Inc., New York, N.Y., volume 1, p. 285).


Naturally occurring emulsifiers used in emulsion formulations include lanolin, beeswax, phosphatides, lecithin and acacia. Absorption bases possess hydrophilic properties such that they can soak up water to form w/o emulsions yet retain their semisolid consistencies, such as anhydrous lanolin and hydrophilic petrolatum. Finely divided solids have also been used as good emulsifiers especially in combination with surfactants and in viscous preparations. These include polar inorganic solids, such as heavy metal hydroxides, nonswelling clays such as bentonite, attapulgite, hectorite, kaolin, montmorillonite, colloidal aluminum silicate and colloidal magnesium aluminum silicate, pigments and nonpolar solids such as carbon or glyceryl tristearate.


A large variety of non-emulsifying materials are also included in emulsion formulations and contribute to the properties of emulsions. These include fats, oils, waxes, fatty acids, fatty alcohols, fatty esters, humectants, hydrophilic colloids, preservatives and antioxidants (Block, in Pharmaceutical Dosage Forms, Lieberman, Rieger and Banker (Eds.), 1988, Marcel Dekker, Inc., New York, N.Y., volume 1, p. 335; Idson, in Pharmaceutical Dosage Forms, Lieberman, Rieger and Banker (Eds.), 1988, Marcel Dekker, Inc., New York, N.Y., volume 1, p. 199).


Hydrophilic colloids or hydrocolloids include naturally occurring gums and synthetic polymers such as polysaccharides (for example, acacia, agar, alginic acid, carrageenan, guar gum, karaya gum, and tragacanth), cellulose derivatives (for example, carboxymethylcellulose and carboxypropylcellulose), and synthetic polymers (for example, carbomers, cellulose ethers, and carboxyvinyl polymers). These disperse or swell in water to form colloidal solutions that stabilize emulsions by forming strong interfacial films around the dispersed-phase droplets and by increasing the viscosity of the external phase.


Since emulsions often contain a number of ingredients such as carbohydrates, proteins, sterols and phosphatides that can readily support the growth of microbes, these formulations often incorporate preservatives. Commonly used preservatives included in emulsion formulations include methyl paraben, propyl paraben, quaternary ammonium salts, benzalkonium chloride, esters of p-hydroxybenzoic acid, and boric acid. Antioxidants are also commonly added to emulsion formulations to prevent deterioration of the formulation. Antioxidants used can be free radical scavengers such as tocopherols, alkyl gallates, butylated hydroxyanisole, butylated hydroxytoluene, or reducing agents such as ascorbic acid and sodium metabisulfite, and antioxidant synergists such as citric acid, tartaric acid, and lecithin.


The application of emulsion formulations via dermatological, oral and parenteral routes and methods for their manufacture have been reviewed in the literature (see e.g., Ansel's Pharmaceutical Dosage Forms and Drug Delivery Systems, Allen, L V., Popovich N G., and Ansel H C., 2004, Lippincott Williams & Wilkins (8th ed.), New York, N.Y.; Idson, in Pharmaceutical Dosage Forms, Lieberman, Rieger and Banker (Eds.), 1988, Marcel Dekker, Inc., New York, N.Y., volume 1, p. 199). Emulsion formulations for oral delivery have been very widely used because of ease of formulation, as well as efficacy from an absorption and bioavailability standpoint (see e.g., Ansel's Pharmaceutical Dosage Forms and Drug Delivery Systems, Allen, L V., Popovich N G., and Ansel H C., 2004, Lippincott Williams & Wilkins (8th ed.), New York, N.Y.; Rosoff, in Pharmaceutical Dosage Forms, Lieberman, Rieger and Banker (Eds.), 1988, Marcel Dekker, Inc., New York, N.Y., volume 1, p. 245; Idson, in Pharmaceutical Dosage Forms, Lieberman, Rieger and Banker (Eds.), 1988, Marcel Dekker, Inc., New York, N.Y., volume 1, p. 199). Mineral-oil base laxatives, oil-soluble vitamins and high fat nutritive preparations are among the materials that have commonly been administered orally as o/w emulsions.


ii. Microemulsions


In one embodiment of the present disclosure, the compositions of RNAi agents and nucleic acids are formulated as microemulsions. A microemulsion can be defined as a system of water, oil and amphiphile which is a single optically isotropic and thermodynamically stable liquid solution (see e.g., Ansel's Pharmaceutical Dosage Forms and Drug Delivery Systems, Allen, L V., Popovich N G., and Ansel H C., 2004, Lippincott Williams & Wilkins (8th ed.), New York, N.Y.; Rosoff, in Pharmaceutical Dosage Forms, Lieberman, Rieger and Banker (Eds.), 1988, Marcel Dekker, Inc., New York, N.Y., volume 1, p. 245). Typically, microemulsions are systems that are prepared by first dispersing an oil in an aqueous surfactant solution and then adding a sufficient amount of a fourth component, generally an intermediate chain-length alcohol to form a transparent system. Therefore, microemulsions have also been described as thermodynamically stable, isotropically clear dispersions of two immiscible liquids that are stabilized by interfacial films of surface-active molecules (Leung and Shah, in: Controlled Release of Drugs: Polymers and Aggregate Systems, Rosoff, M., Ed., 1989, VCH Publishers, New York, pages 185-215). Microemulsions commonly are prepared via a combination of three to five components that include oil, water, surfactant, cosurfactant and electrolyte. Whether the microemulsion is of the water-in-oil (w/o) or an oil-in-water (o/w) type is dependent on the properties of the oil and surfactant used, and on the structure and geometric packing of the polar heads and hydrocarbon tails of the surfactant molecules (Schott, in Remington's Pharmaceutical Sciences, Mack Publishing Co., Easton, Pa., 1985, p. 271).


The phenomenological approach utilizing phase diagrams has been extensively studied and has yielded a comprehensive knowledge, to one skilled in the art, of how to formulate microemulsions (see e.g., Ansel's Pharmaceutical Dosage Forms and Drug Delivery Systems, Allen, L V., Popovich N G., and Ansel H C., 2004, Lippincott Williams & Wilkins (8th ed.), New York, N.Y.; Rosoff, in Pharmaceutical Dosage Forms, Lieberman, Rieger and Banker (Eds.), 1988, Marcel Dekker, Inc., New York, N.Y., volume 1, p. 245; Block, in Pharmaceutical Dosage Forms, Lieberman, Rieger and Banker (Eds.), 1988, Marcel Dekker, Inc., New York, N.Y., volume 1, p. 335). Compared to conventional emulsions, microemulsions offer the advantage of solubilizing water-insoluble drugs in a formulation of thermodynamically stable droplets that are formed spontaneously.


Surfactants used in the preparation of microemulsions include, but are not limited to, ionic surfactants, non-ionic surfactants, Brij 96, polyoxyethylene oleyl ethers, polyglycerol fatty acid esters, tetraglycerol monolaurate (ML310), tetraglycerol monooleate (MO310), hexaglycerol monooleate (PO310), hexaglycerol pentaoleate (PO500), decaglycerol monocaprate (MCA750), decaglycerol monooleate (MO750), decaglycerol sequioleate (SO750), decaglycerol decaoleate (DAO750), alone or in combination with cosurfactants. The cosurfactant, usually a short-chain alcohol such as ethanol, 1-propanol, and 1-butanol, serves to increase the interfacial fluidity by penetrating into the surfactant film and consequently creating a disordered film because of the void space generated among surfactant molecules. Microemulsions can, however, be prepared without the use of cosurfactants and alcohol-free self-emulsifying microemulsion systems are known in the art. The aqueous phase can typically be, but is not limited to, water, an aqueous solution of the drug, glycerol, PEG300, PEG400, polyglycerols, propylene glycols, and derivatives of ethylene glycol. The oil phase can include, but is not limited to, materials such as Captex 300, Captex 355, Capmul MCM, fatty acid esters, medium chain (C8-C12) mono, di, and tri-glycerides, polyoxyethylated glyceryl fatty acid esters, fatty alcohols, polyglycolized glycerides, saturated polyglycolized C8-C10 glycerides, vegetable oils and silicone oil.


Microemulsions are particularly of interest from the standpoint of drug solubilization and the enhanced absorption of drugs. Lipid based microemulsions (both o/w and w/o) have been proposed to enhance the oral bioavailability of drugs, including peptides (see e.g., U.S. Pat. Nos. 6,191,105; 7,063,860; 7,070,802; 7,157,099; Constantinides et al., Pharmaceutical Research, 1994, 11, 1385-1390; Ritschel, Meth. Find. Exp. Clin. Pharmacol., 1993, 13, 205). Microemulsions afford advantages of improved drug solubilization, protection of drug from enzymatic hydrolysis, possible enhancement of drug absorption due to surfactant-induced alterations in membrane fluidity and permeability, ease of preparation, ease of oral administration over solid dosage forms, improved clinical potency, and decreased toxicity (see e.g., U.S. Pat. Nos. 6,191,105; 7,063,860; 7,070,802; 7,157,099; Constantinides et al., Pharmaceutical Research, 1994, 11, 1385; Ho et al., J. Pharm. Sci., 1996, 85, 138-143). Often microemulsions can form spontaneously when their components are brought together at ambient temperature. This can be particularly advantageous when formulating thermolabile drugs, peptides or RNAi agents. Microemulsions have also been effective in the transdermal delivery of active components in both cosmetic and pharmaceutical applications. It is expected that the microemulsion compositions and formulations of the present disclosure will facilitate the increased systemic absorption of RNAi agents and nucleic acids from the gastrointestinal tract, as well as improve the local cellular uptake of RNAi agents and nucleic acids.


Microemulsions of the present disclosure can also contain additional components and additives such as sorbitan monostearate (Grill 3), Labrasol, and penetration enhancers to improve the properties of the formulation and to enhance the absorption of the RNAi agents and nucleic acids of the present disclosure. Penetration enhancers used in the microemulsions of the present disclosure can be classified as belonging to one of five broad categories—surfactants, fatty acids, bile salts, chelating agents, and non-chelating non-surfactants (Lee et al., Critical Reviews in Therapeutic Drug Carrier Systems, 1991, p. 92). Each of these classes has been discussed above.


iii. Microparticles


An RNAi agent of the disclosure may be incorporated into a particle, e.g., a microparticle. Microparticles can be produced by spray-drying, but may also be produced by other methods including lyophilization, evaporation, fluid bed drying, vacuum drying, or a combination of these techniques.


iv. Penetration Enhancers


In one embodiment, the present disclosure employs various penetration enhancers to effect the efficient delivery of nucleic acids, particularly RNAi agents, to the skin of animals. Most drugs are present in solution in both ionized and nonionized forms. However, usually only lipid soluble or lipophilic drugs readily cross cell membranes. It has been discovered that even non-lipophilic drugs can cross cell membranes if the membrane to be crossed is treated with a penetration enhancer. In addition to aiding the diffusion of non-lipophilic drugs across cell membranes, penetration enhancers also enhance the permeability of lipophilic drugs.


Penetration enhancers can be classified as belonging to one of five broad categories, i.e., surfactants, fatty acids, bile salts, chelating agents, and non-chelating non-surfactants (see e.g., Malmsten, M. Surfactants and polymers in drug delivery, Informa Health Care, New York, N.Y., 2002; Lee et al., Critical Reviews in Therapeutic Drug Carrier Systems, 1991, p. 92). Each of the above mentioned classes of penetration enhancers are described below in greater detail.


Surfactants (or “surface-active agents”) are chemical entities which, when dissolved in an aqueous solution, reduce the surface tension of the solution or the interfacial tension between the aqueous solution and another liquid, with the result that absorption of RNAi agents through the mucosa is enhanced. In addition to bile salts and fatty acids, these penetration enhancers include, for example, sodium lauryl sulfate, polyoxyethylene-9-lauryl ether and polyoxyethylene-20-cetyl ether) (see e.g., Malmsten, M. Surfactants and polymers in drug delivery, Informa Health Care, New York, N.Y., 2002; Lee et al., Critical Reviews in Therapeutic Drug Carrier Systems, 1991, p. 92); and perfluorochemical emulsions, such as FC-43. Takahashi et al., J. Pharm. Pharmacol., 1988, 40, 252).


Various fatty acids and their derivatives which act as penetration enhancers include, for example, oleic acid, lauric acid, capric acid (n-decanoic acid), myristic acid, palmitic acid, stearic acid, linoleic acid, linolenic acid, dicaprate, tricaprate, monoolein (1-monooleoyl-rac-glycerol), dilaurin, caprylic acid, arachidonic acid, glycerol 1-monocaprate, 1-dodecylazacycloheptan-2-one, acylcarnitines, acylcholines, C1-20 alkyl esters thereof (e.g., methyl, isopropyl and t-butyl), and mono- and di-glycerides thereof (i.e., oleate, laurate, caprate, myristate, palmitate, stearate, linoleate, etc.) (see e.g., Touitou, E., et al. Enhancement in Drug Delivery, CRC Press, Danvers, Mass., 2006; Lee et al., Critical Reviews in Therapeutic Drug Carrier Systems, 1991, p. 92; Muranishi, Critical Reviews in Therapeutic Drug Carrier Systems, 1990, 7, 1-33; El Hariri et al., J. Pharm. Pharmacol., 1992, 44, 651-654).


The physiological role of bile includes the facilitation of dispersion and absorption of lipids and fat-soluble vitamins (see e.g., Malmsten, M. Surfactants and polymers in drug delivery, Informa Health Care, New York, N.Y., 2002; Brunton, Chapter 38 in: Goodman & Gilman's The Pharmacological Basis of Therapeutics, 9th Ed., Hardman et al. Eds., McGraw-Hill, New York, 1996, pp. 934-935). Various natural bile salts, and their synthetic derivatives, act as penetration enhancers. Thus the term “bile salts” includes any of the naturally occurring components of bile as well as any of their synthetic derivatives. Suitable bile salts include, for example, cholic acid (or its pharmaceutically acceptable sodium salt, sodium cholate), dehydrocholic acid (sodium dehydrocholate), deoxycholic acid (sodium deoxycholate), glucholic acid (sodium glucholate), glycholic acid (sodium glycocholate), glycodeoxycholic acid (sodium glycodeoxycholate), taurocholic acid (sodium taurocholate), taurodeoxycholic acid (sodium taurodeoxycholate), chenodeoxycholic acid (sodium chenodeoxycholate), ursodeoxycholic acid (UDCA), sodium tauro-24,25-dihydro-fusidate (STDHF), sodium glycodihydrofusidate and polyoxyethylene-9-lauryl ether (POE) (see e.g., Malmsten, M. Surfactants and polymers in drug delivery, Informa Health Care, New York, N.Y., 2002; Lee et al., Critical Reviews in Therapeutic Drug Carrier Systems, 1991, page 92; Swinyard, Chapter 39 In: Remington's Pharmaceutical Sciences, 18th Ed., Gennaro, ed., Mack Publishing Co., Easton, Pa., 1990, pages 782-783; Muranishi, Critical Reviews in Therapeutic Drug Carrier Systems, 1990, 7, 1-33; Yamamoto et al., J. Pharm. Exp. Ther., 1992, 263, 25; Yamashita et al., J. Pharm. Sci., 1990, 79, 579-583).


Chelating agents, as used in connection with the present disclosure, can be defined as compounds that remove metallic ions from solution by forming complexes therewith, with the result that absorption of RNAi agents through the mucosa is enhanced. With regards to their use as penetration enhancers in the present disclosure, chelating agents have the added advantage of also serving as DNase inhibitors, as most characterized DNA nucleases require a divalent metal ion for catalysis and are thus inhibited by chelating agents (Jarrett, J. Chromatogr., 1993, 618, 315-339). Suitable chelating agents include but are not limited to disodium ethylenediaminetetraacetate (EDTA), citric acid, salicylates (e.g., sodium salicylate, 5-methoxysalicylate and homovanilate), N-acyl derivatives of collagen, laureth-9 and N-amino acyl derivatives of beta-diketones (enamines)(see e.g., Katdare, A. et al., Excipient development for pharmaceutical, biotechnology, and drug delivery, CRC Press, Danvers, Mass., 2006; Lee et al., Critical Reviews in Therapeutic Drug Carrier Systems, 1991, page 92; Muranishi, Critical Reviews in Therapeutic Drug Carrier Systems, 1990, 7, 1-33; Buur et al., J. Control Rd., 1990, 14, 43-51).


As used herein, non-chelating non-surfactant penetration enhancing compounds can be defined as compounds that demonstrate insignificant activity as chelating agents or as surfactants but that nonetheless enhance absorption of RNAi agents through the alimentary mucosa (see e.g., Muranishi, Critical Reviews in Therapeutic Drug Carrier Systems, 1990, 7, 1-33). This class of penetration enhancers includes, for example, unsaturated cyclic ureas, 1-alkyl- and 1-alkenylazacyclo-alkanone derivatives (Lee et al., Critical Reviews in Therapeutic Drug Carrier Systems, 1991, page 92); and non-steroidal anti-inflammatory agents such as diclofenac sodium, indomethacin and phenylbutazone (Yamashita et al., J. Pharm. Pharmacol., 1987, 39, 621-626).


Agents that enhance uptake of RNAi agents at the cellular level can also be added to the pharmaceutical and other compositions of the present disclosure. For example, cationic lipids, such as lipofectin (Junichi et al, U.S. Pat. No. 5,705,188), cationic glycerol derivatives, and polycationic molecules, such as polylysine (WO 97/30731), are also known to enhance the cellular uptake of dsRNAs.


Other agents can be utilized to enhance the penetration of the administered nucleic acids, including glycols such as ethylene glycol and propylene glycol, pyrrols such as 2-pyrrol, azones, and terpenes such as limonene and menthone.


vi. Excipients


In contrast to a carrier compound, a “pharmaceutical carrier” or “excipient” is a pharmaceutically acceptable solvent, suspending agent or any other pharmacologically inert vehicle for delivering one or more nucleic acids to an animal. The excipient can be liquid or solid and is selected, with the planned manner of administration in mind, so as to provide for the desired bulk, consistency, etc., when combined with a nucleic acid and the other components of a given pharmaceutical composition. Typical pharmaceutical carriers include, but are not limited to, binding agents (e.g., pregelatinized maize starch, polyvinylpyrrolidone or hydroxypropyl methylcellulose, etc.); fillers (e.g., lactose and other sugars, microcrystalline cellulose, pectin, gelatin, calcium sulfate, ethyl cellulose, polyacrylates or calcium hydrogen phosphate, etc.); lubricants (e.g., magnesium stearate, talc, silica, colloidal silicon dioxide, stearic acid, metallic stearates, hydrogenated vegetable oils, corn starch, polyethylene glycols, sodium benzoate, sodium acetate, etc.); disintegrants (e.g., starch, sodium starch glycolate, etc.); and wetting agents (e.g., sodium lauryl sulphate, etc).


Pharmaceutically acceptable organic or inorganic excipients suitable for non-parenteral administration which do not deleteriously react with nucleic acids can also be used to formulate the compositions of the present disclosure. Suitable pharmaceutically acceptable carriers include, but are not limited to, water, salt solutions, alcohols, polyethylene glycols, gelatin, lactose, amylose, magnesium stearate, talc, silicic acid, viscous paraffin, hydroxymethylcellulose, polyvinylpyrrolidone and the like.


Formulations for topical administration of nucleic acids can include sterile and non-sterile aqueous solutions, non-aqueous solutions in common solvents such as alcohols, or solutions of the nucleic acids in liquid or solid oil bases. The solutions can also contain buffers, diluents and other suitable additives. Pharmaceutically acceptable organic or inorganic excipients suitable for non-parenteral administration which do not deleteriously react with nucleic acids can be used.


Suitable pharmaceutically acceptable excipients include, but are not limited to, water, salt solutions, alcohol, polyethylene glycols, gelatin, lactose, amylose, magnesium stearate, talc, silicic acid, viscous paraffin, hydroxymethylcellulose, polyvinylpyrrolidone and the like.


vii. Other Components


The compositions of the present disclosure can additionally contain other adjunct components conventionally found in pharmaceutical compositions, at their art-established usage levels. Thus, for example, the compositions can contain additional, compatible, pharmaceutically-active materials such as, for example, antipruritics, astringents, local anesthetics or anti-inflammatory agents, or can contain additional materials useful in physically formulating various dosage forms of the compositions of the present disclosure, such as dyes, flavoring agents, preservatives, antioxidants, opacifiers, thickening agents and stabilizers. However, such materials, when added, should not unduly interfere with the biological activities of the components of the compositions of the present disclosure. The formulations can be sterilized and, if desired, mixed with auxiliary agents, e.g., lubricants, preservatives, stabilizers, wetting agents, emulsifiers, salts for influencing osmotic pressure, buffers, colorings, flavorings or aromatic substances and the like which do not deleteriously interact with the nucleic acid(s) of the formulation.


Aqueous suspensions can contain substances which increase the viscosity of the suspension including, for example, sodium carboxymethylcellulose, sorbitol or dextran. The suspension can also contain stabilizers.


In some embodiments, pharmaceutical compositions featured in the disclosure include (a) one or more RNAi agents and (b) one or more agents which function by a non-RNAi mechanism and which are useful in treating an HTT-associated disorder. Examples of such agents include, but are not limited to, monoamine inhibitors, reserpine, anticonvulsants, antipsychotic agents, and antidepressants.


Toxicity and therapeutic efficacy of such compounds can be determined by standard pharmaceutical procedures in cell cultures or experimental animals, e.g., for determining the LD50 (the dose lethal to 50% of the population) and the ED50 (the dose therapeutically effective in 50% of the population). The dose ratio between toxic and therapeutic effects is the therapeutic index and it can be expressed as the ratio LD50/ED50 Compounds that exhibit high therapeutic indices are preferred.


The data obtained from cell culture assays and animal studies can be used in formulating a range of dosage for use in humans. The dosage of compositions featured herein in the disclosure lies generally within a range of circulating concentrations that include the ED50 with little or no toxicity. The dosage can vary within this range depending upon the dosage form employed and the route of administration utilized. For any compound used in the methods featured in the disclosure, the therapeutically effective dose can be estimated initially from cell culture assays. A dose can be formulated in animal models to achieve a circulating plasma concentration range of the compound or, when appropriate, of the polypeptide product of a target sequence (e.g., achieving a decreased concentration of the polypeptide) that includes the IC50 (i.e., the concentration of the test compound which achieves a half-maximal inhibition of symptoms) as determined in cell culture. Such information can be used to more accurately determine useful doses in humans. Levels in plasma can be measured, for example, by high performance liquid chromatography.


In addition to their administration, as discussed above, the RNAi agents featured in the disclosure can be administered in combination with other known agents effective in treatment of pathological processes mediated by nucleotide repeat expression. In any event, the administering physician can adjust the amount and timing of RNAi agent administration on the basis of results observed using standard measures of efficacy known in the art or described herein.


VII. Kits

In certain aspects, the instant disclosure provides kits that include a suitable container containing a pharmaceutical formulation of a siRNA compound, e.g., a double-stranded siRNA compound, or ssiRNA compound, (e.g., a precursor, e.g., a larger siRNA compound which can be processed into a ssiRNA compound, or a DNA which encodes an siRNA compound, e.g., a double-stranded siRNA compound, or ssiRNA compound, or precursor thereof).


Such kits include one or more dsRNA agent(s) and instructions for use, e.g., instructions for administering a prophylactically or therapeutically effective amount of a dsRNA agent(s). The dsRNA agent may be in a vial or a pre-filled syringe. The kits may optionally further comprise means for administering the dsRNA agent (e.g., an injection device, such as a pre-filled syringe), or means for measuring the inhibition of C3 (e.g., means for measuring the inhibition of HTT mRNA, HTT protein, and/or HTT activity). Such means for measuring the inhibition of HTT may comprise a means for obtaining a sample from a subject, such as, e.g., a CSF and/or plasma sample. The kits of the invention may optionally further comprise means for determining the therapeutically effective or prophylactically effective amount.


In certain embodiments the individual components of the pharmaceutical formulation may be provided in one container, e.g., a vial or a pre-filled syringe. Alternatively, it may be desirable to provide the components of the pharmaceutical formulation separately in two or more containers, e.g., one container for a siRNA compound preparation, and at least another for a carrier compound. The kit may be packaged in a number of different configurations such as one or more containers in a single box. The different components can be combined, e.g., according to instructions provided with the kit. The components can be combined according to a method described herein, e.g., to prepare and administer a pharmaceutical composition. The kit can also include a delivery device.


VII. Methods for Inhibiting HTT Expression

The present disclosure also provides methods of inhibiting expression of an HTT gene in a cell. The methods include contacting a cell with an RNAi agent, e.g., double stranded RNAi agent, in an amount effective to inhibit expression of HTT in the cell, thereby inhibiting expression of HTT in the cell. In certain embodiments of the disclosure, HTT is inhibited preferentially in CNS (e.g., brain) cells.


Contacting of a cell with an RNAi agent, e.g., a double stranded RNAi agent, may be done in vitro or in vivo. Contacting a cell in vivo with the RNAi agent includes contacting a cell or group of cells within a subject, e.g., a human subject, with the RNAi agent. Combinations of in vitro and in vivo methods of contacting a cell are also possible.


Contacting a cell may be direct or indirect, as discussed above. Furthermore, contacting a cell may be accomplished via a targeting ligand, including any ligand described herein or known in the art. In some embodiments, the targeting ligand is a carbohydrate moiety, e.g., a GalNAc ligand, or any other ligand that directs the RNAi agent to a site of interest.


The term “inhibiting,” as used herein, is used interchangeably with “reducing,” “silencing,” “downregulating,” “suppressing” and other similar terms, and includes any level of inhibition. In certain embodiments, a level of inhibition, e.g., for an RNAi agent of the instant disclosure, can be assessed in cell culture conditions, e.g., wherein cells in cell culture are transfected via Lipofectamine™-mediated transfection at a concentration in the vicinity of a cell of 10 nM or less, 1 nM or less, etc. Knockdown of a given RNAi agent can be determined via comparison of pre-treated levels in cell culture versus post-treated levels in cell culture, optionally also comparing against cells treated in parallel with a scrambled or other form of control RNAi agent. Knockdown in cell culture of, e.g., preferably 50% or more, can thereby be identified as indicative of “inhibiting” or “reducing”, “downregulating” or “suppressing”, etc. having occurred. It is expressly contemplated that assessment of targeted mRNA or encoded protein levels (and therefore an extent of “inhibiting”, etc. caused by an RNAi agent of the disclosure) can also be assessed in in vivo systems for the RNAi agents of the instant disclosure, under properly controlled conditions as described in the art.


The phrase “inhibiting expression of an HTT gene” or “inhibiting expression of HTT,” as used herein, includes inhibition of expression of any HTT gene (such as, e.g., a mouse HTT gene, a rat HTT gene, a monkey HTT gene, or a human HTT gene) as well as variants or mutants of an HTT gene that encode an HTT protein. Thus, the HTT gene may be a wild-type HTT gene, a mutant HTT gene, or a transgenic HTT gene in the context of a genetically manipulated cell, group of cells, or organism.


“Inhibiting expression of an HTT gene” includes any level of inhibition of an HTT gene, e.g., at least partial suppression of the expression of an HTT gene, such as an inhibition by at least 20%. In certain embodiments, inhibition is by at least 30%, at least 40%, preferably at least 50%, at least about 60%, at least 70%, at least about 80%, at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%; or to below the level of detection of the assay method.


The expression of an HTT gene may be assessed based on the level of any variable associated with HTT gene expression, e.g., HTT mRNA level or HTT protein level, or, for example, the level of C9orf72 expanded protein.


Inhibition may be assessed by a decrease in an absolute or relative level of one or more of these variables compared with a control level. The control level may be any type of control level that is utilized in the art, e.g., a pre-dose baseline level, or a level determined from a similar subject, cell, or sample that is untreated or treated with a control (such as, e.g., buffer only control or inactive agent control).


In some embodiments of the methods of the disclosure, expression of an HTT gene is inhibited by at least 20%, 30%, 40%, preferably at least 50%, 60%, 70%, 80%, 85%, 90%, or 95%, or to below the level of detection of the assay. In certain embodiments, the methods include a clinically relevant inhibition of expression of HTT, e.g. as demonstrated by a clinically relevant outcome after treatment of a subject with an agent to reduce the expression of HTT.


Inhibition of the expression of an HTT gene may be manifested by a reduction of the amount of mRNA expressed by a first cell or group of cells (such cells may be present, for example, in a sample derived from a subject) in which an HTT gene is transcribed and which has or have been treated (e.g., by contacting the cell or cells with an RNAi agent of the disclosure, or by administering an RNAi agent of the disclosure to a subject in which the cells are or were present) such that the expression of an HTT gene is inhibited, as compared to a second cell or group of cells substantially identical to the first cell or group of cells but which has not or have not been so treated (control cell(s) not treated with an RNAi agent or not treated with an RNAi agent targeted to the gene of interest). The degree of inhibition may be expressed in terms of:










(

mRNA


in







control


cells


)

-

(

mRNA


in



treated


cells


)



(

mRNA


in



control


cells


)


·
100


%




In other embodiments, inhibition of the expression of an HTT gene may be assessed in terms of a reduction of a parameter that is functionally linked to an HTT gene expression, e.g., HTT protein expression. HTT gene silencing may be determined in any cell expressing HTT, either endogenous or heterologous from an expression construct, and by any assay known in the art.


Inhibition of the expression of an HTT protein may be manifested by a reduction in the level of the HTT protein that is expressed by a cell or group of cells (e.g., the level of protein expressed in a sample derived from a subject). As explained above, for the assessment of mRNA suppression, the inhibition of protein expression levels in a treated cell or group of cells may similarly be expressed as a percentage of the level of protein in a control cell or group of cells.


A control cell or group of cells that may be used to assess the inhibition of the expression of an HTT gene includes a cell or group of cells that has not yet been contacted with an RNAi agent of the disclosure. For example, the control cell or group of cells may be derived from an individual subject (e.g., a human or animal subject) prior to treatment of the subject with an RNAi agent.


The level of HTT mRNA that is expressed by a cell or group of cells may be determined using any method known in the art for assessing mRNA expression. In one embodiment, the level of expression of HTT in a sample is determined by detecting a transcribed polynucleotide, or portion thereof, e.g., mRNA of the HTT gene. RNA may be extracted from cells using RNA extraction techniques including, for example, using acid phenol/guanidine isothiocyanate extraction (RNAzol B; Biogenesis), RNeasy™ RNA preparation kits (Qiagen®) or PAXgene (PreAnalytix, Switzerland). Typical assay formats utilizing ribonucleic acid hybridization include nuclear run-on assays, RT-PCR, RNase protection assays, northern blotting, in situ hybridization, and microarray analysis. Circulating HTT mRNA may be detected using methods the described in WO2012/177906, the entire contents of which are hereby incorporated herein by reference.


In some embodiments, the level of expression of HTT is determined using a nucleic acid probe. The term “probe”, as used herein, refers to any molecule that is capable of selectively binding to a specific HTT nucleic acid or protein, or fragment thereof. Probes can be synthesized by one of skill in the art, or derived from appropriate biological preparations. Probes may be specifically designed to be labeled. Examples of molecules that can be utilized as probes include, but are not limited to, RNA, DNA, proteins, antibodies, and organic molecules.


Isolated mRNA can be used in hybridization or amplification assays that include, but are not limited to, Southern or northern analyses, polymerase chain reaction (PCR) analyses and probe arrays. One method for the determination of mRNA levels involves contacting the isolated mRNA with a nucleic acid molecule (probe) that can hybridize to HTT mRNA. In one embodiment, the mRNA is immobilized on a solid surface and contacted with a probe, for example by running the isolated mRNA on an agarose gel and transferring the mRNA from the gel to a membrane, such as nitrocellulose. In an alternative embodiment, the probe(s) are immobilized on a solid surface and the mRNA is contacted with the probe(s), for example, in an Affymetrix® gene chip array. A skilled artisan can readily adapt known mRNA detection methods for use in determining the level of HTT mRNA.


An alternative method for determining the level of expression of HTT in a sample involves the process of nucleic acid amplification or reverse transcriptase (to prepare cDNA) of for example mRNA in the sample, e.g., by RT-PCR (the experimental embodiment set forth in Mullis, 1987, U.S. Pat. No. 4,683,202), ligase chain reaction (Barany (1991) Proc. Natl. Acad. Sci. USA 88:189-193), self sustained sequence replication (Guatelli et al. (1990) Proc. Natl. Acad. Sci. USA 87:1874-1878), transcriptional amplification system (Kwoh et al. (1989) Proc. Natl. Acad. Sci. USA 86:1173-1177), Q-Beta Replicase (Lizardi et al. (1988) Bio/Technology 6:1197), rolling circle replication (Lizardi et al., U.S. Pat. No. 5,854,033) or any other nucleic acid amplification method, followed by the detection of the amplified molecules using techniques well known to those of skill in the art. These detection schemes are especially useful for the detection of nucleic acid molecules if such molecules are present in very low numbers. In particular aspects of the disclosure, the level of expression of HTT is determined by quantitative fluorogenic RT-PCR (i.e., the TaqMan™ System), by a Dual-Glo® Luciferase assay, or by other art-recognized method for measurement of HTT expression or mRNA level.


The expression level of HTT mRNA may be monitored using a membrane blot (such as used in hybridization analysis such as northern, Southern, dot, and the like), or microwells, sample tubes, gels, beads or fibers (or any solid support comprising bound nucleic acids). See U.S. Pat. Nos. 5,770,722, 5,874,219, 5,744,305, 5,677,195 and 5,445,934, which are incorporated herein by reference. The determination of HTT expression level may also comprise using nucleic acid probes in solution.


In some embodiments, the level of mRNA expression is assessed using branched DNA (bDNA) assays or real time PCR (qPCR). The use of this PCR method is described and exemplified in the Examples presented herein. Such methods can also be used for the detection of HTT nucleic acids.


The level of HTT protein expression may be determined using any method known in the art for the measurement of protein levels. Such methods include, for example, electrophoresis, capillary electrophoresis, high performance liquid chromatography (HPLC), thin layer chromatography (TLC), hyperdiffusion chromatography, fluid or gel precipitin reactions, absorption spectroscopy, a colorimetric assays, spectrophotometric assays, flow cytometry, immunodiffusion (single or double), immunoelectrophoresis, western blotting, radioimmunoassay (RIA), enzyme-linked immunosorbent assays (ELISAs), immunofluorescent assays, electrochemiluminescence assays, and the like. Such assays can also be used for the detection of proteins indicative of the presence or replication of HTT proteins.


In some embodiments, the efficacy of the methods of the disclosure in the treatment of an HTT-related disease is assessed by a decrease in HTT mRNA level (e.g, by assessment of a CSF sample and/or plasma sample for HTT level, by brain biopsy, or otherwise).


In some embodiments of the methods of the disclosure, the RNAi agent is administered to a subject such that the RNAi agent is delivered to a specific site within the subject. The inhibition of expression of HTT may be assessed using measurements of the level or change in the level of HTT mRNA or HTT protein in a sample derived from a specific site within the subject, e.g., CNS cells. In certain embodiments, the methods include a clinically relevant inhibition of expression of HTT, e.g. as demonstrated by a clinically relevant outcome after treatment of a subject with an agent to reduce the expression of HTT, suchas, for example, stabilization or inhibition of caudate atrophy (e.g., as assessed by volumetric MRI (vMRI)), a stabilization or reduction in neurofilament light chain (Nfl) levels in a CSF sample from a subject, a reduction in mutant HTT mRNA or a cleaved mutant HTT protein, e.g., one or both of full-length mutant HTT mRNA or protein and a cleaved mutant HTT mRNA or protein, and a stabilization or improvement in Unified Huntington's Disease Rating Scale (UHDRS) score.


As used herein, the terms detecting or determining a level of an analyte are understood to mean performing the steps to determine if a material, e.g., protein, RNA, is present. As used herein, methods of detecting or determining include detection or determination of an analyte level that is below the level of detection for the method used.


IX. Methods of Treating or Preventing HTT-Associated Diseases

The present disclosure also provides methods of using an RNAi agent of the disclosure or a composition containing an RNAi agent of the disclosure to reduce or inhibit HTT expression in a cell. The methods include contacting the cell with a dsRNA of the disclosure and maintaining the cell for a time sufficient to obtain degradation of the mRNA transcript of an HTT gene, thereby inhibiting expression of the HTT gene in the cell. Reduction in gene expression can be assessed by any methods known in the art. For example, a reduction in the expression of HTT may be determined by determining the mRNA expression level of HTT using methods routine to one of ordinary skill in the art, e.g., northern blotting, qRT-PCR; by determining the protein level of HTT using methods routine to one of ordinary skill in the art, such as western blotting, immunological techniques.


In the methods of the disclosure the cell may be contacted in vitro or in vivo, i.e., the cell may be within a subject.


A cell suitable for treatment using the methods of the disclosure may be any cell that expresses an HTT gene. A cell suitable for use in the methods of the disclosure may be a mammalian cell, e.g., a primate cell (such as a human cell or a non-human primate cell, e.g., a monkey cell or a chimpanzee cell), a non-primate cell (such as a a rat cell, or a mouse cell). In one embodiment, the cell is a human cell, e.g., a human CNS cell.


HTT expression is inhibited in the cell by at least about 30, 40, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 96, 97, 98, 99, or about 100%, i.e., to below the level of detection. In preferred embodiments, HTT expression is inhibited by at least 50%.


The in vivo methods of the disclosure may include administering to a subject a composition containing an RNAi agent, where the RNAi agent includes a nucleotide sequence that is complementary to at least a part of an RNA transcript of the HTT gene of the mammal to be treated. When the organism to be treated is a mammal such as a human, the composition can be administered by any means known in the art including, but not limited to oral, intraperitoneal, or parenteral routes, including intracranial (e.g., intraventricular, intraparenchymal, and intrathecal), intravenous, intramuscular, intravitreal, subcutaneous, transdermal, airway (aerosol), nasal, rectal, and topical (including buccal and sublingual) administration. In certain embodiments, the compositions are administered by intravenous infusion or injection. In certain embodiments, the compositions are administered by subcutaneous injection. In certain embodiments, the compositions are administered by intrathecal injection.


In some embodiments, the administration is via a depot injection. A depot injection may release the RNAi agent in a consistent way over a prolonged time period. Thus, a depot injection may reduce the frequency of dosing needed to obtain a desired effect, e.g., a desired inhibition of HTT, or a therapeutic or prophylactic effect. A depot injection may also provide more consistent serum concentrations. Depot injections may include subcutaneous injections or intramuscular injections. In preferred embodiments, the depot injection is a subcutaneous injection.


In some embodiments, the administration is via a pump. The pump may be an external pump or a surgically implanted pump. In certain embodiments, the pump is a subcutaneously implanted osmotic pump. In other embodiments, the pump is an infusion pump. An infusion pump may be used for intracranial, intravenous, subcutaneous, arterial, or epidural infusions. In preferred embodiments, the infusion pump is a subcutaneous infusion pump. In other embodiments, the pump is a surgically implanted pump that delivers the RNAi agent to the CNS.


The mode of administration may be chosen based upon whether local or systemic treatment is desired and based upon the area to be treated. The route and site of administration may be chosen to enhance targeting.


In one aspect, the present disclosure also provides methods for inhibiting the expression of an HTT gene in a mammal. The methods include administering to the mammal a composition comprising a dsRNA that targets an HTT gene in a cell of the mammal and maintaining the mammal for a time sufficient to obtain degradation of the mRNA transcript of the HTT gene, thereby inhibiting expression of the HTT gene in the cell. Reduction in gene expression can be assessed by any methods known it the art and by methods, e.g. qRT-PCR, described herein. Reduction in protein production can be assessed by any methods known it the art and by methods, e.g. ELISA, described herein. In one embodiment, a CNS biopsy sample or a cerebrospinal fluid (CSF) sample serves as the tissue material for monitoring the reduction in HTT gene or protein expression (or of a proxy therefore).


The present disclosure further provides methods of treatment of a subject in need thereof. The treatment methods of the disclosure include administering an RNAi agent of the disclosure to a subject, e.g., a subject that would benefit from inhibition of HTT expression, in a therapeutically effective amount of an RNAi agent targeting an HTT gene or a pharmaceutical composition comprising an RNAi agent targeting aHTT gene.


In addition, the present disclosure provides methods of preventing, treating or inhibiting the progression of an HTT-associated disease or disorder (e.g., Huntington's disease), in a subject, such as the progression of an HTT-associated disease or disorder. The methods include administering to the subject a therapeutically effective amount of any of the RNAi agent, e.g., dsRNA agents, or the pharmaceutical composition provided herein, thereby preventing, treating or inhibiting the progression of an HTT-associated disease or disorder in the subject.


An RNAi agent of the disclosure may be administered as a “free RNAi agent.” A free RNAi agent is administered in the absence of a pharmaceutical composition. The naked RNAi agent may be in a suitable buffer solution. The buffer solution may comprise acetate, citrate, prolamine, carbonate, or phosphate, or any combination thereof. In one embodiment, the buffer solution is phosphate buffered saline (PBS). The pH and osmolarity of the buffer solution containing the RNAi agent can be adjusted such that it is suitable for administering to a subject.


Alternatively, an RNAi agent of the disclosure may be administered as a pharmaceutical composition, such as a dsRNA liposomal formulation.


Subjects that would benefit from a reduction or inhibition of HTT gene expression are those having an HTT-associated disease, e.g., Huntington's disease.


The disclosure further provides methods for the use of an RNAi agent or a pharmaceutical composition thereof, e.g., for treating a subject that would benefit from reduction or inhibition of HTT expression, e.g., a subject having an HTT-associated disorder, in combination with other pharmaceuticals or other therapeutic methods, e.g., with known pharmaceuticals or known therapeutic methods, such as, for example, those which are currently employed for treating these disorders. For example, in certain embodiments, an RNAi agent targeting HTT is administered in combination with, e.g., an agent useful in treating an HTT-associated disorder as described elsewhere herein or as otherwise known in the art. For example, additional agents suitable for treating a subject that would benefit from reduction in HTT expression, e.g., a subject having an HTT-associated disorder, may include agents currently used to treat symptoms of HTT. The RNAi agent and additional therapeutic agents may be administered at the same time or in the same combination, e.g., intrathecally, or the additional therapeutic agent can be administered as part of a separate composition or at separate times or by another method known in the art or described herein.


Exemplary additional therapeutics include, for example, a monoamine inhibitor, e.g., tetrabenazine (Xenazine), deutetrabenazine (Austedo), and reserpine, an anticonvulsant, e.g., valproic acid (Depakote, Depakene, Depacon), and clonazepam (Klonopin), an antipsychotic agent, e.g., risperidone (Risperdal), and haloperidol (Haldol), and an antidepressant, e.g., paroxetine (Paxil).


In one embodiment, the method includes administering a composition featured herein such that expression of the target HTT gene is decreased, for at least one month. In preferred embodiments, expression is decreased for at least 2 months, 3 months, or 6 months.


Preferably, the RNAi agents useful for the methods and compositions featured herein specifically target RNAs (primary or processed) of the target HTT gene. Compositions and methods for inhibiting the expression of these genes using RNAi agents can be prepared and performed as described herein.


Administration of the dsRNA according to the methods of the disclosure may result in a reduction of the severity, signs, symptoms, or markers of such diseases or disorders in a patient with an HTT-associated disorder. By “reduction” in this context is meant a statistically significant or clinically significant decrease in such level. The reduction can be, for example, at least 5%, 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, or about 100%.


Efficacy of treatment or prevention of disease can be assessed, for example by measuring disease progression, disease remission, symptom severity, reduction in pain, quality of life, dose of a medication required to sustain a treatment effect, level of a disease marker or any other measurable parameter appropriate for a given disease being treated or targeted for prevention. It is well within the ability of one skilled in the art to monitor efficacy of treatment or prevention by measuring any one of such parameters, or any combination of parameters. For example, efficacy of treatment of an HTT-associated disorder may be assessed, for example, by periodic monitoring of a subject's. Comparisons of the later readings with the initial readings provide a physician an indication of whether the treatment is effective. It is well within the ability of one skilled in the art to monitor efficacy of treatment or prevention by measuring any one of such parameters, or any combination of parameters. In connection with the administration of an RNAi agent targeting HTT or pharmaceutical composition thereof, “effective against” an HTT-associated disorder indicates that administration in a clinically appropriate manner results in a beneficial effect for at least a statistically significant fraction of patients, such as an improvement of symptoms, a cure, a reduction in disease, extension of life, improvement in quality of life, or other effect generally recognized as positive by medical doctors familiar with treating HTT-associated disorders and the related causes.


A treatment or preventive effect is evident when there is a statistically significant improvement in one or more parameters of disease status, or by a failure to worsen or to develop symptoms where they would otherwise be anticipated. As an example, a favorable change of at least 10% in a measurable parameter of disease, and preferably at least 20%, 30%, 40%, 50% or more can be indicative of effective treatment. Efficacy for a given RNAi agent drug or formulation of that drug can also be judged using an experimental animal model for the given disease as known in the art. When using an experimental animal model, efficacy of treatment is evidenced when a statistically significant reduction in a marker or symptom is observed.


Alternatively, the efficacy can be measured by a reduction in the severity of disease as determined by one skilled in the art of diagnosis based on a clinically accepted disease severity grading scale. Any positive change resulting in e.g., lessening of severity of disease measured using the appropriate scale, represents adequate treatment using an RNAi agent or RNAi agent formulation as described herein.


Subjects can be administered a therapeutic amount of dsRNA, such as about 0.01 mg/kg to about 200 mg/kg.


The RNAi agent can be administered intrathecally, via intravitreal injection, or by intravenous infusion over a period of time, on a regular basis. In certain embodiments, after an initial treatment regimen, the treatments can be administered on a less frequent basis. Administration of the RNAi agent can reduce HTT levels, e.g., in a cell, tissue, blood, CSF sample or other compartment of the patient by at least 20%, 30%, 40%, 50%, 55%, 60%, 65%, 70,% 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, or at least about 99% or more. In a preferred embodiment, administration of the RNAi agent can reduce HTT levels, e.g., in a cell, tissue, blood, CSF sample or other compartment of the patient by at least 50%.


Before administration of a full dose of the RNAi agent, patients can be administered a smaller dose, such as a 5% infusion reaction, and monitored for adverse effects, such as an allergic reaction. In another example, the patient can be monitored for unwanted immunostimulatory effects, such as increased cytokine (e.g., TNF-alpha or INF-alpha) levels.


Alternatively, the RNAi agent can be administered subcutaneously, i.e., by subcutaneous injection. One or more injections may be used to deliver the desired, e.g., monthly dose of RNAi agent to a subject. The injections may be repeated over a period of time. The administration may be repeated on a regular basis. In certain embodiments, after an initial treatment regimen, the treatments can be administered on a less frequent basis. A repeat-dose regimine may include administration of a therapeutic amount of RNAi agent on a regular basis, such as monthly or extending to once a quarter, twice per year, once per year. In certain embodiments, the RNAi agent is administered about once per month to about once per quarter (i.e., about once every three months).


Unless otherwise defined, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. Although methods and materials similar or equivalent to those described herein can be used in the practice or testing of the RNAi agents and methods featured in the invention, suitable methods and materials are described below. All publications, patent applications, patents, and other references mentioned herein are incorporated by reference in their entirety. In case of conflict, the present specification, including definitions, will control. In addition, the materials, methods, and examples are illustrative only and not intended to be limiting.


EXAMPLES
Example 1. RNAi Agent Design, Synthesis, Selection, and In Vitro Evaluation

This Example describes methods for the design, synthesis, selection, and in vitro evaluation of HTT RNAi agents.


Source of Reagents

Where the source of a reagent is not specifically given herein, such reagent can be obtained from any supplier of reagents for molecular biology at a quality/purity standard for application in molecular biology.


Bioinformatics

siRNAs targeting the human huntingtin transcript (HTT; human NCBI refseqID NM_002111.8; NCBI GeneID: 3064) or the mouse HTT transcript (HTT; mouse NCBI refseqID NM_010414.3; NCBI GeneID: 15194) were designed using custom R and Python scripts. The human NM_002111 REFSEQ mRNA, version 8, has a length of 13,498 bases. The mouse NM_010414 REFSEQ mRNA, version 3, has a length of 13,237 bases.


In addition, siRNAs targeting exon 1 of the human huntingtin transcript (HTT; human NCBI refseqID NM_002111.8; NCBI GeneID: 3064) were designed using custom R and Python scripts.


Detailed lists of the unmodified HTT sense and antisense strand nucleotide sequences are shown in Tables 2, 5, 8, 11, 14, 18, 21, 25, 28, 30 and 33. Detailed lists of the modified HTT sense and antisense strand nucleotide sequences are shown in Tables 3, 6, 9, 12, 15, 17, 20, 24, 27, 29 and 32.


It is to be understood that, throughout the application, a duplex name without a decimal is equivalent to a duplex name with a decimal which merely references the batch number of the duplex. For example, AD-564727 is equivalent to AD-564727.1.


Cell Culture and Transfections


Cells were transfected by adding 4.9 μL of Opti-MEM plus 0.1 μL of RNAiMAX per well (Invitrogen, Carlsbad Calif. cat #13778-150) to 5 μL of siRNA duplexes per well, with 4 replicates of each siRNA duplex, into a 384-well plate, and incubated at room temperature for 15 minutes. Forty μL of MEDIA containing ˜5×103 cells were then added to the siRNA mixture. Cells were incubated for 24 hours prior to RNA purification. Experiments were performed at 50 nM, 10 nM, 1 nM, and 0.1 nM. Transfection experiments were performed in human neuroblastoma BE(2)C cells (ATCC CRL-2268) with EMEM:F12 media (Gibco catalog no. 11765054).


Cell Culture and 384-Well Transfections


Primary cynomolgus hepatocytes (PCH) freshly isolated less than 1 hour prior to transfections were grown in primary hepatocyte media. HeP3B cells were grown in appropriate media. Transfection was carried out by adding 14.8 μl of Opti-MEM plus 0.2 μl of Lipofectamine RNAiMax per well (Invitrogen, Carlsbad Calif. cat #13778-150) to 5 μl of each siRNA duplex to an individual well. The mixture was then incubated at room temperature for 15 minutes. Eighty μl of complete growth media without antibiotic containing ˜2×104 cells were then added to the siRNA mixture. Cells were incubated for 24 hours prior to RNA purification. Single dose experiments in HeP3B were performed at 50 nM, 10 nM, 1 nM, and 0.1 nM final duplex concentration. Single dose experiments in PCH were performed at 50 nM, 10 nM, 1 nM, and 0.1 nM final duplex concentration.


Total RNA Isolation Using DYNABEADS mRNA Isolation Kit


RNA was isolated using an automated protocol on a BioTek-EL406 platform using DYNABEADs (Invitrogen, cat #61012). Briefly, 70 μL of Lysis/Binding Buffer and 10 μL of lysis buffer containing 3 μL of magnetic beads were added to the plate with cells. Plates were incubated on an electromagnetic shaker for 10 minutes at room temperature and then magnetic beads were captured and the supernatant was removed. Bead-bound RNA was then washed 2 times with 150 μL Wash Buffer A and once with Wash Buffer B. Beads were then washed with 150 μL Elution Buffer, re-captured and supernatant removed.


cDNA Synthesis Using ABI High Capacity cDNA Reverse Transcription Kit (Applied Biosystems, Foster City, Calif., Cat #4368813)


Ten μL of a master mix containing 1 μL 10× Buffer, 0.4 μL 25× dNTPs, 1 μL 10× Random primers, 0.5 μL Reverse Transcriptase, 0.5 μL RNase inhibitor and 6.6 μL of H2O per reaction was added to RNA isolated above. Plates were sealed, mixed, and incubated on an electromagnetic shaker for 10 minutes at room temperature, followed by 2 hour incubation at 37° C.


Real Time PCR


Two μL of cDNA were added to a master mix containing 0.5 μL of human or mouse GAPDH TaqMan Probe (ThermoFisher cat 4352934E or 4351309) and 0.5 μL of appropriate HTT probe (commercially available, e.g., from Thermo Fisher) and 5 μL Lightcycler 480 probe master mix (Roche Cat #04887301001) per well in a 384 well plates (Roche cat #04887301001). Real time PCR was done in a LightCycler480 Real Time PCR system (Roche). Each duplex was tested with N=4 and data were normalized to cells transfected with a non-targeting control siRNA. To calculate relative fold change, real time data were analyzed using the AACt method and normalized to assays performed with cells transfected with a non-targeting control siRNA.


The results of the screening of the dsRNA agents listed in Tables 2 and 3 in BE(2)C cells are provided in Table 4.


The results of the screening of the dsRNA agents listed in Tables 5 and 6 in BE(2)C cells are provided in Table 7.


The results of the screening of the dsRNA agents listed in Tables 8 and 9 in BE(2)C cells are provided in Table 10.


The results of the screening of the dsRNA agents listed in Tables 11 and 12 in BE(2)C cells are provided in Table 13.


The results of the screening of the dsRNA agents listed in Tables 14 and 15 in BE(2)C cells are provided in Table 16.


The results of the screening of the dsRNA agents listed in Tables 17 and 18 in BE(2)C cells are provided in Table 19.


The results of the screening of the dsRNA agents listed in Tables 20 and 21 in HeP3B cells are provided in Table 22.


The results of the screening of the dsRNA agents listed in Tables 20 and 21 in primary cynomolgus hepatocytes (PCH) cells are provided in Table 23.


The results of the screening of the dsRNA agents listed in Tables 24 and 25 in BE(2)C cells are provided in Table 26.


The results of the screening of the dsRNA agents listed in Tables 27 and 28 in BE(2)C cells are provided in Table 34.


The results of the screening of the dsRNA agents listed in Tables 29 and 30 in BE(2)C cells are provided in Table 31.









TABLE 1







Abbreviations of nucleotide monomers used in nucleic


acid sequence representation. It will be understood


that these monomers, when present in an oligonucleotide,


are mutually linked by 5′-3′-phosphodiester bonds.








Abbre-



viation
Nucleotide(s)





A
Adenosine-3′-phosphate


Ab
beta-L-adenosine-3′-phosphate


Abs
beta-L-adenosine-3′-phosphorothioate


Af
2′-fluoroadenosine-3′-phosphate


Afs
2′-fluoroadenosine-3′-phosphorothioate


As
adenosine-3′-phosphorothioate


C
cytidine-3′-phosphate


Cb
beta-L-cytidine-3′-phosphate


Cbs
beta-L-cytidine-3′-phosphorothioate


Cf
2′-fluorocytidine-3′-phosphate


Cfs
2′-fluorocytidine-3′-phosphorothioate


Cs
cytidine-3′-phosphorothioate


G
guanosine-3′-phosphate


Gb
beta-L-guanosine-3′-phosphate


Gbs
beta-L-guanosine-3′-phosphorothioate


Gf
2′-fluoroguanosine-3′-phosphate


Gfs
2′-fluoroguanosine-3′-phosphorothioate


Gs
guanosine-3′-phosphorothioate


T
5′-methyluridine-3′-phosphate


Tf
2′-fluoro-5-methyluridine-3′-phosphate


Tfs
2′-fluoro-5-methyluridine-3′-phosphorothioate


Ts
5-methyluridine-3′-phosphorothioate


U
Uridine-3′-phosphate


Uf
2′-fluorouridine-3′-phosphate


Ufs
2′-fluorouridine-3′-phosphorothioate


Us
uridine-3′-phosphorothioate


N
any nucleotide, modified or unmodified


a
2′-O-methyladenosine-3′-phosphate


as
2′-O-methyladenosine-3′-phosphorothioate


c
2′-O-methylcytidine-3′-phosphate


cs
2′-O-methylcytidine-3′-phosphorothioate


g
2′-O-methylguanosine-3′-phosphate


gs
2′-O-methylguanosine-3′-phosphorothioate


t
2′-O-methyl-5-methyluridine-3′-phosphate


ts
2′-O-methyl-5-methyluridine-3′-phosphorothioate


u
2′-O-methyluridine-3′-phosphate


us
2′-O-methyluridine-3′-phosphorothioate


s
phosphorothioate linkage


L10
N-(cholesterylcarboxamidocaproyl)-4-hydroxyprolinol



(Hyp-C6-Chol)


L96
N-[tris(GalNAc-alkyl)-amidodecanoyl)]-4-hydroxyprolinol



Hyp-(GalNAc-alkyl)3


Y34
2-hydroxymethyl-tetrahydrofurane-4-methoxy-3-phosphate



(abasic 2′-OMe furanose)


Y44
inverted abasic DNA



(2-hydroxymethyl-tetrahydrofurane-5-phosphate)


(Agn)
Adenosine-glycol nucleic acid (GNA)



Cytidine-glycol nucleic acid (GNA)


(Ggn)
Guanosine-glycol nucleic acid (GNA)


(Tgn)
Thymidine-glycol nucleic acid (GNA) S-Isomer


P
Phosphate


VP
Vinyl-phosphonate


dA
2′-deoxyadenosine-3′-phosphate


dAs
2′-deoxyadenosine-3′-phosphorothioate


dC
2′-deoxycytidine-3′-phosphate


dCs
2′-deoxycytidine-3′-phosphorothioate


dG
2′-deoxyguanosine-3′-phosphate


dGs
2′-deoxyguanosine-3′-phosphorothioate


dT
2′-deoxythymidine-3′-phosphate


dTs
2′-deoxythymidine-3′-phosphorothioate


dU
2′-deoxyuridine


dUs
2′-deoxyuridine-3′-phosphorothioate


(Ahd)
2′-O-hexadecyl-adenosine-3′-phosphate


(Ahds)
2′-O-hexadecyl-adenosine-3′-phosphorothioate


(Chd)
2′-O-hexadecyl-cytidine-3′-phosphate


(Chds)
2′-O-hexadecyl-cytidine-3′-phosphorothioate


(Ghd)
2′-O-hexadecyl-guanosine-3′-phosphate


(Ghds)
2′-O-hexadecyl-guanosine-3′-phosphorothioate


(Uhd)
2′-O-hexadecyl-uridine-3′-phosphate


(Uhds)
2′-O-hexadecyl-uridine-3′-phosphorothioate


(C2p)
cytidine-2′-phosphate


(G2p)
guanosine-2′-phosphate


(U2p)
uridine-2′-phosphate


(A2p)
adenosine-2′-phosphate
















TABLE 2







Unmodified Sense and Antisense Strand Sequences of Huntingtin (HTT) dsRNA Agents
















Sense
SEQ
Source

Antisense

Source



Duplex
Sequence
ID
and

Sequence

and



Name
5′ to 3′
NO:
Range
Range
5′ to 3′

Range
Range


















AD-
GGACUAAAACUUU
15
NM_010414.3_120
12016-12036
UUUGAUAAAAAGU
216
NM_010414.3_12014-
12014-12036


38411
UUAUCAAA

16-12036_s

UUUAGUCCCU

12036_as



8.1













AD-
CUCUGUUACCAGC
16
NM_010414.3_784
7846-7866
AUGUAGTAGCUGG
217
NM_010414.3_7844-
7844-7866


38054
UACUACAU

6-7866_G21U_s

UAACAGAGAA

7866_C1A_as



3.1













AD-
CCUGUCCCUUCUC
17
NM_010414.3_783
7836-7856
UGGUAACAGAGAA
218
NM_010414.3_7834-
7834-7856


38053
UGUUACCA

6-7856_s

GGGACAGGAU

7856_as



3.1













AD-
UUUGUGAGUCUAG
18
NM_010414.3_119
11916-11936
AUCAGATGCUAGAC
219
NM_010414.3_11914-
11914-11936


38403
CAUCUGAU

16-11936_G21U_s

UCACAAAGC

11936_C1A_as



8.1













AD-
GAUCAGUGAAGUG
19
NM_010414.3_818
8189-8209
AAUCGAACCACUUC
220
NM_010414.3_8187-
8187-8209


38080
GUUCGAUU

9-8209_C21U_s

ACUGAUCAG

8209_G1A_as



5.1













AD-
CCUCUGGUAUGGA
20
NM_010414.3_733
7338-7358
ACCGAGTUUCCAUA
221
NM_010414.3_7336-
7336-7358


38011
AACUCGGU

8-7358_G21U_s

CCAGAGGAG

7358_C1A_as



7.1













AD-
AGAGUCCUUGGUC
21
NM_010414.3_878
8789-8809
AUUAGCTUGACCAA
222
NM_010414.3_8787-
8787-8809


38134
AAGCUAAU

9-8809_G21U_s

GGACUCUGU

8809_C1A_as



1.1













AD-
UUCAACCUAAGCC
22
NM_010414.3_652
6525-6545
AGCCAAAAGGCUU
223
NM_010414.3_6523-
6523-6545


37942
UUUUGGCU

5-6545_s

AGGUUGAACU

6545_as



6.1













AD-
UGACAGAACUACG
23
NM_010414.3_827
8272-8292
ACACUCTCCGUAGU
224
NM_010414.3_8270-
8270-8292


38088
GAGAGUGU

2-8292_C21U_s

UCUGUCAGC

8292_G1A_as



8.1













AD-
CUCCAUGUGUGCU
24
NM_010414.3_128
12871-12891
AUGUGACAAGCAC
225
NM_010414.3_12869-
12869-12891


38484
UGUCACAU

71-12891_C21U_s

ACAUGGAGGG

12891_G1A_as



1.1













AD-
CGAACGUACCCAG
25
NM_010414.3_823
8237-8257
AUUUCAAACUGGG
226
NM_010414.3_8235-
8235-8257


38085
UUUGAAAU

7-8257_s

UACGUUCGGU

8257_as



3.1













AD-
AUACCACAUCAUA
26
NM_010414.3_673
6739-6759
AAGACUGGUAUGA
227
NM_010414.3_6737-
6737-6759


37960
CCAGUCUU

9-6759_C21U_s

UGUGGUAUCA

6759_G1A_as



2.1













AD-
CUGCAUGUGACAA
27
NM_010414.3_101
10129-10149
AAUAAACUUUGUC
228
NM_010414.3_10127-
10127-10149


38248
AGUUUAUU

29-10149_G21U_s

ACAUGCAGCA

10149_C1A_as



4.1













AD-
UUCACUCCUGUUC
28
NM_010414.3_810
8104-8124
GAAACUGCGAACA
229
NM_010414.3_8102-
8102-8124


38074
GCAGUUUC

4-8124_s

GGAGUGAAUA

8124_as



1.1













AD-
CUGUCCCUUCUCU
29
NM_010414.3_783
7837-7857
AUGGUAACAGAGA
230
NM_010414.3_7835-
7835-7857


38053
GUUACCAU

7-7857_G21U_s

AGGGACAGGA

7857_C1A_as



4.1













AD-
UCUGAGAAUGGGA
30
NM_010414.3_119
11931-11951
AAAUUGAGUCCCA
231
NM_010414.3_11929-
11929-11951


38405
CUCAAUUU

31-11951_s

UUCUCAGAUG

11951_as



3.1













AD-
UCAGAAGAUGAGA
31
NM_010414.3_829
8298-8318
AAUGAGGAUCUCA
232
NM_010414.3_8296-
8296-8318


38091
UCCUCAUU

8-8318_s

UCUUCUGAAG

8318_as



6.1













AD-
CCACUGAAGGCUC
32
NM_010414.3_770
7704-7724
AGUAUCGAGAGCC
233
NM_010414.3_7702-
7702-7724


38040
UCGAUACU

4-7724_C21U_s

UUCAGUGGCU

7724_G1A_as



2.1













AD-
GAGUCUGUGAUUG
33
NM_010414.3_894
8946-8966
AAUAGCTACAAUCA
234
NM_010414.3_8944-
8944-8966


38146
UAGCUAUU

6-8966_G21U_s

CAGACUCGC

8966_C1A_as



4.1













AD-
UCAUGGCAUUUGA
34
NM_010414.3_688
6888-6908
AUCAUGGAUCAAA
235
NM_010414.3_6886-
6886-6908


37972
UCCAUGAU

8-6908_G21U_s

UGCCAUGACA

6908_C1A_as



9.1













AD-
ACGGCAUCCUCUA
35
NM_010414.3_845
8452-8472
ACAACACAUAGAG
236
NM_010414.3_8450-
8450-8472


38106
UGUGUUGU

2-8472_G21U_s

GAUGCCGUGC

8472_C1A_as



5.1













AD-
UGAGCGAGAUUGC
36
NM_010414.3_656
6565-6585
AGCCAUTAGCAAUC
237
NM_010414.3_6563-
6563-6585


37946
UAAUGGCU

5-6585_C21U_s

UCGCUCAUG

6585_G1A_as



6.1













AD-
CGCUGACAGAACU
37
NM_010414.3_826
8269-8289
AUCUCCGUAGUUCU
238
NM_010414.3_8267-
8267-8289


38088
ACGGAGAU

9-8289_G21U_s

GUCAGCGUC

8289_C1A_as



5.1













AD-
AAGCAGGUCACAU
38
NM_010414.3_709
7097-7117
AUUGGAGUAUGUG
239
NM_010414.3_7095-
7095-7117


37989
ACUCCAAU

7-7117_G21U_s

ACCUGCUUUC

7117_C1A_as



7.1













AD-
CCAGUUGUUAGUG
39
NM_010414.3_851
8511-8531
AAGAUAGUCACUA
240
NM_010414.3_8509-
8509-8531


38112
ACUAUCUU

1-8531_G21U_s

ACAACUGGAA

8531_C1A_as



4.1













AD-
UCAGUGAAGUGGU
40
NM_010414.3_819
8191-8211
AAGAUCGAACCACU
241
NM_010414.3_8189-
8189-8211


38080
UCGAUCUU

1-8211_C21U_s

UCACUGAUC

8211_G1A_as



7.1













AD-
AUCAGUGAAGUGG
41
NM_010414.3_819
8190-8210
AGAUCGAACCACUU
242
NM_010414.3_8188-
8188-8210


38080
UUCGAUCU

0-8210_s

CACUGAUCA

8210_as



6.1













AD-
CCAUGUGUGCUUG
42
NM_010414.3_128
12873-12893
AAGUGUGACAAGC
243
NM_010414.3_12871-
12871-12893


38484
UCACACUU

73-12893_C21U_s

ACACAUGGAG

12893_G1A_as



3.1













AD-
UUUCAGCAUCUGU
43
NM_010414.3_865
8653-8673
UCUGUATCACAGAU
244
NM_010414.3_8651-
8651-8673


38125
GAUACAGA

3-8673_s

GCUGAAAAU

8673_as



7.1













AD-
AAGGCUCUCGAUA
44
NM_010414.3_771
7710-7730
AAAUCUGGUAUCG
245
NM_010414.3_7708-
7708-7730


38040
CCAGAUUU

0-7730_s

AGAGCCUUCA

7730_as



8.1













AD-
UAGAUGACUUCUU
45
NM_010414.3_905
9052-9072
AAGGUGGAAAGAA
246
NM_010414.3_9050-
9050-9072


38157
UCCACCUU

2-9072_C21U_s

GUCAUCUAGG

9072_G1A_as



0.1













AD-
GUUAACAGCUAUA
46
NM_010414.3_731
7314-7334
AACACGAGUAUAG
247
NM_010414.3_7312-
7312-7334


38009
CUCGUGUU

4-7334_G21U_s

CUGUUAACUA

7334_C1A_as



3.1













AD-
UCCAACCUCAAAG
47
NM_010414.3_853
8535-8555
AGCUAUTCCUUUGA
248
NM_010414.3_8533-
8533-8555


38114
GAAUAGCU

5-8555_C21U_s

GGUUGGACA

8555_G1A_as



8.1













AD-
UUGCUAAUGGCCA
48
NM_010414.3_657
6574-6594
AACUCUTUUGGCCA
249
NM_010414.3_6572-
6572-6594


37947
AAAGAGUU

4-6594_C21U_s

UUAGCAAUC

6594_G1A_as



5.1













AD-
CUGCUGUCCAACC
49
NM_010414.3_852
8529-8549
UCCUUUGAGGUUG
250
NM_010414.3_8527-
8527-8549


38114
UCAAAGGA

9-8549_s

GACAGCAGAU

8549_as



2.1













AD-
CCGAACGUACCCA
50
NM_010414.3_823
8236-8256
UUUCAAACUGGGU
251
NM_010414.3_8234-
8234-8256


38085
GUUUGAAA

6-8256_s

ACGUUCGGUG

8256_as



2.1













AD-
AAGUAGACUCAGA
51
NM_010414.3_713
7135-7155
UUUGUATAUCUGA
252
NM_010414.3_7133-
7133-7155


37993
UAUACAAA

5-7155_s

GUCUACUUCC

7155_as



5.1













AD-
GCUCAUUCCAGUU
52
NM_010414.3_850
8504-8524
UCACUAACAACUGG
253
NM_010414.3_8502-
8502-8524


38111
GUUAGUGA

4-8524_s

AAUGAGCUG

8524_as



7.1













AD-
CAGUGAAGUGGUU
53
NM_010414.3_819
8192-8212
AGAGAUCGAACCAC
254
NM_010414.3_8190-
8190-8212


38080
CGAUCUCU

2-8212_s

UUCACUGAU

8212_as



8.1













AD-
GAGAUUGCUAAUG
54
NM_010414.3_657
6570-6590
AUUUUGGCCAUUA
255
NM_010414.3_6568-
6568-6590


37947
GCCAAAAU

0-6590_G21U_s

GCAAUCUCGC

6590_C1A_as



1.1













AD-
GAGUCCUUGGUCA
55
NM_010414.3_879
8790-8810
ACUUAGCUUGACCA
256
NM_010414.3_8788-
8788-8810


38134
AGCUAAGU

0-8810_s

AGGACUCUG

8810_as



2.1













AD-
GCUCUCGAUACCA
56
NM_010414.3_771
7713-7733
UCCAAATCUGGUAU
257
NM_010414.3_7711-
7711-7733


38041
GAUUUGGA

3-7733_s

CGAGAGCCU

7733_as



1.1













AD-
CAUGUGACAAAGU
57
NM_010414.3_101
10132-10152
UUCCAUAAACUUU
258
NM_010414.3_10130-
10130-10152


38248
UUAUGGAA

32-10152_s

GUCACAUGCA

10152_as



7.1













AD-
UCCUCUGGUAUGG
58
NM_010414.3_733
7337-7357
ACGAGUTUCCAUAC
259
NM_010414.3_7335-
7335-7357


38011
AAACUCGU

7-7357_G21U_s

CAGAGGAGG

7357_C1A_as



6.1













AD-
CAACCUCAAAGGA
59
NM_010414.3_853
8537-8557
UGGGCUAUUCCUU
260
NM_010414.3_8535-
8535-8557


38115
AUAGCCCA

7-8557_s

UGAGGUUGGA

8557_as



0.1













AD-
UGCUAAUGGCCAA
60
NM_010414.3_657
6575-6595
AGACUCTUUUGGCC
261
NM_010414.3_6573-
6573-6595


37947
AAGAGUCU

5-6595_C21U_s

AUUAGCAAU

6595_G1A_as



6.1













AD-
CCUAUGCCCGUGU
61
NM_010414.3_100
10089-10109
AACACUTUACACGG
262
NM_010414.3_10087-
10087-10109


38244
AAAGUGUU

89-10109_G21U_s

GCAUAGGAA

10109_C1A_as



4.1













AD-
GACGCUGACAGAA
62
NM_010414.3_826
8267-8287
AUCCGUAGUUCUG
263
NM_010414.3_8265-
8265-8287


38088
CUACGGAU

7-8287_G21U_s

UCAGCGUCAG

8287_C1A_as



3.1













AD-
ACUCAGAUAUACA
63
NM_010414.3_714
7141-7161
UGAGGUTUUGUAU
264
NM_010414.3_7139-
7139-7161


37994
AAACCUCA

1-7161_s

AUCUGAGUCU

7161_as



1.1













AD-
UUCUUUCCACCUC
64
NM_010414.3_906
9060-9080
AACAUCTUGAGGUG
265
NM_010414.3_9058-
9058-9080


38157
AAGAUGUU

0-9080_C21U_s

GAAAGAAGU

9080_G1A_as



8.1













AD-
CAGCGAGUCUGUG
65
NM_010414.3_894
8942-8962
ACUACAAUCACAGA
266
NM_010414.3_8940-
8940-8962


38146
AUUGUAGU

2-8962_C21U_s

CUCGCUGUC

8962_G1A_as



0.1













AD-
AGACUCAGAUAUA
66
NM_010414.3_713
7139-7159
AGGUUUTGUAUAU
267
NM_010414.3_7137-
7137-7159


37993
CAAAACCU

9-7159_s

CUGAGUCUAC

7159_as



9.1













AD-
UUGUGAGUCUAGC
67
NM_010414.3_119
11917-11937
UCUCAGAUGCUAG
268
NM_010414.3_11915-
11915-11937


38403
AUCUGAGA

17-11937_s

ACUCACAAAG

11937_as



9.1













AD-
UUGAUAUUCACUC
68
NM_010414.3_809
8098-8118
ACGAACAGGAGUG
269
NM_010414.3_8096-
8096-8118


38073
CUGUUCGU

8-8118_C21U_s

AAUAUCAACC

8118_G1A_as



5.1













AD-
UAGCUACUCAGUC
69
NM_010414.3_101
10188-10208
ACCGACTAGACUGA
270
NM_010414.3_10186-
10186-10208


38252
UAGUCGGU

88-10208_G21U_s

GUAGCUACA

10208_C1A_as



5.1













AD-
CCUGUGUCUCCAG
70
NM_010414.3_805
8058-8078
AGAAUUGACUGGA
271
NM_010414.3_8056-
8056-8078


38071
UCAAUUCU

8-8078_C21U_s

GACACAGGUG

8078_G1A_as



3.1













AD-
AGGGAACAUGCAC
71
NM_010414.3_969
9696-9716
ACAACATAGUGCAU
272
NM_010414.3_9694-
9694-9716


38214
UAUGUUGU

6-9716_G21U_s

GUUCCCUGC

9716_C1A_as



9.1













AD-
AGCCAUUGCAGUA
72
NM_010414.3_705
7055-7075
ACAGGUTGUACUGC
273
NM_010414.3_7053-
7053-7075


37985
CAACCUGU

5-7075_G21U_s

AAUGGCUUC

7075_C1A_as



5.1













AD-
UGCAAGGUUCCCU
73
NM_010414.3_112
11251-11271
UGUUUGGUAGGGA
274
NM_010414.3_11249-
11249-11271


38350
ACCAAACA

51-11271_s

ACCUUGCAUC

11271_as



8.1













AD-
ACAGAUGUGUGGA
74
NM_010414.3_866
8669-8689
AGCAUUACUCCACA
275
NM_010414.3_8667-
8667-8689


38127
GUAAUGCU

9-8689_s

CAUCUGUAU

8689_as



3.1













AD-
GCUGCAUGUGACA
75
NM_010414.3_101
10128-10148
AUAAACTUUGUCAC
276
NM_010414.3_10126-
10126-10148


38248
AAGUUUAU

28-10148_s

AUGCAGCAC

10148_as



3.1













AD-
GUGCUGCAUGUGA
76
NM_010414.3_101
10126-10146
AAACUUTGUCACAU
277
NM_010414.3_10124-
10124-10146


38248
CAAAGUUU

26-10146_s

GCAGCACAG

10146_as



1.1













AD-
UGCAUGUGACAAA
77
NM_010414.3_101
10130-10150
ACAUAAACUUUGU
278
NM_010414.3_10128-
10128-10150


38248
GUUUAUGU

30-10150_G21U_s

CACAUGCAGC

10150_C1A_as



5.1













AD-
AGUUAACAGCUAU
78
NM_010414.3_731
7313-7333
ACACGAGUAUAGC
279
NM_010414.3_7311-
7311-7333


38009
ACUCGUGU

3-7333_s

UGUUAACUAG

7333_as



2.1













AD-
GCUCGGAGUUCAA
79
NM_010414.3_651
6517-6537
AGCUUAGGUUGAA
280
NM_010414.3_6515-
6515-6537


37942
CCUAAGCU

7-6537_C21U_s

CUCCGAGCUC

6537_G1A_as



0.1













AD-
AUCCUGAUCAGUG
80
NM_010414.3_818
8184-8204
AACCACTUCACUGA
281
NM_010414.3_8182-
8182-8204


38080
AAGUGGUU

4-8204_s

UCAGGAUGA

8204_as



0.1













AD-
CAGUCAGCUUUGU
81
NM_010414.3_119
11908-11928
AUAGACTCACAAAG
282
NM_010414.3_11906-
11906-11928


38403
GAGUCUAU

08-11928_G21U_s

CUGACUGUA

11928_C1A_as



0.1













AD-
GAUAUUCACUCCU
82
NM_010414.3_810
8100-8120
AUGCGAACAGGAG
283
NM_010414.3_8098-
8098-8120


38073
GUUCGCAU

0-8120_G21U_s

UGAAUAUCAA

8120_C1A_as



7.1













AD-
UUGAUGCACUCUC
83
NM_010414.3_104
10463-10483
AAGACUAGGAGAG
284
NM_010414.3_10461-
10461-10483


38278
CUAGUCUU

63-10483_C21U_s

UGCAUCAACA

10483_G1A_as



0.1













AD-
CAGAUAUACAAAA
84
NM_010414.3_714
7144-7164
AACUGAGGUUUUG
285
NM_010414.3_7142-
7142-7164


37994
CCUCAGUU

4-7164_C21U_s

UAUAUCUGAG

7164_G1A_as



4.1













AD-
UGGCAUGAGCGAG
85
NM_010414.3_656
6560-6580
UUAGCAAUCUCGCU
286
NM_010414.3_6558-
6558-6580


37946
AUUGCUAA

0-6580_s

CAUGCCAAG

6580_as



1.1













AD-
ACAGGUGGAUGUG
86
NM_010414.3_935
9353-9373
AAAAGGTUCACAUC
287
NM_010414.3_9351-
9351-9373


38185
AACCUUUU

3-9373_s

CACCUGUUC

9373_as



6.1













AD-
GAGCUCGGAGUUC
87
NM_010414.3_651
6515-6535
AUUAGGTUGAACUC
288
NM_010414.3_6513-
6513-6535


37941
AACCUAAU

5-6535_G21U_s

CGAGCUCAU

6535_C1A_as



8.1













AD-
UGUCCCUUUGUAU
88
NM_010414.3_106
10607-10627
UGCAGAAGAUACA
289
NM_010414.3_10605-
10605-10627


38292
CUUCUGCA

07-10627_s

AAGGGACAGA

10627_as



4.1













AD-
ACUCCUCAUGGUA
89
NM_010414.3_115
11578-11598
UGAACATCUACCAU
290
NM_010414.3_11576-
11576-11598


38375
GAUGUUCA

78-11598_s

GAGGAGUAA

11598_as



9.1













AD-
AGGCUCUCGAUAC
90
NM_010414.3_771
7711-7731
CAAAUCTGGUAUCG
291
NM_010414.3_7709-
7709-7731


38040
CAGAUUUG

1-7731_s

AGAGCCUUC

7731_as



9.1













AD-
CUCGGAGUUCAAC
91
NM_002111.8_656
6562-6582
AGGCUUAGGUUGA
292
NM_010414.3_6516-
6562-6582


37938
CUAAGCCU

2-6582_s

ACUCCGAGCU

6538_as



0.1













AD-
CUGUCCAACCUCA
92
NM_010414.3_853
8532-8552
UAUUCCTUUGAGGU
293
NM_010414.3_8530-
8530-8552


38114
AAGGAAUA

2-8552_s

UGGACAGCA

8552_as



5.1













AD-
CUGAGAAUGGGAC
93
NM_010414.3_119
11932-11952
AAAAUUGAGUCCC
294
NM_010414.3_11930-
11930-11952


38405
UCAAUUUU

32-11952_s

AUUCUCAGAU

11952_as



4.1













AD-
CGUCAUCCUGAUC
94
NM_010414.3_818
8180-8200
ACUUCACUGAUCAG
295
NM_010414.3_8178-
8178-8200


38079
AGUGAAGU

0-8200_s

GAUGACGGG

8200_as



6.1













AD-
CAAAGGUGUCUCU
95
NM_010414.3_106
10663-10683
AAUAGCTCAGAGAC
296
NM_010414.3_10661-
10661-10683


38296
GAGCUAUU

63-10683_G21U_s

ACCUUUGGG

10683_C1A_as



0.1













AD-
CUACUACAGGUGC
96
NM_010414.3_785
7858-7878
UGAUAAGAGCACC
297
NM_010414.3_7856-
7856-7878


38055
UCUUAUCA

8-7878_s

UGUAGUAGCU

7878_as



5.1













AD-
GGCAUGAGCGAGA
97
NM_010414.3_656
6561-6581
AUUAGCAAUCUCGC
298
NM_010414.3_6559-
6559-6581


37946
UUGCUAAU

1-6581_s

UCAUGCCAA

6581_as



2.1













AD-
UGGCAGGAGUGCU
98
NM_010414.3_966
9665-9685
AAUUGCAAAGCAC
299
NM_010414.3_9663-
9663-9685


38211
UUGCAAUU

5-9685_G21U_s

UCCUGCCAUU

9685_C1A_as



8.1













AD-
CUCGAUACCAGAU
99
NM_010414.3_771
7716-7736
UCUUCCAAAUCUGG
300
NM_010414.3_7714-
7714-7736


38041
UUGGAAGA

6-7736_s

UAUCGAGAG

7736_as



4.1













AD-
UAGUUAACAGCUA
100
NM_010414.3_731
7312-7332
AACGAGTAUAGCUG
301
NM_010414.3_7310-
7310-7332


38009
UACUCGUU

2-7332_G21U_s

UUAACUAGG

7332_C1A_as



1.1













AD-
UCCUCAUGGUAGA
101
NM_010414.3_115
11580-11600
UAUGAACAUCUACC
302
NM_010414.3_11578-
11578-11600


38376
UGUUCAUA

80-11600_s

AUGAGGAGU

11600_as



1.1













AD-
AUUCACUCCUGUU
102
NM_010414.3_810
8103-8123
AAACUGCGAACAG
303
NM_010414.3_8101-
8101-8123


38074
CGCAGUUU

3-8123_s

GAGUGAAUAU

8123_as



0.1













AD-
AGAUAUACAAAAC
103
NM_010414.3_714
7145-7165
UGACUGAGGUUUU
304
NM_010414.3_7143-
7143-7165


37994
CUCAGUCA

5-7165_s

GUAUAUCUGA

7165_as



5.1













AD-
GUUCAACCUAAGC
104
NM_010414.3_652
6524-6544
ACCAAAAGGCUUA
305
NM_010414.3_6522-
6522-6544


37942
CUUUUGGU

4-6544_C21U_s

GGUUGAACUC

6544_G1A_as



5.1













AD-
GCUGACAGAACUA
105
NM_010414.3_827
8270-8290
ACUCUCCGUAGUUC
306
NM_010414.3_8268-
8268-8290


38088
CGGAGAGU

0-8290_s

UGUCAGCGU

8290_as



6.1













AD-
CUGCACAUGUACC
106
NM_010414.3_123
12307-12327
UCCUGAAGGGUAC
307
NM_010414.3_12305-
12305-12327


38436
CUUCAGGA

07-12327_s

AUGUGCAGAC

12327_as



6.1













AD-
UCAUCCUGAUCAG
107
NM_010414.3_818
8182-8202
ACACUUCACUGAUC
308
NM_010414.3_8180-
8180-8202


38079
UGAAGUGU

2-8202_G21U_s

AGGAUGACG

8202_C1A_as



8.1













AD-
GCAUGAGCGAGAU
108
NM_010414.3_656
6562-6582
AAUUAGCAAUCUC
309
NM_010414.3_6560-
6560-6582


37946
UGCUAAUU

2-6582_G21U_s

GCUCAUGCCA

6582_C1A_as



3.1













AD-
CAGGGAACAUGCA
109
NM_010414.3_969
9695-9715
AAACAUAGUGCAU
310
NM_010414.3_9693-
9693-9715


38214
CUAUGUUU

5-9715_G21U_s

GUUCCCUGCA

9715_C1A_as



8.1













AD-
UUGUUCUUUCUCG
110
NM_002111.8_522
5223-5243
ACUGAATACGAGAA
311
NM_002111.8_5221-
5221-5243


35775
UAUUCAGU

3-5243_G21U_s

AGAACAAUA

5243_C1A_as



4.1










AD-
UGCAGAUAAGAAU
i11
NM_002111.8_438
4387-4407
UGAAUAGCAUUCU
312
NM_002111.8_4385-
4385-4407


35693
GCUAUUCA

7-4407_s

UAUCUGCACG

4407_as



8.1













AD-
CAAACUCUAUAAA
112
NM_002111.8_234
2347-2367
AGAGGAACUUUAU
313
NM_002111.8_2345-
2345-2367


35505
GUUCCUCU

7-2367_s

AGAGUUUGCU

2367_as



4.1













AD-
AAGAUAUUGUUCU
113
NM_002111.8_521
5217-5237
UACGAGAAAGAAC
314
NM_002111.8_5215-
5215-5237


35774
UUCUCGUA

7-5237_s

AAUAUCUUCA

5237_as



8.1













AD-
CUGAAACUUCUCA
114
NM_002111.8_303
3035-3055
AUCAUGCAUGAGA
315
NM_002111.8_3033-
3033-3055


35570
UGCAUGAU

5-3055_G21U_s

AGUUUCAGGU

3055_C1A_as



4.1













AD-
AGAAUGCUAUUCA
115
NM_002111.8_439
4395-4415
UGUGAUTAUGAAU
316
NM_002111.8_4393-
4393-4415


35694
UAAUCACA

5-4415_s

AGCAUUCUUA

4415_as



6.1













AD-
UCAACAAAGUUAU
116
NM_002111.8_603
603-623
AAGCUUTGAUAACU
317
NM_002111.8_601-
601-623


35349
CAAAGCUU

-623_s

UUGUUGAGG

623_as



9.1













AD-
GAACUGACGUUAC
117
NM_002111.8_122
1226-1246
UGUAUGAUGUAAC
318
NM_002111.8_1224-
1224-1246


35407
AUCAUACA

6-1246_s

GUCAGUUCAU

1246_as



6.1













AD-
CCUGAAAUCCUGC
118
NM_002111.8_403
4039-4059
AGACUAAAGCAGG
319
NM_002111.8_4037-
4037-4059


35663
UUUAGUCU

9-4059_G21U_s

AUUUCAGGUA

4059_C1A_as



0.1













AD-
CAUUGUCUGACAA
119
NM_002111.8_455
455-475
UUCACATAUUGUCA
320
NM_002111.8_453-
453-475


35335
UAUGUGAA

-475_s

GACAAUGAU

475_as



1.1













AD-
CAGUCGUACUCAG
120
NM_002111.8_752
7528-7548
UCUUCAAACUGAG
321
NM_002111.8_7526-
7526-7548


35980
UUUGAAGA

8-7548_s

UACGACUGGU

7548_as



3.1













AD-
AGCUACUCAGUCU
121
NM_010414.3_101
10189-10209
ACCCGACUAGACUG
322
NM_010414.3_10187-
10187-10209


38252
AGUCGGGU

89-10209_C21U_s

AGUAGCUAC

10209_G1A_as



6.1













AD-
UUUGAACCUCUUG
122
NM_002111.8_442
4424-4444
UUUUAUAACAAGA
323
NM_002111.8_4422-
4422-4444


35697
UUAUAAAA

4-4444_s

GGUUCAAACA

4444_as



5.1













AD-
GUUUGAACCUCUU
123
NM_002111.8_442
4423-4443
UUUAUAACAAGAG
324
NM_002111.8_4421-
4421-4443


35697
GUUAUAAA

3-4443_s

GUUCAAACAA

4443_as



4.1













AD-
CUUGAACUACAUC
124
NM_002111.8_241
2410-2430
ACAUGATCGAUGUA
325
NM_002111.8_2408-
2408-2430


35511
GAUCAUGU

0-2430_G21U_s

GUUCAAGAU

2430_C1A_as



7.1













AD-
UGUUCUUUCUCGU
125
NM_002111.8_522
5224-5244
UCCUGAAUACGAG
326
NM_002111.8_5222-
5222-5244


35775
AUUCAGGA

4-5244_s

AAAGAACAAU

5244_as



5.1













AD-
GCAGCUUCUAGAC
126
NM_002111.8_377
3773-3793
AUCAGATUGUCUAG
327
NM_002111.8_3771-
3771-3793


35638
AAUCUGAU

3-3793_s

AAGCUGCAC

3793_as



2.1













AD-
UGUUUGAACCUCU
127
NM_002111.8_442
4422-4442
UUAUAACAAGAGG
328
NM_002111.8_4420-
4420-4442


35697
UGUUAUAA

2-4442_s

UUCAAACAAA

4442_as



3.1













AD-
GAAAACCUUUCAA
128
NM_002111.8_603
6035-6055
AGUUGGAGUUGAA
329
NM_002111.8_6033-
6033-6055


35848
CUCCAACU

5-6055_C21U_s

AGGUUUUCAC

6055_G1A_as



8.1













AD-
ACUGACGUUACAU
129
NM_002111.8_122
1228-1248
UGUGUATGAUGUA
330
NM_002111.8_1226-
1226-1248


35407
CAUACACA

8-1248_s

ACGUCAGUUC

1248_as



8.1













AD-
CCUGCUUUAGUCG
130
NM_002111.8_404
4047-4067
UUGGUUCUCGACU
331
NM_002111.8_4045-
4045-4067


35663
AGAACCAA

7-4067_s

AAAGCAGGAU

4067_as



8.1













AD-
UGGAUUCAGAUCA
131
NM_002111.8_454
4545-4565
UAAACACCUGAUCU
332
NM_002111.8_4543-
4543-4565


35709
GGUGUUUA

5-4565_s

GAAUCCAGA

4565_as



6.1













AD-
CUGCUGACUUGUU
132
NM_002111.8_953
9536-9556
AUUUCGTAAACAAG
333
NM_002111.8_9534-
9534-9556


36149
UACGAAAU

6-9556_s

UCAGCAGCC

9556_as



2.1













AD-
UGGUGUUGAUGCA
133
NM_010414.3_104
10458-10478
UAGGAGAGUGCAU
334
NM_010414.3_10456-
10456-10478


38277
CUCUCCUA

58-10478_s

CAACACCAGG

10478_as



5.1













AD-
CAGAUCAUUGGAA
134
NM_002111.8_468
4688-4708
UUUAGGAAUUCCA
335
NM_002111.8_4686-
4686-4708


35723
UUCCUAAA

8-4708_s

AUGAUCUGUU

4708_as



9.1













AD-
GUUCUUUCUCGUA
135
NM_002111.8_522
5225-5245
AUCCUGAAUACGA
336
NM_002111.8_5223-
5223-5245


35775
UUCAGGAU

5-5245_G21U_s

GAAAGAACAA

5245_C1A_as



6.1













AD-
AGCUUCUAGACAA
136
NM_002111.8_377
3775-3795
AUAUCAGAUUGUC
337
NM_002111.8_3773-
3773-3795


35638
UCUGAUAU

5-3795_C21U_s

UAGAAGCUGC

3795_G1A_as



4.1













AD-
AUUUUCAAGGUUU
137
NM_002111.8_536
5368-5388
UGUAAUAGAAACC
338
NM_002111.8_5366-
5366-5388


35787
CUAUUACA

8-5388_s

UUGAAAAUGU

5388_as



9.1













AD-
CUUCUAGACAAUC
138
NM_002111.8_377
3777-3797
AGGUAUCAGAUUG
339
NM_002111.8_3775-
3775-3797


35638
UGAUACCU

7-3797_s

UCUAGAAGCU

3797_as



6.1













AD-
AGCUUUAAAACAG
139
NM_002111.8_444
4444-4464
AUCGUGTACUGUUU
340
NM_002111.8_4442-
4442-4464


35699
UACACGAU

4-4464_C21U_s

UAAAGCUUU

4464_G1A_as



5.1













AD-
GCUUUGAUGGAUU
140
NM_002111.8_620
620-640
AAGAUUAGAAUCC
341
NM_002111.8_618-
618-640


35351
CUAAUCUU

-640_s

AUCAAAGCUU

640_as



6.1













AD-
CUGACGUUACAUC
141
NM_002111.8_122
1229-1249
AUGUGUAUGAUGU
342
NM_002111.8_1227-
1227-1249


35407
AUACACAU

9-1249_G21U_s

AACGUCAGUU

1249_C1A_as



9.1













AD-
CUGCUUUAGUCGA
142
NM_002111.8_404
4048-4068
AUUGGUTCUCGACU
343
NM_002111.8_4046-
4046-4068


35663
GAACCAAU

8-4068_s

AAAGCAGGA

4068_as



9.1













AD-
UGUUCGUCACUCC
143
NM_002111.8_511
5118-5138
UUGUGUTUGGAGU
344
NM_002111.8_5116-
5116-5138


35764
AAACACAA

8-5138_s

GACGAACAUA

5138_as



9.1













AD-
UGACUUGUUUACG
144
NM_002111.8_954
9540-9560
AGACAUTUCGUAAA
345
NM_002111.8_9538-
9538-9560


36149
AAAUGUCU

0-9560_C21U_s

CAAGUCAGC

9560_G1A_as



6.1













AD-
GUGUUGAUGCACU
145
NM_010414.3_104
10460-10480
ACUAGGAGAGUGC
346
NM_010414.3_10458-
10458-10480


38277
CUCCUAGU

60-10480_s

AUCAACACCA

10480_as



7.1













AD-
GAUUCUAAUCUUC
146
NM_002111.8_629
629-649
UAACCUTGGAAGAU
347
NM_002111.8_627-
627-649


35352
CAAGGUUA

-649_s

UAGAAUCCA

649_as



5.1













AD-
CUCGUUGUGAAAA
147
NM_002111.8_602
6027-6047
UUGAAAGGUUUUC
348
NM_002111.8_6025-
6025-6047


35848
CCUUUCAA

7-6047_s

ACAACGAGAC

6047_as



0.1













AD-
UCUAGACAAUCUG
148
NM_002111.8_377
3779-3799
UGAGGUAUCAGAU
349
NM_002111.8_3777-
3777-3799


35638
AUACCUCA

9-3799_s

UGUCUAGAAG

3799_as



8.1













AD-
CAACAAAGUUAUC
149
NM_002111.8_604
604-624
AAAGCUTUGAUAAC
350
NM_002111.8_602-
602-624


35350
AAAGCUUU

-624_s

UUUGUUGAG

624_as



0.1













AD-
CAGGUCCUGUUAC
150
NM_002111.8_379
3798-3818
UACUUGTUGUAACA
351
NM_002111.8_3796-
3796-3818


35640
AACAAGUA

8-3818_s

GGACCUGAG

3818_as



7.1













AD-
GUUCAGUUACGGG
151
NM_002111.8_451
4517-4537
AUAAUUAACCCGU
352
NM_002111.8_4515-
4515-4537


35706
UUAAUUAU

7-4537_C21U_s

AACUGAACCA

4537_G1A_as



8.1













AD-
CCAGUCGUACUCA
152
NM_002111.8_752
7527-7547
AUUCAAACUGAGU
353
NM_002111.8_7525-
7525-7547


35980
GUUUGAAU

7-7547_G21U_s

ACGACUGGUC

7547_C1A_as



2.1













AD-
UCUGAAAUUGUGU
153
NM_002111.8_188
1886-1906
ACCGUCTAACACAA
354
NM_002111.8_1884-
1884-1906


35463
UAGACGGU

6-1906_s

UUUCAGAAC

1906_as



8.1













AD-
GGCAACUGUUUGU
154
NM_002111.8_407
4072-4092
UGUUGAACACAAA
355
NM_002111.8_4070-
4070-4092


35666
GUUCAACA

2-4092_s

CAGUUGCCAU

4092_as



3.1













AD-
UUCGUCACUCCAA
155
NM_002111.8_512
5120-5140
AAUUGUGUUUGGA
356
NM_002111.8_5118-
5118-5140


35765
ACACAAUU

0-5140_G21U_s

GUGACGAACA

5140_C1A_as



1.1













AD-
CUGACAUUUCCGU
156
NM_002111.8_103
10314-10334
AAUGUACAACGGA
357
NM_002111.8_10312-
10312-10334


36208
UGUACAUU

14-10334_G21U_s

AAUGUCAGCG

10334_C1A_as



5.1













AD-
CCACUGCCAAGUG
157
NM_010414.3_122
12270-12290
AUAAAGGGCACUU
358
NM_010414.3_12268-
12268-12290


38432
CCCUUUAU

70-12290_s

GGCAGUGGCU

12290_as



9.1













AD-
CAGGUUUAUGAAC
158
NM_002111.8_121
1217-1237
UAACGUCAGUUCA
359
NM_002111.8_1215-
1215-1237


35406
UGACGUUA

7-1237_s

UAAACCUGGA

1237_as



7.1













AD-
AUUCUAAUCUUCC
159
NM_002111.8_630
630-650
AUAACCTUGGAAGA
360
NM_002111.8_628-
628-650


35352
AAGGUUAU

-650_C21U_s

UUAGAAUCC

650_G1A_as



6.1













AD-
CAAGUAAAUCCUC
160
NM_002111.8_381
3813-3833
ACAGUGAUGAGGA
361
NM_002111.8_3811-
3811-3833


35642
AUCACUGU

3-3833_G21U_s

UUUACUUGUU

3833_C1A_as



2.1













AD-
UUGAUGGAUUCUA
161
NM_002111.8_623
623-643
UGGAAGAUUAGAA
362
NM_002111.8_621-
621-643


35351
AUCUUCCA

-643_s

UCCAUCAAAG

643_as



9.1













AD-
CUUCAUACCUCAA
162
NM_002111.8_385
3852-3872
AAUGCAGUUUGAG
363
NM_002111.8_3850-
3850-3872


35644
ACUGCAUU

2-3872_G21U_s

GUAUGAAGGA

3872_C1A_as



3.1













AD-
UAUUGGCUUUGUA
163
NM_002111.8_456
4564-4584
UGUUUCAAUACAA
364
NM_002111.8_4562-
4562-4584


35711
UUGAAACA

4-4584_s

AGCCAAUAAA

4584_as



5.1













AD-
UGCUGACUUGUUU
164
NM_002111.8_953
9537-9557
AAUUUCGUAAACA
365
NM_002111.8_9535-
9535-9557


36149
ACGAAAUU

7-9557_G21U_s

AGUCAGCAGC

9557_C1A_as



3.1













AD-
CUGAAAUUGUGUU
165
NM_002111.8_188
1887-1907
UACCGUCUAACACA
366
NM_002111.8_1885-
1885-1907


35463
AGACGGUA

7-1907_s

AUUUCAGAA

1907_as



9.1













AD-
UUCAUAAUCACAU
166
NM_002111.8_440
4404-4424
ACAAACGAAUGUG
367
NM_002111.8_4402-
4402-4424


35695
UCGUUUGU

4-4424_s

AUUAUGAAUA

4424_as



5.1













AD-
CAAUUCAGUCUCG
167
NM_002111.8_601
6018-6038
UUUCACAACGAGAC
368
NM_002111.8_6016-
6016-6038


35847
UUGUGAAA

8-6038_s

UGAAUUGCC

6038_as



1.1













AD-
CCAGGUUUAUGAA
168
NM_002111.8_121
1216-1236
AACGUCAGUUCAU
369
NM_002111.8_1214-
1214-1236


35406
CUGACGUU

6-1236_s

AAACCUGGAC

1236_as



6.1













AD-
CCUCCAGGGAUUG
169
NM_010414.3_126
12695-12715
ACACAUACCAAUCC
370
NM_010414.3_12693-
12693-12715


38466
GUAUGUGU

95-12715_G21U_s

CUGGAGGAC

12715_C1A_as



5.1













AD-
UUUCUUCAGCAAA
170
NM_002111.8_233
2338-2358
UUAUAGAGUUUGC
371
NM_002111.8_2336-
2336-2358


35504
CUCUAUAA

8-2358_s

UGAAGAAAGA

2358_as



5.1













AD-
UGUUCCCAAAAUU
171
NM_002111.8_844
844-864
AAAGCCAUAAUUU
372
NM_002111.8_842-
842-864


35371
AUGGCUUU

-864_C21U_s

UGGGAACAGC

864_G1A_as



5.1













AD-
UUUCUAUCAUCUU
172
NM_002111.8_383
3838-3858
UAUGAAGGAAGAU
373
NM_002111.8_3836-
3836-3858


35642
CCUUCAUA

8-3858_s

GAUAGAAACU

3858_as



9.1













AD-
CUUUAAGGAGUUC
173
NM_002111.8_748
7486-7506
AGGUAGAUGAACU
374
NM_002111.8_7484-
7484-7506


35976
AUCUACCU

6-7506_G21U_s

CCUUAAAGAC

7506_C1A_as



1.1













AD-
UGUUUGUGUUCAA
174
NM_002111.8_407
4078-4098
AACAAUTGUUGAAC
375
NM_002111.8_4076-
4076-4098


35666
CAAUUGUU

8-4098_s

ACAAACAGU

4098_as



9.1













AD-
ACUGUUCAACUGU
175
NM_002111.8_515
5153-5173
AGAUAUCCACAGU
376
NM_002111.8_5151-
5151-5173


35768
GGAUAUCU

3-5173_G21U_s

UGAACAGUGC

5173_C1A_as



4.1













AD-
UAACGUAACUCUU
176
NM_002111.8_101
10173-10193
AGCAUAGAAAGAG
377
NM_002111.8_10171-
10171-10193


36198
UCUAUGCU

73-10193_C21U_s

UUACGUUAAA

10193_G1A_as



1.1













AD-
UCUGAGGAACAGU
177
NM_002111.8_271
2716-2736
AAAUAGGAACUGU
378
NM_002111.8_2714-
2714-2736


35542
UCCUAUUU

6-2736_G21U_s

UCCUCAGAGU

2736_C1A_as



3.1













AD-
UCAUAAUCACAUU
178
NM_002111.8_440
4405-4425
AACAAACGAAUGU
379
NM_002111.8_4403-
4403-4425


35695
CGUUUGUU

5-4425_s

GAUUAUGAAU

4425_as



6.1













AD-
AUGGAUUCUAAUC
179
NM_002111.8_626
626-646
ACUUGGAAGAUUA
380
NM_002111.8_624-
624-646


35352
UUCCAAGU

-646_G21U_s

GAAUCCAUCA

646_C1A_as



2.1













AD-
UGAACUGACGUUA
180
NM_002111.8_122
1225-1245
AUAUGATGUAACG
381
NM_002111.8_1223-
1223-1245


35407
CAUCAUAU

5-1245_C21U_s

UCAGUUCAUA

1245_G1A_as



5.1













AD-
UCUAUAAAGUUCC
181
NM_002111.8_235
2352-2372
UGUCAAGAGGAAC
382
NM_002111.8_2350-
2350-2372


35505
UCUUGACA

2-2372_s

UUUAUAGAGU

2372_as



9.1













AD-
GCUAUUCAUAAUC
182
NM_002111.8_440
4400-4420
ACGAAUGUGAUUA
383
NM_002111.8_4398-
4398-4420


35695
ACAUUCGU

0-4420_s

UGAAUAGCAU

4420_as



1.1













AD-
GCUACUAAAUGUG
183
NM_002111.8_102
1021-1041
ACUAAGAGCACAU
384
NM_002111.8_1019-
1019-1041


35387
CUCUUAGU

1-1041_G21U_s

UUAGUAGCCA

1041_C1A_as



1.1













AD-
GCUUUAAAACAGU
184
NM_002111.8_444
4445-4465
AGUCGUGUACUGU
385
NM_002111.8_4443-
4443-4465


35699
ACACGACU

5-4465_s

UUUAAAGCUU

4465_as



6.1













AD-
AGGUUUAUGAACU
185
NM_002111.8_121
1218-1238
AUAACGTCAGUUCA
386
NM_002111.8_1216-
1216-1238


35406
GACGUUAU

8-1238_C21U_s

UAAACCUGG

1238_G1A_as



8.1













AD-
UCAACAAUUGUUG
186
NM_002111.8_408
4087-4107
AGAGUCTUCAACAA
387
NM_002111.8_4085-
4085-4107


35667
AAGACUCU

7-4107_s

UUGUUGAAC

4107_as



8.1













AD-
GCAACAUACUUUC
187
NM_002111.8_545
5452-5472
UGGCAATAGAAAG
388
NM_002111.8_5450-
5450-5472


35796
UAUUGCCA

2-5472_s

UAUGUUGCUG

5472_as



3.1













AD-
AUUUCCGUUGUAC
188
NM_002111.8_103
10319-10339
AGGAACAUGUACA
389
NM_002111.8_10317-
10317-10339


36209
AUGUUCCU

19-10339_s

ACGGAAAUGU

10339_as



0.1













AD-
CUCCGUCAGCACA
189
NM_002111.8_307
3076-3096
AUGGUUAUUGUGC
390
NM_002111.8_3074-
3074-3096


35574
AUAACCAU

6-3096_G21U_s

UGACGGAGAA

3096_C1A_as



5.1













AD-
UGGUUCAGUUACG
190
NM_002111.8_451
4515-4535
AAUUAACCCGUAAC
391
NM_002111.8_4513-
4513-4535


35706
GGUUAAUU

5-4535_s

UGAACCAGC

4535_as



6.1













AD-
UUCUAAUCUUCCA
191
NM_002111.8_631
631-651
UGUAACCUUGGAA
392
NM_002111.8_629-
629-651


35352
AGGUUACA

-651_s

GAUUAGAAUC

651_as



7.1













AD-
GAGUAUUGUGGA
192
NM_002111.8_140
1405-1425
ACUAUAAGUUCCAC
393
NM_002111.8_1403-
1403-1425


35423
ACUUAUAGU

5-1425_C21U_s

AAUACUCCC

1425_G1A_as



6.1













AD-
GAUAUUGUUCUUU
193
NM_002111.8_521
5219-5239
AAUACGAGAAAGA
394
NM_002111.8_5217-
5217-5239


35775
CUCGUAUU

9-5239_s

ACAAUAUCUU

5239_as



0.1













AD-
CUAGACAAUCUGA
194
NM_002111.8_378
3780-3800
AUGAGGTAUCAGA
395
NM_002111.8_3778-
3778-3800


35638
UACCUCAU

0-3800_G21U_s

UUGUCUAGAA

3800_C1A_as



9.1













AD-
CGCCUUUUAUCUG
195
NM_002111.8_220
2207-2227
AAACGAAGCAGAU
396
NM_002111.8_2205-
2205-2227


35493
CUUCGUUU

7-2227_s

AAAAGGCGGA

2227_as



9.1













AD-
UAUGAACGCUAUC
196
NM_002111.8_466
4667-4687
UUUUGAAUGAUAG
397
NM_002111.8_4665-
4665-4687


35721
AUUCAAAA

7-4687_s

CGUUCAUAAG

4687_as



8.1













AD-
UGAAAUUGUGUU
197
NM_002111.8_188
1888-1908
AUACCGTCUAACAC
398
NM_002111.8_1886-
1886-1908


35464
AGACGGUAU

8-1908_C21U_s

AAUUUCAGA

1908_G1A_as



0.1













AD-
AUCUUCAAGUCUG
198
NM_002111.8_550
5507-5527
AAACAUTCCAGACU
399
NM_002111.8_5505-
5505-5527


35801
GAAUGUUU

7-5527_C21U_s

UGAAGAUGU

5527_G1A_as



8.1













AD-
UCCGUUGUACAUG
199
NM_002111.8_103
10322-10342
AACAGGAACAUGU
400
NM_002111.8_10320-
10320-10342


36209
UUCCUGUU

22-10342_s

ACAACGGAAA

10342_as



3.1













AD-
GCUUCUAGACAAU
200
NM_002111.8_377
3776-3796
AGUAUCAGAUUGU
401
NM_002111.8_3774-
3774-3796


35638
CUGAUACU

6-3796_C21U_s

CUAGAAGCUG

3796_G1A_as



5.1













AD-
UUCAGUUACGGGU
201
NM_002111.8_451
4518-4538
AGUAAUTAACCCGU
402
NM_002111.8_4516-
4516-4538


35706
UAAUUACU

8-4538_s

AACUGAACC

4538_as



9.1













AD-
CAUGCAAGACUCA
202
NM_002111.8_634
6349-6369
AGACUAAGUGAGU
403
NM_002111.8_6347-
6347-6369


35876
CUUAGUCU

9-6369_C21U_s

CUUGCAUGGU

6369_G1A_as



4.1













AD-
GAUGACUCUGAAU
203
NM_002111.8_150
1508-1528
AGAUCUCGAUUCA
404
NM_002111.8_1506-
1506-1528


35431
CGAGAUCU

8-1528_G21U_s

GAGUCAUCCU

1528_C1A_as



6.1













AD-
AGGCUAUAACCUA
204
NM_002111.8_310
3106-3126
AUUGGUAGUAGGU
405
NM_002111.8_3104-
3104-3126


35577
CUACCAAU

6-3126_G21U_s

UAUAGCCUCU

3126_C1A_as



5.1













AD-
ACUCUGAAUCGAG
205
NM_002111.8_151
1512-1532
AAUCCGAUCUCGAU
406
NM_002111.8_1510-
1510-1532


35432
AUCGGAUU

2-1532_G21U_s

UCAGAGUCA

1532_C1A_as



0.1













AD-
ACCUACUACCAAG
206
NM_002111.8_311
3114-3134
AUGUUATGCUUGG
407
NM_002111.8_3112-
3112-3134


35578
CAUAACAU

4-3134_G21U_s

UAGUAGGUUA

3134_C1A_as



3.1













AD-
UCUGAAUCGAGAU
207
NM_002111.8_151
1514-1534
AACAUCCGAUCUCG
408
NM_002111.8_1512-
1512-1534


35432
CGGAUGUU

4-1534_C21U_s

AUUCAGAGU

1534_G1A_as



2.1













AD-
AGGUCCUGUUACA
208
NM_002111.8_379
3799-3819
UUACUUGUUGUAA
409
NM_002111.8_3797-
3797-3819


35640
ACAAGUAA

9-3819_s

CAGGACCUGA

3819_as



8.1













AD-
ACAGCAGUGUUGA
209
NM_002111.8_207
2073-2093
CAAAUUTAUCAACA
410
NM_002111.8_2071-
2071-2093


35480
UAAAUUUG

3-2093_s

CUGCUGUCA

2093_as



5.1













AD-
GGUCCUGUUACAA
210
NM_002111.8_380
3800-3820
UUUACUTGUUGUA
411
NM_002111.8_3798-
3798-3820


35640
CAAGUAAA

0-3820_s

ACAGGACCUG

3820_as



9.1













AD-
UUGAACUACAUCG
211
NM_002111.8_241
2411-2431
UCCAUGAUCGAUG
412
NM_002111.8_2409-
2409-2431


35511
AUCAUGGA

1-2431_s

UAGUUCAAGA

2431_as



8.1













AD-
ACUCGGAGUUCAA
212
NM_002111.8_656
6561-6581
AGCUUAGGUUGAA
413
NM_002111.8_6559-
6559-6581


35895
CCUAAGCU

1-6581_C21U_s

CUCCGAGUUC

6581_G1A_as



8.1













AD-
CUCUGAGGAACAG
213
NM_002111.8_271
2715-2735
AAUAGGAACUGUU
414
NM_002111.8_2713-
2713-2735


35542
UUCCUAUU

5-2735_s

CCUCAGAGUC

2735_as



2.1













AD-
CUCGGAGUUCAAC
91
NM_002111.8_656
6562-6582
AGGCUUAGGUUGA
415
NM_002111.8_6560-
6560-6582


35895
CUAAGCCU

2-6582_s

ACUCCGAGUU

6582_as



9.1













AD-
CUGAGGAACAGUU
214
NM_002111.8_271
2717-2737
ACAAUAGGAACUG
416
NM_002111.8_2715-
2715-2737


35542
CCUAUUGU

7-2737_G21U_s

UUCCUCAGAG

2737_C1A_as



4.1













AD-
GCUCGGAGUUCAA
79
NM_010414.3_651
6517-6537
AGCUUAGGUUGAA
280
NM_010414.3_6515-
6515-6537


37942
CCUAAGCU

7-6537_C21U_s

CUCCGAGCUC

6537_G1A_as



0.2













AD-
AUCAUUAUACAGG
215
NM_002111.8_283
2835-2855
UUAAAAGCCCUGU
417
NM_002111.8_2833-
2833-2855


35552
GCUUUUAA

5-2855_s

AUAAUGAUGA

2855_as



4.1













AD-
CUCGGAGUUCAAC
91
NM_002111.8_656
6562-6582
AGGCUUAGGUUGA
292
NM_010414.3_6516-
6562-6582


37938
CUAAGCCU

2-6582_s

ACUCCGAGCU

6538_as



0.2
























TABLE 3







Modified Sense and Antisense Strand Sequences


of Huntingtin (HTT) dsRNA Agents














Sense 
SEQ
Antisense 
SEQ
mRNA Target
SEQ


Duplex 
Sequence
ID
Sequence
ID
Sequence
ID


ID
5′ to 3′
NO:
5′ to 3′
NO:
5′ to 3′
NO:
















AD-
gsgsacuaA
418
usUfsugau
619
AGGGACUAA
821


384118.1
faAfCfUfu

(Agn)aaaa

AACUUUUUA




uuuaucaaa

guUfuUfag

UCAAA




L96

uccscsu








AD-
csuscuguU
419
asUfsguag
620
UUCUCUGUU
822


380543.1
faCfCfAfg

(Tgn)agcu

ACCAGCUAC




cuacuacau

ggUfaAfca

UACAG




L96

gagsasa








AD-
cscsugucC
420
usGfsguaa
621
AUCCUGUCC
823


380533.1
fcUfUfCfu

(Cgn)agag

CUUCUCUGU




cuguuacca

aaGfgGfac

UACCA




L96

aggsasu








AD-
ususugugA
421
asUfscaga
622
GCUUUGUGA
824


384038.1
fgUfCfUfa

(Tgn)gcua

GUCUAGCAU




gcaucugau

gaCfuCfac

CUGAG




L96

aaasgsc








AD-
gsasucagU
422
asAfsucga
623
CUGAUCAGU
825


380805.1
fgAfAfGfu

(Agn)ccac

GAAGUGGUU




gguucgauu

uuCfaCfug

CGAUC




L96

aucsasg








AD-
cscsucugG
423
asCfscgag
624
CUCCUCUGG
826


380117.1
fuAfUfGfg

(Tgn)uucc

UAUGGAAAC




aaacucggu

auAfcCfag

UCGGG




L96

aggsasg








AD-
asgsagucC
424
asUfsuagc
625
ACAGAGUCC
827


381341.1
fuUfGfGfu

(Tgn)ugac

UUGGUCAAG




caagcuaau

caAfgGfac

CUAAG




L96

ucusgsu








AD-
ususcaacC
425
asGfsccaa
626
AGUUCAACC
828


379426.1
fuAfAfGfc

(Agn)aggc

UAAGCCUUU




cuuuuggcu

uuAfgGfuu

UGGCU




L96

gaascsu








AD-
usgsacagA
426
asCfsacuc
627
GCUGACAGA
829


380888.1
faCfUfAfc

(Tgn)ccgu

ACUACGGAG




ggagagugu

agUfuCfug

AGUGC




L96

ucasgsc








AD-
csusccauG
427
asUfsguga
628
CCCUCCAUG
830


384841.1
fuGfUfGfc

(Cgn)aagc

UGUGCUUGU




uugucacau

acAfcAfug

CACAC




L96

gagsgsg








AD-
csgsaacgU
428
asUfsuuca
629
ACCGAACGU
831


380853.1
faCfCfCfa

(Agn)acug

ACCCAGUUU




guuugaaau

ggUfaCfgu

GAAAU




L96

ucgsgsu








AD-
asusaccaC
429
asAfsgacu
630
UGAUACCAC
832


379602.1
faUfCfAfu

(Ggn)guau

AUCAUACCA




accagucuu

gaUfgUfgg

GUCUC




L96

uauscsa








AD-
csusgcauG
430
asAfsuaaa
631
UGCUGCAUG
833


382484.1
fuGfAfCfa

(Cgn)uuug

UGACAAAGU




aaguuuauu

ucAfcAfug

UUAUG




L96

cagscsa








AD-
ususcacuC
431
gsAfsaacu
632
UAUUCACUC
834


380741.1
fcUfGfUfu

(Ggn)cgaa

CUGUUCGCA




cgcaguuuc

caGfgAfgu

GUUUC




L96

gaasusa








AD-
csusguccC
432
asUfsggua
633
UCCUGUCCC
835


380534.1
fuUfCfUfc

(Agn)caga

UUCUCUGUU




uguuaccau

gaAfgGfga

ACCAG




L96

cagsgsa








AD-
uscsugagA
433
asAfsauug
634
CAUCUGAGA
836


384053.1
faUfGfGfg

(Agn)gucc

AUGGGACUC




acucaauuu

caUfuCfuc

AAUUU




L96

agasusg








AD-
uscsagaaG
434
asAfsugag
635
CUUCAGAAG
837


380916.1
faUfGfAfg

(Ggn)aucu

AUGAGAUCC




auccucauu

caUfcUfuc

UCAUU




L96

ugasasg








AD-
cscsacugA
435
asGfsuauc
636
AGCCACUGA
838


380402.1
faGfGfCfu

(Ggn)agag

AGGCUCUCG




cucgauacu

ccUfuCfag

AUACC




L96

uggscsu








AD-
gsasgucuG
436
asAfsuagc
637
GCGAGUCUG
839


381464.1
fuGfAfUfu

(Tgn)acaa

UGAUUGUAG




guagcuauu

ucAfcAfga

CUAUG




L96

cucsgsc








AD-
uscsauggC
437
asUfscaug
638
UGUCAUGGC
840


379729.1
faUfUfUfg

(Ggn)auca

AUUUGAUCC




auccaugau

aaUfgCfca

AUGAG




L96

ugascsa








AD-
ascsggcaU
438
asCfsaaca
639
GCACGGCAU
841


381065.1
fcCfUfCfu

(Cgn)auag

CCUCUAUGU




auguguugu

agGfaUfgc

GUUGG




L96

cgusgsc








AD-
usgsagcgA
439
asGfsccau
640
CAUGAGCGA
842


379466.1
fgAfUfUfg

(Tgn)agca

GAUUGCUAA




cuaauggcu

auCfuCfgc

UGGCC




L96

ucasusg








AD-
csgscugaC
440
asUfscucc
641
GACGCUGAC
843


380885.1
faGfAfAfc

(Ggn)uagu

AGAACUACG




uacggagau

ucUfgUfca

GAGAG




L96

gcgsusc








AD-
asasgcagG
441
asUfsugga
642
GAAAGCAGG
844


379897.1
fuCfAfCfa

(Ggn)uaug

UCACAUACU




uacuccaau

ugAfcCfug

CCAAG




L96

cuususc








AD-
cscsaguuG
442
asAfsgaua
643
UUCCAGUUG
845


381124.1
fuUfAfGfu

(Ggn)ucac

UUAGUGACU




gacuaucuu

uaAfcAfac

AUCUG




L96

uggsasa








AD-
uscsagugA
443
asAfsgauc
644
GAUCAGUGA
846


380807.1
faGfUfGfg

(Ggn)aacc

AGUGGUUCG




uucgaucuu

acUfuCfac

AUCUC




L96

ugasusc








AD-
asuscaguG
444
asGfsaucg
645
UGAUCAGUG
847


380806.1
faAfGfUfg

(Agn)acca

AAGUGGUUC




guucgaucu

cuUfcAfcu

GAUCU




L96

gauscsa








AD-
cscsauguG
445
asAfsgugu
646
CUCCAUGUG
848


384843.1
fuGfCfUfu

(Ggn)acaa

UGCUUGUCA




gucacacuu

gcAfcAfca

CACUC




L96

uggsasg








AD-
ususucagC
446
usCfsugua
647
AUUUUCAGC
849


381257.1
faUfCfUfg

(Tgn)caca

AUCUGUGAU




ugauacaga

gaUfgCfug

ACAGA




L96

aaasasu








AD-
asasggcuC
447
asAfsaucu
648
UGAAGGCUC
850


380408.1
fuCfGfAfu

(Ggn)guau

UCGAUACCA




accagauuu

cgAfgAfgc

GAUUU




L96

cuuscsa








AD-
usasgaugA
448
asAfsggug
649
CCUAGAUGA
851


381570.1
fcUfUfCfu

(Ggn)aaag

CUUCUUUCC




uuccaccuu

aaGfuCfau

ACCUC




L96

cuasgsg








AD-
gsusuaacA
449
asAfscacg
650
UAGUUAACA
852


380093.1
fgCfUfAfu

(Agn)guau

GCUAUACUC




acucguguu

agCfuGfuu

GUGUG




L96

aacsusa








AD-
uscscaacC
450
asGfscuau
651
UGUCCAACC
853


381148.1
fuCfAfAfa

(Tgn)ccuu

UCAAAGGAA




ggaauagcu

ugAfgGfuu

UAGCC




L96

ggascsa








AD-
ususgcuaA
451
asAfscucu
652
GAUUGCUAA
854


379475.1
fuGfGfCfc

(Tgn)uugg

UGGCCAAAA




aaaagaguu

ccAfuUfag

GAGUC




L96

caasusc








AD-
csusgcugU
452
usCfscuuu
653
AUCUGCUGU
855


381142.1
fcCfAfAfc

(Ggn)aggu

CCAACCUCA




cucaaagga

ugGfaCfag

AAGGA




L96

cagsasu








AD-
cscsgaacG
453
usUfsucaa
654
CACCGAACG
856


380852.1
fuAfCfCfc

(Agn)cugg

UACCCAGUU




aguuugaaa

guAfcGfuu

UGAAA




L96

cggsusg








AD-
asasguagA
454
usUfsugua
655
GGAAGUAGA
857


379935.1
fcUfCfAfg

(Tgn)aucu

CUCAGAUAU




auauacaaa

gaGfuCfua

ACAAA




L96

cuuscsc








AD-
gscsucauU
455
usCfsacua
656
CAGCUCAUU
858


381117.1
fcCfAfGfu

(Agn)caac

CCAGUUGUU




uguuaguga

ugGfaAfug

AGUGA




L96

agcsusg








AD-
csasgugaA
456
asGfsagau
657
AUCAGUGAA
859


380808.1
fgUfGfGfu

(Cgn)gaac

GUGGUUCGA




ucgaucucu

caCfuUfca

UCUCU




L96

cugsasu








AD-
gsasgauuG
457
asUfsuuug
658
GCGAGAUUG
860


379471.1
fcUfAfAfu

(Ggn)ccau

CUAAUGGCC




ggccaaaau

uaGfcAfau

AAAAG




L96

cucsgsc








AD-
gsasguccU
458
asCfsuuag
659
CAGAGUCCU
861


381342.1
fuGfGfUfc

(Cgn)uuga

UGGUCAAGC




aagcuaagu

ccAfaGfga

UAAGU




L96

cucsusg








AD-
gscsucucG
459
usCfscaaa
660
AGGCUCUCG
862


380411.1
faUfAfCfc

(Tgn)cugg

AUACCAGAU




agauuugga

uaUfcGfag

UUGGA




L96

agcscsu








AD-
csasugugA
460
usUfsccau
661
UGCAUGUGA
863


382487.1
fcAfAfAfg

(Agn)aacu

CAAAGUUUA




uuuauggaa

uuGfuCfac

UGGAA




L96

augscsa








AD-
uscscucuG
461
asCfsgagu
662
CCUCCUCUG
864


380116.1
fgUfAfUfg

(Tgn)ucca

GUAUGGAAA




gaaacucgu

uaCfcAfga

CUCGG




L96

ggasgsg








AD-
csasaccuC
462
usGfsggcu
663
UCCAACCUC
865


381150.1
faAfAfGfg

(Agn)uucc

AAAGGAAUA




aauagccca

uuUfgAfgg

GCCCA




L96

uugsgsa








AD-
usgscuaaU
463
asGfsacuc
664
AUUGCUAAU
866


379476.1
fgGfCfCfa

(Tgn)uuug

GGCCAAAAG




aaagagucu

gcCfaUfua

AGUCC




L96

gcasasu








AD-
cscsuaugC
464
asAfscacu
665
UUCCUAUGC
867


382444.1
fcCfGfUfg

(Tgn)uaca

CCGUGUAAA




uaaaguguu

cgGfgCfau

GUGUG




L96

aggsasa








AD-
gsascgcuG
465
asUfsccgu
666
CUGACGCUG
868


380883.1
faCfAfGfa

(Agn)guuc

ACAGAACUA




acuacggau

ugUfcAfgc

CGGAG




L96

gucsasg








AD-
ascsucagA
466
usGfsaggu
667
AGACUCAGA
869


379941.1
fuAfUfAfc

(Tgn)uugu

UAUACAAAA




aaaaccuca

auAfuCfug

CCUCA




L96

aguscsu








AD-
ususcuuuC
467
asAfscauc
668
ACUUCUUUC
870


381578.1
fcAfCfCfu

(Tgn)ugag

CACCUCAAG




caagauguu

guGfgAfaa

AUGUC




L96

gaasgsu








AD-
csasgcgaG
468
asCfsuaca
669
GACAGCGAG
871


381460.1
fuCfUfGfu

(Agn)ucac

UCUGUGAUU




gauuguagu

agAfcUfcg

GUAGC




L96

cugsusc








AD-
asgsacucA
469
asGfsguuu
670
GUAGACUCA
872


379939.1
fgAfUfAfu

(Tgn)guau

GAUAUACAA




acaaaaccu

auCfuGfag

AACCU




L96

ucusasc








AD-
ususgugaG
470
usCfsucag
671
CUUUGUGAG
873


384039.1
fuCfUfAfg

(Agn)ugcu

UCUAGCAUC




caucugaga

agAfcUfca

UGAGA




L96

caasasg








AD-
ususgauaU
471
asCfsgaac
672
GGUUGAUAU
874


380735.1
fuCfAfCfu

(Agn)ggag

UCACUCCUG




ccuguucgu

ugAfaUfau

UUCGC




L96

caascsc








AD-
usasgcuaC
472
asCfscgac
673
UGUAGCUAC
875


382525.1
fuCfAfGfu

(Tgn)agac

UCAGUCUAG




cuagucggu

ugAfgUfag

UCGGG




L96

cuascsa








AD-
cscsugugU
473
asGfsaauu
674
CACCUGUGU
876


380713.1
fcUfCfCfa

(Ggn)acug

CUCCAGUCA




gucaauucu

gaGfaCfac

AUUCC




L96

aggsusg








AD-
asgsggaaC
474
asCfsaaca
675
GCAGGGAAC
877


382149.1
faUfGfCfa

(Tgn)agug

AUGCACUAU




cuauguugu

caUfgUfuc

GUUGG




L96

ccusgsc








AD-
asgsccauU
475
asCfsaggu
676
GAAGCCAUU
878


379855.1
fgCfAfGfu

(Tgn)guac

GCAGUACAA




acaaccugu

ugCfaAfug

CCUGG




L96

gcususc








AD-
usgscaagG
476
usGfsuuug
677
GAUGCAAGG
879


383508.1
fuUfCfCfc

(Ggn)uagg

UUCCCUACC




uaccaaaca

gaAfcCfuu

AAACA




L96

gcasusc








AD-
ascsagauG
477
asGfscauu
678
AUACAGAUG
880


381273.1
fuGfUfGfg

(Agn)cucc

UGUGGAGUA




aguaaugcu

acAfcAfuc

AUGCU




L96

ugusasu








AD-
gscsugcaU
478
asUfsaaac
679
GUGCUGCAU
881


382483.1
fgUfGfAfc

(Tgn)uugu

GUGACAAAG




aaaguuuau

caCfaUfgc

UUUAU




L96

agcsasc








AD-
gsusgcugC
479
asAfsacuu
680
CUGUGCUGC
882


382481.1
faUfGfUfg

(Tgn)guca

AUGUGACAA




acaaaguuu

caUfgCfag

AGUUU




L96

cacsasg








AD-
usgscaugU
480
asCfsauaa
681
GCUGCAUGU
883


382485.1
fgAfCfAfa

(Agn)cuuu

GACAAAGUU




aguuuaugu

guCfaCfau

UAUGG




L96

gcasgsc








AD-
asgsuuaaC
481
asCfsacga
682
CUAGUUAAC
884


380092.1
faGfCfUfa

(Ggn)uaua

AGCUAUACU




uacucgugu

gcUfgUfua

CGUGU




L96

acusasg








AD-
gscsucggA
482
asGfscuua
683
GAGCUCGGA
885


379420.1
fgUfUfCfa

(Ggn)guug

GUUCAACCU




accuaagcu

aaCfuCfcg

AAGCC




L96

agcsusc








AD-
asusccugA
483
asAfsccac
684
UCAUCCUGA
886


380800.1
fuCfAfGfu

(Tgn)ucac

UCAGUGAAG




gaagugguu

ugAfuCfag

UGGUU




L96

gausgsa








AD-
csasgucaG
484
asUfsagac
685
UACAGUCAG
887


384030.1
fcUfUfUfg

(Tgn)caca

CUUUGUGAG




ugagucuau

aaGfcUfga

UCUAG




L96

cugsusa








AD-
gsasuauuC
485
asUfsgcga
686
UUGAUAUUC
888


380737.1
faCfUfCfc

(Agn)cagg

ACUCCUGUU




uguucgcau

agUfgAfau

CGCAG




L96

aucsasa








AD-
ususgaugC
486
asAfsgacu
687
UGUUGAUGC
889


382780.1
faCfUfCfu

(Agn)ggag

ACUCUCCUA




ccuagucuu

agUfgCfau

GUCUC




L96

caascsa








AD-
csasgauaU
487
asAfscuga
688
CUCAGAUAU
890


379944.1
faCfAfAfa

(Ggn)guuu

ACAAAACCU




accucaguu

ugUfaUfau

CAGUC




L96

cugsasg








AD-
usgsgcauG
488
usUfsagca
689
CUUGGCAUG
891


379461.1
faGfCfGfa

(Agn)ucuc

AGCGAGAUU




gauugcuaa

gcUfcAfug

GCUAA




L96

ccasasg








AD-
ascsagguG
489
asAfsaagg
690
GAACAGGUG
892


381856.1
fgAfUfGfu

(Tgn)ucac

GAUGUGAAC




gaaccuuuu

auCfcAfcc

CUUUU




L96

ugususc








AD-
gsasgcucG
490
asUfsuagg
691
AUGAGCUCG
893


379418.1
fgAfGfUfu

(Tgn)ugaa

GAGUUCAAC




caaccuaau

cuCfcGfag

CUAAG




L96

cucsasu








AD-
usgsucccU
491
usGfscaga
692
UCUGUCCCU
894


382924.1
fuUfGfUfa

(Agn)gaua

UUGUAUCUU




ucuucugca

caAfaGfgg

CUGCA




L96

acasgsa








AD-
ascsuccuC
492
usGfsaaca
693
UUACUCCUC
895


383759.1
faUfGfGfu

(Tgn)cuac

AUGGUAGAU




agauguuca

caUfgAfgg

GUUCA




L96

agusasa








AD-
asgsgcucU
493
csAfsaauc
694
GAAGGCUCU
896


380409.1
fcGfAfUfa

(Tgn)ggua

CGAUACCAG




ccagauuug

ucGfaGfag

AUUUG




L96

ccususc








AD-
csuscggaG
494
asGfsgcuu
695
CAAAUCUGG
897


379380.1
fuUfCfAfa

(Agn)gguu

UAUCGAGAG




ccuaagccu

gaAfcUfcc

CCUUC




L96

gagscsu








AD-
csusguccA
495
usAfsuucc
696
UGCUGUCCA
898


381145.1
faCfCfUfc

(Tgn)uuga

ACCUCAAAG




aaaggaaua

ggUfuGfga

GAAUA




L96

cagscsa








AD-
csusgagaA
496
asAfsaauu
697
AUCUGAGAA
899


384054.1
fuGfGfGfa

(Ggn)aguc

UGGGACUCA




cucaauuuu

ccAfuUfcu

AUUUU




L96

cagsasu








AD-
csgsucauC
497
asCfsuuca
698
CCCGUCAUC
900


380796.1
fcUfGfAfu

(Cgn)ugau

CUGAUCAGU




cagugaagu

caGfgAfug

GAAGU




L96

acgsgsg








AD-
csasaaggU
498
asAfsuagc
699
CCCAAAGGU
901


382960.1
fgUfCfUfc

(Tgn)caga

GUCUCUGAG




ugagcuauu

gaCfaCfcu

CUAUG




L96

uugsgsg








AD-
csusacuaC
499
usGfsauaa
700
AGCUACUAC
902


380555.1
faGfGfUfg

(Ggn)agca

AGGUGCUCU




cucuuauca

ccUfgUfag

UAUCA




L96

uagscsu








AD-
gsgscaugA
500
asUfsuagc
701
UUGGCAUGA
903


379462.1
fgCfGfAfg

(Agn)aucu

GCGAGAUUG




auugcuaau

cgCfuCfau

CUAAU




L96

gccsasa








AD-
usgsgcagG
501
asAfsuugc
702
AAUGGCAGG
904


382118.1
faGfUfGfc

(Agn)aagc

AGUGCUUUG




uuugcaauu

acUfcCfug

CAAUG




L96

ccasusu








AD-
csuscgauA
502
usCfsuucc
703
CUCUCGAUA
905


380414.1
fcCfAfGfa

(Agn)aauc

CCAGAUUUG




uuuggaaga

ugGfuAfuc

GAAGA




L96

gagsasg








AD-
usasguuaA
503
asAfscgag
704
CCUAGUUAA
906


380091.1
fcAfGfCfu

(Tgn)auag

CAGCUAUAC




auacucguu

cuGfuUfaa

UCGUG




L96

cuasgsg








AD-
uscscucaU
504
usAfsugaa
705
ACUCCUCAU
907


383761.1
fgGfUfAfg

(Cgn)aucu

GGUAGAUGU




auguucaua

acCfaUfga

UCAUA




L96

ggasgsu








AD-
asusucacU
505
asAfsacug
706
AUAUUCACU
908


380740.1
fcCfUfGfu

(Cgn)gaac

CCUGUUCGC




ucgcaguuu

agGfaGfug

AGUUU




L96

aausasu








AD-
asgsauauA
506
usGfsacug
707
UCAGAUAUA
909


379945.1
fcAfAfAfa

(Agn)gguu

CAAAACCUC




ccucaguca

uuGfuAfua

AGUCA




L96

ucusgsa








AD-
gsusucaaC
507
asCfscaaa
708
GAGUUCAAC
910


379425.1
fcUfAfAfg

(Agn)ggcu

CUAAGCCUU




ccuuuuggu

uaGfgUfug

UUGGC




L96

aacsusc








AD-
gscsugacA
508
asCfsucuc
709
ACGCUGACA
911


380886.1
fgAfAfCfu

(Cgn)guag

GAACUACGG




acggagagu

uuCfuGfuc

AGAGU




L96

agcsgsu








AD-
csusgcacA
509
usCfscuga
710
GUCUGCACA
912


384366.1
fuGfUfAfc

(Agn)gggu

UGUACCCUU




ccuucagga

acAfuGfug

CAGGA




L96

cagsasc








AD-
uscsauccU
510
asCfsacuu
711
CGUCAUCCU
913


380798.1
fgAfUfCfa

(Cgn)acug

GAUCAGUGA




gugaagugu

auCfaGfga

AGUGG




L96

ugascsg








AD-
gscsaugaG
511
asAfsuuag
712
UGGCAUGAG
914


379463.1
fcGfAfGfa

(Cgn)aauc

CGAGAUUGC




uugcuaauu

ucGfcUfca

UAAUG




L96

ugcscsa








AD-
csasgggaA
512
asAfsacau
713
UGCAGGGAA
915


382148.1
fcAfUfGfc

(Agn)gugc

CAUGCACUA




acuauguuu

auGfuUfcc

UGUUG




L96

cugscsa








AD-
ususguucU
513
asCfsugaa
714
UAUUGUUCU
916


357754.1
fuUfCfUfc

(Tgn)acga

UUCUCGUAU




guauucagu

gaAfaGfaa

UCAGG




L96

caasusa








AD-
usgscagaU
514
usGfsaaua
715
CGUGCAGAU
917


356938.1
faAfGfAfa

(Ggn)cauu

AAGAAUGCU




ugcuauuca

cuUfaUfcu

AUUCA




L96

gcascsg








AD-
csasaacuC
515
asGfsagga
716
AGCAAACUC
918


355054.1
fuAfUfAfa

(Agn)cuuu

UAUAAAGUU




aguuccucu

auAfgAfgu

CCUCU




L96

uugscsu








AD-
asasgauaU
516
usAfscgag
717
UGAAGAUAU
919


357748.1
fuGfUfUfc

(Agn)aaga

UGUUCUUUC




uuucucgua

acAfaUfau

UCGUA




L96

cuuscsa








AD-
csusgaaaC
517
asUfscaug
718
ACCUGAAAC
920


355704.1
fuUfCfUfc

(Cgn)auga

UUCUCAUGC




augcaugau

gaAfgUfuu

AUGAG




L96

cagsgsu








AD-
asgsaaugC
518
usGfsugau
719
UAAGAAUGC
921


356946.1
fuAfUfUfc

(Tgn)auga

UAUUCAUAA




auaaucaca

auAfgCfau

UCACA




L96

ucususa








AD-
uscsaacaA
519
asAfsgcuu
720
CCUCAACAA
922


353499.1
faGfUfUfa

(Tgn)gaua

AGUUAUCAA




ucaaagcuu

acUfuUfgu

AGCUU




L96

ugasgsg








AD-
gsasacugA
520
usGfsuaug
721
AUGAACUGA
923


354076.1
fcGfUfUfa

(Agn)ugua

CGUUACAUC




caucauaca

acGfuCfag

AUACA




L96

uucsasu








AD-
cscsugaaA
521
asGfsacua
722
UACCUGAAA
924


356630.1
fuCfCfUfg

(Agn)agca

UCCUGCUUU




cuuuagucu

ggAfuUfuc

AGUCG




L96

aggsusa








AD-
csasuuguC
522
usUfscaca
723
AUCAUUGUC
925


353351.1
fuGfAfCfa

(Tgn)auug

UGACAAUAU




auaugugaa

ucAfgAfca

GUGAA




L96

augsasu








AD-
csasgucgU
523
usCfsuuca
724
ACCAGUCGU
926


359803.1
faCfUfCfa

(Agn)acug

ACUCAGUUU




guuugaaga

agUfaCfga

GAAGA




L96

cugsgsu








AD-
asgscuacU
524
asCfsccga
725
GUAGCUACU
927


382526.1
fcAfGfUfc

(Cgn)uaga

CAGUCUAGU




uagucgggu

cuGfaGfua

CGGGC




L96

gcusasc








AD-
ususugaaC
525
usUfsuuau
726
UGUUUGAAC
928


356975.1
fcUfCfUfu

(Agn)acaa

CUCUUGUUA




guuauaaaa

gaGfgUfuc

UAAAA




L96

aaascsa








AD-
gsusuugaA
526
usUfsuaua
727
UUGUUUGAA
929


356974.1
fcCfUfCfu

(Agn)caag

CCUCUUGUU




uguuauaaa

agGfuUfca

AUAAA




L96

aacsasa








AD-
csusugaaC
527
asCfsauga
728
AUCUUGAAC
930


355117.1
fuAfCfAfu

(Tgn)cgau

UACAUCGAU




cgaucaugu

guAfgUfuc

CAUGG




L96

aagsasu








AD-
usgsuucuU
528
usCfscuga
729
AUUGUUCUU
931


357755.1
fuCfUfCfg

(Agn)uacg

UCUCGUAUU




uauucagga

agAfaAfga

CAGGA




L96

acasasu








AD-
gscsagcuU
529
asUfscaga
730
GUGCAGCUU
932


356382.1
fcUfAfGfa

(Tgn)uguc

CUAGACAAU




caaucugau

uaGfaAfgc

CUGAU




L96

ugcsasc








AD-
usgsuuugA
530
usUfsauaa
731
UUUGUUUGA
933


356973.1
faCfCfUfc

(Cgn)aaga

ACCUCUUGU




uuguuauaa

ggUfuCfaa

UAUAA




L96

acasasa








AD-
gsasaaacC
531
asGfsuugg
732
GUGAAAACC
934


358488.1
fuUfUfCfa

(Agn)guug

UUUCAACUC




acuccaacu

aaAfgGfuu

CAACC




L96

uucsasc








AD-
ascsugacG
532
usGfsugua
733
GAACUGACG
935


354078.1
fuUfAfCfa

(Tgn)gaug

UUACAUCAU




ucauacaca

uaAfcGfuc

ACACA




L96

agususc








AD-
cscsugcuU
533
usUfsgguu
734
AUCCUGCUU
936


356638.1
fuAfGfUfc

(Cgn)ucga

UAGUCGAGA




gagaaccaa

cuAfaAfgc

ACCAA




L96

aggsasu








AD-
usgsgauuC
534
usAfsaaca
735
UCUGGAUUC
937


357096.1
faGfAfUfc

(Cgn)cuga

AGAUCAGGU




agguguuua

ucUfgAfau

GUUUA




L96

ccasgsa








AD-
csusgcugA
535
asUfsuucg
736
GGCUGCUGA
938


361492.1
fcUfUfGfu

(Tgn)aaac

CUUGUUUAC




uuacgaaau

aaGfuCfag

GAAAU




L96

cagscsc








AD-
usgsguguU
536
usAfsggag
737
CCUGGUGUU
939


382775.1
fgAfUfGfc

(Agn)gugc

GAUGCACUC




acucuccua

auCfaAfca

UCCUA




L96

ccasgsg








AD-
csasgaucA
537
usUfsuagg
738
AACAGAUCA
940


357239.1
fuUfGfGfa

(Agn)auuc

UUGGAAUUC




auuccuaaa

caAfuGfau

CUAAA




L96

cugsusu








AD-
gsusucuuU
538
asUfsccug
739
UUGUUCUUU
941


357756.1
fcUfCfGfu

(Agn)auac

CUCGUAUUC




auucaggau

gaGfaAfag

AGGAG




L96

aacsasa








AD-
asgscuucU
539
asUfsauca
740
GCAGCUUCU
942


356384.1
faGfAfCfa

(Ggn)auug

AGACAAUCU




aucugauau

ucUfaGfaa

GAUAC




L96

gcusgsc








AD-
asusuuucA
540
usGfsuaau
741
ACAUUUUCA
943


357879.1
faGfGfUfu

(Agn)gaaa

AGGUUUCUA




ucuauuaca

ccUfuGfaa

UUACA




L96

aausgsu








AD-
csusucuaG
541
asGfsguau
742
AGCUUCUAG
944


356386.1
faCfAfAfu

(Cgn)agau

ACAAUCUGA




cugauaccu

ugUfcUfag

UACCU




L96

aagscsu








AD-
asgscuuuA
542
asUfscgug
743
AAAGCUUUA
945


356995.1
faAfAfCfa

(Tgn)acug

AAACAGUAC




guacacgau

uuUfuAfaa

ACGAC




L96

gcususu








AD-
gscsuuugA
543
asAfsgauu
744
AAGCUUUGA
946


353516.1
fuGfGfAfu

(Agn)gaau

UGGAUUCUA




ucuaaucuu

ccAfuCfaa

AUCUU




L96

agcsusu








AD-
csusgacgU
544
asUfsgugu
745
AACUGACGU
947


354079.1
fuAfCfAfu

(Agn)ugau

UACAUCAUA




cauacacau

guAfaCfgu

CACAG




L96

cagsusu








AD-
csusgcuuU
545
asUfsuggu
746
UCCUGCUUU
948


356639.1
faGfUfCfg

(Tgn)cucg

AGUCGAGAA




agaaccaau

acUfaAfag

CCAAU




L96

cagsgsa








AD-
usgsuucgU
546
usUfsgugu
747
UAUGUUCGU
949


357649.1
fcAfCfUfc

(Tgn)ugga

CACUCCAAA




caaacacaa

guGfaCfga

CACAA




L96

acasusa








AD-
usgsacuuG
547
asGfsacau
748
GCUGACUUG
950


361496.1
fuUfUfAfc

(Tgn)ucgu

UUUACGAAA




gaaaugucu

aaAfcAfag

UGUCC




L96

ucasgsc








AD-
gsusguugA
548
asCfsuagg
749
UGGUGUUGA
951


382777.1
fuGfCfAfc

(Agn)gagu

UGCACUCUC




ucuccuagu

gcAfuCfaa

CUAGU




L96

cacscsa








AD-
gsasuucuA
549
usAfsaccu
750
UGGAUUCUA
952


353525.1
faUfCfUfu

(Tgn)ggaa

AUCUUCCAA




ccaagguua

gaUfuAfga

GGUUA




L96

aucscsa








AD-
csuscguuG
550
usUfsgaaa
751
GUCUCGUUG
953


358480.1
fuGfAfAfa

(Ggn)guuu

UGAAAACCU




accuuucaa

ucAfcAfac

UUCAA




L96

gagsasc








AD-
uscsuagaC
551
usGfsaggu
752
CUUCUAGAC
954


356388.1
faAfUfCfu

(Agn)ucag

AAUCUGAUA




gauaccuca

auUfgUfcu

CCUCA




L96

agasasg








AD-
csasacaaA
552
asAfsagcu
753
CUCAACAAA
955


353500.1
fgUfUfAfu

(Tgn)ugau

GUUAUCAAA




caaagcuuu

aaCfuUfug

GCUUU




L96

uugsasg








AD-
csasggucC
553
usAfscuug
754
CUCAGGUCC
956


356407.1
fuGfUfUfa

(Tgn)ugua

UGUUACAAC




caacaagua

acAfgGfac

AAGUA




L96

cugsasg








AD-
gsusucagU
554
asUfsaauu
755
UGGUUCAGU
957


357068.1
fuAfCfGfg

(Agn)accc

UACGGGUUA




guuaauuau

guAfaCfug

AUUAC




L96

aacscsa








AD-
cscsagucG
555
asUfsucaa
756
GACCAGUCG
958


359802.1
fuAfCfUfc

(Agn)cuga

UACUCAGUU




aguuugaau

guAfcGfac

UGAAG




L96

uggsusc








AD-
uscsugaaA
556
asCfscguc
757
GUUCUGAAA
959


354638.1
fuUfGfUfg

(Tgn)aaca

UUGUGUUAG




uuagacggu

caAfuUfuc

ACGGU




L96

agasasc








AD-
gsgscaacU
557
usGfsuuga
758
AUGGCAACU
960


356663.1
fgUfUfUfg

(Agn)caca

GUUUGUGUU




uguucaaca

aaCfaGfuu

CAACA




L96

gccsasu








AD-
ususcgucA
558
asAfsuugu
759
UGUUCGUCA
961


357651.1
fcUfCfCfa

(Ggn)uuug

CUCCAAACA




aacacaauu

gaGfuGfac

CAAUG




L96

gaascsa








AD-
csusgacaU
559
asAfsugua
760
CGCUGACAU
962


362085.1
fuUfCfCfg

(Cgn)aacg

UUCCGUUGU




uuguacauu

gaAfaUfgu

ACAUG




L96

cagscsg








AD-
cscsacugC
560
asUfsaaag
761
AGCCACUGC
963


384329.1
fcAfAfGfu

(Ggn)gcac

CAAGUGCCC




gcccuuuau

uuGfgCfag

UUUAU




L96

uggscsu








AD-
csasgguuU
561
usAfsacgu
762
UCCAGGUUU
964


354067.1
faUfGfAfa

(Cgn)aguu

AUGAACUGA




cugacguua

caUfaAfac

CGUUA




L96

cugsgsa








AD-
asusucuaA
562
asUfsaacc
763
GGAUUCUAA
965


353526.1
fuCfUfUfc

(Tgn)ugga

UCUUCCAAG




caagguuau

agAfuUfag

GUUAC




L96

aauscsc








AD-
csasaguaA
563
asCfsagug
764
AACAAGUAA
966


356422.1
faUfCfCfu

(Agn)ugag

AUCCUCAUC




caucacugu

gaUfuUfac

ACUGG




L96

uugsusu








AD-
ususgaugG
564
usGfsgaag
765
CUUUGAUGG
967


353519.1
faUfUfCfu

(Agn)uuag

AUUCUAAUC




aaucuucca

aaUfcCfau

UUCCA




L96

caasasg








AD-
csusucauA
565
asAfsugca
766
UCCUUCAUA
968


356443.1
fcCfUfCfa

(Ggn)uuug

CCUCAAACU




aacugcauu

agGfuAfug

GCAUG




L96

aagsgsa








AD-
usasuuggC
566
usGfsuuuc
767
UUUAUUGGC
969


357115.1
fuUfUfGfu

(Agn)auac

UUUGUAUUG




auugaaaca

aaAfgCfca

AAACA




L96

auasasa








AD-
usgscugaC
567
asAfsuuuc
768
GCUGCUGAC
970


361493.1
fuUfGfUfu

(Ggn)uaaa

UUGUUUACG




uacgaaauu

caAfgUfca

AAAUG




L96

gcasgsc








AD-
csusgaaaU
568
usAfsccgu
769
UUCUGAAAU
971


354639.1
fuGfUfGfu

(Cgn)uaac

UGUGUUAGA




uagacggua

acAfaUfuu

CGGUA




L96

cagsasa








AD-
ususcauaA
569
asCfsaaac
770
UAUUCAUAA
972


356955.1
fuCfAfCfa

(Ggn)aaug

UCACAUUCG




uucguuugu

ugAfuUfau

UUUGU




L96

gaasusa








AD-
csasauucA
570
usUfsucac
771
GGCAAUUCA
973


358471.1
fgUfCfUfc

(Agn)acga

GUCUCGUUG




guugugaaa

gaCfuGfaa

UGAAA




L96

uugscsc








AD-
cscsagguU
571
asAfscguc
772
GUCCAGGUU
974


354066.1
fuAfUfGfa

(Agn)guuc

UAUGAACUG




acugacguu

auAfaAfcc

ACGUU




L96

uggsasc








AD-
cscsuccaG
572
asCfsacau
773
GUCCUCCAG
975


384665.1
fgGfAfUfu

(Agn)ccaa

GGAUUGGUA




gguaugugu

ucCfcUfgg

UGUGG




L96

aggsasc








AD-
ususucuuC
573
usUfsauag
774
UCUUUCUUC
976


355045.1
faGfCfAfa

(Agn)guuu

AGCAAACUC




acucuauaa

gcUfgAfag

UAUAA




L96

aaasgsa








AD-
usgsuuccC
574
asAfsagcc
775
GCUGUUCCC
977


353715.1
faAfAfAfu

(Agn)uaau

AAAAUUAUG




uauggcuuu

uuUfgGfga

GCUUC




L96

acasgsc








AD-
ususucuaU
575
usAfsugaa
776
AGUUUCUAU
978


356429.1
fcAfUfCfu

(Ggn)gaag

CAUCUUCCU




uccuucaua

auGfaUfag

UCAUA




L96

aaascsu








AD-
csusuuaaG
576
asGfsguag
777
GUCUUUAAG
979


359761.1
fgAfGfUfu

(Agn)ugaa

GAGUUCAUC




caucuaccu

cuCfcUfua

UACCG




L96

aagsasc








AD-
usgsuuugU
577
asAfscaau
778
ACUGUUUGU
980


356669.1
fgUfUfCfa

(Tgn)guug

GUUCAACAA




acaauuguu

aaCfaCfaa

UUGUU




L96

acasgsu








AD-
ascsuguuC
578
asGfsauau
779
GCACUGUUC
981


357684.1
faAfCfUfg

(Cgn)caca

AACUGUGGA




uggauaucu

guUfgAfac

UAUCG




L96

agusgsc








AD-
usasacguA
579
asGfscaua
780
UUUAACGUA
982


361981.1
faCfUfCfu

(Ggn)aaag

ACUCUUUCU




uucuaugcu

agUfuAfcg

AUGCC




L96

uuasasa








AD-
uscsugagG
580
asAfsauag
781
ACUCUGAGG
983


355423.1
faAfCfAfg

(Ggn)aacu

AACAGUUCC




uuccuauuu

guUfcCfuc

UAUUG




L96

agasgsu








AD-
uscsauaaU
581
asAfscaaa
782
AUUCAUAAU
984


356956.1
fcAfCfAfu

(Cgn)gaau

CACAUUCGU




ucguuuguu

guGfaUfua

UUGUU




L96

ugasasu








AD-
asusggauU
582
asCfsuugg
783
UGAUGGAUU
985


353522.1
fcUfAfAfu

(Agn)agau

CUAAUCUUC




cuuccaagu

uaGfaAfuc

CAAGG




L96

causcsa








AD-
usgsaacuG
583
asUfsauga
784
UAUGAACUG
986


354075.1
faCfGfUfu

(Tgn)guaa

ACGUUACAU




acaucauau

cgUfcAfgu

CAUAC




L96

ucasusa








AD-
uscsuauaA
584
usGfsucaa
785
ACUCUAUAA
987


355059.1
faGfUfUfc

(Ggn)agga

AGUUCCUCU




cucuugaca

acUfuUfau

UGACA




L96

agasgsu








AD-
gscsuauuC
585
asCfsgaau
786
AUGCUAUUC
988


356951.1
faUfAfAfu

(Ggn)ugau

AUAAUCACA




cacauucgu

uaUfgAfau

UUCGU




L96

agcsasu








AD-
gscsuacuA
586
asCfsuaag
787
UGGCUACUA
989


353871.1
faAfUfGfu

(Agn)gcac

AAUGUGCUC




gcucuuagu

auUfuAfgu

UUAGG




L96

agcscsa








AD-
gscsuuuaA
587
asGfsucgu
788
AAGCUUUAA
990


356996.1
faAfCfAfg

(Ggn)uacu

AACAGUACA




uacacgacu

guUfuUfaa

CGACU




L96

agcsusu








AD-
asgsguuuA
588
asUfsaacg
789
CCAGGUUUA
991


354068.1
fuGfAfAfc

(Tgn)cagu

UGAACUGAC




ugacguuau

ucAfuAfaa

GUUAC




L96

ccusgsg








AD-
uscsaacaA
589
asGfsaguc
790
GUUCAACAA
992


356678.1
fuUfGfUfu

(Tgn)ucaa

UUGUUGAAG




gaagacucu

caAfuUfgu

ACUCU




L96

ugasasc








AD-
gscsaacaU
590
usGfsgcaa
791
CAGCAACAU
993


357963.1
faCfUfUfu

(Tgn)agaa

ACUUUCUAU




cuauugcca

agUfaUfgu

UGCCA




L96

ugcsusg








AD-
asusuuccG
591
asGfsgaac
792
ACAUUUCCG
994


362090.1
fuUfGfUfa

(Agn)ugua

UUGUACAUG




cauguuccu

caAfcGfga

UUCCU




L96

aausgsu








AD-
csusccguC
592
asUfsgguu
793
UUCUCCGUC
995


355745.1
faGfCfAfc

(Agn)uugu

AGCACAAUA




aauaaccau

gcUfgAfeg

ACCAG




L96

gagsasa








AD-
usgsguucA
593
asAfsuuaa
794
GCUGGUUCA
996


357066.1
fgUfUfAfc

(Cgn)ccgu

GUUACGGGU




ggguuaauu

aaCfuGfaa

UAAUU




L96

ccasgsc








AD-
ususcuaaU
594
usGfsuaac
795
GAUUCUAAU
997


353527.1
fcUfUfCfc

(Cgn)uugg

CUUCCAAGG




aagguuaca

aaGfaUfua

UUACA




L96

gaasusc








AD-
gsasguauU
595
asCfsuaua
796
GGGAGUAUU
998


354236.1
fgUfGfGfa

(Agn)guuc

GUGGAACUU




acuuauagu

caCfaAfua

AUAGC




L96

cucscsc








AD-
gsasuauuG
596
asAfsuacg
797
AAGAUAUUG
999


357750.1
fuUfCfUfu

(Agn)gaaa

UUCUUUCUC




ucucguauu

gaAfcAfau

GUAUU




L96

aucsusu








AD-
csusagacA
597
asUfsgagg
798
UUCUAGACA
1000


356389.1
faUfCfUfg

(Tgn)auca

AUCUGAUAC




auaccucau

gaUfuGfuc

CUCAG




L96

uagsasa








AD-
csgsccuuU
598
asAfsacga
799
UCCGCCUUU
1001


354939.1
fuAfUfCfu

(Agn)gcag

UAUCUGCUU




gcuucguuu

auAfaAfag

CGUUU




L96

gcgsgsa








AD-
usasugaaC
599
usUfsuuga
800
CUUAUGAAC
1002


357218.1
fgCfUfAfu

(Agn)ugau

GCUAUCAUU




cauucaaaa

agCfgUfuc

CAAAA




L96

auasasg








AD-
usgsaaauU
600
asUfsaccg
801
UCUGAAAUU
1003


354640.1
fgUfGfUfu

(Tgn)cuaa

GUGUUAGAC




agacgguau

caCfaAfuu

GGUAC




L96

ucasgsa








AD-
asuscuucA
601
asAfsacau
802
ACAUCUUCA
1004


358018.1
faGfUfCfu

(Tgn)ccag

AGUCUGGAA




ggaauguuu

acUfuGfaa

UGUUC




L96

gausgsu








AD-
uscscguuG
602
asAfscagg
803
UUUCCGUUG
1005


362093.1
fuAfCfAfu

(Agn)acau

UACAUGUUC




guuccuguu

guAfcAfac

CUGUU




L96

ggasasa








AD-
gscsuucuA
603
asGfsuauc
804
CAGCUUCUA
1006


356385.1
fgAfCfAfa

(Agn)gauu

GACAAUCUG




ucugauacu

guCfuAfga

AUACC




L96

agcsusg








AD-
ususcaguU
604
asGfsuaau
805
GGUUCAGUU
1007


357069.1
faCfGfGfg

(Tgn)aacc

ACGGGUUAA




uuaauuacu

cgUfaAfcu

UUACU




L96

gaascsc








AD-
csasugcaA
605
asGfsacua
806
ACCAUGCAA
1008


358764.1
fgAfCfUfc

(Agn)guga

GACUCACUU




acuuagucu

guCfuUfgc

AGUCC




L96

augsgsu








AD-
gsasugacU
606
asGfsaucu
807
AGGAUGACU
1009


354316.1
fcUfGfAfa

(Cgn)gauu

CUGAAUCGA




ucgagaucu

caGfaGfuc

GAUCG




L96

aucscsu








AD-
asgsgcuaU
607
asUfsuggu
808
AGAGGCUAU
1010


355775.1
faAfCfCfu

(Agn)guag

AACCUACUA




acuaccaau

guUfaUfag

CCAAG




L96

ccuscsu








AD-
ascsucugA
608
asAfsuccg
809
UGACUCUGA
1011


354320.1
faUfCfGfa

(Agn)ucuc

AUCGAGAUC




gaucggauu

gaUfuCfag

GGAUG




L96

aguscsa








AD-
ascscuacU
609
asUfsguua
810
UAACCUACU
1012


355783.1
faCfCfAfa

(Tgn)gcuu

ACCAAGCAU




gcauaacau

ggUfaGfua

AACAG




L96

ggususa








AD-
uscsugaaU
610
asAfscauc
811
ACUCUGAAU
1013


354322.1
fcGfAfGfa

(Cgn)gauc

CGAGAUCGG




ucggauguu

ucGfaUfuc

AUGUC




L96

agasgsu








AD-
asgsguccU
611
usUfsacuu
812
UCAGGUCCU
1014


356408.1
fgUfUfAfc

(Ggn)uugu

GUUACAACA




aacaaguaa

aaCfaGfga

AGUAA




L96

ccusgsa








AD-
ascsagcaG
612
csAfsaauu
813
UGACAGCAG
1015


354805.1
fuGfUfUfg

(Tgn)auca

UGUUGAUAA




auaaauuug

acAfcUfgc

AUUUG




L96

uguscsa








AD-
gsgsuccuG
613
usUfsuacu
814
CAGGUCCUG
1016


356409.1
fuUfAfCfa

(Tgn)guug

UUACAACAA




acaaguaaa

uaAfcAfgg

GUAAA




L96

accsusg








AD-
ususgaacU
614
usCfscaug
815
UCUUGAACU
1017


355118.1
faCfAfUfc

(Agn)ucga

ACAUCGAUC




gaucaugga

ugUfaGfuu

AUGGA




L96

caasgsa








AD-
ascsucggA
615
asGfscuua
816
GAACUCGGA
1018


358958.1
fgUfUfCfa

(Ggn)guug

GUUCAACCU




accuaagcu

aaCfuCfcg

AAGCC




L96

agususc








AD-
csuscugaG
616
asAfsuagg
817
GACUCUGAG
1019


355422.1
fgAfAfCfa

(Agn)acug

GAACAGUUC




guuccuauu

uuCfcUfca

CUAUU




L96

gagsusc








AD-
csuscggaG
494
asGfsgcuu
818
AACUCGGAG
1020


358959.1
fuUfCfAfa

(Agn)gguu

UUCAACCUA




ccuaagccu

gaAfcUfcc

AGCCU




L96

gagsusu








AD-
csusgaggA
617
asCfsaaua
819
CUCUGAGGA
1021


355424.1
faCfAfGfu

(Ggn)gaac

ACAGUUCCU




uccuauugu

ugUfuCfcu

AUUGG




L96

cagsasg








AD-
gscsucggA
482
asGfscuua
683
GAGCUCGGA
885


379420.2
fgUfUfCfa

(Ggn)guug

GUUCAACCU




accuaagcu

aaCfuCfcg

AAGCC




L96

agcsusc








AD-
asuscauuA
618
usUfsaaaa
820
UCAUCAUUA
1022


355524.1
fuAfCfAfg

(Ggn)cccu

UACAGGGCU




ggcuuuuaa

guAfuAfau

UUUAA




L96

gausgsa








AD-
csuscggaG
494
asGfsgcuu
695
AGGCUUAGG
292


379380.2
fuUfCfAfa

(Agn)gguu

UUGAACUCC




ccuaagccu

gaAfcUfcc

GAGCU




L96

gagscsu
















TABLE 5







Unmodified Sense and Antisense Strand Sequences of Huntingtin


(HTT) dsRNA Agents
















Range


Range





in


in



Sense Sequence
SEQ ID
NM_002
Antisense Sequence
SEQ ID
NM_0021


Duplex ID
5′ to 3′
NO:
111.8
5′ to 3′
NO:
11.8
















AD-953583.1
GCUGCCGGGACGGGUCCAA
1023
 1-19
UUGGACCCGUCCCGGCAGC
1194
 1-19





AD-953591.1
GACGGGUCCAAGAUGGACG
1024
 9-27
CGUCCAUCUUGGACCCGUC
1195
 9-27





AD-953599.1
CAAGAUGGACGGCCGCUCA
1025
17-35
UGAGCGGCCGUCCAUCUUG
1196
17-35





AD-953607.1
ACGGCCGCUCAGGUUCUGC
1026
25-43
GCAGAACCUGAGCGGCCGU
1197
25-43





AD-953615.1
UCAGGUUCUGCUUUUACCU
1027
33-51
AGGUAAAAGCAGAACCUGA
1198
33-51





AD-953623.1
UGCUUUUACCUGCGGCCCA
1028
41-59
UGGGCCGCAGGUAAAAGCA
1199
41-59





AD-953630.1
ACCUGCGGCCCAGAGCCCC
1029
48-66
GGGGCUCUGGGCCGCAGGU
1200
48-66





AD-953638.1
CCCAGAGCCCCAUUCAUUG
1030
56-74
CAAUGAAUGGGGCUCUGGG
1201
56-74





AD-953646.1
CCCAUUCAUUGCCCCGGUG
1031
64-82
CACCGGGGCAAUGAAUGGG
1202
64-82





AD-953654.1
UUGCCCCGGUGCUGAGCGG
1032
72-90
CCGCUCAGCACCGGGGCAA
1203
72-90





AD-953662.1
GUGCUGAGCGGCGCCGCGA
1033
80-98
UCGCGGCGCCGCUCAGCAC
1204
80-98





AD-953670.1
CGGCGCCGCGAGUCGGCCC
1034
 88-106
GGGCCGACUCGCGGCGCCG
1205
 88-106





AD-953584.1
CUGCCGGGACGGGUCCAAG
1035
 2-20
CUUGGACCCGUCCCGGCAG
1206
 2-20





AD-953592.1
ACGGGUCCAAGAUGGACGG
1036
10-28
CCGUCCAUCUUGGACCCGU
1207
10-28





AD-953600.1
AAGAUGGACGGCCGCUCAG
1037
18-36
CUGAGCGGCCGUCCAUCUU
1208
18-36





AD-953608.1
CGGCCGCUCAGGUUCUGCU
1038
26-44
AGCAGAACCUGAGCGGCCG
1209
26-44





AD-953616.1
CAGGUUCUGCUUUUACCUG
1039
34-52
CAGGUAAAAGCAGAACCUG
1210
34-52





AD-953624.1
GCUUUUACCUGCGGCCCAG
1040
42-60
CUGGGCCGCAGGUAAAAGC
1211
42-60





AD-953631.1
CCUGCGGCCCAGAGCCCCA
1041
49-67
UGGGGCUCUGGGCCGCAGG
1212
49-67





AD-953639.1
CCAGAGCCCCAUUCAUUGC
1042
57-75
GCAAUGAAUGGGGCUCUGG
1213
57-75





AD-953647.1
CCAUUCAUUGCCCCGGUGC
1043
65-83
GCACCGGGGCAAUGAAUGG
1214
65-83





AD-953655.1
UGCCCCGGUGCUGAGCGGC
1044
73-91
GCCGCUCAGCACCGGGGCA
1215
73-91





AD-953663.1
UGCUGAGCGGCGCCGCGAG
1045
81-99
CUCGCGGCGCCGCUCAGCA
1216
81-99





AD-953671.1
GGCGCCGCGAGUCGGCCCG
1046
 89-107
CGGGCCGACUCGCGGCGCC
1217
 89-107





AD-953585.1
UGCCGGGACGGGUCCAAGA
1047
 3-21
UCUUGGACCCGUCCCGGCA
1218
 3-21





AD-953593.1
CGGGUCCAAGAUGGACGGC
1048
11-29
GCCGUCCAUCUUGGACCCG
1219
11-29





AD-953601.1
AGAUGGACGGCCGCUCAGG
1049
19-37
CCUGAGCGGCCGUCCAUCU
1220
19-37





AD-953609.1
GGCCGCUCAGGUUCUGCUU
1050
27-45
AAGCAGAACCUGAGCGGCC
1221
27-45





AD-953617.1
AGGUUCUGCUUUUACCUGC
1051
35-53
GCAGGUAAAAGCAGAACCU
1222
35-53





AD-953625.1
CUUUUACCUGCGGCCCAGA
1052
43-61
UCUGGGCCGCAGGUAAAAG
1223
43-61





AD-953632.1
CUGCGGCCCAGAGCCCCAU
1053
50-68
AUGGGGCUCUGGGCCGCAG
1224
50-68





AD-953640.1
CAGAGCCCCAUUCAUUGCC
1054
58-76
GGCAAUGAAUGGGGCUCUG
1225
58-76





AD-953648.1
CAUUCAUUGCCCCGGUGCU
1055
66-84
AGCACCGGGGCAAUGAAUG
1226
66-84





AD-953656.1
GCCCCGGUGCUGAGCGGCG
1056
74-92
CGCCGCUCAGCACCGGGGC
1227
74-92





AD-953664.1
GCUGAGCGGCGCCGCGAGU
1057
 82-100
ACUCGCGGCGCCGCUCAGC
1228
 82-100





AD-953672.1
GCGCCGCGAGUCGGCCCGA
1058
 90-108
UCGGGCCGACUCGCGGCGC
1229
 90-108





AD-953586.1
GCCGGGACGGGUCCAAGAU
1059
 4-22
AUCUUGGACCCGUCCCGGC
1230
 4-22





AD-953594.1
GGGUCCAAGAUGGACGGCC
1060
12-30
GGCCGUCCAUCUUGGACCC
1231
12-30





AD-953602.1
GAUGGACGGCCGCUCAGGU
1061
20-38
ACCUGAGCGGCCGUCCAUC
1232
20-38





AD-953610.1
GCCGCUCAGGUUCUGCUUU
1062
28-46
AAAGCAGAACCUGAGCGGC
1233
28-46





AD-953618.1
GGUUCUGCUUUUACCUGCG
1063
36-54
CGCAGGUAAAAGCAGAACC
1234
36-54





AD-953626.1
UUUUACCUGCGGCCCAGAG
1064
44-62
CUCUGGGCCGCAGGUAAAA
1235
44-62





AD-953633.1
UGCGGCCCAGAGCCCCAUU
1065
51-69
AAUGGGGCUCUGGGCCGCA
1236
51-69





AD-953641.1
AGAGCCCCAUUCAUUGCCC
1066
59-77
GGGCAAUGAAUGGGGCUCU
1237
59-77





AD-953649.1
AUUCAUUGCCCCGGUGCUG
1067
67-85
CAGCACCGGGGCAAUGAAU
1238
67-85





AD-953657.1
CCCCGGUGCUGAGCGGCGC
1068
75-93
GCGCCGCUCAGCACCGGGG
1239
75-93





AD-953665.1
CUGAGCGGCGCCGCGAGUC
1069
 83-101
GACUCGCGGCGCCGCUCAG
1240
 83-101





AD-953673.1
CGCCGCGAGUCGGCCCGAG
1070
 91-109
CUCGGGCCGACUCGCGGCG
1241
 91-109





AD-953587.1
CCGGGACGGGUCCAAGAUG
1071
 5-23
CAUCUUGGACCCGUCCCGG
1242
 5-23





AD-953595.1
GGUCCAAGAUGGACGGCCG
1072
13-31
CGGCCGUCCAUCUUGGACC
1243
13-31





AD-953603.1
AUGGACGGCCGCUCAGGUU
1073
21-39
AACCUGAGCGGCCGUCCAU
1244
21-39





AD-953611.1
CCGCUCAGGUUCUGCUUUU
1074
29-47
AAAAGCAGAACCUGAGCGG
1245
29-47





AD-953619.1
GUUCUGCUUUUACCUGCGG
1075
37-55
CCGCAGGUAAAAGCAGAAC
1246
37-55





AD-953627.1
UUUACCUGCGGCCCAGAGC
1076
45-63
GCUCUGGGCCGCAGGUAAA
1247
45-63





AD-953634.1
GCGGCCCAGAGCCCCAUUC
1077
52-70
GAAUGGGGCUCUGGGCCGC
1248
52-70





AD-953642.1
GAGCCCCAUUCAUUGCCCC
1078
60-78
GGGGCAAUGAAUGGGGCUC
1249
60-78





AD-953650.1
UUCAUUGCCCCGGUGCUGA
1079
68-86
UCAGCACCGGGGCAAUGAA
1250
68-86





AD-953658.1
CCCGGUGCUGAGCGGCGCC
1080
76-94
GGCGCCGCUCAGCACCGGG
1251
76-94





AD-953666.1
UGAGCGGCGCCGCGAGUCG
1081
 84-102
CGACUCGCGGCGCCGCUCA
1252
 84-102





AD-953674.1
GCCGCGAGUCGGCCCGAGG
1082
 92-110
CCUCGGGCCGACUCGCGGC
1253
 92-110





AD-953588.1
CGGGACGGGUCCAAGAUGG
1083
 6-24
CCAUCUUGGACCCGUCCCG
1254
 6-24





AD-953596.1
GUCCAAGAUGGACGGCCGC
1084
14-32
GCGGCCGUCCAUCUUGGAC
1255
14-32





AD-953604.1
UGGACGGCCGCUCAGGUUC
1085
22-40
GAACCUGAGCGGCCGUCCA
1256
22-40





AD-953612.1
CGCUCAGGUUCUGCUUUUA
1086
30-48
UAAAAGCAGAACCUGAGCG
1257
30-48





AD-953620.1
UUCUGCUUUUACCUGCGGC
1087
38-56
GCCGCAGGUAAAAGCAGAA
1258
38-56





AD-953628.1
UUACCUGCGGCCCAGAGCC
1088
46-64
GGCUCUGGGCCGCAGGUAA
1259
46-64





AD-953635.1
CGGCCCAGAGCCCCAUUCA
1089
53-71
UGAAUGGGGCUCUGGGCCG
1260
53-71





AD-953643.1
AGCCCCAUUCAUUGCCCCG
1090
61-79
CGGGGCAAUGAAUGGGGCU
1261
61-79





AD-953651.1
UCAUUGCCCCGGUGCUGAG
1091
69-87
CUCAGCACCGGGGCAAUGA
1262
69-87





AD-953659.1
CCGGUGCUGAGCGGCGCCG
1092
77-95
CGGCGCCGCUCAGCACCGG
1263
77-95





AD-953667.1
GAGCGGCGCCGCGAGUCGG
1093
 85-103
CCGACUCGCGGCGCCGCUC
1264
 85-103





AD-953675.1
CCGCGAGUCGGCCCGAGGC
1094
 93-111
GCCUCGGGCCGACUCGCGG
1265
 93-111





AD-953589.1
GGGACGGGUCCAAGAUGGA
1095
 7-25
UCCAUCUUGGACCCGUCCC
1266
 7-25





AD-953597.1
UCCAAGAUGGACGGCCGCU
1096
15-33
AGCGGCCGUCCAUCUUGGA
1267
15-33





AD-953605.1
GGACGGCCGCUCAGGUUCU
1097
23-41
AGAACCUGAGCGGCCGUCC
1268
23-41





AD-953613.1
GCUCAGGUUCUGCUUUUAC
1098
31-49
GUAAAAGCAGAACCUGAGC
1269
31-49





AD-953621.1
UCUGCUUUUACCUGCGGCC
1099
39-57
GGCCGCAGGUAAAAGCAGA
1270
39-57





AD-953629.1
UACCUGCGGCCCAGAGCCC
1100
47-65
GGGCUCUGGGCCGCAGGUA
1271
47-65





AD-953636.1
GGCCCAGAGCCCCAUUCAU
1101
54-72
AUGAAUGGGGCUCUGGGCC
1272
54-72





AD-953644.1
GCCCCAUUCAUUGCCCCGG
1102
62-80
CCGGGGCAAUGAAUGGGGC
1273
62-80





AD-953652.1
CAUUGCCCCGGUGCUGAGC
1103
70-88
GCUCAGCACCGGGGCAAUG
1274
70-88





AD-953660.1
CGGUGCUGAGCGGCGCCGC
1104
78-96
GCGGCGCCGCUCAGCACCG
1275
78-96





AD-953676.1
CGCGAGUCGGCCCGAGGCC
1105
 94-112
GGCCUCGGGCCGACUCGCG
1276
 94-112





AD-953590.1
GGACGGGUCCAAGAUGGAC
1106
 8-26
GUCCAUCUUGGACCCGUCC
1277
 8-26





AD-953598.1
CCAAGAUGGACGGCCGCUC
1107
16-34
GAGCGGCCGUCCAUCUUGG
1278
16-34





AD-953606.1
GACGGCCGCUCAGGUUCUG
1108
24-42
CAGAACCUGAGCGGCCGUC
1279
24-42





AD-953614.1
CUCAGGUUCUGCUUUUACC
1109
32-50
GGUAAAAGCAGAACCUGAG
1280
32-50





AD-953622.1
CUGCUUUUACCUGCGGCCC
1110
40-58
GGGCCGCAGGUAAAAGCAG
1281
40-58





AD-953637.1
GCCCAGAGCCCCAUUCAUU
1111
55-73
AAUGAAUGGGGCUCUGGGC
1282
55-73





AD-953645.1
CCCCAUUCAUUGCCCCGGU
1112
63-81
ACCGGGGCAAUGAAUGGGG
1283
63-81





AD-953653.1
AUUGCCCCGGUGCUGAGCG
1113
71-89
CGCUCAGCACCGGGGCAAU
1284
71-89





AD-953661.1
GGUGCUGAGCGGCGCCGCG
1114
79-97
CGCGGCGCCGCUCAGCACC
1285
79-97





AD-953677.1
GCGAGUCGGCCCGAGGCCU
1115
 95-113
AGGCCUCGGGCCGACUCGC
1286
 95-113





AD-953685.1
GCCCGAGGCCUCCGGGGAC
1116
103-121
GUCCCCGGAGGCCUCGGGC
1287
103-121





AD-953693.1
CCUCCGGGGACUGCCGUGC
1117
111-129
GCACGGCAGUCCCCGGAGG
1288
111-129





AD-953701.1
GACUGCCGUGCCGGGCGGG
1118
119-137
CCCGCCCGGCACGGCAGUC
1289
119-137





AD-953709.1
UGCCGGGCGGGAGACCGCC
1119
127-145
GGCGGUCUCCCGCCCGGCA
1290
127-145





AD-953717.1
GGGAGACCGCCAUGGCGAC
1120
135-153
GUCGCCAUGGCGGUCUCCC
1291
135-153





AD-953724.1
CGCCAUGGCGACCCUGGAA
1121
142-160
UUCCAGGGUCGCCAUGGCG
1292
142-160





AD-953732.1
CGACCCUGGAAAAGCUGAU
1122
150-168
AUCAGCUUUUCCAGGGUCG
1293
150-168





AD-953702.1
ACUGCCGUGCCGGGCGGGA
1123
120-138
UCCCGCCCGGCACGGCAGU
1294
120-138





AD-953710.1
GCCGGGCGGGAGACCGCCA
1124
128-146
UGGCGGUCUCCCGCCCGGC
1295
128-146





AD-953718.1
GGAGACCGCCAUGGCGACC
1125
136-154
GGUCGCCAUGGCGGUCUCC
1296
136-154





AD-953733.1
GACCCUGGAAAAGCUGAUG
1126
151-169
CAUCAGCUUUUCCAGGGUC
1297
151-169





AD-953741.1
AAAAGCUGAUGAAGGCCUU
1127
159-177
AAGGCCUUCAUCAGCUUUU
1298
159-177





AD-953749.1
AUGAAGGCCUUCGAGUCCC
1128
167-185
GGGACUCGAAGGCCUUCAU
1299
167-185





AD-953757.1
CUUCGAGUCCCUCAAGUCC
1129
175-193
GGACUUGAGGGACUCGAAG
1300
175-193





AD-953679.1
GAGUCGGCCCGAGGCCUCC
1130
 97-115
GGAGGCCUCGGGCCGACUC
1301
 97-115





AD-953687.1
CCGAGGCCUCCGGGGACUG
1131
105-123
CAGUCCCCGGAGGCCUCGG
1302
105-123





AD-953695.1
UCCGGGGACUGCCGUGCCG
1132
113-131
CGGCACGGCAGUCCCCGGA
1303
113-131





AD-953703.1
CUGCCGUGCCGGGCGGGAG
1133
121-139
CUCCCGCCCGGCACGGCAG
1304
121-139





AD-953711.1
CCGGGCGGGAGACCGCCAU
1134
129-147
AUGGCGGUCUCCCGCCCGG
1305
129-147





AD-953719.1
GAGACCGCCAUGGCGACCC
1135
137-155
GGGUCGCCAUGGCGGUCUC
1306
137-155





AD-953726.1
CCAUGGCGACCCUGGAAAA
1136
144-162
UUUUCCAGGGUCGCCAUGG
1307
144-162





AD-953734.1
ACCCUGGAAAAGCUGAUGA
1137
152-170
UCAUCAGCUUUUCCAGGGU
1308
152-170





AD-953742.1
AAAGCUGAUGAAGGCCUUC
1138
160-178
GAAGGCCUUCAUCAGCUUU
1309
160-178





AD-953750.1
UGAAGGCCUUCGAGUCCCU
1139
168-186
AGGGACUCGAAGGCCUUCA
1310
168-186





AD-953758.1
UUCGAGUCCCUCAAGUCCU
1140
176-194
AGGACUUGAGGGACUCGAA
1311
176-194





AD-953680.1
AGUCGGCCCGAGGCCUCCG
1141
 98-116
CGGAGGCCUCGGGCCGACU
1312
 98-116





AD-953688.1
CGAGGCCUCCGGGGACUGC
1142
106-124
GCAGUCCCCGGAGGCCUCG
1313
106-124





AD-953696.1
CCGGGGACUGCCGUGCCGG
1143
114-132
CCGGCACGGCAGUCCCCGG
1314
114-132





AD-953704.1
UGCCGUGCCGGGCGGGAGA
1144
122-140
UCUCCCGCCCGGCACGGCA
1315
122-140





AD-953712.1
CGGGCGGGAGACCGCCAUG
1145
130-148
CAUGGCGGUCUCCCGCCCG
1316
130-148





AD-953720.1
AGACCGCCAUGGCGACCCU
1146
138-156
AGGGUCGCCAUGGCGGUCU
1317
138-156





AD-953727.1
CAUGGCGACCCUGGAAAAG
1147
145-163
CUUUUCCAGGGUCGCCAUG
1318
145-163





AD-953735.1
CCCUGGAAAAGCUGAUGAA
1148
153-171
UUCAUCAGCUUUUCCAGGG
1319
153-171





AD-953743.1
AAGCUGAUGAAGGCCUUCG
1149
161-179
CGAAGGCCUUCAUCAGCUU
1320
161-179





AD-953751.1
GAAGGCCUUCGAGUCCCUC
1150
169-187
GAGGGACUCGAAGGCCUUC
1321
169-187





AD-953759.1
UCGAGUCCCUCAAGUCCUU
1151
177-195
AAGGACUUGAGGGACUCGA
1322
177-195





AD-953681.1
GUCGGCCCGAGGCCUCCGG
1152
 99-117
CCGGAGGCCUCGGGCCGAC
1323
 99-117





AD-953689.1
GAGGCCUCCGGGGACUGCC
1153
107-125
GGCAGUCCCCGGAGGCCUC
1324
107-125





AD-953697.1
CGGGGACUGCCGUGCCGGG
1154
115-133
CCCGGCACGGCAGUCCCCG
1325
115-133





AD-953705.1
GCCGUGCCGGGCGGGAGAC
1155
123-141
GUCUCCCGCCCGGCACGGC
1326
123-141





AD-953713.1
GGGCGGGAGACCGCCAUGG
1156
131-149
CCAUGGCGGUCUCCCGCCC
1327
131-149





AD-953721.1
GACCGCCAUGGCGACCCUG
1157
139-157
CAGGGUCGCCAUGGCGGUC
1328
139-157





AD-953728.1
AUGGCGACCCUGGAAAAGC
1158
146-164
GCUUUUCCAGGGUCGCCAU
1329
146-164





AD-953736.1
CCUGGAAAAGCUGAUGAAG
1159
154-172
CUUCAUCAGCUUUUCCAGG
1330
154-172





AD-953744.1
AGCUGAUGAAGGCCUUCGA
1160
162-180
UCGAAGGCCUUCAUCAGCU
1331
162-180





AD-953752.1
AAGGCCUUCGAGUCCCUCA
1161
170-188
UGAGGGACUCGAAGGCCUU
1332
170-188





AD-953760.1
CGAGUCCCUCAAGUCCUUC
1162
178-196
GAAGGACUUGAGGGACUCG
1333
178-196





AD-953682.1
UCGGCCCGAGGCCUCCGGG
1163
100-118
CCCGGAGGCCUCGGGCCGA
1334
100-118





AD-953690.1
AGGCCUCCGGGGACUGCCG
1164
108-126
CGGCAGUCCCCGGAGGCCU
1335
108-126





AD-953698.1
GGGGACUGCCGUGCCGGGC
1165
116-134
GCCCGGCACGGCAGUCCCC
1336
116-134





AD-953706.1
CCGUGCCGGGCGGGAGACC
1166
124-142
GGUCUCCCGCCCGGCACGG
1337
124-142





AD-953714.1
GGCGGGAGACCGCCAUGGC
1167
132-150
GCCAUGGCGGUCUCCCGCC
1338
132-150





AD-953722.1
ACCGCCAUGGCGACCCUGG
1168
140-158
CCAGGGUCGCCAUGGCGGU
1339
140-158





AD-953729.1
UGGCGACCCUGGAAAAGCU
1169
147-165
AGCUUUUCCAGGGUCGCCA
1340
147-165





AD-953737.1
CUGGAAAAGCUGAUGAAGG
1170
155-173
CCUUCAUCAGCUUUUCCAG
1341
155-173





AD-953745.1
GCUGAUGAAGGCCUUCGAG
1171
163-181
CUCGAAGGCCUUCAUCAGC
1342
163-181





AD-953753.1
AGGCCUUCGAGUCCCUCAA
1172
171-189
UUGAGGGACUCGAAGGCCU
1343
171-189





AD-953761.1
GAGUCCCUCAAGUCCUUCC
1173
179-197
GGAAGGACUUGAGGGACUC
1344
179-197





AD-953683.1
CGGCCCGAGGCCUCCGGGG
1174
101-119
CCCCGGAGGCCUCGGGCCG
1345
101-119





AD-953691.1
GGCCUCCGGGGACUGCCGU
1175
109-127
ACGGCAGUCCCCGGAGGCC
1346
109-127





AD-953699.1
GGGACUGCCGUGCCGGGCG
1176
117-135
CGCCCGGCACGGCAGUCCC
1347
117-135





AD-953707.1
CGUGCCGGGCGGGAGACCG
1177
125-143
CGGUCUCCCGCCCGGCACG
1348
125-143





AD-953715.1
GCGGGAGACCGCCAUGGCG
1178
133-151
CGCCAUGGCGGUCUCCCGC
1349
133-151





AD-953723.1
CCGCCAUGGCGACCCUGGA
1179
141-159
UCCAGGGUCGCCAUGGCGG
1350
141-159





AD-953730.1
GGCGACCCUGGAAAAGCUG
1180
148-166
CAGCUUUUCCAGGGUCGCC
1351
148-166





AD-953738.1
UGGAAAAGCUGAUGAAGGC
1181
156-174
GCCUUCAUCAGCUUUUCCA
1352
156-174





AD-953746.1
CUGAUGAAGGCCUUCGAGU
1182
164-182
ACUCGAAGGCCUUCAUCAG
1353
164-182





AD-953754.1
GGCCUUCGAGUCCCUCAAG
1183
172-190
CUUGAGGGACUCGAAGGCC
1354
172-190





AD-953762.1
AGUCCCUCAAGUCCUUCCA
1184
180-198
UGGAAGGACUUGAGGGACU
1355
180-198





AD-953684.1
GGCCCGAGGCCUCCGGGGA
1185
102-120
UCCCCGGAGGCCUCGGGCC
1356
102-120





AD-953692.1
GCCUCCGGGGACUGCCGUG
1186
110-128
CACGGCAGUCCCCGGAGGC
1357
110-128





AD-953700.1
GGACUGCCGUGCCGGGCGG
1187
118-136
CCGCCCGGCACGGCAGUCC
1358
118-136





AD-953708.1
GUGCCGGGCGGGAGACCGC
1188
126-144
GCGGUCUCCCGCCCGGCAC
1359
126-144





AD-953716.1
CGGGAGACCGCCAUGGCGA
1189
134-152
UCGCCAUGGCGGUCUCCCG
1360
134-152





AD-953731.1
GCGACCCUGGAAAAGCUGA
1190
149-167
UCAGCUUUUCCAGGGUCGC
1361
149-167





AD-953739.1
GGAAAAGCUGAUGAAGGCC
1191
157-175
GGCCUUCAUCAGCUUUUCC
1362
157-175





AD-953747.1
UGAUGAAGGCCUUCGAGUC
1192
165-183
GACUCGAAGGCCUUCAUCA
1363
165-183





AD-953755.1
GCCUUCGAGUCCCUCAAGU
1193
173-191
ACUUGAGGGACUCGAAGGC
1364
173-191
















TABLE 6







Modified Sense and Antisense Strand Sequences of Huntingtin (HTT) dsRNA Agents















SEQ

SEQ

SEQ



Sense Sequence
ID
Antisense Sequence
ID
mRNA Target Sequence
ID


Duplex ID
5′ to 3′
NO:
5′ to 3′
NO:
5′ to 3′
NO:





AD-953583.1
GCUGCCGGGACGGGUCCAAdTdT
1365
UUGGACCCGUCCCGGCAGCdTdT
1536
GCUGCCGGGACGGGUCCAA
1023





AD-953591.1
GACGGGUCCAAGAUGGACGdTdT
1366
CGUCCAUCUUGGACCCGUCdTdT
1537
GACGGGUCCAAGAUGGACG
1024





AD-953599.1
CAAGAUGGACGGCCGCUCAdTdT
1367
UGAGCGGCCGUCCAUCUUGdTdT
1538
CAAGAUGGACGGCCGCUCA
1025





AD-953607.1
ACGGCCGCUCAGGUUCUGCdTdT
1368
GCAGAACCUGAGCGGCCGUdTdT
1539
ACGGCCGCUCAGGUUCUGC
1026





AD-953615.1
UCAGGUUCUGCUUUUACCUdTdT
1369
AGGUAAAAGCAGAACCUGAdTdT
1540
UCAGGUUCUGCUUUUACCU
1027





AD-953623.1
UGCUUUUACCUGCGGCCCAdTdT
1370
UGGGCCGCAGGUAAAAGCAdTdT
1541
UGCUUUUACCUGCGGCCCA
1028





AD-953630.1
ACCUGCGGCCCAGAGCCCCdTdT
1371
GGGGCUCUGGGCCGCAGGUdTdT
1542
ACCUGCGGCCCAGAGCCCC
1029





AD-953638.1
CCCAGAGCCCCAUUCAUUGdTdT
1372
CAAUGAAUGGGGCUCUGGGdTdT
1543
CCCAGAGCCCCAUUCAUUG
1030





AD-953646.1
CCCAUUCAUUGCCCCGGUGdTdT
1373
CACCGGGGCAAUGAAUGGGdTdT
1544
CCCAUUCAUUGCCCCGGUG
1031





AD-953654.1
UUGCCCCGGUGCUGAGCGGdTdT
1374
CCGCUCAGCACCGGGGCAAdTdT
1545
UUGCCCCGGUGCUGAGCGG
1032





AD-953662.1
GUGCUGAGCGGCGCCGCGAdTdT
1375
UCGCGGCGCCGCUCAGCACdTdT
1546
GUGCUGAGCGGCGCCGCGA
1033





AD-953670.1
CGGCGCCGCGAGUCGGCCCdTdT
1376
GGGCCGACUCGCGGCGCCGdTdT
1547
CGGCGCCGCGAGUCGGCCC
1034





AD-953584.1
CUGCCGGGACGGGUCCAAGdTdT
1377
CUUGGACCCGUCCCGGCAGdTdT
1548
CUGCCGGGACGGGUCCAAG
1035





AD-953592.1
ACGGGUCCAAGAUGGACGGdTdT
1378
CCGUCCAUCUUGGACCCGUdTdT
1549
ACGGGUCCAAGAUGGACGG
1036





AD-953600.1
AAGAUGGACGGCCGCUCAGdTdT
1379
CUGAGCGGCCGUCCAUCUUdTdT
1550
AAGAUGGACGGCCGCUCAG
1037





AD-953608.1
CGGCCGCUCAGGUUCUGCUdTdT
1380
AGCAGAACCUGAGCGGCCGdTdT
1551
CGGCCGCUCAGGUUCUGCU
1038





AD-953616.1
CAGGUUCUGCUUUUACCUGdTdT
1381
CAGGUAAAAGCAGAACCUGdTdT
1552
CAGGUUCUGCUUUUACCUG
1039





AD-953624.1
GCUUUUACCUGCGGCCCAGdTdT
1382
CUGGGCCGCAGGUAAAAGCdTdT
1553
GCUUUUACCUGCGGCCCAG
1040





AD-953631.1
CCUGCGGCCCAGAGCCCCAdTdT
1383
UGGGGCUCUGGGCCGCAGGdTdT
1554
CCUGCGGCCCAGAGCCCCA
1041





AD-953639.1
CCAGAGCCCCAUUCAUUGCdTdT
1384
GCAAUGAAUGGGGCUCUGGdTdT
1555
CCAGAGCCCCAUUCAUUGC
1042





AD-953647.1
CCAUUCAUUGCCCCGGUGCdTdT
1385
GCACCGGGGCAAUGAAUGGdTdT
1556
CCAUUCAUUGCCCCGGUGC
1043





AD-953655.1
UGCCCCGGUGCUGAGCGGCdTdT
1386
GCCGCUCAGCACCGGGGCAdTdT
1557
UGCCCCGGUGCUGAGCGGC
1044





AD-953663.1
UGCUGAGCGGCGCCGCGAGdTdT
1387
CUCGCGGCGCCGCUCAGCAdTdT
1558
UGCUGAGCGGCGCCGCGAG
1045





AD-953671.1
GGCGCCGCGAGUCGGCCCGdTdT
1388
CGGGCCGACUCGCGGCGCCdTdT
1559
GGCGCCGCGAGUCGGCCCG
1046





AD-953585.1
UGCCGGGACGGGUCCAAGAdTdT
1389
UCUUGGACCCGUCCCGGCAdTdT
1560
UGCCGGGACGGGUCCAAGA
1047





AD-953593.1
CGGGUCCAAGAUGGACGGCdTdT
1390
GCCGUCCAUCUUGGACCCGdTdT
1561
CGGGUCCAAGAUGGACGGC
1048





AD-953601.1
AGAUGGACGGCCGCUCAGGdTdT
1391
CCUGAGCGGCCGUCCAUCUdTdT
1562
AGAUGGACGGCCGCUCAGG
1049





AD-953609.1
GGCCGCUCAGGUUCUGCUUdTdT
1392
AAGCAGAACCUGAGCGGCCdTdT
1563
GGCCGCUCAGGUUCUGCUU
1050





AD-953617.1
AGGUUCUGCUUUUACCUGCdTdT
1393
GCAGGUAAAAGCAGAACCUdTdT
1564
AGGUUCUGCUUUUACCUGC
1051





AD-953625.1
CUUUUACCUGCGGCCCAGAdTdT
1394
UCUGGGCCGCAGGUAAAAGdTdT
1565
CUUUUACCUGCGGCCCAGA
1052





AD-953632.1
CUGCGGCCCAGAGCCCCAUdTdT
1395
AUGGGGCUCUGGGCCGCAGdTdT
1566
CUGCGGCCCAGAGCCCCAU
1053





AD-953640.1
CAGAGCCCCAUUCAUUGCCdTdT
1396
GGCAAUGAAUGGGGCUCUGdTdT
1567
CAGAGCCCCAUUCAUUGCC
1054





AD-953648.1
CAUUCAUUGCCCCGGUGCUdTdT
1397
AGCACCGGGGCAAUGAAUGdTdT
1568
CAUUCAUUGCCCCGGUGCU
1055





AD-953656.1
GCCCCGGUGCUGAGCGGCGdTdT
1398
CGCCGCUCAGCACCGGGGCdTdT
1569
GCCCCGGUGCUGAGCGGCG
1056





AD-953664.1
GCUGAGCGGCGCCGCGAGUdTdT
1399
ACUCGCGGCGCCGCUCAGCdTdT
1570
GCUGAGCGGCGCCGCGAGU
1057





AD-953672.1
GCGCCGCGAGUCGGCCCGAdTdT
1400
UCGGGCCGACUCGCGGCGCdTdT
1571
GCGCCGCGAGUCGGCCCGA
1058





AD-953586.1
GCCGGGACGGGUCCAAGAUdTdT
1401
AUCUUGGACCCGUCCCGGCdTdT
1572
GCCGGGACGGGUCCAAGAU
1059





AD-953594.1
GGGUCCAAGAUGGACGGCCdTdT
1402
GGCCGUCCAUCUUGGACCCdTdT
1573
GGGUCCAAGAUGGACGGCC
1060





AD-953602.1
GAUGGACGGCCGCUCAGGUdTdT
1403
ACCUGAGCGGCCGUCCAUCdTdT
1574
GAUGGACGGCCGCUCAGGU
1061





AD-953610.1
GCCGCUCAGGUUCUGCUUUdTdT
1404
AAAGCAGAACCUGAGCGGCdTdT
1575
GCCGCUCAGGUUCUGCUUU
1062





AD-953618.1
GGUUCUGCUUUUACCUGCGdTdT
1405
CGCAGGUAAAAGCAGAACCdTdT
1576
GGUUCUGCUUUUACCUGCG
1063





AD-953626.1
UUUUACCUGCGGCCCAGAGdTdT
1406
CUCUGGGCCGCAGGUAAAAdTdT
1577
UUUUACCUGCGGCCCAGAG
1064





AD-953633.1
UGCGGCCCAGAGCCCCAUUdTdT
1407
AAUGGGGCUCUGGGCCGCAdTdT
1578
UGCGGCCCAGAGCCCCAUU
1065





AD-953641.1
AGAGCCCCAUUCAUUGCCCdTdT
1408
GGGCAAUGAAUGGGGCUCUdTdT
1579
AGAGCCCCAUUCAUUGCCC
1066





AD-953649.1
AUUCAUUGCCCCGGUGCUGdTdT
1409
CAGCACCGGGGCAAUGAAUdTdT
1580
AUUCAUUGCCCCGGUGCUG
1067





AD-953657.1
CCCCGGUGCUGAGCGGCGCdTdT
1410
GCGCCGCUCAGCACCGGGGdTdT
1581
CCCCGGUGCUGAGCGGCGC
1068





AD-953665.1
CUGAGCGGCGCCGCGAGUCdTdT
1411
GACUCGCGGCGCCGCUCAGdTdT
1582
CUGAGCGGCGCCGCGAGUC
1069





AD-953673.1
CGCCGCGAGUCGGCCCGAGdTdT
1412
CUCGGGCCGACUCGCGGCGdTdT
1583
CGCCGCGAGUCGGCCCGAG
1070





AD-953587.1
CCGGGACGGGUCCAAGAUGdTdT
1413
CAUCUUGGACCCGUCCCGGdTdT
1584
CCGGGACGGGUCCAAGAUG
1071





AD-953595.1
GGUCCAAGAUGGACGGCCGdTdT
1414
CGGCCGUCCAUCUUGGACCdTdT
1585
GGUCCAAGAUGGACGGCCG
1072





AD-953603.1
AUGGACGGCCGCUCAGGUUdTdT
1415
AACCUGAGCGGCCGUCCAUdTdT
1586
AUGGACGGCCGCUCAGGUU
1073





AD-953611.1
CCGCUCAGGUUCUGCUUUUdTdT
1416
AAAAGCAGAACCUGAGCGGdTdT
1587
CCGCUCAGGUUCUGCUUUU
1074





AD-953619.1
GUUCUGCUUUUACCUGCGGdTdT
1417
CCGCAGGUAAAAGCAGAACdTdT
1588
GUUCUGCUUUUACCUGCGG
1075





AD-953627.1
UUUACCUGCGGCCCAGAGCdTdT
1418
GCUCUGGGCCGCAGGUAAAdTdT
1589
UUUACCUGCGGCCCAGAGC
1076





AD-953634.1
GCGGCCCAGAGCCCCAUUCdTdT
1419
GAAUGGGGCUCUGGGCCGCdTdT
1590
GCGGCCCAGAGCCCCAUUC
1077





AD-953642.1
GAGCCCCAUUCAUUGCCCCdTdT
1420
GGGGCAAUGAAUGGGGCUCdTdT
1591
GAGCCCCAUUCAUUGCCCC
1078





AD-953650.1
UUCAUUGCCCCGGUGCUGAdTdT
1421
UCAGCACCGGGGCAAUGAAdTdT
1592
UUCAUUGCCCCGGUGCUGA
1079





AD-953658.1
CCCGGUGCUGAGCGGCGCCdTdT
1422
GGCGCCGCUCAGCACCGGGdTdT
1593
CCCGGUGCUGAGCGGCGCC
1080





AD-953666.1
UGAGCGGCGCCGCGAGUCGdTdT
1423
CGACUCGCGGCGCCGCUCAdTdT
1594
UGAGCGGCGCCGCGAGUCG
1081





AD-953674.1
GCCGCGAGUCGGCCCGAGGdTdT
1424
CCUCGGGCCGACUCGCGGCdTdT
1595
GCCGCGAGUCGGCCCGAGG
1082





AD-953588.1
CGGGACGGGUCCAAGAUGGdTdT
1425
CCAUCUUGGACCCGUCCCGdTdT
1596
CGGGACGGGUCCAAGAUGG
1083





AD-953596.1
GUCCAAGAUGGACGGCCGCdTdT
1426
GCGGCCGUCCAUCUUGGACdTdT
1597
GUCCAAGAUGGACGGCCGC
1084





AD-953604.1
UGGACGGCCGCUCAGGUUCdTdT
1427
GAACCUGAGCGGCCGUCCAdTdT
1598
UGGACGGCCGCUCAGGUUC
1085





AD-953612.1
CGCUCAGGUUCUGCUUUUAdTdT
1428
UAAAAGCAGAACCUGAGCGdTdT
1599
CGCUCAGGUUCUGCUUUUA
1086





AD-953620.1
UUCUGCUUUUACCUGCGGCdTdT
1429
GCCGCAGGUAAAAGCAGAAdTdT
1600
UUCUGCUUUUACCUGCGGC
1087





AD-953628.1
UUACCUGCGGCCCAGAGCCdTdT
1430
GGCUCUGGGCCGCAGGUAAdTdT
1601
UUACCUGCGGCCCAGAGCC
1088





AD-953635.1
CGGCCCAGAGCCCCAUUCAdTdT
1431
UGAAUGGGGCUCUGGGCCGdTdT
1602
CGGCCCAGAGCCCCAUUCA
1089





AD-953643.1
AGCCCCAUUCAUUGCCCCGdTdT
1432
CGGGGCAAUGAAUGGGGCUdTdT
1603
AGCCCCAUUCAUUGCCCCG
1090





AD-953651.1
UCAUUGCCCCGGUGCUGAGdTdT
1433
CUCAGCACCGGGGCAAUGAdTdT
1604
UCAUUGCCCCGGUGCUGAG
1091





AD-953659.1
CCGGUGCUGAGCGGCGCCGdTdT
1434
CGGCGCCGCUCAGCACCGGdTdT
1605
CCGGUGCUGAGCGGCGCCG
1092





AD-953667.1
GAGCGGCGCCGCGAGUCGGdTdT
1435
CCGACUCGCGGCGCCGCUCdTdT
1606
GAGCGGCGCCGCGAGUCGG
1093





AD-953675.1
CCGCGAGUCGGCCCGAGGCdTdT
1436
GCCUCGGGCCGACUCGCGGdTdT
1607
CCGCGAGUCGGCCCGAGGC
1094





AD-953589.1
GGGACGGGUCCAAGAUGGAdTdT
1437
UCCAUCUUGGACCCGUCCCdTdT
1608
GGGACGGGUCCAAGAUGGA
1095





AD-953597.1
UCCAAGAUGGACGGCCGCUdTdT
1438
AGCGGCCGUCCAUCUUGGAdTdT
1609
UCCAAGAUGGACGGCCGCU
1096





AD-953605.1
GGACGGCCGCUCAGGUUCUdTdT
1439
AGAACCUGAGCGGCCGUCCdTdT
1610
GGACGGCCGCUCAGGUUCU
1097





AD-953613.1
GCUCAGGUUCUGCUUUUACdTdT
1440
GUAAAAGCAGAACCUGAGCdTdT
1611
GCUCAGGUUCUGCUUUUAC
1098





AD-953621.1
UCUGCUUUUACCUGCGGCCdTdT
1441
GGCCGCAGGUAAAAGCAGAdTdT
1612
UCUGCUUUUACCUGCGGCC
1099





AD-953629.1
UACCUGCGGCCCAGAGCCCdTdT
1442
GGGCUCUGGGCCGCAGGUAdTdT
1613
UACCUGCGGCCCAGAGCCC
1100





AD-953636.1
GGCCCAGAGCCCCAUUCAUdTdT
1443
AUGAAUGGGGCUCUGGGCCdTdT
1614
GGCCCAGAGCCCCAUUCAU
1101





AD-953644.1
GCCCCAUUCAUUGCCCCGGdTdT
1444
CCGGGGCAAUGAAUGGGGCdTdT
1615
GCCCCAUUCAUUGCCCCGG
1102





AD-953652.1
CAUUGCCCCGGUGCUGAGCdTdT
1445
GCUCAGCACCGGGGCAAUGdTdT
1616
CAUUGCCCCGGUGCUGAGC
1103





AD-953660.1
CGGUGCUGAGCGGCGCCGCdTdT
1446
GCGGCGCCGCUCAGCACCGdTdT
1617
CGGUGCUGAGCGGCGCCGC
1104





AD-953676.1
CGCGAGUCGGCCCGAGGCCdTdT
1447
GGCCUCGGGCCGACUCGCGdTdT
1618
CGCGAGUCGGCCCGAGGCC
1105





AD-953590.1
GGACGGGUCCAAGAUGGACdTdT
1448
GUCCAUCUUGGACCCGUCCdTdT
1619
GGACGGGUCCAAGAUGGAC
1106





AD-953598.1
CCAAGAUGGACGGCCGCUCdTdT
1449
GAGCGGCCGUCCAUCUUGGdTdT
1620
CCAAGAUGGACGGCCGCUC
1107





AD-953606.1
GACGGCCGCUCAGGUUCUGdTdT
1450
CAGAACCUGAGCGGCCGUCdTdT
1621
GACGGCCGCUCAGGUUCUG
1108





AD-953614.1
CUCAGGUUCUGCUUUUACCdTdT
1451
GGUAAAAGCAGAACCUGAGdTdT
1622
CUCAGGUUCUGCUUUUACC
1109





AD-953622.1
CUGCUUUUACCUGCGGCCCdTdT
1452
GGGCCGCAGGUAAAAGCAGdTdT
1623
CUGCUUUUACCUGCGGCCC
1110





AD-953637.1
GCCCAGAGCCCCAUUCAUUdTdT
1453
AAUGAAUGGGGCUCUGGGCdTdT
1624
GCCCAGAGCCCCAUUCAUU
1111





AD-953645.1
CCCCAUUCAUUGCCCCGGUdTdT
1454
ACCGGGGCAAUGAAUGGGGdTdT
1625
CCCCAUUCAUUGCCCCGGU
1112





AD-953653.1
AUUGCCCCGGUGCUGAGCGdTdT
1455
CGCUCAGCACCGGGGCAAUdTdT
1626
AUUGCCCCGGUGCUGAGCG
1113





AD-953661.1
GGUGCUGAGCGGCGCCGCGdTdT
1456
CGCGGCGCCGCUCAGCACCdTdT
1627
GGUGCUGAGCGGCGCCGCG
1114





AD-953677.1
GCGAGUCGGCCCGAGGCCUdTdT
1457
AGGCCUCGGGCCGACUCGCdTdT
1628
GCGAGUCGGCCCGAGGCCU
1115





AD-953685.1
GCCCGAGGCCUCCGGGGACdTdT
1458
GUCCCCGGAGGCCUCGGGCdTdT
1629
GCCCGAGGCCUCCGGGGAC
1116





AD-953693.1
CCUCCGGGGACUGCCGUGCdTdT
1459
GCACGGCAGUCCCCGGAGGdTdT
1630
CCUCCGGGGACUGCCGUGC
1117





AD-953701.1
GACUGCCGUGCCGGGCGGGdTdT
1460
CCCGCCCGGCACGGCAGUCdTdT
1631
GACUGCCGUGCCGGGCGGG
1118





AD-953709.1
UGCCGGGCGGGAGACCGCCdTdT
1461
GGCGGUCUCCCGCCCGGCAdTdT
1632
UGCCGGGCGGGAGACCGCC
1119





AD-953717.1
GGGAGACCGCCAUGGCGACdTdT
1462
GUCGCCAUGGCGGUCUCCCdTdT
1633
GGGAGACCGCCAUGGCGAC
1120





AD-953724.1
CGCCAUGGCGACCCUGGAAdTdT
1463
UUCCAGGGUCGCCAUGGCGdTdT
1634
CGCCAUGGCGACCCUGGAA
1121





AD-953732.1
CGACCCUGGAAAAGCUGAUdTdT
1464
AUCAGCUUUUCCAGGGUCGdTdT
1635
CGACCCUGGAAAAGCUGAU
1122





AD-953702.1
ACUGCCGUGCCGGGCGGGAdTdT
1465
UCCCGCCCGGCACGGCAGUdTdT
1636
ACUGCCGUGCCGGGCGGGA
1123





AD-953710.1
GCCGGGCGGGAGACCGCCAdTdT
1466
UGGCGGUCUCCCGCCCGGCdTdT
1637
GCCGGGCGGGAGACCGCCA
1124





AD-953718.1
GGAGACCGCCAUGGCGACCdTdT
1467
GGUCGCCAUGGCGGUCUCCdTdT
1638
GGAGACCGCCAUGGCGACC
1125





AD-953733.1
GACCCUGGAAAAGCUGAUGdTdT
1468
CAUCAGCUUUUCCAGGGUCdTdT
1639
GACCCUGGAAAAGCUGAUG
1126





AD-953741.1
AAAAGCUGAUGAAGGCCUUdTdT
1469
AAGGCCUUCAUCAGCUUUUdTdT
1640
AAAAGCUGAUGAAGGCCUU
1127





AD-953749.1
AUGAAGGCCUUCGAGUCCCdTdT
1470
GGGACUCGAAGGCCUUCAUdTdT
1641
AUGAAGGCCUUCGAGUCCC
1128





AD-953757.1
CUUCGAGUCCCUCAAGUCCdTdT
1471
GGACUUGAGGGACUCGAAGdTdT
1642
CUUCGAGUCCCUCAAGUCC
1129





AD-953679.1
GAGUCGGCCCGAGGCCUCCdTdT
1472
GGAGGCCUCGGGCCGACUCdTdT
1643
GAGUCGGCCCGAGGCCUCC
1130





AD-953687.1
CCGAGGCCUCCGGGGACUGdTdT
1473
CAGUCCCCGGAGGCCUCGGdTdT
1644
CCGAGGCCUCCGGGGACUG
1131





AD-953695.1
UCCGGGGACUGCCGUGCCGdTdT
1474
CGGCACGGCAGUCCCCGGAdTdT
1645
UCCGGGGACUGCCGUGCCG
1132





AD-953703.1
CUGCCGUGCCGGGCGGGAGdTdT
1475
CUCCCGCCCGGCACGGCAGdTdT
1646
CUGCCGUGCCGGGCGGGAG
1133





AD-953711.1
CCGGGCGGGAGACCGCCAUdTdT
1476
AUGGCGGUCUCCCGCCCGGdTdT
1647
CCGGGCGGGAGACCGCCAU
1134





AD-953719.1
GAGACCGCCAUGGCGACCCdTdT
1477
GGGUCGCCAUGGCGGUCUCdTdT
1648
GAGACCGCCAUGGCGACCC
1135





AD-953726.1
CCAUGGCGACCCUGGAAAAdTdT
1478
UUUUCCAGGGUCGCCAUGGdTdT
1649
CCAUGGCGACCCUGGAAAA
1136





AD-953734.1
ACCCUGGAAAAGCUGAUGAdTdT
1479
UCAUCAGCUUUUCCAGGGUdTdT
1650
ACCCUGGAAAAGCUGAUGA
1137





AD-953742.1
AAAGCUGAUGAAGGCCUUCdTdT
1480
GAAGGCCUUCAUCAGCUUUdTdT
1651
AAAGCUGAUGAAGGCCUUC
1138





AD-953750.1
UGAAGGCCUUCGAGUCCCUdTdT
1481
AGGGACUCGAAGGCCUUCAdTdT
1652
UGAAGGCCUUCGAGUCCCU
1139





AD-953758.1
UUCGAGUCCCUCAAGUCCUdTdT
1482
AGGACUUGAGGGACUCGAAdTdT
1653
UUCGAGUCCCUCAAGUCCU
1140





AD-953680.1
AGUCGGCCCGAGGCCUCCGdTdT
1483
CGGAGGCCUCGGGCCGACUdTdT
1654
AGUCGGCCCGAGGCCUCCG
1141





AD-953688.1
CGAGGCCUCCGGGGACUGCdTdT
1484
GCAGUCCCCGGAGGCCUCGdTdT
1655
CGAGGCCUCCGGGGACUGC
1142





AD-953696.1
CCGGGGACUGCCGUGCCGGdTdT
1485
CCGGCACGGCAGUCCCCGGdTdT
1656
CCGGGGACUGCCGUGCCGG
1143





AD-953704.1
UGCCGUGCCGGGCGGGAGAdTdT
1486
UCUCCCGCCCGGCACGGCAdTdT
1657
UGCCGUGCCGGGCGGGAGA
1144





AD-953712.1
CGGGCGGGAGACCGCCAUGdTdT
1487
CAUGGCGGUCUCCCGCCCGdTdT
1658
CGGGCGGGAGACCGCCAUG
1145





AD-953720.1
AGACCGCCAUGGCGACCCUdTdT
1488
AGGGUCGCCAUGGCGGUCUdTdT
1659
AGACCGCCAUGGCGACCCU
1146





AD-953727.1
CAUGGCGACCCUGGAAAAGdTdT
1489
CUUUUCCAGGGUCGCCAUGdTdT
1660
CAUGGCGACCCUGGAAAAG
1147





AD-953735.1
CCCUGGAAAAGCUGAUGAAdTdT
1490
UUCAUCAGCUUUUCCAGGGdTdT
1661
CCCUGGAAAAGCUGAUGAA
1148





AD-953743.1
AAGCUGAUGAAGGCCUUCGdTdT
1491
CGAAGGCCUUCAUCAGCUUdTdT
1662
AAGCUGAUGAAGGCCUUCG
1149





AD-953751.1
GAAGGCCUUCGAGUCCCUCdTdT
1492
GAGGGACUCGAAGGCCUUCdTdT
1663
GAAGGCCUUCGAGUCCCUC
1150





AD-953759.1
UCGAGUCCCUCAAGUCCUUdTdT
1493
AAGGACUUGAGGGACUCGAdTdT
1664
UCGAGUCCCUCAAGUCCUU
1151





AD-953681.1
GUCGGCCCGAGGCCUCCGGdTdT
1494
CCGGAGGCCUCGGGCCGACdTdT
1665
GUCGGCCCGAGGCCUCCGG
1152





AD-953689.1
GAGGCCUCCGGGGACUGCCdTdT
1495
GGCAGUCCCCGGAGGCCUCdTdT
1666
GAGGCCUCCGGGGACUGCC
1153





AD-953697.1
CGGGGACUGCCGUGCCGGGdTdT
1496
CCCGGCACGGCAGUCCCCGdTdT
1667
CGGGGACUGCCGUGCCGGG
1154





AD-953705.1
GCCGUGCCGGGCGGGAGACdTdT
1497
GUCUCCCGCCCGGCACGGCdTdT
1668
GCCGUGCCGGGCGGGAGAC
1155





AD-953713.1
GGGCGGGAGACCGCCAUGGdTdT
1498
CCAUGGCGGUCUCCCGCCCdTdT
1669
GGGCGGGAGACCGCCAUGG
1156





AD-953721.1
GACCGCCAUGGCGACCCUGdTdT
1499
CAGGGUCGCCAUGGCGGUCdTdT
1670
GACCGCCAUGGCGACCCUG
1157





AD-953728.1
AUGGCGACCCUGGAAAAGCdTdT
1500
GCUUUUCCAGGGUCGCCAUdTdT
1671
AUGGCGACCCUGGAAAAGC
1158





AD-953736.1
CCUGGAAAAGCUGAUGAAGdTdT
1501
CUUCAUCAGCUUUUCCAGGdTdT
1672
CCUGGAAAAGCUGAUGAAG
1159





AD-953744.1
AGCUGAUGAAGGCCUUCGAdTdT
1502
UCGAAGGCCUUCAUCAGCUdTdT
1673
AGCUGAUGAAGGCCUUCGA
1160





AD-953752.1
AAGGCCUUCGAGUCCCUCAdTdT
1503
UGAGGGACUCGAAGGCCUUdTdT
1674
AAGGCCUUCGAGUCCCUCA
1161





AD-953760.1
CGAGUCCCUCAAGUCCUUCdTdT
1504
GAAGGACUUGAGGGACUCGdTdT
1675
CGAGUCCCUCAAGUCCUUC
1162





AD-953682.1
UCGGCCCGAGGCCUCCGGGdTdT
1505
CCCGGAGGCCUCGGGCCGAdTdT
1676
UCGGCCCGAGGCCUCCGGG
1163





AD-953690.1
AGGCCUCCGGGGACUGCCGdTdT
1506
CGGCAGUCCCCGGAGGCCUdTdT
1677
AGGCCUCCGGGGACUGCCG
1164





AD-953698.1
GGGGACUGCCGUGCCGGGCdTdT
1507
GCCCGGCACGGCAGUCCCCdTdT
1678
GGGGACUGCCGUGCCGGGC
1165





AD-953706.1
CCGUGCCGGGCGGGAGACCdTdT
1508
GGUCUCCCGCCCGGCACGGdTdT
1679
CCGUGCCGGGCGGGAGACC
1166





AD-953714.1
GGCGGGAGACCGCCAUGGCdTdT
1509
GCCAUGGCGGUCUCCCGCCdTdT
1680
GGCGGGAGACCGCCAUGGC
1167





AD-953722.1
ACCGCCAUGGCGACCCUGGdTdT
1510
CCAGGGUCGCCAUGGCGGUdTdT
1681
ACCGCCAUGGCGACCCUGG
1168





AD-953729.1
UGGCGACCCUGGAAAAGCUdTdT
1511
AGCUUUUCCAGGGUCGCCAdTdT
1682
UGGCGACCCUGGAAAAGCU
1169





AD-953737.1
CUGGAAAAGCUGAUGAAGGdTdT
1512
CCUUCAUCAGCUUUUCCAGdTdT
1683
CUGGAAAAGCUGAUGAAGG
1170





AD-953745.1
GCUGAUGAAGGCCUUCGAGdTdT
1513
CUCGAAGGCCUUCAUCAGCdTdT
1684
GCUGAUGAAGGCCUUCGAG
1171





AD-953753.1
AGGCCUUCGAGUCCCUCAAdTdT
1514
UUGAGGGACUCGAAGGCCUdTdT
1685
AGGCCUUCGAGUCCCUCAA
1172





AD-953761.1
GAGUCCCUCAAGUCCUUCCdTdT
1515
GGAAGGACUUGAGGGACUCdTdT
1686
GAGUCCCUCAAGUCCUUCC
1173





AD-953683.1
CGGCCCGAGGCCUCCGGGGdTdT
1516
CCCCGGAGGCCUCGGGCCGdTdT
1687
CGGCCCGAGGCCUCCGGGG
1174





AD-953691.1
GGCCUCCGGGGACUGCCGUdTdT
1517
ACGGCAGUCCCCGGAGGCCdTdT
1688
GGCCUCCGGGGACUGCCGU
1175





AD-953699.1
GGGACUGCCGUGCCGGGCGdTdT
1518
CGCCCGGCACGGCAGUCCCdTdT
1689
GGGACUGCCGUGCCGGGCG
1176





AD-953707.1
CGUGCCGGGCGGGAGACCGdTdT
1519
CGGUCUCCCGCCCGGCACGdTdT
1690
CGUGCCGGGCGGGAGACCG
1177





AD-953715.1
GCGGGAGACCGCCAUGGCGdTdT
1520
CGCCAUGGCGGUCUCCCGCdTdT
1691
GCGGGAGACCGCCAUGGCG
1178





AD-953723.1
CCGCCAUGGCGACCCUGGAdTdT
1521
UCCAGGGUCGCCAUGGCGGdTdT
1692
CCGCCAUGGCGACCCUGGA
1179





AD-953730.1
GGCGACCCUGGAAAAGCUGdTdT
1522
CAGCUUUUCCAGGGUCGCCdTdT
1693
GGCGACCCUGGAAAAGCUG
1180





AD-953738.1
UGGAAAAGCUGAUGAAGGCdTdT
1523
GCCUUCAUCAGCUUUUCCAdTdT
1694
UGGAAAAGCUGAUGAAGGC
1181





AD-953746.1
CUGAUGAAGGCCUUCGAGUdTdT
1524
ACUCGAAGGCCUUCAUCAGdTdT
1695
CUGAUGAAGGCCUUCGAGU
1182





AD-953754.1
GGCCUUCGAGUCCCUCAAGdTdT
1525
CUUGAGGGACUCGAAGGCCdTdT
1696
GGCCUUCGAGUCCCUCAAG
1183





AD-953762.1
AGUCCCUCAAGUCCUUCCAdTdT
1526
UGGAAGGACUUGAGGGACUdTdT
1697
AGUCCCUCAAGUCCUUCCA
1184





AD-953684.1
GGCCCGAGGCCUCCGGGGAdTdT
1527
UCCCCGGAGGCCUCGGGCCdTdT
1698
GGCCCGAGGCCUCCGGGGA
1185





AD-953692.1
GCCUCCGGGGACUGCCGUGdTdT
1528
CACGGCAGUCCCCGGAGGCdTdT
1699
GCCUCCGGGGACUGCCGUG
1186





AD-953700.1
GGACUGCCGUGCCGGGCGGdTdT
1529
CCGCCCGGCACGGCAGUCCdTdT
1700
GGACUGCCGUGCCGGGCGG
1187





AD-953708.1
GUGCCGGGCGGGAGACCGCdTdT
1530
GCGGUCUCCCGCCCGGCACdTdT
1701
GUGCCGGGCGGGAGACCGC
1188





AD-953716.1
CGGGAGACCGCCAUGGCGAdTdT
1531
UCGCCAUGGCGGUCUCCCGdTdT
1702
CGGGAGACCGCCAUGGCGA
1189





AD-953731.1
GCGACCCUGGAAAAGCUGAdTdT
1532
UCAGCUUUUCCAGGGUCGCdTdT
1703
GCGACCCUGGAAAAGCUGA
1190





AD-953739.1
GGAAAAGCUGAUGAAGGCCdTdT
1533
GGCCUUCAUCAGCUUUUCCdTdT
1704
GGAAAAGCUGAUGAAGGCC
1191





AD-953747.1
UGAUGAAGGCCUUCGAGUCdTdT
1534
GACUCGAAGGCCUUCAUCAdTdT
1705
UGAUGAAGGCCUUCGAGUC
1192





AD-953755.1
GCCUUCGAGUCCCUCAAGUdTdT
1535
ACUUGAGGGACUCGAAGGCdTdT
1706
GCCUUCGAGUCCCUCAAGU
1193
















TABLE 8







Unmodified Sense and Antisense Strand Sequences of Huntingtin (HTT) dsRNA Agents















SEQ
Range in

SEQ
Range in



Sense Sequence
ID
NM_002
Antisense Sequence
ID
NM_0021


Duplex ID
5′ to 3′
NO:
111.8
5′ to 3′
NO:
11.8
















AD-953857.1
UCAUAAUCACAUUCGUUUGUA
1707
4405-4425
UACAAACGAAUGUGAUUAUGAAU
1867
4403-4425





AD-953865.1
UUCAGUUACGGGUUAAUUACA
1708
4518-4538
UGUAAUUAACCCGUAACUGAACC
1868
4516-4538





AD-953873.1
ACUGUCUCGACAGAUAGCUGA
1709
4966-4986
UCAGCUAUCUGUCGAGACAGUCG
1869
4964-4986





AD-953881.1
UUACGGAGUAUGUUCGUCACA
1710
5108-5128
UGUGACGAACAUACUCCGUAAAA
1870
5106-5128





AD-953889.1
GCAACAUACUUUCUAUUGCCA
187
5452-5472
UGGCAAUAGAAAGUAUGUUGCUG
1871
5450-5472





AD-953897.1
ACUCCGAGCACUUAACGUGGA
1711
5886-5906
UCCACGUUAAGUGCUCGGAGUCA
1872
5884-5906





AD-953904.1
GCAAUUCAGUCUCGUUGUGAA
1712
6017-6037
UUCACAACGAGACUGAAUUGCCU
1873
6015-6037





AD-953912.1
UGCCUUCAUGAUGAACUCGGA
1713
6547-6567
UCCGAGUUCAUCAUGAAGGCAUU
1874
6545-6567





AD-953920.1
CAACAGCUACACACGUGUGCA
1714
7366-7386
UGCACACGUGUGUAGCUGUUGAC
1875
7364-7386





AD-953928.1
GACGCUGACAGAACUGCGAAA
1715
8317-8337
UUUCGCAGUUCUGUCAGCGUCAC
1876
8315-8337





AD-953936.1
CUGACUUGUUUACGAAAUGUA
1716
9539-9559
UACAUUUCGUAAACAAGUCAGCA
1877
9537-9559





AD-953858.1
AUCACAUUCGUUUGUUUGAAA
1717
4410-4430
UUUCAAACAAACGAAUGUGAUUA
1878
4408-4430





AD-953866.1
CAGUUACGGGUUAAUUACUGA
1718
4520-4540
UCAGUAAUUAACCCGUAACUGAA
1879
4518-4540





AD-953874.1
AAGCCCUUGGAGUGUUAAAUA
1719
5037-5057
UAUUUAACACUCCAAGGGCUUCA
1880
5035-5057





AD-953882.1
UCUGAUUUCCCAGUCAACUGA
1720
5197-5217
UCAGUUGACUGGGAAAUCAGAAC
1881
5195-5217





AD-953890.1
AUCUUCAAGUCUGGAAUGUUA
1721
5507-5527
UAACAUUCCAGACUUGAAGAUGU
1882
5505-5527





AD-953898.1
AUCCAGGCAAUUCAGUCUCGA
1722
6011-6031
UCGAGACUGAAUUGCCUGGAUGA
1883
6009-6031





AD-953905.1
AUGGUCGACAUCCUUGCUUGA
1723
6170-6190
UCAAGCAAGGAUGUCGACCAUGC
1884
6168-6190





AD-953913.1
CUUCAUGAUGAACUCGGAGUA
1724
6550-6570
UACUCCGAGUUCAUCAUGAAGGC
1885
6548-6570





AD-953921.1
GACCAGUCGUACUCAGUUUGA
1725
7525-7545
UCAAACUGAGUACGACUGGUCCA
1886
7523-7545





AD-953929.1
ACGCUGACAGAACUGCGAAGA
1726
8318-8338
UCUUCGCAGUUCUGUCAGCGUCA
1887
8316-8338





AD-953937.1
UGACUUGUUUACGAAAUGUCA
1727
9540-9560
UGACAUUUCGUAAACAAGUCAGC
1888
9538-9560





AD-953859.1
UGUUUGAACCUCUUGUUAUAA
127
4422-4442
UUAUAACAAGAGGUUCAAACAAA
328
4420-4442





AD-953867.1
UCAGAUCAGGUGUUUAUUGGA
1728
4550-4570
UCCAAUAAACACCUGAUCUGAAU
1889
4548-4570





AD-953875.1
GCCCUUGGAGUGUUAAAUACA
1729
5039-5059
UGUAUUUAACACUCCAAGGGCUU
1890
5037-5059





AD-953883.1
AAGAUAUUGUUCUUUCUCGUA
113
5217-5237
UACGAGAAAGAACAAUAUCUUCA
314
5215-5237





AD-953891.1
UCAAGUCUGGAAUGUUCCGGA
1730
5511-5531
UCCGGAACAUUCCAGACUUGAAG
1891
5509-5531





AD-953899.1
UCCAGGCAAUUCAGUCUCGUA
1731
6012-6032
UACGAGACUGAAUUGCCUGGAUG
1892
6010-6032





AD-953906.1
GUCGACAUCCUUGCUUGUCGA
1732
6173-6193
UCGACAAGCAAGGAUGUCGACCA
1893
6171-6193





AD-953914.1
CUGCUAGCUCCAUGCUUAAGA
1733
6581-6601
UCUUAAGCAUGGAGCUAGCAGGC
1894
6579-6601





AD-953922.1
ACCAGUCGUACUCAGUUUGAA
1734
7526-7546
UUCAAACUGAGUACGACUGGUCC
1895
7524-7546





AD-953930.1
GAAAGGAGAAAGUCAGUCCGA
1735
8937-8957
UCGGACUGACUUUCUCCUUUCCU
1896
8935-8957





AD-953938.1
UAACGUAACUCUUUCUAUGCA
1736
10173-10193
UGCAUAGAAAGAGUUACGUUAAA
1897
10171-10193





AD-953860.1
GUUUGAACCUCUUGUUAUAAA
123
4423-4443
UUUAUAACAAGAGGUUCAAACAA
324
4421-4443





AD-953868.1
UUGGCUUUGUAUUGAAACAGA
1737
4566-4586
UCUGUUUCAAUACAAAGCCAAUA
1898
4564-4586





AD-953876.1
UAGACAUGCUUUUACGGAGUA
1738
5097-5117
UACUCCGUAAAAGCAUGUCUACC
1899
5095-5117





AD-953884.1
GAUAUUGUUCUUUCUCGUAUA
1739
5219-5239
UAUACGAGAAAGAACAAUAUCUU
1900
5217-5239





AD-953892.1
CAAGUCUGGAAUGUUCCGGAA
1740
5512-5532
UUCCGGAACAUUCCAGACUUGAA
1901
5510-5532





AD-953900.1
CCAGGCAAUUCAGUCUCGUUA
1741
6013-6033
UAACGAGACUGAAUUGCCUGGAU
1902
6011-6033





AD-953907.1
CAUGCAAGACUCACUUAGUCA
1742
6349-6369
UGACUAAGUGAGUCUUGCAUGGU
1903
6347-6369





AD-953915.1
UGCUAGCUCCAUGCUUAAGCA
1743
6582-6602
UGCUUAAGCAUGGAGCUAGCAGG
1904
6580-6602





AD-953923.1
CCAGUCGUACUCAGUUUGAAA
1744
7527-7547
UUUCAAACUGAGUACGACUGGUC
1905
7525-7547





AD-953931.1
AGAACUUCAGACCCUAAUCCA
1745
8960-8980
UGGAUUAGGGUCUGAAGUUCUAC
1906
8958-8980





AD-953939.1
UCUAUGCCCGUGUAAAGUAUA
1746
10186-10206
UAUACUUUACACGGGCAUAGAAA
1907
10184-10206





AD-953861.1
UUUGAACCUCUUGUUAUAAAA
122
4424-4444
UUUUAUAACAAGAGGUUCAAACA
323
4422-4444





AD-953869.1
UUAUGAACGCUAUCAUUCAAA
1747
4666-4686
UUUGAAUGAUAGCGUUCAUAAGA
1908
4664-4686





AD-953877.1
ACAUGCUUUUACGGAGUAUGA
1748
5100-5120
UCAUACUCCGUAAAAGCAUGUCU
1909
5098-5120





AD-953885.1
UUGUUCUUUCUCGUAUUCAGA
1749
5223-5243
UCUGAAUACGAGAAAGAACAAUA
1910
5221-5243





AD-953893.1
AGCACAAAGUUACUUAGUCCA
1750
5744-5764
UGGACUAAGUAACUUUGUGCUGG
1911
5742-5764





AD-953901.1
CAGGCAAUUCAGUCUCGUUGA
1751
6014-6034
UCAACGAGACUGAAUUGCCUGGA
1912
6012-6034





AD-953908.1
AUGCAAGACUCACUUAGUCCA
1752
6350-6370
UGGACUAAGUGAGUCUUGCAUGG
1913
6348-6370





AD-953916.1
ACUGGAGCAAGUUGAAUGAUA
1753
6753-6773
UAUCAUUCAACUUGCUCCAGUAG
1914
6751-6773





AD-953924.1
CAGUCGUACUCAGUUUGAAGA
120
7528-7548
UCUUCAAACUGAGUACGACUGGU
321
7526-7548





AD-953932.1
UCAUGAACAAAGUCAUCGGAA
1754
9129-9149
UUCCGAUGACUUUGUUCAUGAUG
1915
9127-9149





AD-953940.1
CUAUGCCCGUGUAAAGUAUGA
1755
10187-10207
UCAUACUUUACACGGGCAUAGAA
1916
10185-10207





AD-953862.1
AAGCUUUAAAACAGUACACGA
1756
4443-4463
UCGUGUACUGUUUUAAAGCUUUU
1917
4441-4463





AD-953870.1
AACGCUAUCAUUCAAAACAGA
1757
4671-4691
UCUGUUUUGAAUGAUAGCGUUCA
1918
4669-4691





AD-953878.1
CUUUUACGGAGUAUGUUCGUA
1758
5105-5125
UACGAACAUACUCCGUAAAAGCA
1919
5103-5125





AD-953886.1
UGUUCUUUCUCGUAUUCAGGA
125
5224-5244
UCCUGAAUACGAGAAAGAACAAU
326
5222-5244





AD-953894.1
AGAGGAGGAUUCUGACUUGGA
1759
5779-5799
UCCAAGUCAGAAUCCUCCUCUUC
1920
5777-5799





AD-953902.1
AGGCAAUUCAGUCUCGUUGUA
1760
6015-6035
UACAACGAGACUGAAUUGCCUGG
1921
6013-6035





AD-953909.1
CACUGGAAACAGUGAGUCCGA
1761
6417-6437
UCGGACUCACUGUUUCCAGUGAC
1922
6415-6437





AD-953917.1
UGUCAACAGCUACACACGUGA
1762
7363-7383
UCACGUGUGUAGCUGUUGACAAG
1923
7361-7383





AD-953925.1
AAGCUGAGCAUUAUCAGAGGA
1763
7787-7807
UCCUCUGAUAAUGCUCAGCUUCC
1924
7785-7807





AD-953933.1
CGGCUGCUGACUUGUUUACGA
1764
9533-9553
UCGUAAACAAGUCAGCAGCCGGU
1925
9531-9553





AD-953941.1
CCGCUGACAUUUCCGUUGUAA
1765
10311-10331
UUACAACGGAAAUGUCAGCGGGU
1926
10309-10331





AD-953863.1
AGCUGGUUCAGUUACGGGUUA
1766
4512-4532
UAACCCGUAACUGAACCAGCUGC
1927
4510-4532





AD-953871.1
GUGGAAGCGACUGUCUCGACA
1767
4957-4977
UGUCGAGACAGUCGCUUCCACUU
1928
4955-4977





AD-953879.1
UUUUACGGAGUAUGUUCGUCA
1768
5106-5126
UGACGAACAUACUCCGUAAAAGC
1929
5104-5126





AD-953887.1
AUUUUCAAGGUUUCUAUUACA
137
5368-5388
UGUAAUAGAAACCUUGAAAAUGU
338
5366-5388





AD-953895.1
CAAUAGAGAAAUAGUACGAAA
1769
5818-5838
UUUCGUACUAUUUCUCUAUUGCA
1930
5816-5838





AD-953903.1
GGCAAUUCAGUCUCGUUGUGA
1770
6016-6036
UCACAACGAGACUGAAUUGCCUG
1931
6014-6036





AD-953910.1
AGCUGGUGAAUCGGAUUCCUA
1771
6513-6533
UAGGAAUCCGAUUCACCAGCUCU
1932
6511-6533





AD-953918.1
GUCAACAGCUACACACGUGUA
1772
7364-7384
UACACGUGUGUAGCUGUUGACAA
1933
7362-7384





AD-953926.1
UUGAGCUGAUGUAUGUGACGA
1773
8301-8321
UCGUCACAUACAUCAGCUCAAAC
1934
8299-8321





AD-953934.1
GGCUGCUGACUUGUUUACGAA
1774
9534-9554
UUCGUAAACAAGUCAGCAGCCGG
1935
9532-9554





AD-953864.1
GUUCAGUUACGGGUUAAUUAA
1775
4517-4537
UUAAUUAACCCGUAACUGAACCA
1936
4515-4537





AD-953872.1
GACUGUCUCGACAGAUAGCUA
1776
4965-4985
UAGCUAUCUGUCGAGACAGUCGC
1937
4963-4985





AD-953880.1
UUUACGGAGUAUGUUCGUCAA
1777
5107-5127
UUGACGAACAUACUCCGUAAAAG
1938
5105-5127





AD-953888.1
AAGGUUUCUAUUACAACUGGA
1778
5374-5394
UCCAGUUGUAAUAGAAACCUUGA
1939
5372-5394





AD-953896.1
GACUCCGAGCACUUAACGUGA
1779
5885-5905
UCACGUUAAGUGCUCGGAGUCAU
1940
5883-5905





AD-953911.1
GCUGGUGAAUCGGAUUCCUGA
1780
6514-6534
UCAGGAAUCCGAUUCACCAGCUC
1941
6512-6534





AD-953919.1
UCAACAGCUACACACGUGUGA
1781
7365-7385
UCACACGUGUGUAGCUGUUGACA
1942
7363-7385





AD-953927.1
GAGCUGAUGUAUGUGACGCUA
1782
8303-8323
UAGCGUCACAUACAUCAGCUCAA
1943
8301-8323





AD-953935.1
CUGCUGACUUGUUUACGAAAA
1783
9536-9556
UUUUCGUAAACAAGUCAGCAGCC
1944
9534-9556





AD-953763.1
AGCUACCAAGAAAGACCGUGA
1784
430-450
UCACGGUCUUUCUUGGUAGCUGA
1945
428-450





AD-953771.1
AUUCUAAUCUUCCAAGGUUAA
1785
630-650
UUAACCUUGGAAGAUUAGAAUCC
1946
628-650





AD-953779.1
AGGUUUAUGAACUGACGUUAA
1786
1218-1238
UUAACGUCAGUUCAUAAACCUGG
1947
1216-1238





AD-953787.1
AGUAUUGUGGAACUUAUAGCA
1787
1406-1426
UGCUAUAAGUUCCACAAUACUCC
1948
1404-1426





AD-953795.1
GACUCUGAAUCGAGAUCGGAA
1788
1511-1531
UUCCGAUCUCGAUUCAGAGUCAU
1949
1509-1531





AD-953803.1
ACAGCAGUGUUGAUAAAUUUA
1789
2073-2093
UAAAUUUAUCAACACUGCUGUCA
1950
2071-2093





AD-953810.1
CGCCUUUUAUCUGCUUCGUUA
1790
2207-2227
UAACGAAGCAGAUAAAAGGCGGA
1951
2205-2227





AD-953818.1
CUGAGGAACAGUUCCUAUUGA
1791
2717-2737
UCAAUAGGAACUGUUCCUCAGAG
1952
2715-2737





AD-953834.1
UAGGAAGAGCUGUACCGUUGA
1792
3325-3345
UCAACGGUACAGCUCUUCCUAGA
1953
3323-3345





AD-953842.1
UUCUCUAAGUCCCAUCCGACA
1793
3679-3699
UGUCGGAUGGGACUUAGAGAAGG
1954
3677-3699





AD-953764.1
CUACCAAGAAAGACCGUGUGA
1794
432-452
UCACACGGUCUUUCUUGGUAGCU
1955
430-452





AD-953772.1
UUCCAAGGUUACAGCUCGAGA
1795
639-659
UCUCGAGCUGUAACCUUGGAAGA
1956
637-659





AD-953780.1
GGUUUAUGAACUGACGUUACA
1796
1219-1239
UGUAACGUCAGUUCAUAAACCUG
1957
1217-1239





AD-953788.1
GUAUUGUGGAACUUAUAGCUA
1797
1407-1427
UAGCUAUAAGUUCCACAAUACUC
1958
1405-1427





AD-953796.1
ACUCUGAAUCGAGAUCGGAUA
1798
1512-1532
UAUCCGAUCUCGAUUCAGAGUCA
1959
1510-1532





AD-953804.1
UGAUAAAUUUGUGUUGAGAGA
1799
2083-2103
UCUCUCAACACAAAUUUAUCAAC
1960
2081-2103





AD-953811.1
UCUAUAAAGUUCCUCUUGACA
181
2352-2372
UGUCAAGAGGAACUUUAUAGAGU
382
2350-2372





AD-953819.1
UGAGGAACAGUUCCUAUUGGA
1800
2718-2738
UCCAAUAGGAACUGUUCCUCAGA
1961
2716-2738





AD-953827.1
UCUCCGUCAGCACAAUAACCA
1801
3075-3095
UGGUUAUUGUGCUGACGGAGAAA
1962
3073-3095





AD-953835.1
AGGAAGAGCUGUACCGUUGGA
1802
3326-3346
UCCAACGGUACAGCUCUUCCUAG
1963
3324-3346





AD-953843.1
GAGAACAAGCAUCUGUACCGA
1803
3723-3743
UCGGUACAGAUGCUUGUUCUCCU
1964
3721-3743





AD-953851.1
GAGUGUCACAAAGAACCGUGA
1804
4369-4389
UCACGGUUCUUUGUGACACUCGU
1965
4367-4389





AD-953765.1
AAUCAUUGUCUGACAAUAUGA
1805
452-472
UCAUAUUGUCAGACAAUGAUUCA
1966
450-472





AD-953773.1
UCCAAGGUUACAGCUCGAGCA
1806
640-660
UGCUCGAGCUGUAACCUUGGAAG
1967
638-660





AD-953781.1
UUUAUGAACUGACGUUACAUA
1807
1221-1241
UAUGUAACGUCAGUUCAUAAACC
1968
1219-1241





AD-953789.1
UAUUGUGGAACUUAUAGCUGA
1808
1408-1428
UCAGCUAUAAGUUCCACAAUACU
1969
1406-1428





AD-953797.1
CUCUGAAUCGAGAUCGGAUGA
1809
1513-1533
UCAUCCGAUCUCGAUUCAGAGUC
1970
1511-1533





AD-953805.1
AGAUGAAGCUACUGAACCGGA
1810
2101-2121
UCCGGUUCAGUAGCUUCAUCUCU
1971
2099-2121





AD-953812.1
CAUCUUGAACUACAUCGAUCA
1811
2407-2427
UGAUCGAUGUAGUUCAAGAUGUC
1972
2405-2427





AD-953828.1
UCCGUCAGCACAAUAACCAGA
1812
3077-3097
UCUGGUUAUUGUGCUGACGGAGA
1973
3075-3097





AD-953836.1
GGAAGAGCUGUACCGUUGGGA
1813
3327-3347
UCCCAACGGUACAGCUCUUCCUA
1974
3325-3347





AD-953852.1
UGUCACAAAGAACCGUGCAGA
1814
4372-4392
UCUGCACGGUUCUUUGUGACACU
1975
4370-4392





AD-953766.1
CAUUGUCUGACAAUAUGUGAA
119
455-475
UUCACAUAUUGUCAGACAAUGAU
1976
453-475





AD-953774.1
CUGUUCCCAAAAUUAUGGCUA
1815
843-863
UAGCCAUAAUUUUGGGAACAGCU
1977
841-863





AD-953782.1
CAGCACCAAGACCACAAUGUA
1816
1247-1267
UACAUUGUGGUCUUGGUGCUGUG
1978
1245-1267





AD-953790.1
AUUGUGGAACUUAUAGCUGGA
1817
1409-1429
UCCAGCUAUAAGUUCCACAAUAC
1979
1407-1429





AD-953798.1
UUCUGAAAUUGUGUUAGACGA
1818
1885-1905
UCGUCUAACACAAUUUCAGAACU
1980
1883-1905





AD-953806.1
CCUCUUGUCCAUUGUGUCCGA
1819
2189-2209
UCGGACACAAUGGACAAGAGGUG
1981
2187-2209





AD-953813.1
CUUGAACUACAUCGAUCAUGA
1820
2410-2430
UCAUGAUCGAUGUAGUUCAAGAU
1982
2408-2430





AD-953821.1
AAGAACGAGUGCUCAAUAAUA
1821
2862-2882
UAUUAUUGAGCACUCGUUCUUGC
1983
2860-2882





AD-953829.1
AACCUUUCAAGAGUUAUUGCA
1822
3152-3172
UGCAAUAACUCUUGAAAGGUUAU
1984
3150-3172





AD-953837.1
GUCAGCUUGGUUCCCAUUGGA
1823
3376-3396
UCCAAUGGGAACCAAGCUGACGA
1985
3374-3396





AD-953845.1
CCUGAAAUCCUGCUUUAGUCA
1824
4039-4059
UGACUAAAGCAGGAUUUCAGGUA
1986
4037-4059





AD-953853.1
UAAGAAUGCUAUUCAUAAUCA
1825
4393-4413
UGAUUAUGAAUAGCAUUCUUAUC
1987
4391-4413





AD-953767.1
AAUGCCUCAACAAAGUUAUCA
1826
597-617
UGAUAACUUUGUUGAGGCAUUCG
1988
595-617





AD-953775.1
AGGCCUUCAUAGCGAACCUGA
1827
909-929
UCAGGUUCGCUAUGAAGGCCUUU
1989
907-929





AD-953783.1
GCACCAAGACCACAAUGUUGA
1828
1249-1269
UCAACAUUGUGGUCUUGGUGCUG
1990
1247-1269





AD-953791.1
UGGAGGAUGACUCUGAAUCGA
1829
1503-1523
UCGAUUCAGAGUCAUCCUCCAAG
1991
1501-1523





AD-953799.1
UCUGAAAUUGUGUUAGACGGA
1830
1886-1906
UCCGUCUAACACAAUUUCAGAAC
1992
1884-1906





AD-953807.1
CUCUUGUCCAUUGUGUCCGCA
1831
2190-2210
UGCGGACACAAUGGACAAGAGGU
1993
2188-2210





AD-953822.1
GAGUGCUCAAUAAUGUUGUCA
1832
2868-2888
UGACAACAUUAUUGAGCACUCGU
1994
2866-2888





AD-953830.1
AGUUUGCAUUUGGAGUUUAGA
1833
3262-3282
UCUAAACUCCAAAUGCAAACUGG
1995
3260-3282





AD-953838.1
AGCUUGGUUCCCAUUGGAUCA
1834
3379-3399
UGAUCCAAUGGGAACCAAGCUGA
1996
3377-3399





AD-953846.1
CUGAAAUCCUGCUUUAGUCGA
1835
4040-4060
UCGACUAAAGCAGGAUUUCAGGU
1997
4038-4060





AD-953854.1
AGAAUGCUAUUCAUAAUCACA
115
4395-4415
UGUGAUUAUGAAUAGCAUUCUUA
1998
4393-4415





AD-953768.1
UUAUCAAAGCUUUGAUGGAUA
1836
612-632
UAUCCAUCAAAGCUUUGAUAACU
1999
610-632





AD-953776.1
CUCUGCUGAUUCUUGGCGUGA
1837
1074-1094
UCACGCCAAGAAUCAGCAGAGUG
2000
1072-1094





AD-953784.1
CACCAAGACCACAAUGUUGUA
1838
1250-1270
UACAACAUUGUGGUCUUGGUGCU
2001
1248-1270





AD-953792.1
GAGGAUGACUCUGAAUCGAGA
1839
1505-1525
UCUCGAUUCAGAGUCAUCCUCCA
2002
1503-1525





AD-953800.1
CUGAAAUUGUGUUAGACGGUA
165
1887-1907
UACCGUCUAACACAAUUUCAGAA
366
1885-1907





AD-953808.1
UCCGCCUUUUAUCUGCUUCGA
1840
2205-2225
UCGAAGCAGAUAAAAGGCGGACA
2003
2203-2225





AD-953815.1
GAACUACAUCGAUCAUGGAGA
1841
2413-2433
UCUCCAUGAUCGAUGUAGUUCAA
2004
2411-2433





AD-953823.1
GCCUCCAUCUCAUUUCUCCGA
1842
3061-3081
UCGGAGAAAUGAGAUGGAGGCUG
2005
3059-3081





AD-953831.1
GUUUGCAUUUGGAGUUUAGGA
1843
3263-3283
UCCUAAACUCCAAAUGCAAACUG
2006
3261-3283





AD-953839.1
AGAUGCUUUGAUUUUGGCCGA
1844
3412-3432
UCGGCCAAAAUCAAAGCAUCUUG
2007
3410-3432





AD-953847.1
GAAAUCCUGCUUUAGUCGAGA
1845
4042-4062
UCUCGACUAAAGCAGGAUUUCAG
2008
4040-4062





AD-953855.1
GCUAUUCAUAAUCACAUUCGA
1846
4400-4420
UCGAAUGUGAUUAUGAAUAGCAU
2009
4398-4420





AD-953769.1
GCUUUGAUGGAUUCUAAUCUA
1847
620-640
UAGAUUAGAAUCCAUCAAAGCUU
2010
618-640





AD-953777.1
GCAGCUUGUCCAGGUUUAUGA
1848
1207-1227
UCAUAAACCUGGACAAGCUGCUC
2011
1205-1227





AD-953785.1
ACCAAGACCACAAUGUUGUGA
1849
1251-1271
UCACAACAUUGUGGUCUUGGUGC
2012
1249-1271





AD-953793.1
AGGAUGACUCUGAAUCGAGAA
1850
1506-1526
UUCUCGAUUCAGAGUCAUCCUCC
2013
1504-1526





AD-953801.1
UGAAAUUGUGUUAGACGGUAA
1851
1888-1908
UUACCGUCUAACACAAUUUCAGA
2014
1886-1908





AD-953809.1
CCGCCUUUUAUCUGCUUCGUA
1852
2206-2226
UACGAAGCAGAUAAAAGGCGGAC
2015
2204-2226





AD-953816.1
CUUUGGCGGAUUGCAUUCCUA
1853
2559-2579
UAGGAAUGCAAUCCGCCAAAGAA
2016
2557-2579





AD-953824.1
CCUCCAUCUCAUUUCUCCGUA
1854
3062-3082
UACGGAGAAAUGAGAUGGAGGCU
2017
3060-3082





AD-953832.1
GUCUAGGAAGAGCUGUACCGA
1855
3322-3342
UCGGUACAGCUCUUCCUAGACUC
2018
3320-3342





AD-953840.1
GGCCGGAAACUUGCUUGCAGA
1856
3427-3447
UCUGCAAGCAAGUUUCCGGCCAA
2019
3425-3447





AD-953848.1
UUUAGUCGAGAACCAAUGAUA
1857
4052-4072
UAUCAUUGGUUCUCGACUAAAGC
2020
4050-4072





AD-953856.1
UUCAUAAUCACAUUCGUUUGA
1858
4404-4424
UCAAACGAAUGUGAUUAUGAAUA
2021
4402-4424





AD-953770.1
GAUUCUAAUCUUCCAAGGUUA
146
629-649
UAACCUUGGAAGAUUAGAAUCCA
2022
627-649





AD-953778.1
CAGGUUUAUGAACUGACGUUA
158
1217-1237
UAACGUCAGUUCAUAAACCUGGA
359
1215-1237





AD-953786.1
GAGUAUUGUGGAACUUAUAGA
1859
1405-1425
UCUAUAAGUUCCACAAUACUCCC
2023
1403-1425





AD-953794.1
GGAUGACUCUGAAUCGAGAUA
1860
1507-1527
UAUCUCGAUUCAGAGUCAUCCUC
2024
1505-1527





AD-953802.1
GAAAUUGUGUUAGACGGUACA
1861
1889-1909
UGUACCGUCUAACACAAUUUCAG
2025
1887-1909





AD-953817.1
UUUGGCGGAUUGCAUUCCUUA
1862
2560-2580
UAAGGAAUGCAAUCCGCCAAAGA
2026
2558-2580





AD-953825.1
CUCCAUCUCAUUUCUCCGUCA
1863
3063-3083
UGACGGAGAAAUGAGAUGGAGGC
2027
3061-3083





AD-953833.1
UCUAGGAAGAGCUGUACCGUA
1864
3323-3343
UACGGUACAGCUCUUCCUAGACU
2028
3321-3343





AD-953841.1
CUUCUCUAAGUCCCAUCCGAA
1865
3678-3698
UUCGGAUGGGACUUAGAGAAGGG
2029
3676-3698





AD-953849.1
UUAGUCGAGAACCAAUGAUGA
1866
4053-4073
UCAUCAUUGGUUCUCGACUAAAG
2030
4051-4073
















TABLE 9







Modified Sense and Antisense Strand Sequences of Huntingtin (HTT) dsRNA Agents













Duplex ID
Sense Sequence 5′ to 3′
SEQ ID NO:
Antisense Sequence 5′ to 3′
SEQ ID NO:
mRNA Target Sequence 5′ to 3′
SEQ ID NO:
















AD-
uscsaua(Ahd)UfcAfCfAfuucguuuguaL96
2031
VPusAfscaaAfcGfAfauguGfaUfuaugasasu
2205
AUUCAUAAUCACAUUCGUUUGUU
984


953857.1











AD-
ususcag(Uhd)UfaCfGfGfguuaauuacaL96
2032
VPusGfsuaaUfuAfAfcccgUfaAfcugaascsc
2206
GGUUCAGUUACGGGUUAAUUACU
1007


953865.1











AD-
ascsugu(Chd)UfcGfAfCfagauagcugaL96
2033
VPusCfsagcUfaUfCfugucGfaGfacaguscsg
2207
CGACUGUCUCGACAGAUAGCUGA
2379


953873.1











AD-
ususacg(Ghd)AfgUfAfUfguucgucacaL96
2034
VPusGfsugaCfgAfAfcauaCfuCfcguaasasa
2208
UUUUACGGAGUAUGUUCGUCACU
2380


953881.1











AD-
gscsaac(Ahd)UfaCfUfUfucuauugccaL96
2035
VPusGfsgcaAfuAfGfaaagUfaUfguugcsusg
2209
CAGCAACAUACUUUCUAUUGCCA
993


953889.1











AD-
ascsucc(Ghd)AfgCfAfCfuuaacguggaL96
2036
VPusCfscacGfuUfAfagugCfuCfggaguscsa
2210
UGACUCCGAGCACUUAACGUGGC
2381


953897.1











AD-
gscsaau(Uhd)CfaGfUfCfucguugugaaL96
2037
VPusUfscacAfaCfGfagacUfgAfauugcscsu
2211
AGGCAAUUCAGUCUCGUUGUGAA
2382


953904.1











AD-
usgsccu(Uhd)CfaUfGfAfugaacucggaL96
2038
VPusCfscgaGfuUfCfaucaUfgAfaggcasusu
2212
AAUGCCUUCAUGAUGAACUCGGA
2383


953912.1











AD-
csasaca(Ghd)CfuAfCfAfcacgugugcaL96
2039
VPusGfscacAfcGfUfguguAfgCfuguugsasc
2213
GUCAACAGCUACACACGUGUGCC
2384


953920.1











AD-
gsascgc(Uhd)GfaCfAfGfaacugcgaaaL96
2040
VPusUfsucgCfaGfUfucugUfcAfgcgucsasc
2214
GUGACGCUGACAGAACUGCGAAG
2385


953928.1











AD-
csusgac(Uhd)UfgUfUfUfacgaaauguaL96
2041
VPusAfscauUfuCfGfuaaaCfaAfgucagscsa
2215
UGCUGACUUGUUUACGAAAUGUC
2386


953936.1











AD-
asuscac(Ahd)UfuCfGfUfuuguuugaaaL96
2042
VPusUfsucaAfaCfAfaacgAfaUfgugaususa
2216
UAAUCACAUUCGUUUGUUUGAAC
2387


953858.1











AD-
csasguu(Ahd)CfgGfGfUfuaauuacugaL96
2043
VPusCfsaguAfaUfUfaaccCfgUfaacugsasa
2217
UUCAGUUACGGGUUAAUUACUGU
2388


953866.1











AD-
asasgcc(Chd)UfuGfGfAfguguuaaauaL96
2044
VPusAfsuuuAfaCfAfcuccAfaGfggcuuscsa
2218
UGAAGCCCUUGGAGUGUUAAAUA
2389


953874.1











AD-
uscsuga(Uhd)UfuCfCfCfagucaacugaL96
2045
VPusCfsaguUfgAfCfugggAfaAfucagasasc
2219
GUUCUGAUUUCCCAGUCAACUGA
2390


953882.1











AD-
asuscuu(Chd)AfaGfUfCfuggaauguuaL96
2046
VPusAfsacaUfuCfCfagacUfuGfaagausgsu
2220
ACAUCUUCAAGUCUGGAAUGUUC
1004


953890.1











AD-
asuscca(Ghd)GfcAfAfUfucagucucgaL96
2047
VPusCfsgagAfcUfGfaauuGfcCfuggausgsa
2221
UCAUCCAGGCAAUUCAGUCUCGU
2391


953898.1











AD-
asusggu(Chd)GfaCfAfUfccuugcuugaL96
2048
VPusCfsaagCfaAfGfgaugUfcGfaccausgsc
2222
GCAUGGUCGACAUCCUUGCUUGU
2392


953905.1











AD-
csusuca(Uhd)GfaUfGfAfacucggaguaL96
2049
VPusAfscucCfgAfGfuucaUfcAfugaagsgsc
2223
GCCUUCAUGAUGAACUCGGAGUU
2393


953913.1











AD-
gsascca(Ghd)UfcGfUfAfcucaguuugaL96
2050
VPusCfsaaaCfuGfAfguacGfaCfuggucscsa
2224
UGGACCAGUCGUACUCAGUUUGA
2394


953921.1











AD-
ascsgcu(Ghd)AfcAfGfAfacugcgaagaL96
2051
VPusCfsuucGfcAfGfuucuGfuCfagcguscsa
2225
UGACGCUGACAGAACUGCGAAGG
2395


953929.1











AD-
usgsacu(Uhd)GfuUfUfAfcgaaaugucaL96
2052
VPusGfsacaUfuUfCfguaaAfcAfagucasgsc
2226
GCUGACUUGUUUACGAAAUGUCC
950


953937.1











AD-
usgsuuu(Ghd)AfaCfCfUfcuuguuauaaL96
2053
VPusUfsauaAfcAfAfgaggUfuCfaaacasasa
2227
UUUGUUUGAACCUCUUGUUAUAA
933


953859.1











AD-
uscsaga(Uhd)CfaGfGfUfguuuauuggaL96
2054
VPusCfscaaUfaAfAfcaccUfgAfucugasasu
2228
AUUCAGAUCAGGUGUUUAUUGGC
2396


953867.1











AD-
gscsccu(Uhd)GfgAfGfUfguuaaauacaL96
2055
VPusGfsuauUfuAfAfcacuCfcAfagggcsusu
2229
AAGCCCUUGGAGUGUUAAAUACA
2397


953875.1











AD-
asasgau(Ahd)UfuGfUfUfcuuucucguaL96
2056
VPusAfscgaGfaAfAfgaacAfaUfaucuuscsa
2230
UGAAGAUAUUGUUCUUUCUCGUA
919


953883.1











AD-
uscsaag(Uhd)CfuGfGfAfauguuccggaL96
2057
VPusCfscggAfaCfAfuuccAfgAfcuugasasg
2231
CUUCAAGUCUGGAAUGUUCCGGA
2398


953891.1











AD-
uscscag(Ghd)CfaAfUfUfcagucucguaL96
2058
VPusAfscgaGfaCfUfgaauUfgCfcuggasusg
2232
CAUCCAGGCAAUUCAGUCUCGUU
2399


953899.1











AD-
gsuscga(Chd)AfuCfCfUfugcuugucgaL96
2059
VPusCfsgacAfaGfCfaaggAfuGfucgacscsa
2233
UGGUCGACAUCCUUGCUUGUCGC
2400


953906.1











AD-
csusgcu(Ahd)GfcUfCfCfaugcuuaagaL96
2060
VPusCfsuuaAfgCfAfuggaGfcUfagcagsgsc
2234
GCCUGCUAGCUCCAUGCUUAAGC
2401


953914.1











AD-
ascscag(Uhd)CfgUfAfCfucaguuugaaL96
2061
VPusUfscaaAfcUfGfaguaCfgAfcugguscsc
2235
GGACCAGUCGUACUCAGUUUGAA
2402


953922.1











AD-
gsasaag(Ghd)AfgAfAfAfgucaguccgaL96
2062
VPusCfsggaCfuGfAfcuuuCfuCfcuuucscsu
2236
AGGAAAGGAGAAAGUCAGUCCGG
2403


953930.1











AD-
usasacg(Uhd)AfaCfUfCfuuucuaugcaL96
2063
VPusGfscauAfgAfAfagagUfuAfcguuasasa
2237
UUUAACGUAACUCUUUCUAUGCC
982


953938.1











AD-
gsusuug(Ahd)AfcCfUfCfuuguuauaaaL96
2064
VPusUfsuauAfaCfAfagagGfuUfcaaacsasa
2238
UUGUUUGAACCUCUUGUUAUAAA
929


953860.1











AD-
ususggc(Uhd)UfuGfUfAfuugaaacagaL96
2065
VPusCfsuguUfuCfAfauacAfaAfgccaasusa
2239
UAUUGGCUUUGUAUUGAAACAGU
2404


953868.1











AD-
usasgac(Ahd)UfgCfUfUfuuacggaguaL96
2066
VPusAfscucCfgUfAfaaagCfaUfgucuascsc
2240
GGUAGACAUGCUUUUACGGAGUA
2405


953876.1











AD-
gsasuau(Uhd)GfuUfCfUfuucucguauaL96
2067
VPusAfsuacGfaGfAfaagaAfcAfauaucsusu
2241
AAGAUAUUGUUCUUUCUCGUAUU
999


953884.1











AD-
csasagu(Chd)UfgGfAfAfuguuccggaaL96
2068
VPusUfsccgGfaAfCfauucCfaGfacuugsasa
2242
UUCAAGUCUGGAAUGUUCCGGAG
2406


953892.1











AD-
cscsagg(Chd)AfaUfUfCfagucucguuaL96
2069
VPusAfsacgAfgAfCfugaaUfuGfccuggsasu
2243
AUCCAGGCAAUUCAGUCUCGUUG
2407


953900.1











AD-
csasugc(Ahd)AfgAfCfUfcacuuagucaL96
2070
VPusGfsacuAfaGfUfgaguCfuUfgcaugsgsu
2244
ACCAUGCAAGACUCACUUAGUCC
1008


953907.1











AD-
usgscua(Ghd)CfuCfCfAfugcuuaagcaL96
2071
VPusGfscuuAfaGfCfauggAfgCfuagcasgsg
2245
CCUGCUAGCUCCAUGCUUAAGCC
2408


953915.1











AD-
cscsagu(Chd)GfuAfCfUfcaguuugaaaL96
2072
VPusUfsucaAfaCfUfgaguAfcGfacuggsusc
2246
GACCAGUCGUACUCAGUUUGAAG
958


953923.1











AD-
asgsaac(Uhd)UfcAfGfAfcccuaauccaL96
2073
VPusGfsgauUfaGfGfgucuGfaAfguucusasc
2247
GUAGAACUUCAGACCCUAAUCCU
2409


953931.1











AD-
uscsuau(Ghd)CfcCfGfUfguaaaguauaL96
2074
VPusAfsuacUfuUfAfcacgGfgCfauagasasa
2248
UUUCUAUGCCCGUGUAAAGUAUG
2410


953939.1











AD-
ususuga(Ahd)CfcUfCfUfuguuauaaaaL96
2075
VPusUfsuuaUfaAfCfaagaGfgUfucaaascsa
2249
UGUUUGAACCUCUUGUUAUAAAA
928


953861.1











AD-
ususaug(Ahd)AfcGfCfUfaucauucaaaL96
2076
VPusUfsugaAfuGfAfuagcGfuUfcauaasgsa
2250
UCUUAUGAACGCUAUCAUUCAAA
2411


953869.1











AD-
ascsaug(Chd)UfuUfUfAfcggaguaugaL96
2077
VPusCfsauaCfuCfCfguaaAfaGfcauguscsu
2251
AGACAUGCUUUUACGGAGUAUGU
2412


953877.1











AD-
ususguu(Chd)UfuUfCfUfcguauucagaL96
2078
VPusCfsugaAfuAfCfgagaAfaGfaacaasusa
2252
UAUUGUUCUUUCUCGUAUUCAGG
916


953885.1











AD-
asgscac(Ahd)AfaGfUfUfacuuaguccaL96
2079
VPusGfsgacUfaAfGfuaacUfuUfgugcusgsg
2253
CCAGCACAAAGUUACUUAGUCCC
2413


953893.1











AD-
csasggc(Ahd)AfuUfCfAfgucucguugaL96
2080
VPusCfsaacGfaGfAfcugaAfuUfgccugsgsa
2254
UCCAGGCAAUUCAGUCUCGUUGU
2414


953901.1











AD-
asusgca(Ahd)GfaCfUfCfacuuaguccaL96
2081
VPusGfsgacUfaAfGfugagUfcUfugcausgsg
2255
CCAUGCAAGACUCACUUAGUCCC
2415


953908.1











AD-
ascsugg(Ahd)GfcAfAfGfuugaaugauaL96
2082
VPusAfsucaUfuCfAfacuuGfcUfccagusasg
2256
CUACUGGAGCAAGUUGAAUGAUC
2416


953916.1











AD-
csasguc(Ghd)UfaCfUfCfaguuugaagaL96
2083
VPusCfsuucAfaAfCfugagUfaCfgacugsgsu
2257
ACCAGUCGUACUCAGUUUGAAGA
926


953924.1











AD-
uscsaug(Ahd)AfcAfAfAfgucaucggaaL96
2084
VPusUfsccgAfuGfAfcuuuGfuUfcaugasusg
2258
CAUCAUGAACAAAGUCAUCGGAG
2417


953932.1











AD-
csusaug(Chd)CfcGfUfGfuaaaguaugaL96
2085
VPusCfsauaCfuUfUfacacGfgGfcauagsasa
2259
UUCUAUGCCCGUGUAAAGUAUGU
2418


953940.1











AD-
asasgcu(Uhd)UfaAfAfAfcaguacacgaL96
2086
VPusCfsgugUfaCfUfguuuUfaAfagcuususu
2260
AAAAGCUUUAAAACAGUACACGA
2419


953862.1











AD-
asascgc(Uhd)AfuCfAfUfucaaaacagaL96
2087
VPusCfsuguUfuUfGfaaugAfuAfgcguuscsa
2261
UGAACGCUAUCAUUCAAAACAGA
2420


953870.1











AD-
csusuuu(Ahd)CfgGfAfGfuauguucguaL96
2088
VPusAfscgaAfcAfUfacucCfgUfaaaagscsa
2262
UGCUUUUACGGAGUAUGUUCGUC
2421


953878.1











AD-
usgsuuc(Uhd)UfuCfUfCfguauucaggaL96
2089
VPusCfscugAfaUfAfcgagAfaAfgaacasasu
2263
AUUGUUCUUUCUCGUAUUCAGGA
931


953886.1











AD-
asgsagg(Ahd)GfgAfUfUfcugacuuggaL96
2090
VPusCfscaaGfuCfAfgaauCfcUfccucususc
2264
GAAGAGGAGGAUUCUGACUUGGC
2422


953894.1











AD-
asgsgca(Ahd)UfuCfAfGfucucguuguaL96
2091
VPusAfscaaCfgAfGfacugAfaUfugccusgsg
2265
CCAGGCAAUUCAGUCUCGUUGUG
2423


953902.1











AD-
csascug(Ghd)AfaAfCfAfgugaguccgaL96
2092
VPusCfsggaCfuCfAfcuguUfuCfcagugsasc
2266
GUCACUGGAAACAGUGAGUCCGG
2424


953909.1











AD-
usgsuca(Ahd)CfaGfCfUfacacacgugaL96
2093
VPusCfsacgUfgUfGfuagcUfgUfugacasasg
2267
CUUGUCAACAGCUACACACGUGU
2425


953917.1











AD-
asasgcu(Ghd)AfgCfAfUfuaucagaggaL96
2094
VPusCfscucUfgAfUfaaugCfuCfagcuuscsc
2268
GGAAGCUGAGCAUUAUCAGAGGG
2426


953925.1











AD-
csgsgcu(Ghd)CfuGfAfCfuuguuuacgaL96
2095
VPusCfsguaAfaCfAfagucAfgCfagccgsgsu
2269
ACCGGCUGCUGACUUGUUUACGA
2427


953933.1











AD-
cscsgcu(Ghd)AfcAfUfUfuccguuguaaL96
2096
VPusUfsacaAfcGfGfaaauGfuCfagcggsgsu
2270
ACCCGCUGACAUUUCCGUUGUAC
2428


953941.1











AD-
asgscug(Ghd)UfuCfAfGfuuacggguuaL96
2097
VPusAfsaccCfgUfAfacugAfaCfcagcusgsc
2271
GCAGCUGGUUCAGUUACGGGUUA
2429


953863.1











AD-
gsusgga(Ahd)GfcGfAfCfugucucgacaL96
2098
VPusGfsucgAfgAfCfagucGfcUfuccacsusu
2272
AAGUGGAAGCGACUGUCUCGACA
2430


953871.1











AD-
ususuua(Chd)GfgAfGfUfauguucgucaL96
2099
VPusGfsacgAfaCfAfuacuCfcGfuaaaasgsc
2273
GCUUUUACGGAGUAUGUUCGUCA
2431


953879.1











AD-
asusuuu(Chd)AfaGfGfUfuucuauuacaL96
2100
VPusGfsuaaUfaGfAfaaccUfuGfaaaausgsu
2274
ACAUUUUCAAGGUUUCUAUUACA
943


953887.1











AD-
csasaua(Ghd)AfgAfAfAfuaguacgaaaL96
2101
VPusUfsucgUfaCfUfauuuCfuCfuauugscsa
2275
UGCAAUAGAGAAAUAGUACGAAG
2432


953895.1











AD-
gsgscaa(Uhd)UfcAfGfUfcucguugugaL96
2102
VPusCfsacaAfcGfAfgacuGfaAfuugccsusg
2276
CAGGCAAUUCAGUCUCGUUGUGA
2433


953903.1











AD-
asgscug(Ghd)UfgAfAfUfcggauuccuaL96
2103
VPusAfsggaAfuCfCfgauuCfaCfcagcuscsu
2277
AGAGCUGGUGAAUCGGAUUCCUG
2434


953910.1











AD-
gsuscaa(Chd)AfgCfUfAfcacacguguaL96
2104
VPusAfscacGfuGfUfguagCfuGfuugacsasa
2278
UUGUCAACAGCUACACACGUGUG
2435


953918.1











AD-
ususgag(Chd)UfgAfUfGfuaugugacgaL96
2105
VPusCfsgucAfcAfUfacauCfaGfcucaasasc
2279
GUUUGAGCUGAUGUAUGUGACGC
2436


953926.1











AD-
gsgscug(Chd)UfgAfCfUfuguuuacgaaL96
2106
VPusUfscguAfaAfCfaaguCfaGfcagccsgsg
2280
CCGGCUGCUGACUUGUUUACGAA
2437


953934.1











AD-
gsusuca(Ghd)UfuAfCfGfgguuaauuaaL96
2107
VPusUfsaauUfaAfCfccguAfaCfugaacscsa
2281
UGGUUCAGUUACGGGUUAAUUAC
957


953864.1











AD-
gsascug(Uhd)CfuCfGfAfcagauagcuaL96
2108
VPusAfsgcuAfuCfUfgucgAfgAfcagucsgsc
2282
GCGACUGUCUCGACAGAUAGCUG
2438


953872.1











AD-
ususuac(Ghd)GfaGfUfAfuguucgucaaL96
2109
VPusUfsgacGfaAfCfauacUfcCfguaaasasg
2283
CUUUUACGGAGUAUGUUCGUCAC
2439


953880.1











AD-
asasggu(Uhd)UfcUfAfUfuacaacuggaL96
2110
VPusCfscagUfuGfUfaauaGfaAfaccuusgsa
2284
UCAAGGUUUCUAUUACAACUGGU
2440


953888.1











AD-
gsascuc(Chd)GfaGfCfAfcuuaacgugaL96
2111
VPusCfsacgUfuAfAfgugcUfcGfgagucsasu
2285
AUGACUCCGAGCACUUAACGUGG
2441


953896.1











AD-
gscsugg(Uhd)GfaAfUfCfggauuccugaL96
2112
VPusCfsaggAfaUfCfcgauUfcAfccagcsusc
2286
GAGCUGGUGAAUCGGAUUCCUGC
2442


953911.1











AD-
uscsaac(Ahd)GfcUfAfCfacacgugugaL96
2113
VPusCfsacaCfgUfGfuguaGfcUfguugascsa
2287
UGUCAACAGCUACACACGUGUGC
2443


953919.1











AD-
gsasgcu(Ghd)AfuGfUfAfugugacgcuaL96
2114
VPusAfsgcgUfcAfCfauacAfuCfagcucsasa
2288
UUGAGCUGAUGUAUGUGACGCUG
2444


953927.1











AD-
csusgcu(Ghd)AfcUfUfGfuuuacgaaaaL96
2115
VPusUfsuucGfuAfAfacaaGfuCfagcagscsc
2289
GGCUGCUGACUUGUUUACGAAAU
938


953935.1











AD-
asgscua(Chd)CfaAfGfAfaagaccgugaL96
2116
VPusCfsacgGfuCfUfuucuUfgGfuagcusgsa
2290
UCAGCUACCAAGAAAGACCGUGU
2445


953763.1











AD-
asusucu(Ahd)AfuCfUfUfccaagguuaaL96
2117
VPusUfsaacCfuUfGfgaagAfuUfagaauscsc
2291
GGAUUCUAAUCUUCCAAGGUUAC
965


953771.1











AD-
asgsguu(Uhd)AfuGfAfAfcugacguuaaL96
2118
VPusUfsaacGfuCfAfguucAfuAfaaccusgsg
2292
CCAGGUUUAUGAACUGACGUUAC
991


953779.1











AD-
asgsuau(Uhd)GfuGfGfAfacuuauagcaL96
2119
VPusGfscuaUfaAfGfuuccAfcAfauacuscsc
2293
GGAGUAUUGUGGAACUUAUAGCU
2446


953787.1











AD-
gsascuc(Uhd)GfaAfUfCfgagaucggaaL96
2120
VPusUfsccgAfuCfUfcgauUfcAfgagucsasu
2294
AUGACUCUGAAUCGAGAUCGGAU
2447


953795.1











AD-
ascsagc(Ahd)GfuGfUfUfgauaaauuuaL96
2121
VPusAfsaauUfuAfUfcaacAfcUfgcuguscsa
2295
UGACAGCAGUGUUGAUAAAUUUG
1015


953803.1











AD-
csgsccu(Uhd)UfuAfUfCfugcuucguuaL96
2122
VPusAfsacgAfaGfCfagauAfaAfaggcgsgsa
2296
UCCGCCUUUUAUCUGCUUCGUUU
1001


953810.1











AD-
csusgag(Ghd)AfaCfAfGfuuccuauugaL96
2123
VPusCfsaauAfgGfAfacugUfuCfcucagsasg
2297
CUCUGAGGAACAGUUCCUAUUGG
1021


953818.1











AD-
usasgga(Ahd)GfaGfCfUfguaccguugaL96
2124
VPusCfsaacGfgUfAfcagcUfcUfuccuasgsa
2298
UCUAGGAAGAGCUGUACCGUUGG
2448


953834.1











AD-
ususcuc(Uhd)AfaGfUfCfccauccgacaL96
2125
VPusGfsucgGfaUfGfggacUfuAfgagaasgsg
2299
CCUUCUCUAAGUCCCAUCCGACG
2449


953842.1











AD-
csusacc(Ahd)AfgAfAfAfgaccgugugaL96
2126
VPusCfsacaCfgGfUfcuuuCfuUfgguagscsu
2300
AGCUACCAAGAAAGACCGUGUGA
2450


953764.1











AD-
ususcca(Ahd)GfgUfUfAfcagcucgagaL96
2127
VPusCfsucgAfgCfUfguaaCfcUfuggaasgsa
2301
UCUUCCAAGGUUACAGCUCGAGC
2451


953772.1











AD-
gsgsuuu(Ahd)UfgAfAfCfugacguuacaL96
2128
VPusGfsuaaCfgUfCfaguuCfaUfaaaccsusg
2302
CAGGUUUAUGAACUGACGUUACA
2452


953780.1











AD-
gsusauu(Ghd)UfgGfAfAfcuuauagcuaL96
2129
VPusAfsgcuAfuAfAfguucCfaCfaauacsusc
2303
GAGUAUUGUGGAACUUAUAGCUG
2453


953788.1











AD-
ascsucu(Ghd)AfaUfCfGfagaucggauaL96
2130
VPusAfsuccGfaUfCfucgaUfuCfagaguscsa
2304
UGACUCUGAAUCGAGAUCGGAUG
1011


953796.1











AD-
usgsaua(Ahd)AfuUfUfGfuguugagagaL96
2131
VPusCfsucuCfaAfCfacaaAfuUfuaucasasc
2305
GUUGAUAAAUUUGUGUUGAGAGA
2454


953804.1











AD-
uscsuau(Ahd)AfaGfUfUfccucuugacaL96
2132
VPusGfsucaAfgAfGfgaacUfuUfauagasgsu
2306
ACUCUAUAAAGUUCCUCUUGACA
987


953811.1











AD-
usgsagg(Ahd)AfcAfGfUfuccuauuggaL96
2133
VPusCfscaaUfaGfGfaacuGfuUfccucasgsa
2307
UCUGAGGAACAGUUCCUAUUGGC
2455


953819.1











AD-
uscsucc(Ghd)UfcAfGfCfacaauaaccaL96
2134
VPusGfsguuAfuUfGfugcuGfaCfggagasasa
2308
UUUCUCCGUCAGCACAAUAACCA
2456


953827.1











AD-
asgsgaa(Ghd)AfgCfUfGfuaccguuggaL96
2135
VPusCfscaaCfgGfUfacagCfuCfuuccusasg
2309
CUAGGAAGAGCUGUACCGUUGGG
2457


953835.1











AD-
gsasgaa(Chd)AfaGfCfAfucuguaccgaL96
2136
VPusCfsgguAfcAfGfaugcUfuGfuucucscsu
2310
AGGAGAACAAGCAUCUGUACCGU
2458


953843.1











AD-
gsasgug(Uhd)CfaCfAfAfagaaccgugaL96
2137
VPusCfsacgGfuUfCfuuugUfgAfcacucsgsu
2311
ACGAGUGUCACAAAGAACCGUGC
2459


953851.1











AD-
asasuca(Uhd)UfgUfCfUfgacaauaugaL96
2138
VPusCfsauaUfuGfUfcagaCfaAfugauuscsa
2312
UGAAUCAUUGUCUGACAAUAUGU
2460


953765.1











AD-
uscscaa(Ghd)GfuUfAfCfagcucgagcaL96
2139
VPusGfscucGfaGfCfuguaAfcCfuuggasasg
2313
CUUCCAAGGUUACAGCUCGAGCU
2461


953773.1











AD-
ususuau(Ghd)AfaCfUfGfacguuacauaL96
2140
VPusAfsuguAfaCfGfucagUfuCfauaaascsc
2314
GGUUUAUGAACUGACGUUACAUC
2462


953781.1











AD-
usasuug(Uhd)GfgAfAfCfuuauagcugaL96
2141
VPusCfsagcUfaUfAfaguuCfcAfcaauascsu
2315
AGUAUUGUGGAACUUAUAGCUGG
2463


953789.1











AD-
csuscug(Ahd)AfuCfGfAfgaucggaugaL96
2142
VPusCfsaucCfgAfUfcucgAfuUfcagagsusc
2316
GACUCUGAAUCGAGAUCGGAUGU
2464


953797.1











AD-
asgsaug(Ahd)AfgCfUfAfcugaaccggaL96
2143
VPusCfscggUfuCfAfguagCfuUfcaucuscsu
2317
AGAGAUGAAGCUACUGAACCGGG
2465


953805.1











AD-
csasucu(Uhd)GfaAfCfUfacaucgaucaL96
2144
VPusGfsaucGfaUfGfuaguUfcAfagaugsusc
2318
GACAUCUUGAACUACAUCGAUCA
2466


953812.1











AD-
uscscgu(Chd)AfgCfAfCfaauaaccagaL96
2145
VPusCfsuggUfuAfUfugugCfuGfacggasgsa
2319
UCUCCGUCAGCACAAUAACCAGA
2467


953828.1











AD-
gsgsaag(Ahd)GfcUfGfUfaccguugggaL96
2146
VPusCfsccaAfcGfGfuacaGfcUfcuuccsusa
2320
UAGGAAGAGCUGUACCGUUGGGA
2468


953836.1











AD-
usgsuca(Chd)AfaAfGfAfaccgugcagaL96
2147
VPusCfsugcAfcGfGfuucuUfuGfugacascsu
2321
AGUGUCACAAAGAACCGUGCAGA
2469


953852.1











AD-
csasuug(Uhd)CfuGfAfCfaauaugugaaL96
2148
VPusUfscacAfuAfUfugucAfgAfcaaugsasu
2322
AUCAUUGUCUGACAAUAUGUGAA
925


953766.1











AD-
csusguu(Chd)CfcAfAfAfauuauggcuaL96
2149
VPusAfsgccAfuAfAfuuuuGfgGfaacagscsu
2323
AGCUGUUCCCAAAAUUAUGGCUU
2470


953774.1











AD-
csasgca(Chd)CfaAfGfAfccacaauguaL96
2150
VPusAfscauUfgUfGfgucuUfgGfugcugsusg
2324
CACAGCACCAAGACCACAAUGUU
2471


953782.1











AD-
asusugu(Ghd)GfaAfCfUfuauagcuggaL96
2151
VPusCfscagCfuAfUfaaguUfcCfacaausasc
2325
GUAUUGUGGAACUUAUAGCUGGA
2472


953790.1











AD-
ususcug(Ahd)AfaUfUfGfuguuagacgaL96
2152
VPusCfsgucUfaAfCfacaaUfuUfcagaascsu
2326
AGUUCUGAAAUUGUGUUAGACGG
2473


953798.1











AD-
cscsucu(Uhd)GfuCfCfAfuuguguccgaL96
2153
VPusCfsggaCfaCfAfauggAfcAfagaggsusg
2327
CACCUCUUGUCCAUUGUGUCCGC
2474


953806.1











AD-
csusuga(Ahd)CfuAfCfAfucgaucaugaL96
2154
VPusCfsaugAfuCfGfauguAfgUfucaagsasu
2328
AUCUUGAACUACAUCGAUCAUGG
930


953813.1











AD-
asasgaa(Chd)GfaGfUfGfcucaauaauaL96
2155
VPusAfsuuaUfuGfAfgcacUfcGfuucuusgsc
2329
GCAAGAACGAGUGCUCAAUAAUG
2475


953821.1











AD-
asasccu(Uhd)UfcAfAfGfaguuauugcaL96
2156
VPusGfscaaUfaAfCfucuuGfaAfagguusasu
2330
AUAACCUUUCAAGAGUUAUUGCA
2476


953829.1











AD-
gsuscag(Chd)UfuGfGfUfucccauuggaL96
2157
VPusCfscaaUfgGfGfaaccAfaGfcugacsgsa
2331
UCGUCAGCUUGGUUCCCAUUGGA
2477


953837.1











AD-
cscsuga(Ahd)AfuCfCfUfgcuuuagucaL96
2158
VPusGfsacuAfaAfGfcaggAfuUfucaggsusa
2332
UACCUGAAAUCCUGCUUUAGUCG
924


953845.1











AD-
usasaga(Ahd)UfgCfUfAfuucauaaucaL96
2159
VPusGfsauuAfuGfAfauagCfaUfucuuasusc
2333
GAUAAGAAUGCUAUUCAUAAUCA
2478


953853.1











AD-
asasugc(Chd)UfcAfAfCfaaaguuaucaL96
2160
VPusGfsauaAfcUfUfuguuGfaGfgcauuscsg
2334
CGAAUGCCUCAACAAAGUUAUCA
2479


953767.1











AD-
asgsgcc(Uhd)UfcAfUfAfgcgaaccugaL96
2161
VPusCfsaggUfuCfGfcuauGfaAfggccususu
2335
AAAGGCCUUCAUAGCGAACCUGA
2480


953775.1











AD-
gscsacc(Ahd)AfgAfCfCfacaauguugaL96
2162
VPusCfsaacAfuUfGfugguCfuUfggugcsusg
2336
CAGCACCAAGACCACAAUGUUGU
2481


953783.1











AD-
usgsgag(Ghd)AfuGfAfCfucugaaucgaL96
2163
VPusCfsgauUfcAfGfagucAfuCfcuccasasg
2337
CUUGGAGGAUGACUCUGAAUCGA
2482


953791.1











AD-
uscsuga(Ahd)AfuUfGfUfguuagacggaL96
2164
VPusCfscguCfuAfAfcacaAfuUfucagasasc
2338
GUUCUGAAAUUGUGUUAGACGGU
959


953799.1











AD-
csuscuu(Ghd)UfcCfAfUfuguguccgcaL96
2165
VPusGfscggAfcAfCfaaugGfaCfaagagsgsu
2339
ACCUCUUGUCCAUUGUGUCCGCC
2483


953807.1











AD-
gsasgug(Chd)UfcAfAfUfaauguugucaL96
2166
VPusGfsacaAfcAfUfuauuGfaGfcacucsgsu
2340
ACGAGUGCUCAAUAAUGUUGUCA
2484


953822.1











AD-
asgsuuu(Ghd)CfaUfUfUfggaguuuagaL96
2167
VPusCfsuaaAfcUfCfcaaaUfgCfaaacusgsg
2341
CCAGUUUGCAUUUGGAGUUUAGG
2485


953830.1











AD-
asgscuu(Ghd)GfuUfCfCfcauuggaucaL96
2168
VPusGfsaucCfaAfUfgggaAfcCfaagcusgsa
2342
UCAGCUUGGUUCCCAUUGGAUCU
2486


953838.1











AD-
csusgaa(Ahd)UfcCfUfGfcuuuagucgaL96
2169
VPusCfsgacUfaAfAfgcagGfaUfuucagsgsu
2343
ACCUGAAAUCCUGCUUUAGUCGA
2487


953846.1











AD-
asgsaau(Ghd)CfuAfUfUfcauaaucacaL96
2170
VPusGfsugaUfuAfUfgaauAfgCfauucususa
2344
UAAGAAUGCUAUUCAUAAUCACA
921


953854.1











AD-
ususauc(Ahd)AfaGfCfUfuugauggauaL96
2171
VPusAfsuccAfuCfAfaagcUfuUfgauaascsu
2345
AGUUAUCAAAGCUUUGAUGGAUU
2488


953768.1











AD-
csuscug(Chd)UfgAfUfUfcuuggcgugaL96
2172
VPusCfsacgCfcAfAfgaauCfaGfcagagsusg
2346
CACUCUGCUGAUUCUUGGCGUGC
2489


953776.1











AD-
csascca(Ahd)GfaCfCfAfcaauguuguaL96
2173
VPusAfscaaCfaUfUfguggUfcUfuggugsesu
2347
AGCACCAAGACCACAAUGUUGUG
2490


953784.1











AD-
gsasgga(Uhd)GfaCfUfCfugaaucgagaL96
2174
VPusCfsucgAfuUfCfagagUfcAfuccucscsa
2348
UGGAGGAUGACUCUGAAUCGAGA
2491


953792.1











AD-
csusgaa(Ahd)UfuGfUfGfuuagacgguaL96
2175
VPusAfsccgUfcUfAfacacAfaUfuucagsasa
2349
UUCUGAAAUUGUGUUAGACGGUA
971


953800.1











AD-
uscscgc(Chd)UfuUfUfAfucugcuucgaL96
2176
VPusCfsgaaGfcAfGfauaaAfaGfgcggascsa
2350
UGUCCGCCUUUUAUCUGCUUCGU
2492


953808.1











AD-
gsasacu(Ahd)CfaUfCfGfaucauggagaL96
2177
VPusCfsuccAfuGfAfucgaUfgUfaguucsasa
2351
UUGAACUACAUCGAUCAUGGAGA
2493


953815.1











AD-
gscscuc(Chd)AfuCfUfCfauuucuccgaL96
2178
VPusCfsggaGfaAfAfugagAfuGfgaggcsusg
2352
CAGCCUCCAUCUCAUUUCUCCGU
2494


953823.1











AD-
gsusuug(Chd)AfuUfUfGfgaguuuaggaL96
2179
VPusCfscuaAfaCfUfccaaAfuGfcaaacsusg
2353
CAGUUUGCAUUUGGAGUUUAGGU
2495


953831.1











AD-
asgsaug(Chd)UfuUfGfAfuuuuggccgaL96
2180
VPusCfsggcCfaAfAfaucaAfaGfcaucususg
2354
CAAGAUGCUUUGAUUUUGGCCGG
2496


953839.1











AD-
gsasaau(Chd)CfuGfCfUfuuagucgagaL96
2181
VPusCfsucgAfcUfAfaagcAfgGfauuucsasg
2355
CUGAAAUCCUGCUUUAGUCGAGA
2497


953847.1











AD-
gscsuau(Uhd)CfaUfAfAfucacauucgaL96
2182
VPusCfsgaaUfgUfGfauuaUfgAfauagcsasu
2356
AUGCUAUUCAUAAUCACAUUCGU
988


953855.1











AD-
gscsuuu(Ghd)AfuGfGfAfuucuaaucuaL96
2183
VPusAfsgauUfaGfAfauccAfuCfaaagcsusu
2357
AAGCUUUGAUGGAUUCUAAUCUU
946


953769.1











AD-
gscsagc(Uhd)UfgUfCfCfagguuuaugaL96
2184
VPusCfsauaAfaCfCfuggaCfaAfgcugcsusc
2358
GAGCAGCUUGUCCAGGUUUAUGA
2498


953777.1











AD-
ascscaa(Ghd)AfcCfAfCfaauguugugaL96
2185
VPusCfsacaAfcAfUfugugGfuCfuuggusgsc
2359
GCACCAAGACCACAAUGUUGUGA
2499


953785.1











AD-
asgsgau(Ghd)AfcUfCfUfgaaucgagaaL96
2186
VPusUfscucGfaUfUfcagaGfuCfauccuscsc
2360
GGAGGAUGACUCUGAAUCGAGAU
2500


953793.1











AD-
usgsaaa(Uhd)UfgUfGfUfuagacgguaaL96
2187
VPusUfsaccGfuCfUfaacaCfaAfuuucasgsa
2361
UCUGAAAUUGUGUUAGACGGUAC
1003


953801.1











AD-
cscsgcc(Uhd)UfuUfAfUfcugcuucguaL96
2188
VPusAfscgaAfgCfAfgauaAfaAfggcggsasc
2362
GUCCGCCUUUUAUCUGCUUCGUU
2501


953809.1











AD-
csusuug(Ghd)CfgGfAfUfugcauuccuaL96
2189
VPusAfsggaAfuGfCfaaucCfgCfcaaagsasa
2363
UUCUUUGGCGGAUUGCAUUCCUU
2502


953816.1











AD-
cscsucc(Ahd)UfcUfCfAfuuucuccguaL96
2190
VPusAfscggAfgAfAfaugaGfaUfggaggscsu
2364
AGCCUCCAUCUCAUUUCUCCGUC
2503


953824.1











AD-
gsuscua(Ghd)GfaAfGfAfgcuguaccgaL96
2191
VPusCfsgguAfcAfGfcucuUfcCfuagacsusc
2365
GAGUCUAGGAAGAGCUGUACCGU
2504


953832.1











AD-
gsgsccg(Ghd)AfaAfCfUfugcuugcagaL96
2192
VPusCfsugcAfaGfCfaaguUfuCfcggccsasa
2366
UUGGCCGGAAACUUGCUUGCAGC
2505


953840.1











AD-
ususuag(Uhd)CfgAfGfAfaccaaugauaL96
2193
VPusAfsucaUfuGfGfuucuCfgAfcuaaasgsc
2367
GCUUUAGUCGAGAACCAAUGAUG
2506


953848.1











AD-
ususcau(Ahd)AfuCfAfCfauucguuugaL96
2194
VPusCfsaaaCfgAfAfugugAfuUfaugaasusa
2368
UAUUCAUAAUCACAUUCGUUUGU
972


953856.1











AD-
gsasuuc(Uhd)AfaUfCfUfuccaagguuaL96
2195
VPusAfsaccUfuGfGfaagaUfuAfgaaucscsa
2369
UGGAUUCUAAUCUUCCAAGGUUA
952


953770.1











AD-
csasggu(Uhd)UfaUfGfAfacugacguuaL96
2196
VPusAfsacgUfcAfGfuucaUfaAfaccugsgsa
2370
UCCAGGUUUAUGAACUGACGUUA
964


953778.1











AD-
gsasgua(Uhd)UfgUfGfGfaacuuauagaL96
2197
VPusCfsuauAfaGfUfuccaCfaAfuacucscsc
2371
GGGAGUAUUGUGGAACUUAUAGC
998


953786.1











AD-
gsgsaug(Ahd)CfuCfUfGfaaucgagauaL96
2198
VPusAfsucuCfgAfUfucagAfgUfcauccsusc
2372
GAGGAUGACUCUGAAUCGAGAUC
2507


953794.1











AD-
gsasaau(Uhd)GfuGfUfUfagacgguacaL96
2199
VPusGfsuacCfgUfCfuaacAfcAfauuucsasg
2373
CUGAAAUUGUGUUAGACGGUACC
2508


953802.1











AD-
ususugg(Chd)GfgAfUfUfgcauuccuuaL96
2200
VPusAfsaggAfaUfGfcaauCfcGfccaaasgsa
2374
UCUUUGGCGGAUUGCAUUCCUUU
2509


953817.1











AD-
csuscca(Uhd)CfuCfAfUfuucuccgucaL96
2201
VPusGfsacgGfaGfAfaaugAfgAfuggagsgsc
2375
GCCUCCAUCUCAUUUCUCCGUCA
2510


953825.1











AD-
uscsuag(Ghd)AfaGfAfGfcuguaccguaL96
2202
VPusAfscggUfaCfAfgcucUfuCfcuagascsu
2376
AGUCUAGGAAGAGCUGUACCGUU
2511


953833.1











AD-
csusucu(Chd)UfaAfGfUfcccauccgaaL96
2203
VPusUfscggAfuGfGfgacuUfaGfagaagsgsg
2377
CCCUUCUCUAAGUCCCAUCCGAC
2512


953841.1











AD-
ususagu(Chd)GfaGfAfAfccaaugaugaL96
2204
VPusCfsaucAfuUfGfguucUfcGfacuaasasg
2378
CUUUAGUCGAGAACCAAUGAUGG
2513


953849.1






















TABLE 11







Unmodified Sense and Antisense Strand Sequences of Huntingtin (HTT) dsRNA Agents















SEQ


SEQ




Sense Sequence
ID
Range in
Antisense Sequence
ID
Range in


Duplex ID
5′ to 3′
NO:
NM_002111.8
5′ to 3′
NO:
NM_002111.8
















AD-953943.1
AGCUACCAAGAAAGACCGUGA
1784
430-450
UCACGGTCUUUCUUGGUAGCUGA
2574
428-450





AD-953944.1
CUACCAAGAAAGACCGUGUGA
1794
432-452
UCACACGGUCUUUCUUGGUAGCU
1955
430-452





AD-953945.1
UACCAAGAAAGACCGUGUGAA
2514
433-453
UUCACACGGUCUUUCUUGGUAGC
2575
431-453





AD-953946.1
CAUUGUCUGACAAUAUGUGAA
119
455-475
UUCACATAUUGUCAGACAAUGAU
320
453-475





AD-953947.1
AAUGCCUCAACAAAGUUAUCA
1826
597-617
UGAUAACUUUGUUGAGGCAUUCG
1988
595-617





AD-953948.1
UCAACAAAGUUAUCAAAGCUA
2515
603-623
UAGCUUTGAUAACUUUGUUGAGG
2576
601-623





AD-953949.1
CAACAAAGUUAUCAAAGCUUA
2516
604-624
UAAGCUTUGAUAACUUUGUUGAG
2577
602-624





AD-953950.1
GCUUUGAUGGAUUCUAAUCUA
1847
620-640
UAGAUUAGAAUCCAUCAAAGCUU
2010
618-640





AD-953951.1
UUGAUGGAUUCUAAUCUUCCA
161
623-643
UGGAAGAUUAGAAUCCAUCAAAG
362
621-643





AD-953952.1
AUGGAUUCUAAUCUUCCAAGA
2517
626-646
UCUUGGAAGAUUAGAAUCCAUCA
2578
624-646





AD-953953.1
GAUUCUAAUCUUCCAAGGUUA
146
629-649
UAACCUTGGAAGAUUAGAAUCCA
347
627-649





AD-953954.1
AUUCUAAUCUUCCAAGGUUAA
1785
630-650
UUAACCTUGGAAGAUUAGAAUCC
2579
628-650





AD-953955.1
UUCUAAUCUUCCAAGGUUACA
191
631-651
UGUAACCUUGGAAGAUUAGAAUC
392
629-651





AD-953956.1
UUCCAAGGUUACAGCUCGAGA
1795
639-659
UCUCGAGCUGUAACCUUGGAAGA
1956
637-659





AD-953957.1
UGUUCCCAAAAUUAUGGCUUA
2518
844-864
UAAGCCAUAAUUUUGGGAACAGC
2580
842-864





AD-953958.1
AGGCCUUCAUAGCGAACCUGA
1827
909-929
UCAGGUTCGCUAUGAAGGCCUUU
2581
907-929





AD-953959.1
CCAGGUUUAUGAACUGACGUA
2519
1216-1236
UACGUCAGUUCAUAAACCUGGAC
2582
1214-1236





AD-953960.1
CAGGUUUAUGAACUGACGUUA
158
1217-1237
UAACGUCAGUUCAUAAACCUGGA
359
1215-1237





AD-953961.1
AGGUUUAUGAACUGACGUUAA
1786
1218-1238
UUAACGTCAGUUCAUAAACCUGG
2583
1216-1238





AD-953962.1
GUUUAUGAACUGACGUUACAA
2520
1220-1240
UUGUAACGUCAGUUCAUAAACCU
2584
1218-1240





AD-953963.1
UUUAUGAACUGACGUUACAUA
1807
1221-1241
UAUGUAACGUCAGUUCAUAAACC
1968
1219-1241





AD-953964.1
ACUGACGUUACAUCAUACACA
129
1228-1248
UGUGUATGAUGUAACGUCAGUUC
330
1226-1248





AD-953965.1
CAGCACCAAGACCACAAUGUA
1816
1247-1267
UACAUUGUGGUCUUGGUGCUGUG
1978
1245-1267





AD-953966.1
GCACCAAGACCACAAUGUUGA
1828
1249-1269
UCAACATUGUGGUCUUGGUGCUG
2585
1247-1269





AD-953967.1
GCAGCAGCUCUUCAGAACGCA
2521
1291-1311
UGCGUUCUGAAGAGCUGCUGCAA
2586
1289-1311





AD-953968.1
GAGUAUUGUGGAACUUAUAGA
1859
1405-1425
UCUAUAAGUUCCACAAUACUCCC
2023
1403-1425





AD-953969.1
AGUAUUGUGGAACUUAUAGCA
1787
1406-1426
UGCUAUAAGUUCCACAAUACUCC
1948
1404-1426





AD-953970.1
GUAUUGUGGAACUUAUAGCUA
1797
1407-1427
UAGCUATAAGUUCCACAAUACUC
2587
1405-1427





AD-953971.1
UGGAGGAUGACUCUGAAUCGA
1829
1503-1523
UCGAUUCAGAGUCAUCCUCCAAG
1991
1501-1523





AD-953972.1
GAGGAUGACUCUGAAUCGAGA
1839
1505-1525
UCUCGATUCAGAGUCAUCCUCCA
2588
1503-1525





AD-953973.1
AGGAUGACUCUGAAUCGAGAA
1850
1506-1526
UUCUCGAUUCAGAGUCAUCCUCC
2013
1504-1526





AD-953974.1
GGAUGACUCUGAAUCGAGAUA
1860
1507-1527
UAUCUCGAUUCAGAGUCAUCCUC
2024
1505-1527





AD-953975.1
GACUCUGAAUCGAGAUCGGAA
1788
1511-1531
UUCCGATCUCGAUUCAGAGUCAU
2589
1509-1531





AD-953976.1
ACUCUGAAUCGAGAUCGGAUA
1798
1512-1532
UAUCCGAUCUCGAUUCAGAGUCA
1959
1510-1532





AD-953977.1
CUCUGAAUCGAGAUCGGAUGA
1809
1513-1533
UCAUCCGAUCUCGAUUCAGAGUC
1970
1511-1533





AD-953978.1
UCUGAAUCGAGAUCGGAUGUA
2522
1514-1534
UACAUCCGAUCUCGAUUCAGAGU
2590
1512-1534





AD-953979.1
UUCUGAAAUUGUGUUAGACGA
1818
1885-1905
UCGUCUAACACAAUUUCAGAACU
1980
1883-1905





AD-953980.1
UCUGAAAUUGUGUUAGACGGA
1830
1886-1906
UCCGUCTAACACAAUUUCAGAAC
2591
1884-1906





AD-953981.1
CUGAAAUUGUGUUAGACGGUA
165
1887-1907
UACCGUCUAACACAAUUUCAGAA
366
1885-1907





AD-953982.1
UGAAAUUGUGUUAGACGGUAA
1851
1888-1908
UUACCGTCUAACACAAUUUCAGA
2592
1886-1908





AD-953983.1
GAAAUUGUGUUAGACGGUACA
1861
1889-1909
UGUACCGUCUAACACAAUUUCAG
2025
1887-1909





AD-953984.1
CGGUACCGACAACCAGUAUUA
2523
1903-1923
UAAUACTGGUUGUCGGUACCGUC
2593
1901-1923





AD-953985.1
ACAGCAGUGUUGAUAAAUUUA
1789
2073-2093
UAAAUUTAUCAACACUGCUGUCA
2594
2071-2093





AD-953986.1
CCUCUUGUCCAUUGUGUCCGA
1819
2189-2209
UCGGACACAAUGGACAAGAGGUG
1981
2187-2209





AD-953987.1
UCCGCCUUUUAUCUGCUUCGA
1840
2205-2225
UCGAAGCAGAUAAAAGGCGGACA
2003
2203-2225





AD-953988.1
CCGCCUUUUAUCUGCUUCGUA
1852
2206-2226
UACGAAGCAGAUAAAAGGCGGAC
2015
2204-2226





AD-953989.1
CGCCUUUUAUCUGCUUCGUUA
1790
2207-2227
UAACGAAGCAGAUAAAAGGCGGA
1951
2205-2227





AD-953990.1
CAAACUCUAUAAAGUUCCUCA
2524
2347-2367
UGAGGAACUUUAUAGAGUUUGCU
2595
2345-2367





AD-953991.1
UCUAUAAAGUUCCUCUUGACA
181
2352-2372
UGUCAAGAGGAACUUUAUAGAGU
382
2350-2372





AD-953992.1
CAUCUUGAACUACAUCGAUCA
1811
2407-2427
UGAUCGAUGUAGUUCAAGAUGUC
1972
2405-2427





AD-953993.1
AUCUUGAACUACAUCGAUCAA
2525
2408-2428
UUGAUCGAUGUAGUUCAAGAUGU
2596
2406-2428





AD-953994.1
UCUUGAACUACAUCGAUCAUA
2526
2409-2429
UAUGAUCGAUGUAGUUCAAGAUG
2597
2407-2429





AD-953995.1
CUUGAACUACAUCGAUCAUGA
1820
2410-2430
UCAUGATCGAUGUAGUUCAAGAU
2598
2408-2430





AD-953996.1
UUGAACUACAUCGAUCAUGGA
211
2411-2431
UCCAUGAUCGAUGUAGUUCAAGA
412
2409-2431





AD-953997.1
GAACUACAUCGAUCAUGGAGA
1841
2413-2433
UCUCCATGAUCGAUGUAGUUCAA
2599
2411-2433





AD-953998.1
UUUGGCGGAUUGCAUUCCUUA
1862
2560-2580
UAAGGAAUGCAAUCCGCCAAAGA
2026
2558-2580





AD-953999.1
UUGGCGGAUUGCAUUCCUUUA
2527
2561-2581
UAAAGGAAUGCAAUCCGCCAAAG
2600
2559-2581





AD-954000.1
GCUACAGUGAGUUAGGACUGA
2528
2673-2693
UCAGUCCUAACUCACUGUAGCUG
2601
2671-2693





AD-954001.1
CUCUGAGGAACAGUUCCUAUA
2529
2715-2735
UAUAGGAACUGUUCCUCAGAGUC
2602
2713-2735





AD-954002.1
CUGAGGAACAGUUCCUAUUGA
1791
2717-2737
UCAAUAGGAACUGUUCCUCAGAG
1952
2715-2737





AD-954003.1
UGAGGAACAGUUCCUAUUGGA
1800
2718-2738
UCCAAUAGGAACUGUUCCUCAGA
1961
2716-2738





AD-954004.1
GAGGAACAGUUCCUAUUGGCA
2530
2719-2739
UGCCAATAGGAACUGUUCCUCAG
2603
2717-2739





AD-954005.1
GAGUGCUCAAUAAUGUUGUCA
1832
2868-2888
UGACAACAUUAUUGAGCACUCGU
1994
2866-2888





AD-954006.1
GCCUCCAUCUCAUUUCUCCGA
1842
3061-3081
UCGGAGAAAUGAGAUGGAGGCUG
2005
3059-3081





AD-954007.1
CCUCCAUCUCAUUUCUCCGUA
1854
3062-3082
UACGGAGAAAUGAGAUGGAGGCU
2017
3060-3082





AD-954008.1
CUCCAUCUCAUUUCUCCGUCA
1863
3063-3083
UGACGGAGAAAUGAGAUGGAGGC
2027
3061-3083





AD-954009.1
UCUCCGUCAGCACAAUAACCA
1801
3075-3095
UGGUUATUGUGCUGACGGAGAAA
2604
3073-3095





AD-954010.1
CUCCGUCAGCACAAUAACCAA
2531
3076-3096
UUGGUUAUUGUGCUGACGGAGAA
2605
3074-3096





AD-954011.1
UCCGUCAGCACAAUAACCAGA
1812
3077-3097
UCUGGUTAUUGUGCUGACGGAGA
2606
3075-3097





AD-954012.1
AGAGGCUAUAACCUACUACCA
2532
3104-3124
UGGUAGTAGGUUAUAGCCUCUAU
2607
3102-3124





AD-954013.1
ACCUACUACCAAGCAUAACAA
2533
3114-3134
UUGUUATGCUUGGUAGUAGGUUA
2608
3112-3134





AD-954014.1
AACCUUUCAAGAGUUAUUGCA
1822
3152-3172
UGCAAUAACUCUUGAAAGGUUAU
1984
3150-3172





AD-954015.1
AGUUUGCAUUUGGAGUUUAGA
1833
3262-3282
UCUAAACUCCAAAUGCAAACUGG
1995
3260-3282





AD-954016.1
CAGAUGAGUCUAGGAAGAGCA
2534
3315-3335
UGCUCUTCCUAGACUCAUCUGAG
2609
3313-3335





AD-954017.1
GUCUAGGAAGAGCUGUACCGA
1855
3322-3342
UCGGUACAGCUCUUCCUAGACUC
2018
3320-3342





AD-954018.1
UAGGAAGAGCUGUACCGUUGA
1792
3325-3345
UCAACGGUACAGCUCUUCCUAGA
1953
3323-3345





AD-954019.1
GUCAGCUUGGUUCCCAUUGGA
1823
3376-3396
UCCAAUGGGAACCAAGCUGACGA
1985
3374-3396





AD-954020.1
GGCCGGAAACUUGCUUGCAGA
1856
3427-3447
UCUGCAAGCAAGUUUCCGGCCAA
2019
3425-3447





AD-954021.1
CUUCUCUAAGUCCCAUCCGAA
1865
3678-3698
UUCGGATGGGACUUAGAGAAGGG
2610
3676-3698





AD-954022.1
GAGAACAAGCAUCUGUACCGA
1803
3723-3743
UCGGUACAGAUGCUUGUUCUCCU
1964
3721-3743





AD-954023.1
AACAAGCAUCUGUACCGUUGA
2535
3726-3746
UCAACGGUACAGAUGCUUGUUCU
2611
3724-3746





AD-954024.1
AGCAUCUGUACCGUUGAGUCA
2536
3730-3750
UGACUCAACGGUACAGAUGCUUG
2612
3728-3750





AD-954025.1
GCAGCUUCUAGACAAUCUGAA
2537
3773-3793
UUCAGATUGUCUAGAAGCUGCAC
2613
3771-3793





AD-954026.1
UCUAGACAAUCUGAUACCUCA
148
3779-3799
UGAGGUAUCAGAUUGUCUAGAAG
349
3777-3799





AD-954027.1
UCAGGUCCUGUUACAACAAGA
2538
3797-3817
UCUUGUTGUAACAGGACCUGAGG
2614
3795-3817





AD-954028.1
GGUCCUGUUACAACAAGUAAA
210
3800-3820
UUUACUTGUUGUAACAGGACCUG
411
3798-3820





AD-954029.1
CAAGUAAAUCCUCAUCACUGA
2539
3813-3833
UCAGUGAUGAGGAUUUACUUGUU
2615
3811-3833





AD-954030.1
UUUCUAUCAUCUUCCUUCAUA
172
3838-3858
UAUGAAGGAAGAUGAUAGAAACU
373
3836-3858





AD-954031.1
UUCAUACCUCAAACUGCAUGA
2540
3853-3873
UCAUGCAGUUUGAGGUAUGAAGG
2616
3851-3873





AD-954032.1
ACCUCAAACUGCAUGAUGUCA
2541
3858-3878
UGACAUCAUGCAGUUUGAGGUAU
2617
3856-3878





AD-954033.1
CAGGACAUUGGGAAGUGUGUA
2542
4001-4021
UACACACUUCCCAAUGUCCUGCA
2618
3999-4021





AD-954034.1
CCUGAAAUCCUGCUUUAGUCA
1824
4039-4059
UGACUAAAGCAGGAUUUCAGGUA
1986
4037-4059





AD-954035.1
CUGAAAUCCUGCUUUAGUCGA
1835
4040-4060
UCGACUAAAGCAGGAUUUCAGGU
1997
4038-4060





AD-954036.1
GAAAUCCUGCUUUAGUCGAGA
1845
4042-4062
UCUCGACUAAAGCAGGAUUUCAG
2008
4040-4062





AD-954037.1
AAUCCUGCUUUAGUCGAGAAA
2543
4044-4064
UUUCUCGACUAAAGCAGGAUUUC
2619
4042-4064





AD-954038.1
UUUAGUCGAGAACCAAUGAUA
1857
4052-4072
UAUCAUTGGUUCUCGACUAAAGC
2620
4050-4072





AD-954039.1
UUAGUCGAGAACCAAUGAUGA
1866
4053-4073
UCAUCATUGGUUCUCGACUAAAG
2621
4051-4073





AD-954040.1
GAUGGCAACUGUUUGUGUUCA
2544
4069-4089
UGAACACAAACAGUUGCCAUCAU
2622
4067-4089





AD-954041.1
GAGUGUCACAAAGAACCGUGA
1804
4369-4389
UCACGGTUCUUUGUGACACUCGU
2623
4367-4389





AD-954042.1
AGUGUCACAAAGAACCGUGCA
2545
4370-4390
UGCACGGUUCUUUGUGACACUCG
2624
4368-4390





AD-954043.1
UGCAGAUAAGAAUGCUAUUCA
ill
4387-4407
UGAAUAGCAUUCUUAUCUGCACG
312
4385-4407





AD-954044.1
AGAAUGCUAUUCAUAAUCACA
115
4395-4415
UGUGAUTAUGAAUAGCAUUCUUA
316
4393-4415





AD-954045.1
GCUAUUCAUAAUCACAUUCGA
1846
4400-4420
UCGAAUGUGAUUAUGAAUAGCAU
2009
4398-4420





AD-954046.1
AUCACAUUCGUUUGUUUGAAA
1717
4410-4430
UUUCAAACAAACGAAUGUGAUUA
1878
4408-4430





AD-954047.1
UGUUUGAACCUCUUGUUAUAA
127
4422-4442
UUAUAACAAGAGGUUCAAACAAA
328
4420-4442





AD-954048.1
GUUUGAACCUCUUGUUAUAAA
123
4423-4443
UUUAUAACAAGAGGUUCAAACAA
324
4421-4443





AD-954049.1
UUUGAACCUCUUGUUAUAAAA
122
4424-4444
UUUUAUAACAAGAGGUUCAAACA
323
4422-4444





AD-954050.1
GCUUUAAAACAGUACACGACA
2546
4445-4465
UGUCGUGUACUGUUUUAAAGCUU
2625
4443-4465





AD-954051.1
AGCUGGUUCAGUUACGGGUUA
1766
4512-4532
UAACCCGUAACUGAACCAGCUGC
1927
4510-4532





AD-954052.1
GCUGGUUCAGUUACGGGUUAA
2547
4513-4533
UUAACCCGUAACUGAACCAGCUG
2626
4511-4533





AD-954053.1
UGGUUCAGUUACGGGUUAAUA
2548
4515-4535
UAUUAACCCGUAACUGAACCAGC
2627
4513-4535





AD-954054.1
GUUCAGUUACGGGUUAAUUAA
1775
4517-4537
UUAAUUAACCCGUAACUGAACCA
1936
4515-4537





AD-954055.1
CAGUUACGGGUUAAUUACUGA
1718
4520-4540
UCAGUAAUUAACCCGUAACUGAA
1879
4518-4540





AD-954056.1
UUACGGGUUAAUUACUGUCUA
2549
4523-4543
UAGACAGUAAUUAACCCGUAACU
2628
4521-4543





AD-954057.1
UGGAUUCAGAUCAGGUGUUUA
131
4545-4565
UAAACACCUGAUCUGAAUCCAGA
332
4543-4565





AD-954058.1
UAUGAACGCUAUCAUUCAAAA
196
4667-4687
UUUUGAAUGAUAGCGUUCAUAAG
397
4665-4687





AD-954059.1
GCGACUGUCUCGACAGAUAGA
2550
4963-4983
UCUAUCTGUCGAGACAGUCGCUU
2629
4961-4983





AD-954060.1
CGACUGUCUCGACAGAUAGCA
2551
4964-4984
UGCUAUCUGUCGAGACAGUCGCU
2630
4962-4984





AD-954061.1
GACUGUCUCGACAGAUAGCUA
1776
4965-4985
UAGCUATCUGUCGAGACAGUCGC
2631
4963-4985





AD-954062.1
ACUGUCUCGACAGAUAGCUGA
1709
4966-4986
UCAGCUAUCUGUCGAGACAGUCG
1869
4964-4986





AD-954063.1
CCCAAUGUUAGCCAAACAGCA
2552
4996-5016
UGCUGUTUGGCUAACAUUGGGAG
2632
4994-5016





AD-954065.1
CACAUUGACUCUCAUGAAGCA
2553
5021-5041
UGCUUCAUGAGAGUCAAUGUGCA
2633
5019-5041





AD-954066.1
GCCCUUGGAGUGUUAAAUACA
1729
5039-5059
UGUAUUTAACACUCCAAGGGCUU
2634
5037-5059





AD-954067.1
ACAUGCUUUUACGGAGUAUGA
1748
5100-5120
UCAUACTCCGUAAAAGCAUGUCU
2635
5098-5120





AD-954068.1
UUUUACGGAGUAUGUUCGUCA
1768
5106-5126
UGACGAACAUACUCCGUAAAAGC
1929
5104-5126





AD-954069.1
UUUACGGAGUAUGUUCGUCAA
1777
5107-5127
UUGACGAACAUACUCCGUAAAAG
1938
5105-5127





AD-954070.1
GAGCACUGUUCAACUGUGGAA
2554
5149-5169
UUCCACAGUUGAACAGUGCUCAC
2636
5147-5169





AD-954071.1
AAGAUAUUGUUCUUUCUCGUA
113
5217-5237
UACGAGAAAGAACAAUAUCUUCA
314
5215-5237





AD-954072.1
GAUAUUGUUCUUUCUCGUAUA
1739
5219-5239
UAUACGAGAAAGAACAAUAUCUU
1900
5217-5239





AD-954073.1
UUGUUCUUUCUCGUAUUCAGA
1749
5223-5243
UCUGAATACGAGAAAGAACAAUA
2637
5221-5243





AD-954074.1
UGUUCUUUCUCGUAUUCAGGA
125
5224-5244
UCCUGAAUACGAGAAAGAACAAU
326
5222-5244





AD-954075.1
AUUUUCAAGGUUUCUAUUACA
137
5368-5388
UGUAAUAGAAACCUUGAAAAUGU
338
5366-5388





AD-954076.1
GUGAGCAGCAACAUACUUUCA
2555
5445-5465
UGAAAGTAUGUUGCUGCUCACUC
2638
5443-5465





AD-954077.1
GCAACAUACUUUCUAUUGCCA
187
5452-5472
UGGCAATAGAAAGUAUGUUGCUG
388
5450-5472





AD-954078.1
AUCUUCAAGUCUGGAAUGUUA
1721
5507-5527
UAACAUTCCAGACUUGAAGAUGU
2639
5505-5527





AD-954079.1
CUGCUUGUCAACCACACCGAA
2556
5672-5692
UUCGGUGUGGUUGACAAGCAGCA
2640
5670-5692





AD-954080.1
UCCGAGCACUUAACGUGGCUA
2557
5888-5908
UAGCCACGUUAAGUGCUCGGAGU
2641
5886-5908





AD-954081.1
CCUCCAGUACAGGACUUCAUA
2558
5951-5971
UAUGAAGUCCUGUACUGGAGGCU
2642
5949-5971





AD-954082.1
CAGGCAAUUCAGUCUCGUUGA
1751
6014-6034
UCAACGAGACUGAAUUGCCUGGA
1912
6012-6034





AD-954083.1
AGGCAAUUCAGUCUCGUUGUA
1760
6015-6035
UACAACGAGACUGAAUUGCCUGG
1921
6013-6035





AD-954084.1
GGCAAUUCAGUCUCGUUGUGA
1770
6016-6036
UCACAACGAGACUGAAUUGCCUG
1931
6014-6036





AD-954085.1
GCAAUUCAGUCUCGUUGUGAA
1712
6017-6037
UUCACAACGAGACUGAAUUGCCU
1873
6015-6037





AD-954086.1
CAAUUCAGUCUCGUUGUGAAA
167
6018-6038
UUUCACAACGAGACUGAAUUGCC
368
6016-6038





AD-954087.1
AUGGUCGACAUCCUUGCUUGA
1723
6170-6190
UCAAGCAAGGAUGUCGACCAUGC
1884
6168-6190





AD-954088.1
GGUCGACAUCCUUGCUUGUCA
2559
6172-6192
UGACAAGCAAGGAUGUCGACCAU
2643
6170-6192





AD-954089.1
GUCGACAUCCUUGCUUGUCGA
1732
6173-6193
UCGACAAGCAAGGAUGUCGACCA
1893
6171-6193





AD-954090.1
CUGGACAGGUUUCGUCUCUCA
2560
6326-6346
UGAGAGACGAAACCUGUCCAGCA
2644
6324-6346





AD-954091.1
CAUGCAAGACUCACUUAGUCA
1742
6349-6369
UGACUAAGUGAGUCUUGCAUGGU
1903
6347-6369





AD-954092.1
AUGCAAGACUCACUUAGUCCA
1752
6350-6370
UGGACUAAGUGAGUCUUGCAUGG
1913
6348-6370





AD-954093.1
UGUCACUGGAAACAGUGAGUA
2561
6414-6434
UACUCACUGUUUCCAGUGACACG
2645
6412-6434





AD-954094.1
CACUGGAAACAGUGAGUCCGA
1761
6417-6437
UCGGACTCACUGUUUCCAGUGAC
2646
6415-6437





AD-954095.1
GCUGGUGAAUCGGAUUCCUGA
1780
6514-6534
UCAGGAAUCCGAUUCACCAGCUC
1941
6512-6534





AD-954096.1
AACUCGGAGUUCAACCUAAGA
2562
6560-6580
UCUUAGGUUGAACUCCGAGUUCA
2647
6558-6580





AD-954097.1
ACUCGGAGUUCAACCUAAGCA
2563
6561-6581
UGCUUAGGUUGAACUCCGAGUUC
2648
6559-6581





AD-954098.1
CUCGGAGUUCAACCUAAGCCA
2564
6562-6582
UGGCUUAGGUUGAACUCCGAGUU
2649
6560-6582





AD-954099.1
CUGGAGCAAGUUGAAUGAUCA
2565
6754-6774
UGAUCATUCAACUUGCUCCAGUA
2650
6752-6774





AD-954100.1
AGAGCAGCUUCUUAGUCCAGA
2566
7120-7140
UCUGGACUAAGAAGCUGCUCUCC
2651
7118-7140





AD-954101.1
CUUGUCAACAGCUACACACGA
2567
7361-7381
UCGUGUGUAGCUGUUGACAAGGG
2652
7359-7381





AD-954102.1
UCAACAGCUACACACGUGUGA
1781
7365-7385
UCACACGUGUGUAGCUGUUGACA
1942
7363-7385





AD-954103.1
CAACAGCUACACACGUGUGCA
1714
7366-7386
UGCACACGUGUGUAGCUGUUGAC
1875
7364-7386





AD-954104.1
CUUUAAGGAGUUCAUCUACCA
2568
7486-7506
UGGUAGAUGAACUCCUUAAAGAC
2653
7484-7506





AD-954105.1
GGACCAGUCGUACUCAGUUUA
2569
7524-7544
UAAACUGAGUACGACUGGUCCAG
2654
7522-7544





AD-954106.1
GACCAGUCGUACUCAGUUUGA
1725
7525-7545
UCAAACTGAGUACGACUGGUCCA
2655
7523-7545





AD-954107.1
ACCAGUCGUACUCAGUUUGAA
1734
7526-7546
UUCAAACUGAGUACGACUGGUCC
1895
7524-7546





AD-954108.1
CCAGUCGUACUCAGUUUGAAA
1744
7527-7547
UUUCAAACUGAGUACGACUGGUC
1905
7525-7547





AD-954109.1
CAGUCGUACUCAGUUUGAAGA
120
7528-7548
UCUUCAAACUGAGUACGACUGGU
321
7526-7548





AD-954110.1
GACGCUGACAGAACUGCGAAA
1715
8317-8337
UUUCGCAGUUCUGUCAGCGUCAC
1876
8315-8337





AD-954111.1
ACGCUGACAGAACUGCGAAGA
1726
8318-8338
UCUUCGCAGUUCUGUCAGCGUCA
1887
8316-8338





AD-954112.1
UCAUUGAGAACUAUCCUCUGA
2570
8667-8687
UCAGAGGAUAGUUCUCAAUGAGG
2656
8665-8687





AD-954113.1
CGGCUGCUGACUUGUUUACGA
1764
9533-9553
UCGUAAACAAGUCAGCAGCCGGU
1925
9531-9553





AD-954114.1
GGCUGCUGACUUGUUUACGAA
1774
9534-9554
UUCGUAAACAAGUCAGCAGCCGG
1935
9532-9554





AD-954115.1
CUGCUGACUUGUUUACGAAAA
1783
9536-9556
UUUUCGTAAACAAGUCAGCAGCC
2657
9534-9556





AD-954116.1
UGCUGACUUGUUUACGAAAUA
2571
9537-9557
UAUUUCGUAAACAAGUCAGCAGC
2658
9535-9557





AD-954117.1
CUGACUUGUUUACGAAAUGUA
1716
9539-9559
UACAUUTCGUAAACAAGUCAGCA
2659
9537-9559





AD-954118.1
UGACUUGUUUACGAAAUGUCA
1727
9540-9560
UGACAUTUCGUAAACAAGUCAGC
2660
9538-9560





AD-954119.1
UAACGUAACUCUUUCUAUGCA
1736
10173-10193
UGCAUAGAAAGAGUUACGUUAAA
1897
10171-10193





AD-954120.1
CCGCUGACAUUUCCGUUGUAA
1765
10311-10331
UUACAACGGAAAUGUCAGCGGGU
1926
10309-10331





AD-954121.1
CUGACAUUUCCGUUGUACAUA
2572
10314-10334
UAUGUACAACGGAAAUGUCAGCG
2661
10312-10334





AD-954122.1
UCCGUUGUACAUGUUCCUGUA
2573
10322-10342
UACAGGAACAUGUACAACGGAAA
2662
10320-10342
















TABLE 12







Modified Sense and Antisense Strand Sequences of Huntingtin (HTT) dsRNA Agents















SEQ

SEQ

SEQ




ID

ID

ID


Duplex ID
Sense Sequence 5′ to 3′
NO:
Antisense Sequence 5′ to 3′
NO:
mRNA Target Sequence 5′ to 3′
NO:
















AD-
asgscua(Chd)CfaAfGfAfaagaccgugaL96
2116
VPusCfsacgg(Tgn)cuuucuUfgGfuagcusgsa
2734
UCAGCUACCAAGAAAGACCGUGU
2445


953943.1











AD-
csusacc(Ahd)AfgAfAfAfgaccgugugaL96
2126
VPusCfsacac(Ggn)gucuuuCfuUfgguagscsu
2735
AGCUACCAAGAAAGACCGUGUGA
2450


953944.1











AD-
usascca(Ahd)GfaAfAfGfaccgugugaaL96
2663
VPusUfscaca(Cgn)ggucuuUfcUfugguasgsc
2736
GCUACCAAGAAAGACCGUGUGAA
2913


953945.1











AD-
csasuug(Uhd)CfuGfAfCfaauaugugaaL96
2148
VPusUfscaca(Tgn)auugucAfgAfcaaugsasu
2737
AUCAUUGUCUGACAAUAUGUGAA
925


953946.1











AD-
asasugc(Chd)UfcAfAfCfaaaguuaucaL96
2160
VPusGfsauaa(Cgn)uuuguuGfaGfgcauuscsg
2738
CGAAUGCCUCAACAAAGUUAUCA
2479


953947.1











AD-
uscsaac(Ahd)AfaGfUfUfaucaaagcuaL96
2664
VPusAfsgcuu(Tgn)gauaacUfuUfguugasgsg
2739
CCUCAACAAAGUUAUCAAAGCUU
922


953948.1











AD-
csasaca(Ahd)AfgUfUfAfucaaagcuuaL96
2665
VPusAfsagcu(Tgn)ugauaaCfuUfuguugsasg
2740
CUCAACAAAGUUAUCAAAGCUUU
955


953949.1











AD-
gscsuuu(Ghd)AfuGfGfAfuucuaaucuaL96
2183
VPusAfsgauu(Agn)gaauccAfuCfaaagcsusu
2741
AAGCUUUGAUGGAUUCUAAUCUU
946


953950.1











AD-
ususgau(Ghd)GfaUfUfCfuaaucuuccaL96
2666
VPusGfsgaag(Agn)uuagaaUfcCfaucaasasg
2742
CUUUGAUGGAUUCUAAUCUUCCA
967


953951.1











AD-
asusgga(Uhd)UfcUfAfAfucuuccaagaL96
2667
VPusCfsuugg(Agn)agauuaGfaAfuccauscsa
2743
UGAUGGAUUCUAAUCUUCCAAGG
985


953952.1











AD-
gsasuuc(Uhd)AfaUfCfUfuccaagguuaL96
2195
VPusAfsaccu(Tgn)ggaagaUfuAfgaaucscsa
2744
UGGAUUCUAAUCUUCCAAGGUUA
952


953953.1











AD-
asusucu(Ahd)AfuCfUfUfccaagguuaaL96
2117
VPusUfsaacc(Tgn)uggaagAfuUfagaauscsc
2745
GGAUUCUAAUCUUCCAAGGUUAC
965


953954.1











AD-
ususcua(Ahd)UfcUfUfCfcaagguuacaL96
2668
VPusGfsuaac(Cgn)uuggaaGfaUfuagaasusc
2746
GAUUCUAAUCUUCCAAGGUUACA
997


953955.1











AD-
ususcca(Ahd)GfgUfUfAfcagcucgagaL96
2127
VPusCfsucga(Ggn)cuguaaCfcUfuggaasgsa
2747
UCUUCCAAGGUUACAGCUCGAGC
2451


953956.1











AD-
usgsuuc(Chd)CfaAfAfAfuuauggcuuaL96
2669
VPusAfsagcc(Agn)uaauuuUfgGfgaacasgsc
2748
GCUGUUCCCAAAAUUAUGGCUUC
977


953957.1











AD-
asgsgcc(Uhd)UfcAfUfAfgcgaaccugaL96
2161
VPusCfsaggu(Tgn)cgcuauGfaAfggccususu
2749
AAAGGCCUUCAUAGCGAACCUGA
2480


953958.1











AD-
cscsagg(Uhd)UfuAfUfGfaacugacguaL96
2670
VPusAfscguc(Agn)guucauAfaAfccuggsasc
2750
GUCCAGGUUUAUGAACUGACGUU
974


953959.1











AD-
csasggu(Uhd)UfaUfGfAfacugacguuaL96
2196
VPusAfsacgu(Cgn)aguucaUfaAfaccugsgsa
2751
UCCAGGUUUAUGAACUGACGUUA
964


953960.1











AD-
asgsguu(Uhd)AfuGfAfAfcugacguuaaL96
2118
VPusUfsaacg(Tgn)caguucAfuAfaaccusgsg
2752
CCAGGUUUAUGAACUGACGUUAC
991


953961.1











AD-
gsusuua(Uhd)GfaAfCfUfgacguuacaaL96
2671
VPusUfsguaa(Cgn)gucaguUfcAfuaaacscsu
2753
AGGUUUAUGAACUGACGUUACAU
2914


953962.1











AD-
ususuau(Ghd)AfaCfUfGfacguuacauaL96
2140
VPusAfsugua(Agn)cgucagUfuCfauaaascsc
2754
GGUUUAUGAACUGACGUUACAUC
2462


953963.1











AD-
ascsuga(Chd)GfuUfAfCfaucauacacaL96
2672
VPusGfsugua(Tgn)gauguaAfcGfucagususc
2755
GAACUGACGUUACAUCAUACACA
935


953964.1











AD-
csasgca(Chd)CfaAfGfAfccacaauguaL96
2150
VPusAfscauu(Ggn)uggucuUfgGfugcugsusg
2756
CACAGCACCAAGACCACAAUGUU
2471


953965.1











AD-
gscsacc(Ahd)AfgAfCfCfacaauguugaL96
2162
VPusCfsaaca(Tgn)ugugguCfuUfggugcsusg
2757
CAGCACCAAGACCACAAUGUUGU
2481


953966.1











AD-
gscsagc(Ahd)GfcUfCfUfucagaacgcaL96
2673
VPusGfscguu(Cgn)ugaagaGfcUfgcugcsasa
2758
UUGCAGCAGCUCUUCAGAACGCC
2915


953967.1











AD-
gsasgua(Uhd)UfgUfGfGfaacuuauagaL96
2197
VPusCfsuaua(Agn)guuccaCfaAfuacucscsc
2759
GGGAGUAUUGUGGAACUUAUAGC
998


953968.1











AD-
asgsuau(Uhd)GfuGfGfAfacuuauagcaL96
2119
VPusGfscuau(Agn)aguuccAfcAfauacuscsc
2760
GGAGUAUUGUGGAACUUAUAGCU
2446


953969.1











AD-
gsusauu(Ghd)UfgGfAfAfcuuauagcuaL96
2129
VPusAfsgcua(Tgn)aaguucCfaCfaauacsusc
2761
GAGUAUUGUGGAACUUAUAGCUG
2453


953970.1











AD-
usgsgag(Ghd)AfuGfAfCfucugaaucgaL96
2163
VPusCfsgauu(Cgn)agagucAfuCfcuccasasg
2762
CUUGGAGGAUGACUCUGAAUCGA
2482


953971.1











AD-
gsasgga(Uhd)GfaCfUfCfugaaucgagaL96
2174
VPusCfsucga(Tgn)ucagagUfcAfuccucscsa
2763
UGGAGGAUGACUCUGAAUCGAGA
2491


953972.1











AD-
asgsgau(Ghd)AfcUfCfUfgaaucgagaaL96
2186
VPusUfscucg(Agn)uucagaGfuCfauccuscsc
2764
GGAGGAUGACUCUGAAUCGAGAU
2500


953973.1











AD-
gsgsaug(Ahd)CfuCfUfGfaaucgagauaL96
2198
VPusAfsucuc(Ggn)auucagAfgUfcauccsusc
2765
GAGGAUGACUCUGAAUCGAGAUC
2507


953974.1











AD-
gsascuc(Uhd)GfaAfUfCfgagaucggaaL96
2120
VPusUfsccga(Tgn)cucgauUfcAfgagucsasu
2766
AUGACUCUGAAUCGAGAUCGGAU
2447


953975.1











AD-
ascsucu(Ghd)AfaUfCfGfagaucggauaL96
2130
VPusAfsuccg(Agn)ucucgaUfuCfagaguscsa
2767
UGACUCUGAAUCGAGAUCGGAUG
1011


953976.1











AD-
csuscug(Ahd)AfuCfGfAfgaucggaugaL96
2142
VPusCfsaucc(Ggn)aucucgAfuUfcagagsusc
2768
GACUCUGAAUCGAGAUCGGAUGU
2464


953977.1











AD-
uscsuga(Ahd)UfcGfAfGfaucggauguaL96
2674
VPusAfscauc(Cgn)gaucucGfaUfucagasgsu
2769
ACUCUGAAUCGAGAUCGGAUGUC
1013


953978.1











AD-
ususcug(Ahd)AfaUfUfGfuguuagacgaL96
2152
VPusCfsgucu(Agn)acacaaUfuUfcagaascsu
2770
AGUUCUGAAAUUGUGUUAGACGG
2473


953979.1











AD-
uscsuga(Ahd)AfuUfGfUfguuagacggaL96
2164
VPusCfscguc(Tgn)aacacaAfuUfucagasasc
2771
GUUCUGAAAUUGUGUUAGACGGU
959


953980.1











AD-
csusgaa(Ahd)UfuGfUfGfuuagacgguaL96
2175
VPusAfsccgu(Cgn)uaacacAfaUfuucagsasa
2772
UUCUGAAAUUGUGUUAGACGGUA
971


953981.1











AD-
usgsaaa(Uhd)UfgUfGfUfuagacgguaaL96
2187
VPusUfsaccg(Tgn)cuaacaCfaAfuuucasgsa
2773
UCUGAAAUUGUGUUAGACGGUAC
1003


953982.1











AD-
gsasaau(Uhd)GfuGfUfUfagacgguacaL96
2199
VPusGfsuacc(Ggn)ucuaacAfcAfauuucsasg
2774
CUGAAAUUGUGUUAGACGGUACC
2508


953983.1











AD-
csgsgua(Chd)CfgAfCfAfaccaguauuaL96
2675
VPusAfsauac(Tgn)gguuguCfgGfuaccgsusc
2775
GACGGUACCGACAACCAGUAUUU
2916


953984.1











AD-
ascsagc(Ahd)GfuGfUfUfgauaaauuuaL96
2121
VPusAfsaauu(Tgn)aucaacAfcUfgcuguscsa
2776
UGACAGCAGUGUUGAUAAAUUUG
1015


953985.1











AD-
cscsucu(Uhd)GfuCfCfAfuuguguccgaL96
2153
VPusCfsggac(Agn)caauggAfcAfagaggsusg
2777
CACCUCUUGUCCAUUGUGUCCGC
2474


953986.1











AD-
uscscgc(Chd)UfuUfUfAfucugcuucgaL96
2176
VPusCfsgaag(Cgn)agauaaAfaGfgcggascsa
2778
UGUCCGCCUUUUAUCUGCUUCGU
2492


953987.1











AD-
cscsgcc(Uhd)UfuUfAfUfcugcuucguaL96
2188
VPusAfscgaa(Ggn)cagauaAfaAfggcggsasc
2779
GUCCGCCUUUUAUCUGCUUCGUU
2501


953988.1











AD-
csgsccu(Uhd)UfuAfUfCfugcuucguuaL96
2122
VPusAfsacga(Agn)gcagauAfaAfaggcgsgsa
2780
UCCGCCUUUUAUCUGCUUCGUUU
1001


953989.1











AD-
csasaac(Uhd)CfuAfUfAfaaguuccucaL96
2676
VPusGfsagga(Agn)cuuuauAfgAfguuugscsu
2781
AGCAAACUCUAUAAAGUUCCUCU
918


953990.1











AD-
uscsuau(Ahd)AfaGfUfUfccucuugacaL96
2132
VPusGfsucaa(Ggn)aggaacUfuUfauagasgsu
2782
ACUCUAUAAAGUUCCUCUUGACA
987


953991.1











AD-
csasucu(Uhd)GfaAfCfUfacaucgaucaL96
2144
VPusGfsaucg(Agn)uguaguUfcAfagaugsusc
2783
GACAUCUUGAACUACAUCGAUCA
2466


953992.1











AD-
asuscuu(Ghd)AfaCfUfAfcaucgaucaaL96
2677
VPusUfsgauc(Ggn)auguagUfuCfaagausgsu
2784
ACAUCUUGAACUACAUCGAUCAU
2917


953993.1











AD-
uscsuug(Ahd)AfcUfAfCfaucgaucauaL96
2678
VPusAfsugau(Cgn)gauguaGfuUfcaagasusg
2785
CAUCUUGAACUACAUCGAUCAUG
2918


953994.1











AD-
csusuga(Ahd)CfuAfCfAfucgaucaugaL96
2154
VPusCfsauga(Tgn)cgauguAfgUfucaagsasu
2786
AUCUUGAACUACAUCGAUCAUGG
930


953995.1











AD-
ususgaa(Chd)UfaCfAfUfcgaucauggaL96
2679
VPusCfscaug(Agn)ucgaugUfaGfuucaasgsa
2787
UCUUGAACUACAUCGAUCAUGGA
1017


953996.1











AD-
gsasacu(Ahd)CfaUfCfGfaucauggagaL96
2177
VPusCfsucca(Tgn)gaucgaUfgUfaguucsasa
2788
UUGAACUACAUCGAUCAUGGAGA
2493


953997.1











AD-
ususugg(Chd)GfgAfUfUfgcauuccuuaL96
2200
VPusAfsagga(Agn)ugcaauCfcGfccaaasgsa
2789
UCUUUGGCGGAUUGCAUUCCUUU
2509


953998.1











AD-
ususggc(Ghd)GfaUfUfGfcauuccuuuaL96
2680
VPusAfsaagg(Agn)augcaaUfcCfgccaasasg
2790
CUUUGGCGGAUUGCAUUCCUUUG
2919


953999.1











AD-
gscsuac(Ahd)GfuGfAfGfuuaggacugaL96
2681
VPusCfsaguc(Cgn)uaacucAfcUfguagcsusg
2791
CAGCUACAGUGAGUUAGGACUGC
2920


954000.1











AD-
csuscug(Ahd)GfgAfAfCfaguuccuauaL96
2682
VPusAfsuagg(Agn)acuguuCfcUfcagagsusc
2792
GACUCUGAGGAACAGUUCCUAUU
1019


954001.1











AD-
csusgag(Ghd)AfaCfAfGfuuccuauugaL96
2123
VPusCfsaaua(Ggn)gaacugUfuCfcucagsasg
2793
CUCUGAGGAACAGUUCCUAUUGG
1021


954002.1











AD-
usgsagg(Ahd)AfcAfGfUfuccuauuggaL96
2133
VPusCfscaau(Agn)ggaacuGfuUfccucasgsa
2794
UCUGAGGAACAGUUCCUAUUGGC
2455


954003.1











AD-
gsasgga(Ahd)CfaGfUfUfccuauuggcaL96
2683
VPusGfsccaa(Tgn)aggaacUfgUfuccucsasg
2795
CUGAGGAACAGUUCCUAUUGGCU
2921


954004.1











AD-
gsasgug(Chd)UfcAfAfUfaauguugucaL96
2166
VPusGfsacaa(Cgn)auuauuGfaGfcacucsgsu
2796
ACGAGUGCUCAAUAAUGUUGUCA
2484


954005.1











AD-
gscscuc(Chd)AfuCfUfCfauuucuccgaL96
2178
VPusCfsggag(Agn)aaugagAfuGfgaggcsusg
2797
CAGCCUCCAUCUCAUUUCUCCGU
2494


954006.1











AD-
cscsucc(Ahd)UfcUfCfAfuuucuccguaL96
2190
VPusAfscgga(Ggn)aaaugaGfaUfggaggscsu
2798
AGCCUCCAUCUCAUUUCUCCGUC
2503


954007.1











AD-
csuscca(Uhd)CfuCfAfUfuucuccgucaL96
2201
VPusGfsacgg(Agn)gaaaugAfgAfuggagsgsc
2799
GCCUCCAUCUCAUUUCUCCGUCA
2510


954008.1











AD-
uscsucc(Ghd)UfcAfGfCfacaauaaccaL96
2134
VPusGfsguua(Tgn)ugugcuGfaCfggagasasa
2800
UUUCUCCGUCAGCACAAUAACCA
2456


954009.1











AD-
csusccg(Uhd)CfaGfCfAfcaauaaccaaL96
2684
VPusUfsgguu(Agn)uugugcUfgAfcggagsasa
2801
UUCUCCGUCAGCACAAUAACCAG
995


954010.1











AD-
uscscgu(Chd)AfgCfAfCfaauaaccagaL96
2145
VPusCfsuggu(Tgn)auugugCfuGfacggasgsa
2802
UCUCCGUCAGCACAAUAACCAGA
2467


954011.1











AD-
asgsagg(Chd)UfaUfAfAfccuacuaccaL96
2685
VPusGfsguag(Tgn)agguuaUfaGfccucusasu
2803
AUAGAGGCUAUAACCUACUACCA
2922


954012.1











AD-
ascscua(Chd)UfaCfCfAfagcauaacaaL96
2686
VPusUfsguua(Tgn)gcuuggUfaGfuaggususa
2804
UAACCUACUACCAAGCAUAACAG
1012


954013.1











AD-
asasccu(Uhd)UfcAfAfGfaguuauugcaL96
2156
VPusGfscaau(Agn)acucuuGfaAfagguusasu
2805
AUAACCUUUCAAGAGUUAUUGCA
2476


954014.1











AD-
asgsuuu(Ghd)CfaUfUfUfggaguuuagaL96
2167
VPusCfsuaaa(Cgn)uccaaaUfgCfaaacusgsg
2806
CCAGUUUGCAUUUGGAGUUUAGG
2485


954015.1











AD-
csasgau(Ghd)AfgUfCfUfaggaagagcaL.96
2687
VPusGfscucu(Tgn)ccuagaCfuCfaucugsasg
2807
CUCAGAUGAGUCUAGGAAGAGCU
2923


954016.1











AD-
gsuscua(Ghd)GfaAfGfAfgcuguaccgaL96
2191
VPusCfsggua(Cgn)agcucuUfcCfuagacsusc
2808
GAGUCUAGGAAGAGCUGUACCGU
2504


954017.1











AD-
usasgga(Ahd)GfaGfCfUfguaccguugaL96
2124
VPusCfsaacg(Ggn)uacagcUfcUfuccuasgsa
2809
UCUAGGAAGAGCUGUACCGUUGG
2448


954018.1











AD-
gsuscag(Chd)UfuGfGfUfucccauuggaL96
2157
VPusCfscaau(Ggn)ggaaccAfaGfcugacsgsa
2810
UCGUCAGCUUGGUUCCCAUUGGA
2477


954019.1











AD-
gsgsccg(Ghd)AfaAfCfUfugcuugcagaL96
2192
VPusCfsugca(Agn)gcaaguUfuCfcggccsasa
2811
UUGGCCGGAAACUUGCUUGCAGC
2505


954020.1











AD-
csusucu(Chd)UfaAfGfUfcccauccgaaL96
2203
VPusUfscgga(Tgn)gggacuUfaGfagaagsgsg
2812
CCCUUCUCUAAGUCCCAUCCGAC
2512


954021.1











AD-
gsasgaa(Chd)AfaGfCfAfucuguaccgaL96
2136
VPusCfsggua(Cgn)agaugcUfuGfuucucscsu
2813
AGGAGAACAAGCAUCUGUACCGU
2458


954022.1











AD-
asascaa(Ghd)CfaUfCfUfguaccguugaL96
2688
VPusCfsaacg(Ggn)uacagaUfgCfuuguuscsu
2814
AGAACAAGCAUCUGUACCGUUGA
2924


954023.1











AD-
asgscau(Chd)UfgUfAfCfcguugagucaL96
2689
VPusGfsacuc(Agn)acgguaCfaGfaugcususg
2815
CAAGCAUCUGUACCGUUGAGUCC
2925


954024.1











AD-
gscsagc(Uhd)UfcUfAfGfacaaucugaaL.96
2690
VPusUfscaga(Tgn)ugucuaGfaAfgcugcsasc
2816
GUGCAGCUUCUAGACAAUCUGAU
932


954025.1











AD-
uscsuag(Ahd)CfaAfUfCfugauaccucaL96
2691
VPusGfsaggu(Agn)ucagauUfgUfcuagasasg
2817
CUUCUAGACAAUCUGAUACCUCA
954


954026.1











AD-
uscsagg(Uhd)CfcUfGfUfuacaacaagaL96
2692
VPusCfsuugu(Tgn)guaacaGfgAfccugasgsg
2818
CCUCAGGUCCUGUUACAACAAGU
2926


954027.1











AD-
gsgsucc(Uhd)GfuUfAfCfaacaaguaaaL96
2693
VPusUfsuacu(Tgn)guuguaAfcAfggaccsusg
2819
CAGGUCCUGUUACAACAAGUAAA
1016


954028.1











AD-
csasagu(Ahd)AfaUfCfCfucaucacugaL96
2694
VPusCfsagug(Agn)ugaggaUfuUfacuugsusu
2820
AACAAGUAAAUCCUCAUCACUGG
966


954029.1











AD-
ususucu(Ahd)UfcAfUfCfuuccuucauaL96
2695
VPusAfsugaa(Ggn)gaagauGfaUfagaaascsu
2821
AGUUUCUAUCAUCUUCCUUCAUA
978


954030.1











AD-
ususcau(Ahd)CfcUfCfAfaacugcaugaL96
2696
VPusCfsaugc(Agn)guuugaGfgUfaugaasgsg
2822
CCUUCAUACCUCAAACUGCAUGA
2927


954031.1











AD-
ascscuc(Ahd)AfaCfUfGfcaugaugucaL96
2697
VPusGfsacau(Cgn)augcagUfuUfgaggusasu
2823
AUACCUCAAACUGCAUGAUGUCC
2928


954032.1











AD-
csasgga(Chd)AfuUfGfGfgaaguguguaL96
2698
VPusAfscaca(Cgn)uucccaAfuGfuccugscsa
2824
UGCAGGACAUUGGGAAGUGUGUU
2929


954033.1











AD-
cscsuga(Ahd)AfuCfCfUfgcuuuagucaL96
2158
VPusGfsacua(Agn)agcaggAfuUfucaggsusa
2825
UACCUGAAAUCCUGCUUUAGUCG
924


954034.1











AD-
csusgaa(Ahd)UfcCfUfGfcuuuagucgaL96
2169
VPusCfsgacu(Agn)aagcagGfaUfuucagsgsu
2826
ACCUGAAAUCCUGCUUUAGUCGA
2487


954035.1











AD-
gsasaau(Chd)CfuGfCfUfuuagucgagaL96
2181
VPusCfsucga(Cgn)uaaagcAfgGfauuucsasg
2827
CUGAAAUCCUGCUUUAGUCGAGA
2497


954036.1











AD-
asasucc(Uhd)GfcUfUfUfagucgagaaaL96
2699
VPusUfsucuc(Ggn)acuaaaGfcAfggauususc
2828
GAAAUCCUGCUUUAGUCGAGAAC
2930


954037.1











AD-
ususuag(Uhd)CfgAfGfAfaccaaugauaL96
2193
VPusAfsucau(Tgn)gguucuCfgAfcuaaasgsc
2829
GCUUUAGUCGAGAACCAAUGAUG
2506


954038.1











AD-
ususagu(Chd)GfaGfAfAfccaaugaugaL96
2204
VPusCfsauca(Tgn)ugguucUfcGfacuaasasg
2830
CUUUAGUCGAGAACCAAUGAUGG
2513


954039.1











AD-
gsasugg(Chd)AfaCfUfGfuuuguguucaL96
2700
VPusGfsaaca(Cgn)aaacagUfuGfccaucsasu
2831
AUGAUGGCAACUGUUUGUGUUCA
2931


954040.1











AD-
gsasgug(Uhd)CfaCfAfAfagaaccgugaL96
2137
VPusCfsacgg(Tgn)ucuuugUfgAfcacucsgsu
2832
ACGAGUGUCACAAAGAACCGUGC
2459


954041.1











AD-
asgsugu(Chd)AfcAfAfAfgaaccgugcaL96
2701
VPusGfscacg(Ggn)uucuuuGfuGfacacuscsg
2833
CGAGUGUCACAAAGAACCGUGCA
2932


954042.1











AD-
usgscag(Ahd)UfaAfGfAfaugcuauucaL96
2702
VPusGfsaaua(Ggn)cauucuUfaUfcugcascsg
2834
CGUGCAGAUAAGAAUGCUAUUCA
917


954043.1











AD-
asgsaau(Ghd)CfuAfUfUfcauaaucacaL96
2170
VPusGfsugau(Tgn)augaauAfgCfauucususa
2835
UAAGAAUGCUAUUCAUAAUCACA
921


954044.1











AD-
gscsuau(Uhd)CfaUfAfAfucacauucgaL96
2182
VPusCfsgaau(Ggn)ugauuaUfgAfauagcsasu
2836
AUGCUAUUCAUAAUCACAUUCGU
988


954045.1











AD-
asuscac(Ahd)UfuCfGfUfuuguuugaaaL96
2042
VPusUfsucaa(Agn)caaacgAfaUfgugaususa
2837
UAAUCACAUUCGUUUGUUUGAAC
2387


954046.1











AD-
usgsuuu(Ghd)AfaCfCfUfcuuguuauaaL96
2053
VPusUfsauaa(Cgn)aagaggUfuCfaaacasasa
2838
UUUGUUUGAACCUCUUGUUAUAA
933


954047.1











AD-
gsusuug(Ahd)AfcCfUfCfuuguuauaaaL96
2064
VPusUfsuaua(Agn)caagagGfuUfcaaacsasa
2839
UUGUUUGAACCUCUUGUUAUAAA
929


954048.1











AD-
ususuga(Ahd)CfcUfCfUfuguuauaaaaL96
2075
VPusUfsuuau(Agn)acaagaGfgUfucaaascsa
2840
UGUUUGAACCUCUUGUUAUAAAA
928


954049.1











AD-
gscsuuu(Ahd)AfaAfCfAfguacacgacaL96
2703
VPusGfsucgu(Ggn)uacuguUfuUfaaagcsusu
2841
AAGCUUUAAAACAGUACACGACU
990


954050.1











AD-
asgscug(Ghd)UfuCfAfGfuuacggguuaL96
2097
VPusAfsaccc(Ggn)uaacugAfaCfcagcusgsc
2842
GCAGCUGGUUCAGUUACGGGUUA
2429


954051.1











AD-
gscsugg(Uhd)UfcAfGfUfuacggguuaaL96
2704
VPusUfsaacc(Cgn)guaacuGfaAfccagcsusg
2843
CAGCUGGUUCAGUUACGGGUUAA
2933


954052.1











AD-
usgsguu(Chd)AfgUfUfAfcggguuaauaL96
2705
VPusAfsuuaa(Cgn)ccguaaCfuGfaaccasgsc
2844
GCUGGUUCAGUUACGGGUUAAUU
996


954053.1











AD-
gsusuca(Ghd)UfuAfCfGfgguuaauuaaL96
2107
VPusUfsaauu(Agn)acccguAfaCfugaacscsa
2845
UGGUUCAGUUACGGGUUAAUUAC
957


954054.1











AD-
csasguu(Ahd)CfgGfGfUfuaauuacugaL96
2043
VPusCfsagua(Agn)uuaaccCfgUfaacugsasa
2846
UUCAGUUACGGGUUAAUUACUGU
2388


954055.1











AD-
ususacg(Ghd)GfuUfAfAfuuacugucuaL96
2706
VPusAfsgaca(Ggn)uaauuaAfcCfcguaascsu
2847
AGUUACGGGUUAAUUACUGUCUU
2934


954056.1











AD-
usgsgau(Uhd)CfaGfAfUfcagguguuuaL96
2707
VPusAfsaaca(Cgn)cugaucUfgAfauccasgsa
2848
UCUGGAUUCAGAUCAGGUGUUUA
937


954057.1











AD-
usasuga(Ahd)CfgCfUfAfucauucaaaaL96
2708
VPusUfsuuga(Agn)ugauagCfgUfucauasasg
2849
CUUAUGAACGCUAUCAUUCAAAA
1002


954058.1











AD-
gscsgac(Uhd)GfuCfUfCfgacagauagaL96
2709
VPusCfsuauc(Tgn)gucgagAfcAfgucgcsusu
2850
AAGCGACUGUCUCGACAGAUAGC
2935


954059.1











AD-
csgsacu(Ghd)UfcUfCfGfacagauagcaL96
2710
VPusGfscuau(Cgn)ugucgaGfaCfagucgscsu
2851
AGCGACUGUCUCGACAGAUAGCU
2936


954060.1











AD-
gsascug(Uhd)CfuCfGfAfcagauagcuaL96
2108
VPusAfsgcua(Tgn)cugucgAfgAfcagucsgsc
2852
GCGACUGUCUCGACAGAUAGCUG
2438


954061.1











AD-
ascsugu(Chd)UfcGfAfCfagauagcugaL96
2033
VPusCfsagcu(Agn)ucugucGfaGfacaguscsg
2853
CGACUGUCUCGACAGAUAGCUGA
2379


954062.1











AD-
cscscaa(Uhd)GfuUfAfGfccaaacagcaL96
2711
VPusGfscugu(Tgn)uggcuaAfcAfuugggsasg
2854
CUCCCAAUGUUAGCCAAACAGCA
2937


954063.1











AD-
csascau(Uhd)GfaCfUfCfucaugaagcaL96
2712
VPusGfscuuc(Agn)ugagagUfcAfaugugscsa
2855
UGCACAUUGACUCUCAUGAAGCC
2938


954065.1











AD-
gscsccu(Uhd)GfgAfGfUfguuaaauacaL96
2055
VPusGfsuauu(Tgn)aacacuCfcAfagggcsusu
2856
AAGCCCUUGGAGUGUUAAAUACA
2397


954066.1











AD-
ascsaug(Chd)UfuUfUfAfcggaguaugaL96
2077
VPusCfsauac(Tgn)ccguaaAfaGfcauguscsu
2857
AGACAUGCUUUUACGGAGUAUGU
2412


954067.1











AD-
ususuua(Chd)GfgAfGfUfauguucgucaL96
2099
VPusGfsacga(Agn)cauacuCfcGfuaaaasgsc
2858
GCUUUUACGGAGUAUGUUCGUCA
2431


954068.1











AD-
ususuac(Ghd)GfaGfUfAfuguucgucaaL96
2109
VPusUfsgacg(Agn)acauacUfcCfguaaasasg
2859
CUUUUACGGAGUAUGUUCGUCAC
2439


954069.1











AD-
gsasgca(Chd)UfgUfUfCfaacuguggaaL96
2713
VPusUfsccac(Agn)guugaaCfaGfugcucsasc
2860
GUGAGCACUGUUCAACUGUGGAU
2939


954070.1











AD-
asasgau(Ahd)UfuGfUfUfcuuucucguaL96
2056
VPusAfscgag(Agn)aagaacAfaUfaucuuscsa
2861
UGAAGAUAUUGUUCUUUCUCGUA
919


954071.1











AD-
gsasuau(Uhd)GfuUfCfUfuucucguauaL96
2067
VPusAfsuacg(Agn)gaaagaAfcAfauaucsusu
2862
AAGAUAUUGUUCUUUCUCGUAUU
999


954072.1











AD-
ususguu(Chd)UfuUfCfUfcguauucagaL96
2078
VPusCfsugaa(Tgn)acgagaAfaGfaacaasusa
2863
UAUUGUUCUUUCUCGUAUUCAGG
916


954073.1











AD-
usgsuuc(Uhd)UfuCfUfCfguauucaggaL96
2089
VPusCfscuga(Agn)uacgagAfaAfgaacasasu
2864
AUUGUUCUUUCUCGUAUUCAGGA
931


954074.1











AD-
asusuuu(Chd)AfaGfGfUfuucuauuacaL96
2100
VPusGfsuaau(Agn)gaaaccUfuGfaaaausgsu
2865
ACAUUUUCAAGGUUUCUAUUACA
943


954075.1











AD-
gsusgag(Chd)AfgCfAfAfcauacuuucaL96
2714
VPusGfsaaag(Tgn)auguugCfuGfcucacsusc
2866
GAGUGAGCAGCAACAUACUUUCU
2940


954076.1











AD-
gscsaac(Ahd)UfaCfUfUfucuauugccaL96
2035
VPusGfsgcaa(Tgn)agaaagUfaUfguugcsusg
2867
CAGCAACAUACUUUCUAUUGCCA
993


954077.1











AD-
asuscuu(Chd)AfaGfUfCfuggaauguuaL96
2046
VPusAfsacau(Tgn)ccagacUfuGfaagausgsu
2868
ACAUCUUCAAGUCUGGAAUGUUC
1004


954078.1











AD-
csusgcu(Uhd)GfuCfAfAfccacaccgaaL96
2715
VPusUfscggu(Ggn)ugguugAfcAfagcagscsa
2869
UGCUGCUUGUCAACCACACCGAC
2941


954079.1











AD-
uscscga(Ghd)CfaCfUfUfaacguggcuaL96
2716
VPusAfsgcca(Cgn)guuaagUfgCfucggasgsu
2870
ACUCCGAGCACUUAACGUGGCUC
2942


954080.1











AD-
cscsucc(Ahd)GfuAfCfAfggacuucauaL96
2717
VPusAfsugaa(Ggn)uccuguAfcUfggaggscsu
2871
AGCCUCCAGUACAGGACUUCAUC
2943


954081.1











AD-
csasggc(Ahd)AfuUfCfAfgucucguugaL96
2080
VPusCfsaacg(Agn)gacugaAfuUfgccugsgsa
2872
UCCAGGCAAUUCAGUCUCGUUGU
2414


954082.1











AD-
asgsgca(Ahd)UfuCfAfGfucucguuguaL96
2091
VPusAfscaac(Ggn)agacugAfaUfugccusgsg
2873
CCAGGCAAUUCAGUCUCGUUGUG
2423


954083.1











AD-
gsgscaa(Uhd)UfcAfGfUfcucguugugaL96
2102
VPusCfsacaa(Cgn)gagacuGfaAfuugccsusg
2874
CAGGCAAUUCAGUCUCGUUGUGA
2433


954084.1











AD-
gscsaau(Uhd)CfaGfUfCfucguugugaaL96
2037
VPusUfscaca(Agn)cgagacUfgAfauugcscsu
2875
AGGCAAUUCAGUCUCGUUGUGAA
2382


954085.1











AD-
csasauu(Chd)AfgUfCfUfcguugugaaaL96
2718
VPusUfsucac(Agn)acgagaCfuGfaauugscsc
2876
GGCAAUUCAGUCUCGUUGUGAAA
973


954086.1











AD-
asusggu(Chd)GfaCfAfUfccuugcuugaL96
2048
VPusCfsaagc(Agn)aggaugUfcGfaccausgsc
2877
GCAUGGUCGACAUCCUUGCUUGU
2392


954087.1











AD-
gsgsucg(Ahd)CfaUfCfCfuugcuugucaL96
2719
VPusGfsacaa(Ggn)caaggaUfgUfcgaccsasu
2878
AUGGUCGACAUCCUUGCUUGUCG
2944


954088.1











AD-
gsuscga(Chd)AfuCfCfUfugcuugucgaL96
2059
VPusCfsgaca(Agn)gcaaggAfuGfucgacscsa
2879
UGGUCGACAUCCUUGCUUGUCGC
2400


954089.1











AD-
csusgga(Chd)AfgGfUfUfucgucucucaL96
2720
VPusGfsagag(Agn)cgaaacCfuGfuccagscsa
2880
UGCUGGACAGGUUUCGUCUCUCC
2945


954090.1











AD-
csasugc(Ahd)AfgAfCfUfcacuuagucaL96
2070
VPusGfsacua(Agn)gugaguCfuUfgcaugsgsu
2881
ACCAUGCAAGACUCACUUAGUCC
1008


954091.1











AD-
asusgca(Ahd)GfaCfUfCfacuuaguccaL96
2081
VPusGfsgacu(Agn)agugagUfcUfugcausgsg
2882
CCAUGCAAGACUCACUUAGUCCC
2415


954092.1











AD-
usgsuca(Chd)UfgGfAfAfacagugaguaL96
2721
VPusAfscuca(Cgn)uguuucCfaGfugacascsg
2883
CGUGUCACUGGAAACAGUGAGUC
2946


954093.1











AD-
csascug(Ghd)AfaAfCfAfgugaguccgaL96
2092
VPusCfsggac(Tgn)cacuguUfuCfcagugsasc
2884
GUCACUGGAAACAGUGAGUCCGG
2424


954094.1











AD-
gscsugg(Uhd)GfaAfUfCfggauuccugaL96
2112
VPusCfsagga(Agn)uccgauUfcAfccagcsusc
2885
GAGCUGGUGAAUCGGAUUCCUGC
2442


954095.1











AD-
asascuc(Ghd)GfaGfUfUfcaaccuaagaL96
2722
VPusCfsuuag(Ggn)uugaacUfcCfgaguuscsa
2886
UGAACUCGGAGUUCAACCUAAGC
2947


954096.1











AD-
ascsucg(Ghd)AfgUfUfCfaaccuaagcaL96
2723
VPusGfscuua(Ggn)guugaaCfuCfcgagususc
2887
GAACUCGGAGUUCAACCUAAGCC
1018


954097.1











AD-
csuscgg(Ahd)GfuUfCfAfaccuaagccaL96
2724
VPusGfsgcuu(Agn)gguugaAfcUfccgagsusu
2888
AACUCGGAGUUCAACCUAAGCCU
1020


954098.1











AD-
csusgga(Ghd)CfaAfGfUfugaaugaucaL96
2725
VPusGfsauca(Tgn)ucaacuUfgCfuccagsusa
2889
UACUGGAGCAAGUUGAAUGAUCU
2948


954099.1











AD-
asgsagc(Ahd)GfcUfUfCfuuaguccagaL96
2726
VPusCfsugga(Cgn)uaagaaGfcUfgcucuscsc
2890
GGAGAGCAGCUUCUUAGUCCAGA
2949


954100.1











AD-
csusugu(Chd)AfaCfAfGfcuacacacgaL96
2727
VPusCfsgugu(Ggn)uagcugUfuGfacaagsgsg
2891
CCCUUGUCAACAGCUACACACGU
2950


954101.1











AD-
uscsaac(Ahd)GfcUfAfCfacacgugugaL96
2113
VPusCfsacac(Ggn)uguguaGfcUfguugascsa
2892
UGUCAACAGCUACACACGUGUGC
2443


954102.1











AD-
csasaca(Ghd)CfuAfCfAfcacgugugcaL96
2039
VPusGfscaca(Cgn)guguguAfgCfuguugsasc
2893
GUCAACAGCUACACACGUGUGCC
2384


954103.1











AD-
csusuua(Ahd)GfgAfGfUfucaucuaccaL96
2728
VPusGfsguag(Agn)ugaacuCfcUfuaaagsasc
2894
GUCUUUAAGGAGUUCAUCUACCG
979


954104.1











AD-
gsgsacc(Ahd)GfuCfGfUfacucaguuuaL96
2729
VPusAfsaacu(Ggn)aguacgAfcUfgguccsasg
2895
CUGGACCAGUCGUACUCAGUUUG
2951


954105.1











AD-
gsascca(Ghd)UfcGfUfAfcucaguuugaL96
2050
VPusCfsaaac(Tgn)gaguacGfaCfuggucscsa
2896
UGGACCAGUCGUACUCAGUUUGA
2394


954106.1











AD-
ascscag(Uhd)CfgUfAfCfucaguuugaaL96
2061
VPusUfscaaa(Cgn)ugaguaCfgAfcugguscsc
2897
GGACCAGUCGUACUCAGUUUGAA
2402


954107.1











AD-
cscsagu(Chd)GfuAfCfUfcaguuugaaaL96
2072
VPusUfsucaa(Agn)cugaguAfcGfacuggsusc
2898
GACCAGUCGUACUCAGUUUGAAG
958


954108.1











AD-
csasguc(Ghd)UfaCfUfCfaguuugaagaL96
2083
VPusCfsuuca(Agn)acugagUfaCfgacugsgsu
2899
ACCAGUCGUACUCAGUUUGAAGA
926


954109.1











AD-
gsascgc(Uhd)GfaCfAfGfaacugcgaaaL96
2040
VPusUfsucgc(Agn)guucugUfcAfgcgucsasc
2900
GUGACGCUGACAGAACUGCGAAG
2385


954110.1











AD-
ascsgcu(Ghd)AfcAfGfAfacugcgaagaL96
2051
VPusCfsuucg(Cgn)aguucuGfuCfagcguscsa
2901
UGACGCUGACAGAACUGCGAAGG
2395


954111.1











AD-
uscsauu(Ghd)AfgAfAfCfuauccucugaL96
2730
VPusCfsagag(Ggn)auaguuCfuCfaaugasgsg
2902
CCUCAUUGAGAACUAUCCUCUGG
2952


954112.1











AD-
csgsgcu(Ghd)CfuGfAfCfuuguuuacgaL96
2095
VPusCfsguaa(Agn)caagucAfgCfagccgsgsu
2903
ACCGGCUGCUGACUUGUUUACGA
2427


954113.1











AD-
gsgscug(Chd)UfgAfCfUfuguuuacgaaL96
2106
VPusUfscgua(Agn)acaaguCfaGfcagccsgsg
2904
CCGGCUGCUGACUUGUUUACGAA
2437


954114.1











AD-
csusgcu(Ghd)AfcUfUfGfuuuacgaaaaL96
2115
VPusUfsuucg(Tgn)aaacaaGfuCfagcagscsc
2905
GGCUGCUGACUUGUUUACGAAAU
938


954115.1











AD-
usgscug(Ahd)CfuUfGfUfuuacgaaauaL96
2731
VPusAfsuuuc(Ggn)uaaacaAfgUfcagcasgsc
2906
GCUGCUGACUUGUUUACGAAAUG
970


954116.1











AD-
csusgac(Uhd)UfgUfUfUfacgaaauguaL96
2041
VPusAfscauu(Tgn)cguaaaCfaAfgucagscsa
2907
UGCUGACUUGUUUACGAAAUGUC
2386


954117.1











AD-
usgsacu(Uhd)GfuUfUfAfcgaaaugucaL96
2052
VPusGfsacau(Tgn)ucguaaAfcAfagucasgsc
2908
GCUGACUUGUUUACGAAAUGUCC
950


954118.1











AD-
usasacg(Uhd)AfaCfUfCfuuucuaugcaL96
2063
VPusGfscaua(Ggn)aaagagUfuAfcguuasasa
2909
UUUAACGUAACUCUUUCUAUGCC
982


954119.1











AD-
cscsgcu(Ghd)AfcAfUfUfuccguuguaaL96
2096
VPusUfsacaa(Cgn)ggaaauGfuCfagcggsgsu
2910
ACCCGCUGACAUUUCCGUUGUAC
2428


954120.1











AD-
csusgac(Ahd)UfuUfCfCfguuguacauaL96
2732
VPusAfsugua(Cgn)aacggaAfaUfgucagscsg
2911
CGCUGACAUUUCCGUUGUACAUG
962


954121.1











AD-
uscscgu(Uhd)GfuAfCfAfuguuccuguaL96
2733
VPusAfscagg(Agn)acauguAfcAfacggasasa
2912
UUUCCGUUGUACAUGUUCCUGUU
1005


954122.1






















TABLE 14







Unmodified Sense and Antisense Strand Sequences of Huntingtin (HTT) dsRNA Agents














Sense Sequence
SEQ
Range in
Antisense Sequence
SEQ
Range in


Duplex ID
5′ to 3′
ID NO:
NM_002111.8
5′ to 3′
ID NO:
NM_002111.8





AD-954123.1
AGCUACCAAGAAAGACCGUGA
1784
430-450
UCACGGTCUUUCUTGGUAGCUGA
3046
428-450





AD-954131.1
AUUCUAAUCUTCCAAGGUUAA
2953
630-650
UTAACCTUGGAAGAUTAGAAUCC
3047
628-650





AD-954139.1
AGGUUUAUGAACUGACGUUAA
1786
1218-1238
UTAACGTCAGUTCAUAAACCUGG
3048
1216-1238





AD-954147.1
AGUAUUGUGGAACUUAUAGCA
1787
1406-1426
UGCUAUAAGUUCCACAAUACUCC
1948
1404-1426





AD-954155.1
GACUCUGAAUCGAGAUCGGAA
1788
1511-1531
UTCCGATCUCGAUTCAGAGUCAU
3049
1509-1531





AD-954163.1
ACAGCAGUGUTGAUAAAUUUA
2954
2073-2093
UAAATUTAUCAACACTGCUGUCA
3050
2071-2093





AD-954170.1
CGCCUUUUAUCUGCUUCGUUA
1790
2207-2227
UAACGAAGCAGAUAAAAGGCGGA
1951
2205-2227





AD-954178.1
CUGAGGAACAGUUCCUAUUGA
1791
2717-2737
UCAATAGGAACTGTUCCUCAGAG
3051
2715-2737





AD-954186.1
UUCUCCGUCAGCACAAUAACA
2955
3074-3094
UGUUAUTGUGCTGACGGAGAAAU
3052
3072-3094





AD-954194.1
UAGGAAGAGCTGUACCGUUGA
2956
3325-3345
UCAACGGUACAGCTCTUCCUAGA
3053
3323-3345





AD-954202.1
UUCUCUAAGUCCCAUCCGACA
1793
3679-3699
UGUCGGAUGGGACTUAGAGAAGG
3054
3677-3699





AD-954210.1
UUGUGUUCAACAAUUGUUGAA
2957
4081-4101
UTCAACAAUUGTUGAACACAAAC
3055
4079-4101





AD-954124.1
CUACCAAGAAAGACCGUGUGA
1794
432-452
UCACACGGUCUTUCUTGGUAGCU
3056
430-452





AD-954132.1
UUCCAAGGTUACAGCUCGAGA
2958
639-659
UCUCGAGCUGUAACCTUGGAAGA
3057
637-659





AD-954140.1
GGUUUAUGAACUGACGUUACA
1796
1219-1239
UGUAACGUCAGTUCATAAACCUG
3058
1217-1239





AD-954148.1
GUAUUGUGGAACUUAUAGCUA
1797
1407-1427
UAGCTATAAGUTCCACAAUACUC
3059
1405-1427





AD-954156.1
ACUCUGAATCGAGAUCGGAUA
2959
1512-1532
UAUCCGAUCUCGATUCAGAGUCA
3060
1510-1532





AD-954164.1
UGAUAAAUTUGUGUUGAGAGA
2960
2083-2103
UCUCTCAACACAAAUTUAUCAAC
3061
2081-2103





AD-954171.1
UCUAUAAAGUTCCUCUUGACA
2961
2352-2372
UGUCAAGAGGAACTUTAUAGAGU
3062
2350-2372





AD-954179.1
UGAGGAACAGTUCCUAUUGGA
2962
2718-2738
UCCAAUAGGAACUGUTCCUCAGA
3063
2716-2738





AD-954187.1
UCUCCGUCAGCACAAUAACCA
1801
3075-3095
UGGUTATUGUGCUGACGGAGAAA
3064
3073-3095





AD-954195.1
AGGAAGAGCUGUACCGUUGGA
1802
3326-3346
UCCAACGGUACAGCUCUUCCUAG
1963
3324-3346





AD-954203.1
GAGAACAAGCAUCUGUACCGA
1803
3723-3743
UCGGTACAGAUGCTUGUUCUCCU
3065
3721-3743





AD-954211.1
GAGUGUCACAAAGAACCGUGA
1804
4369-4389
UCACGGTUCUUTGTGACACUCGU
3066
4367-4389





AD-954125.1
AAUCAUUGTCTGACAAUAUGA
2963
452-472
UCAUAUTGUCAGACAAUGAUUCA
3067
450-472





AD-954133.1
UCCAAGGUTACAGCUCGAGCA
2964
640-660
UGCUCGAGCUGTAACCUUGGAAG
3068
638-660





AD-954141.1
UUUAUGAACUGACGUUACAUA
1807
1221-1241
UAUGTAACGUCAGTUCAUAAACC
3069
1219-1241





AD-954149.1
UAUUGUGGAACUUAUAGCUGA
1808
1408-1428
UCAGCUAUAAGTUCCACAAUACU
3070
1406-1428





AD-954157.1
CUCUGAAUCGAGAUCGGAUGA
1809
1513-1533
UCAUCCGAUCUCGAUTCAGAGUC
3071
1511-1533





AD-954165.1
AGAUGAAGCUACUGAACCGGA
1810
2101-2121
UCCGGUTCAGUAGCUTCAUCUCU
3072
2099-2121





AD-954172.1
CAUCUUGAACTACAUCGAUCA
2965
2407-2427
UGAUCGAUGUAGUTCAAGAUGUC
3073
2405-2427





AD-954180.1
GAGGAACAGUTCCUAUUGGCA
2966
2719-2739
UGCCAATAGGAACTGTUCCUCAG
3074
2717-2739





AD-954188.1
UCCGUCAGCACAAUAACCAGA
1812
3077-3097
UCUGGUTAUUGTGCUGACGGAGA
3075
3075-3097





AD-954196.1
GGAAGAGCTGTACCGUUGGGA
2967
3327-3347
UCCCAACGGUACAGCTCUUCCUA
3076
3325-3347





AD-954204.1
AACAAGCATCTGUACCGUUGA
2968
3726-3746
UCAACGGUACAGATGCUUGUUCU
3077
3724-3746





AD-954212.1
UGUCACAAAGAACCGUGCAGA
1814
4372-4392
UCUGCACGGUUCUTUGUGACACU
3078
4370-4392





AD-954126.1
CAUUGUCUGACAAUAUGUGAA
 119
455-475
UTCACATAUUGTCAGACAAUGAU
3079
453-475





AD-954134.1
CUGUUCCCAAAAUUAUGGCUA
1815
843-863
UAGCCATAAUUTUGGGAACAGCU
3080
841-863





AD-954142.1
CAGCACCAAGACCACAAUGUA
1816
1247-1267
UACATUGUGGUCUTGGUGCUGUG
3081
1245-1267





AD-954150.1
AUUGUGGAACTUAUAGCUGGA
2969
1409-1429
UCCAGCTAUAAGUTCCACAAUAC
3082
1407-1429





AD-954158.1
UUCUGAAATUGUGUUAGACGA
2970
1885-1905
UCGUCUAACACAATUTCAGAACU
3083
1883-1905





AD-954166.1
CCUCUUGUCCAUUGUGUCCGA
1819
2189-2209
UCGGACACAAUGGACAAGAGGUG
1981
2187-2209





AD-954173.1
CUUGAACUACAUCGAUCAUGA
1820
2410-2430
UCAUGATCGAUGUAGTUCAAGAU
3084
2408-2430





AD-954181.1
AAGAACGAGUGCUCAAUAAUA
1821
2862-2882
UAUUAUTGAGCACTCGUUCUUGC
3085
2860-2882





AD-954189.1
AACCUUUCAAGAGUUAUUGCA
1822
3152-3172
UGCAAUAACUCTUGAAAGGUUAU
3086
3150-3172





AD-954197.1
GUCAGCUUGGTUCCCAUUGGA
2971
3376-3396
UCCAAUGGGAACCAAGCUGACGA
1985
3374-3396





AD-954205.1
CCUGAAAUCCTGCUUUAGUCA
2972
4039-4059
UGACTAAAGCAGGAUTUCAGGUA
3087
4037-4059





AD-954213.1
UAAGAAUGCUAUUCAUAAUCA
1825
4393-4413
UGAUTATGAAUAGCATUCUUAUC
3088
4391-4413





AD-954127.1
AAUGCCUCAACAAAGUUAUCA
1826
597-617
UGAUAACUUUGTUGAGGCAUUCG
3089
595-617





AD-954135.1
AGGCCUUCAUAGCGAACCUGA
1827
909-929
UCAGGUTCGCUAUGAAGGCCUUU
2581
907-929





AD-954143.1
GCACCAAGACCACAAUGUUGA
1828
1249-1269
UCAACATUGUGGUCUTGGUGCUG
3090
1247-1269





AD-954151.1
UGGAGGAUGACUCUGAAUCGA
1829
1503-1523
UCGATUCAGAGTCAUCCUCCAAG
3091
1501-1523





AD-954159.1
UCUGAAAUTGTGUUAGACGGA
2973
1886-1906
UCCGTCTAACACAAUTUCAGAAC
3092
1884-1906





AD-954167.1
CUCUUGUCCATUGUGUCCGCA
2974
2190-2210
UGCGGACACAATGGACAAGAGGU
3093
2188-2210





AD-954174.1
UUGAACUACATCGAUCAUGGA
2975
2411-2431
UCCATGAUCGATGTAGUUCAAGA
3094
2409-2431





AD-954182.1
GAGUGCUCAATAAUGUUGUCA
2976
2868-2888
UGACAACAUUATUGAGCACUCGU
3095
2866-2888





AD-954190.1
AGUUUGCATUTGGAGUUUAGA
2977
3262-3282
UCUAAACUCCAAATGCAAACUGG
3096
3260-3282





AD-954198.1
AGCUUGGUTCCCAUUGGAUCA
2978
3379-3399
UGAUCCAAUGGGAACCAAGCUGA
1996
3377-3399





AD-954206.1
CUGAAAUCCUGCUUUAGUCGA
1835
4040-4060
UCGACUAAAGCAGGATUUCAGGU
3097
4038-4060





AD-954214.1
AGAAUGCUAUTCAUAAUCACA
2979
4395-4415
UGUGAUTAUGAAUAGCAUUCUUA
 316
4393-4415





AD-954128.1
UUAUCAAAGCTUUGAUGGAUA
2980
612-632
UAUCCATCAAAGCTUTGAUAACU
3098
610-632





AD-954136.1
CUCUGCUGAUTCUUGGCGUGA
2981
1074-1094
UCACGCCAAGAAUCAGCAGAGUG
2000
1072-1094





AD-954144.1
CACCAAGACCACAAUGUUGUA
1838
1250-1270
UACAACAUUGUGGTCTUGGUGCU
3099
1248-1270





AD-954152.1
GAGGAUGACUCUGAAUCGAGA
1839
1505-1525
UCUCGATUCAGAGTCAUCCUCCA
3100
1503-1525





AD-954160.1
CUGAAAUUGUGUUAGACGGUA
 165
1887-1907
UACCGUCUAACACAATUUCAGAA
3101
1885-1907





AD-954168.1
UCCGCCUUTUAUCUGCUUCGA
2982
2205-2225
UCGAAGCAGAUAAAAGGCGGACA
2003
2203-2225





AD-954175.1
GAACUACATCGAUCAUGGAGA
2983
2413-2433
UCUCCATGAUCGATGTAGUUCAA
3102
2411-2433





AD-954183.1
GCCUCCAUCUCAUUUCUCCGA
1842
3061-3081
UCGGAGAAAUGAGAUGGAGGCUG
2005
3059-3081





AD-954191.1
GUUUGCAUTUGGAGUUUAGGA
2984
3263-3283
UCCUAAACUCCAAAUGCAAACUG
2006
3261-3283





AD-954199.1
AGAUGCUUTGAUUUUGGCCGA
2985
3412-3432
UCGGCCAAAAUCAAAGCAUCUUG
2007
3410-3432





AD-954207.1
GAAAUCCUGCTUUAGUCGAGA
2986
4042-4062
UCUCGACUAAAGCAGGAUUUCAG
2008
4040-4062





AD-954215.1
GCUAUUCATAAUCACAUUCGA
2987
4400-4420
UCGAAUGUGAUTATGAAUAGCAU
3103
4398-4420





AD-954129.1
GCUUUGAUGGAUUCUAAUCUA
1847
620-640
UAGATUAGAAUCCAUCAAAGCUU
3104
618-640





AD-954137.1
GCAGCUUGTCCAGGUUUAUGA
2988
1207-1227
UCAUAAACCUGGACAAGCUGCUC
2011
1205-1227





AD-954145.1
ACCAAGACCACAAUGUUGUGA
1849
1251-1271
UCACAACAUUGTGGUCUUGGUGC
3105
1249-1271





AD-954153.1
AGGAUGACTCTGAAUCGAGAA
2989
1506-1526
UTCUCGAUUCAGAGUCAUCCUCC
3106
1504-1526





AD-954161.1
UGAAAUUGTGTUAGACGGUAA
2990
1888-1908
UTACCGTCUAACACAAUUUCAGA
3107
1886-1908





AD-954169.1
CCGCCUUUTATCUGCUUCGUA
2991
2206-2226
UACGAAGCAGATAAAAGGCGGAC
3108
2204-2226





AD-954176.1
CUUUGGCGGATUGCAUUCCUA
2992
2559-2579
UAGGAATGCAATCCGCCAAAGAA
3109
2557-2579





AD-954184.1
CCUCCAUCTCAUUUCUCCGUA
2993
3062-3082
UACGGAGAAAUGAGATGGAGGCU
3110
3060-3082





AD-954192.1
GUCUAGGAAGAGCUGUACCGA
1855
3322-3342
UCGGTACAGCUCUTCCUAGACUC
3111
3320-3342





AD-954200.1
GGCCGGAAACTUGCUUGCAGA
2994
3427-3447
UCUGCAAGCAAGUTUCCGGCCAA
3112
3425-3447





AD-954208.1
UUUAGUCGAGAACCAAUGAUA
1857
4052-4072
UAUCAUTGGUUCUCGACUAAAGC
2620
4050-4072





AD-954216.1
UUCAUAAUCACAUUCGUUUGA
1858
4404-4424
UCAAACGAAUGTGAUTAUGAAUA
3113
4402-4424





AD-954130.1
GAUUCUAATCTUCCAAGGUUA
2995
629-649
UAACCUTGGAAGATUAGAAUCCA
3114
627-649





AD-954138.1
CAGGUUUATGAACUGACGUUA
2996
1217-1237
UAACGUCAGUUCATAAACCUGGA
3115
1215-1237





AD-954146.1
GAGUAUUGTGGAACUUAUAGA
2997
1405-1425
UCUATAAGUUCCACAAUACUCCC
3116
1403-1425





AD-954154.1
GGAUGACUCUGAAUCGAGAUA
1860
1507-1527
UAUCTCGAUUCAGAGTCAUCCUC
3117
1505-1527





AD-954162.1
GAAAUUGUGUTAGACGGUACA
2998
1889-1909
UGUACCGUCUAACACAAUUUCAG
2025
1887-1909





AD-954177.1
UUUGGCGGAUTGCAUUCCUUA
2999
2560-2580
UAAGGAAUGCAAUCCGCCAAAGA
2026
2558-2580





AD-954185.1
CUCCAUCUCATUUCUCCGUCA
3000
3063-3083
UGACGGAGAAATGAGAUGGAGGC
3118
3061-3083





AD-954193.1
UCUAGGAAGAGCUGUACCGUA
1864
3323-3343
UACGGUACAGCTCTUCCUAGACU
3119
3321-3343





AD-954201.1
CUUCUCUAAGTCCCAUCCGAA
3001
3678-3698
UTCGGATGGGACUTAGAGAAGGG
3120
3676-3698





AD-954209.1
UUAGUCGAGAACCAAUGAUGA
1866
4053-4073
UCAUCATUGGUTCTCGACUAAAG
3121
4051-4073





AD-954217.1
UCAUAAUCACAUUCGUUUGUA
1707
4405-4425
UACAAACGAAUGUGATUAUGAAU
3122
4403-4425





AD-954225.1
UUCAGUUACGGGUUAAUUACA
1708
4518-4538
UGUAAUTAACCCGTAACUGAACC
3123
4516-4538





AD-954233.1
ACUGUCUCGACAGAUAGCUGA
1709
4966-4986
UCAGCUAUCUGTCGAGACAGUCG
3124
4964-4986





AD-954241.1
UUACGGAGTATGUUCGUCACA
3002
5108-5128
UGUGACGAACATACUCCGUAAAA
3125
5106-5128





AD-954249.1
GCAACAUACUTUCUAUUGCCA
3003
5452-5472
UGGCAATAGAAAGTATGUUGCUG
3126
5450-5472





AD-954257.1
ACUCCGAGCACUUAACGUGGA
1711
5886-5906
UCCACGTUAAGTGCUCGGAGUCA
3127
5884-5906





AD-954264.1
GCAAUUCAGUCUCGUUGUGAA
1712
6017-6037
UTCACAACGAGACTGAAUUGCCU
3128
6015-6037





AD-954272.1
UGCCUUCATGAUGAACUCGGA
3004
6547-6567
UCCGAGTUCAUCATGAAGGCAUU
3129
6545-6567





AD-954280.1
CAACAGCUACACACGUGUGCA
1714
7366-7386
UGCACACGUGUGUAGCUGUUGAC
1875
7364-7386





AD-954288.1
GACGCUGACAGAACUGCGAAA
1715
8317-8337
UTUCGCAGUUCTGTCAGCGUCAC
3130
8315-8337





AD-954296.1
CUGACUUGTUTACGAAAUGUA
3005
9539-9559
UACATUTCGUAAACAAGUCAGCA
3131
9537-9559





AD-954218.1
AUCACAUUCGTUUGUUUGAAA
3006
4410-4430
UTUCAAACAAACGAATGUGAUUA
3132
4408-4430





AD-954226.1
CAGUUACGGGTUAAUUACUGA
3007
4520-4540
UCAGTAAUUAACCCGTAACUGAA
3133
4518-4540





AD-954234.1
AAGCCCUUGGAGUGUUAAAUA
1719
5037-5057
UAUUTAACACUCCAAGGGCUUCA
3134
5035-5057





AD-954242.1
UCUGAUUUCCCAGUCAACUGA
1720
5197-5217
UCAGTUGACUGGGAAAUCAGAAC
3135
5195-5217





AD-954250.1
AUCUUCAAGUCUGGAAUGUUA
1721
5507-5527
UAACAUTCCAGACTUGAAGAUGU
3136
5505-5527





AD-954258.1
AUCCAGGCAATUCAGUCUCGA
3008
6011-6031
UCGAGACUGAATUGCCUGGAUGA
3137
6009-6031





AD-954265.1
AUGGUCGACATCCUUGCUUGA
3009
6170-6190
UCAAGCAAGGATGTCGACCAUGC
3138
6168-6190





AD-954273.1
CUUCAUGATGAACUCGGAGUA
3010
6550-6570
UACUCCGAGUUCATCAUGAAGGC
3139
6548-6570





AD-954281.1
GACCAGUCGUACUCAGUUUGA
1725
7525-7545
UCAAACTGAGUACGACUGGUCCA
2655
7523-7545





AD-954289.1
ACGCUGACAGAACUGCGAAGA
1726
8318-8338
UCUUCGCAGUUCUGUCAGCGUCA
1887
8316-8338





AD-954297.1
UGACUUGUTUACGAAAUGUCA
3011
9540-9560
UGACAUTUCGUAAACAAGUCAGC
2660
9538-9560





AD-954219.1
UGUUUGAACCTCUUGUUAUAA
3012
4422-4442
UTAUAACAAGAGGTUCAAACAAA
3140
4420-4442





AD-954227.1
UCAGAUCAGGTGUUUAUUGGA
3013
4550-4570
UCCAAUAAACACCTGAUCUGAAU
3141
4548-4570





AD-954235.1
GCCCUUGGAGTGUUAAAUACA
3014
5039-5059
UGUATUTAACACUCCAAGGGCUU
3142
5037-5059





AD-954243.1
AAGAUAUUGUTCUUUCUCGUA
3015
5217-5237
UACGAGAAAGAACAATAUCUUCA
3143
5215-5237





AD-954251.1
UCAAGUCUGGAAUGUUCCGGA
1730
5511-5531
UCCGGAACAUUCCAGACUUGAAG
1891
5509-5531





AD-954259.1
UCCAGGCAAUTCAGUCUCGUA
3016
6012-6032
UACGAGACUGAAUTGCCUGGAUG
3144
6010-6032





AD-954266.1
GUCGACAUCCTUGCUUGUCGA
3017
6173-6193
UCGACAAGCAAGGAUGUCGACCA
1893
6171-6193





AD-954274.1
CUGCUAGCTCCAUGCUUAAGA
3018
6581-6601
UCUUAAGCAUGGAGCTAGCAGGC
3145
6579-6601





AD-954282.1
ACCAGUCGTACUCAGUUUGAA
3019
7526-7546
UTCAAACUGAGTACGACUGGUCC
3146
7524-7546





AD-954290.1
GAAAGGAGAAAGUCAGUCCGA
1735
8937-8957
UCGGACTGACUTUCUCCUUUCCU
3147
8935-8957





AD-954298.1
UAACGUAACUCUUUCUAUGCA
1736
10173-10193
UGCATAGAAAGAGTUACGUUAAA
3148
10171-10193





AD-954220.1
GUUUGAACCUCUUGUUAUAAA
 123
4423-4443
UTUATAACAAGAGGUTCAAACAA
3149
4421-4443





AD-954228.1
UUGGCUUUGUAUUGAAACAGA
1737
4566-4586
UCUGTUTCAAUACAAAGCCAAUA
3150
4564-4586





AD-954236.1
UAGACAUGCUTUUACGGAGUA
3020
5097-5117
UACUCCGUAAAAGCATGUCUACC
3151
5095-5117





AD-954244.1
GAUAUUGUTCTUUCUCGUAUA
3021
5219-5239
UAUACGAGAAAGAACAAUAUCUU
1900
5217-5239





AD-954252.1
CAAGUCUGGAAUGUUCCGGAA
1740
5512-5532
UTCCGGAACAUTCCAGACUUGAA
3152
5510-5532





AD-954260.1
CCAGGCAATUCAGUCUCGUUA
3022
6013-6033
UAACGAGACUGAATUGCCUGGAU
3153
6011-6033





AD-954267.1
CAUGCAAGACTCACUUAGUCA
3023
6349-6369
UGACTAAGUGAGUCUTGCAUGGU
3154
6347-6369





AD-954275.1
UGCUAGCUCCAUGCUUAAGCA
1743
6582-6602
UGCUTAAGCAUGGAGCUAGCAGG
3155
6580-6602





AD-954283.1
CCAGUCGUACTCAGUUUGAAA
3024
7527-7547
UTUCAAACUGAGUACGACUGGUC
3156
7525-7547





AD-954291.1
AGAACUUCAGACCCUAAUCCA
1745
8960-8980
UGGATUAGGGUCUGAAGUUCUAC
3157
8958-8980





AD-954299.1
UCUAUGCCCGTGUAAAGUAUA
3025
10186-10206
UAUACUTUACACGGGCAUAGAAA
3158
10184-10206





AD-954221.1
UUUGAACCTCTUGUUAUAAAA
3026
4424-4444
UTUUAUAACAAGAGGTUCAAACA
3159
4422-4444





AD-954229.1
UUAUGAACGCTAUCAUUCAAA
3027
4666-4686
UTUGAATGAUAGCGUTCAUAAGA
3160
4664-4686





AD-954237.1
ACAUGCUUTUACGGAGUAUGA
3028
5100-5120
UCAUACTCCGUAAAAGCAUGUCU
2635
5098-5120





AD-954245.1
UUGUUCUUTCTCGUAUUCAGA
3029
5223-5243
UCUGAATACGAGAAAGAACAAUA
2637
5221-5243





AD-954253.1
AGCACAAAGUTACUUAGUCCA
3030
5744-5764
UGGACUAAGUAACTUTGUGCUGG
3161
5742-5764





AD-954261.1
CAGGCAAUTCAGUCUCGUUGA
3031
6014-6034
UCAACGAGACUGAAUTGCCUGGA
3162
6012-6034





AD-954268.1
AUGCAAGACUCACUUAGUCCA
1752
6350-6370
UGGACUAAGUGAGTCTUGCAUGG
3163
6348-6370





AD-954276.1
ACUGGAGCAAGUUGAAUGAUA
1753
6753-6773
UAUCAUTCAACTUGCTCCAGUAG
3164
6751-6773





AD-954284.1
CAGUCGUACUCAGUUUGAAGA
 120
7528-7548
UCUUCAAACUGAGTACGACUGGU
3165
7526-7548





AD-954292.1
UCAUGAACAAAGUCAUCGGAA
1754
9129-9149
UTCCGATGACUTUGUTCAUGAUG
3166
9127-9149





AD-954300.1
CUAUGCCCGUGUAAAGUAUGA
1755
10187-10207
UCAUACTUUACACGGGCAUAGAA
3167
10185-10207





AD-954222.1
AAGCUUUAAAACAGUACACGA
1756
4443-4463
UCGUGUACUGUTUTAAAGCUUUU
3168
4441-4463





AD-954230.1
AACGCUAUCATUCAAAACAGA
3032
4671-4691
UCUGTUTUGAATGAUAGCGUUCA
3169
4669-4691





AD-954238.1
CUUUUACGGAGUAUGUUCGUA
1758
5105-5125
UACGAACAUACTCCGTAAAAGCA
3170
5103-5125





AD-954246.1
UGUUCUUUCUCGUAUUCAGGA
 125
5224-5244
UCCUGAAUACGAGAAAGAACAAU
 326
5222-5244





AD-954254.1
AGAGGAGGAUTCUGACUUGGA
3033
5779-5799
UCCAAGTCAGAAUCCTCCUCUUC
3171
5777-5799





AD-954262.1
AGGCAAUUCAGUCUCGUUGUA
1760
6015-6035
UACAACGAGACTGAATUGCCUGG
3172
6013-6035





AD-954269.1
CACUGGAAACAGUGAGUCCGA
1761
6417-6437
UCGGACTCACUGUTUCCAGUGAC
3173
6415-6437





AD-954277.1
UGUCAACAGCTACACACGUGA
3034
7363-7383
UCACGUGUGUAGCTGTUGACAAG
3174
7361-7383





AD-954285.1
AAGCUGAGCATUAUCAGAGGA
3035
7787-7807
UCCUCUGAUAATGCUCAGCUUCC
3175
7785-7807





AD-954293.1
CGGCUGCUGACUUGUUUACGA
1764
9533-9553
UCGUAAACAAGTCAGCAGCCGGU
3176
9531-9553





AD-954301.1
CCGCUGACAUTUCCGUUGUAA
3036
10311-10331
UTACAACGGAAAUGUCAGCGGGU
3177
10309-10331





AD-954223.1
AGCUGGUUCAGUUACGGGUUA
1766
4512-4532
UAACCCGUAACTGAACCAGCUGC
3178
4510-4532





AD-954231.1
GUGGAAGCGACUGUCUCGACA
1767
4957-4977
UGUCGAGACAGTCGCTUCCACUU
3179
4955-4977





AD-954239.1
UUUUACGGAGTAUGUUCGUCA
3037
5106-5126
UGACGAACAUACUCCGUAAAAGC
1929
5104-5126





AD-954247.1
AUUUUCAAGGTUUCUAUUACA
3038
5368-5388
UGUAAUAGAAACCTUGAAAAUGU
3180
5366-5388





AD-954255.1
CAAUAGAGAAAUAGUACGAAA
1769
5818-5838
UTUCGUACUAUTUCUCUAUUGCA
3181
5816-5838





AD-954263.1
GGCAAUUCAGTCUCGUUGUGA
3039
6016-6036
UCACAACGAGACUGAAUUGCCUG
1931
6014-6036





AD-954270.1
AGCUGGUGAATCGGAUUCCUA
3040
6513-6533
UAGGAATCCGATUCACCAGCUCU
3182
6511-6533





AD-954278.1
GUCAACAGCUACACACGUGUA
1772
7364-7384
UACACGTGUGUAGCUGUUGACAA
3183
7362-7384





AD-954286.1
UUGAGCUGAUGUAUGUGACGA
1773
8301-8321
UCGUCACAUACAUCAGCUCAAAC
1934
8299-8321





AD-954294.1
GGCUGCUGACTUGUUUACGAA
3041
9534-9554
UTCGTAAACAAGUCAGCAGCCGG
3184
9532-9554





AD-954302.1
GACUGUCATGTGGCUUGGUUA
3042
11080-11100
UAACCAAGCCACATGACAGUCGC
3185
11078-11100





AD-954224.1
GUUCAGUUACGGGUUAAUUAA
1775
4517-4537
UTAATUAACCCGUAACUGAACCA
3186
4515-4537





AD-954232.1
GACUGUCUCGACAGAUAGCUA
1776
4965-4985
UAGCTATCUGUCGAGACAGUCGC
3187
4963-4985





AD-954240.1
UUUACGGAGUAUGUUCGUCAA
1777
5107-5127
UTGACGAACAUACTCCGUAAAAG
3188
5105-5127





AD-954248.1
AAGGUUUCTATUACAACUGGA
3043
5374-5394
UCCAGUTGUAATAGAAACCUUGA
3189
5372-5394





AD-954256.1
GACUCCGAGCACUUAACGUGA
1779
5885-5905
UCACGUTAAGUGCTCGGAGUCAU
3190
5883-5905





AD-954271.1
GCUGGUGAAUCGGAUUCCUGA
1780
6514-6534
UCAGGAAUCCGAUTCACCAGCUC
3191
6512-6534





AD-954279.1
UCAACAGCTACACACGUGUGA
3044
7365-7385
UCACACGUGUGTAGCTGUUGACA
3192
7363-7385





AD-954287.1
GAGCUGAUGUAUGUGACGCUA
1782
8303-8323
UAGCGUCACAUACAUCAGCUCAA
1943
8301-8323





AD-954295.1
CUGCUGACTUGUUUACGAAAA
3045
9536-9556
UTUUCGTAAACAAGUCAGCAGCC
3193
9534-9556
















TABLE 15







Modified Sense and Antisense Strand Sequences of Huntingtin (HTT) dsRNA Agents















SEQ

SEQ

SEQ


Duplex

ID

ID
mRNA Target
ID


ID
Sense Sequence 5′ to 3′
NO:
Antisense Sequence 5′ to 3′
NO:
Sequence 5′ to 3′
NO:





AD-
asgscua(Chd)cadAgdAaaga
3194
VPusdCsacdGgdTcuuudCudTgdGu
3374
UCAGCUACCAAGAAAGACCGUG
2445


954123.1
ccgugaL96

agcusgsa

U






AD-
asusucu(Ahd)audCudTccaa
3195
VPusdTsaadCcdTuggadAgdAudTa
3375
GGAUUCUAAUCUUCCAAGGUUA
 965


954131.1
gguuaaL96

gaauscsc

C






AD-
asgsguu(Uhd)audGadAcuga
3196
VPusdTsaadCgdTcagudTcdAudAa
3376
CCAGGUUUAUGAACUGACGUUA
 991


954139.1
cguuaaL96

accusgsg

C






AD-
asgsuau(Uhd)gudGgdAacuu
3197
VPusdGscudAudAaguudCcdAcdAa
3377
GGAGUAUUGUGGAACUUAUAGC
2446


954147.1
auagcaL96

uacuscsc

U






AD-
gsascuc(Uhd)gadAudCgaga
3198
VPusdTsccdGadTcucgdAudTcdAg
3378
AUGACUCUGAAUCGAGAUCGGA
2447


954155.1
ucggaaL96

agucsasu

U






AD-
ascsagc(Ahd)gudGudTgaua
3199
VPusdAsaadTudTaucadAcdAcdTg
3379
UGACAGCAGUGUUGAUAAAUUU
1015


954163.1
aauuuaL96

cuguscsa

G






AD-
csgsccu(Uhd)uudAudCugcu
3200
VPusdAsacdGadAgcagdAudAadAa
3380
UCCGCCUUUUAUCUGCUUCGUU
1001


954170.1
ucguuaL96

ggcgsgsa

U






AD-
csusgag(Ghd)aadCadGuucc
3201
VPusdCsaadTadGgaacdTgdTudCc
3381
CUCUGAGGAACAGUUCCUAUUG
1021


954178.1
uauugaL96

ucagsasg

G






AD-
ususcuc(Chd)gudCadGcaca
3202
VPusdGsuudAudTgugcdTgdAcdGg
3382
AUUUCUCCGUCAGCACAAUAAC
3554


954186.1
auaacaL96

agaasasu

C






AD-
usasgga(Ahd)gadGcdTguac
3203
VPusdCsaadCgdGuacadGcdTcdTu
3383
UCUAGGAAGAGCUGUACCGUUG
2448


954194.1
cguugaL96

ccuasgsa

G






AD-
ususcuc(Uhd)aadGudCccau
3204
VPusdGsucdGgdAugggdAcdTudAg
3384
CCUUCUCUAAGUCCCAUCCGAC
2449


954202.1
ccgacaL96

agaasgsg

G






AD-
ususgug(Uhd)ucdAadCaauu
3205
VPusdTscadAcdAauugdTudGadAc
3385
GUUUGUGUUCAACAAUUGUUGA
3555


954210.1
guugaaL96

acaasasc

A






AD-
csusacc(Ahd)agdAadAgacc
3206
VPusdCsacdAcdGgucudTudCudTg
3386
AGCUACCAAGAAAGACCGUGUG
2450


954124.1
gugugaL96

guagscsu

A






AD-
ususcca(Ahd)ggdTudAcagc
3207
VPusdCsucdGadGcugudAadCcdTu
3387
UCUUCCAAGGUUACAGCUCGAG
2451


954132.1
ucgagaL96

ggaasgsa

C






AD-
gsgsuuu(Ahd)ugdAadCugac
3208
VPusdGsuadAcdGucagdTudCadTa
3388
CAGGUUUAUGAACUGACGUUAC
2452


954140.1
guuacaL96

aaccsusg

A






AD-
gsusauu(Ghd)ugdGadAcuua
3209
VPusdAsgcdTadTaagudTcdCadCa
3389
GAGUAUUGUGGAACUUAUAGCU
2453


954148.1
uagcuaL96

auacsusc

G






AD-
ascsucu(Ghd)aadTcdGagau
3210
VPusdAsucdCgdAucucdGadTudCa
3390
UGACUCUGAAUCGAGAUCGGAU
1011


954156.1
cggauaL96

gaguscsa

G






AD-
usgsaua(Ahd)audTudGuguu
3211
VPusdCsucdTcdAacacdAadAudTu
3391
GUUGAUAAAUUUGUGUUGAGAG
2454


954164.1
gagagaL96

aucasasc

A






AD-
uscsuau(Ahd)aadGudTccuc
3212
VPusdGsucdAadGaggadAcdTudTa
3392
ACUCUAUAAAGUUCCUCUUGAC
 987


954171.1
uugacaL96

uagasgsu

A






AD-
usgsagg(Ahd)acdAgdTuccu
3213
VPusdCscadAudAggaadCudGudTc
3393
UCUGAGGAACAGUUCCUAUUGG
2455


954179.1
auuggaL96

cucasgsa

C






AD-
uscsucc(Ghd)ucdAgdCacaa
3214
VPusdGsgudTadTugugdCudGadCg
3394
UUUCUCCGUCAGCACAAUAACC
2456


954187.1
uaaccaL96

gagasasa

A






AD-
asgsgaa(Ghd)agdCudGuacc
3215
VPusdCscadAcdGguacdAgdCudCu
3395
CUAGGAAGAGCUGUACCGUUGG
2457


954195.1
guuggaL96

uccusasg

G






AD-
gsasgaa(Chd)aadGcdAucug
3216
VPusdCsggdTadCagaudGcdTudGu
3396
AGGAGAACAAGCAUCUGUACCG
2458


954203.1
uaccgaL96

ucucscsu

U






AD-
gsasgug(Uhd)cadCadAagaa
3217
VPusdCsacdGgdTucuudTgdTgdAc
3397
ACGAGUGUCACAAAGAACCGUG
2459


954211.1
ccgugaL96

acucsgsu

C






AD-
asasuca(Uhd)ugdTcdTgaca
3218
VPusdCsaudAudTgucadGadCadAu
3398
UGAAUCAUUGUCUGACAAUAUG
2460


954125.1
auaugaL96

gauuscsa

U






AD-
uscscaa(Ghd)gudTadCagcu
3219
VPusdGscudCgdAgcugdTadAcdCu
3399
CUUCCAAGGUUACAGCUCGAGC
2461


954133.1
cgagcaL96

uggasasg

U






AD-
ususuau(Ghd)aadCudGacgu
3220
VPusdAsugdTadAcgucdAgdTudCa
3400
GGUUUAUGAACUGACGUUACAU
2462


954141.1
uacauaL96

uaaascsc

C






AD-
usasuug(Uhd)ggdAadCuuau
3221
VPusdCsagdCudAuaagdTudCcdAc
3401
AGUAUUGUGGAACUUAUAGCUG
2463


954149.1
agcugaL96

aauascsu

G






AD-
csuscug(Ahd)audCgdAgauc
3222
VPusdCsaudCcdGaucudCgdAudTc
3402
GACUCUGAAUCGAGAUCGGAUG
2464


954157.1
ggaugaL96

agagsusc

U






AD-
asgsaug(Ahd)agdCudAcuga
3223
VPusdCscgdGudTcagudAgdCudTc
3403
AGAGAUGAAGCUACUGAACCGG
2465


954165.1
accggaL96

aucuscsu

G






AD-
csasucu(Uhd)gadAcdTacau
3224
VPusdGsaudCgdAuguadGudTcdAa
3404
GACAUCUUGAACUACAUCGAUC
2466


954172.1
cgaucaL96

gaugsuse

A






AD-
gsasgga(Ahd)cadGudTccua
3225
VPusdGsccdAadTaggadAcdTgdTu
3405
CUGAGGAACAGUUCCUAUUGGC
2921


954180.1
uuggcaL96

ccucsasg

U






AD-
uscscgu(Chd)agdCadCaaua
3226
VPusdCsugdGudTauugdTgdCudGa
3406
UCUCCGUCAGCACAAUAACCAG
2467


954188.1
accagaL96

cggasgsa

A






AD-
gsgsaag(Ahd)gcdTgdTaccg
3227
VPusdCsccdAadCgguadCadGcdTc
3407
UAGGAAGAGCUGUACCGUUGGG
2468


954196.1
uugggaL96

uuccsusa

A






AD-
asascaa(Ghd)cadTcdTguac
3228
VPusdCsaadCgdGuacadGadTgdCu
3408
AGAACAAGCAUCUGUACCGUUG
2924


954204.1
cguugaL96

uguuscsu

A






AD-
usgsuca(Chd)aadAgdAaccg
3229
VPusdCsugdCadCgguudCudTudGu
3409
AGUGUCACAAAGAACCGUGCAG
2469


954212.1
ugcagaL96

gacascsu

A






AD-
csasuug(Uhd)cudGadCaaua
3230
VPusdTscadCadTauugdTcdAgdAc
3410
AUCAUUGUCUGACAAUAUGUGA
 925


954126.1
ugugaaL96

aaugsasu

A






AD-
csusguu(Chd)ccdAadAauua
3231
VPusdAsgcdCadTaauudTudGgdGa
3411
AGCUGUUCCCAAAAUUAUGGCU
2470


954134.1
uggcuaL96

acagscsu

U






AD-
csasgca(Chd)cadAgdAccac
3232
VPusdAscadTudGuggudCudTgdGu
3412
CACAGCACCAAGACCACAAUGU
2471


954142.1
aauguaL96

gcugsusg

U






AD-
asusugu(Ghd)gadAcdTuaua
3233
VPusdCscadGcdTauaadGudTcdCa
3413
GUAUUGUGGAACUUAUAGCUGG
2472


954150.1
gcuggaL96

caausasc

A






AD-
ususcug(Ahd)aadTudGuguu
3234
VPusdCsgudCudAacacdAadTudTc
3414
AGUUCUGAAAUUGUGUUAGACG
2473


954158.1
agacgaL96

agaascsu

G






AD-
cscsucu(Uhd)gudCcdAuugu
3235
VPusdCsggdAcdAcaaudGgdAcdAa
3415
CACCUCUUGUCCAUUGUGUCCG
2474


954166.1
guccgaL96

gaggsusg

C






AD-
csusuga(Ahd)cudAcdAucga
3236
VPusdCsaudGadTcgaudGudAgdTu
3416
AUCUUGAACUACAUCGAUCAUG
 930


954173.1
ucaugaL96

caagsasu

G






AD-
asasgaa(Chd)gadGudGcuca
3237
VPusdAsuudAudTgagcdAcdTcdGu
3417
GCAAGAACGAGUGCUCAAUAAU
2475


954181.1
auaauaL96

ucuusgsc

G






AD-
asasccu(Uhd)ucdAadGaguu
3238
VPusdGscadAudAacucdTudGadAa
3418
AUAACCUUUCAAGAGUUAUUGC
2476


954189.1
auugcaL96

gguusasu

A






AD-
gsuscag(Chd)uudGgdTuccc
3239
VPusdCscadAudGggaadCcdAadGc
3419
UCGUCAGCUUGGUUCCCAUUGG
2477


954197.1
auuggaL96

ugacsgsa

A






AD-
escsuga(Ahd)audCcdTgcuu
3240
VPusdGsacdTadAagcadGgdAudTu
3420
UACCUGAAAUCCUGCUUUAGUC
 924


954205.1
uagucaL96

caggsusa

G






AD-
usasaga(Ahd)ugdCudAuuca
3241
VPusdGsaudTadTgaaudAgdCadTu
3421
GAUAAGAAUGCUAUUCAUAAUC
2478


954213.1
uaaucaL96

cuuasusc

A






AD-
asasugc(Chd)ucdAadCaaag
3242
VPusdGsaudAadCuuugdTudGadGg
3422
CGAAUGCCUCAACAAAGUUAUC
2479


954127.1
uuaucaL96

cauuscsg

A






AD-
asgsgcc(Uhd)ucdAudAgcga
3243
VPusdCsagdGudTcgcudAudGadAg
3423
AAAGGCCUUCAUAGCGAACCUG
2480


954135.1
accugaL96

gccususu

A






AD-
gscsacc(Ahd)agdAcdCacaa
3244
VPusdCsaadCadTugugdGudCudTg
3424
CAGCACCAAGACCACAAUGUUG
2481


954143.1
uguugaL96

gugcsusg

U






AD-
usgsgag(Ghd)audGadCucug
3245
VPusdCsgadTudCagagdTcdAudCc
3425
CUUGGAGGAUGACUCUGAAUCG
2482


954151.1
aaucgaL96

uccasasg

A






AD-
uscsuga(Ahd)audTgdTguua
3246
VPusdCscgdTcdTaacadCadAudTu
3426
GUUCUGAAAUUGUGUUAGACGG
 959


954159.1
gacggaL96

cagasasc

U






AD-
csuscuu(Ghd)ucdCadTugug
3247
VPusdGscgdGadCacaadTgdGadCa
3427
ACCUCUUGUCCAUUGUGUCCGC
2483


954167.1
uccgcaL96

agagsgsu

C






AD-
ususgaa(Chd)uadCadTcgau
3248
VPusdCscadTgdAucgadTgdTadGu
3428
UCUUGAACUACAUCGAUCAUGG
1017


954174.1
cauggaL96

ucaasgsa

A






AD-
gsasgug(Chd)ucdAadTaaug
3249
VPusdGsacdAadCauuadTudGadGc
3429
ACGAGUGCUCAAUAAUGUUGUC
2484


954182.1
uugucaL96

acucsgsu

A






AD-
asgsuuu(Ghd)cadTudTggag
3250
VPusdCsuadAadCuccadAadTgdCa
3430
CCAGUUUGCAUUUGGAGUUUAG
2485


954190.1
uuuagaL96

aacusgsg

G






AD-
asgscuu(Ghd)gudTcdCcauu
3251
VPusdGsaudCcdAauggdGadAcdCa
3431
UCAGCUUGGUUCCCAUUGGAUC
2486


954198.1
ggaucaL96

agcusgsa

U






AD-
csusgaa(Ahd)ucdCudGcuuu
3252
VPusdCsgadCudAaagcdAgdGadTu
3432
ACCUGAAAUCCUGCUUUAGUCG
2487


954206.1
agucgaL96

ucagsgsu

A






AD-
asgsaau(Ghd)cudAudTcaua
3253
VPusdGsugdAudTaugadAudAgdCa
3433
UAAGAAUGCUAUUCAUAAUCAC
 921


954214.1
aucacaL96

uucususa

A






AD-
ususauc(Ahd)aadGcdTuuga
3254
VPusdAsucdCadTcaaadGcdTudTg
3434
AGUUAUCAAAGCUUUGAUGGAU
2488


954128.1
uggauaL96

auaascsu

U






AD-
csuscug(Chd)ugdAudTcuug
3255
VPusdCsacdGcdCaagadAudCadGc
3435
CACUCUGCUGAUUCUUGGCGUG
2489


954136.1
gcgugaL96

agagsusg

C






AD-
csascca(Ahd)gadCcdAcaau
3256
VPusdAscadAcdAuugudGgdTcdTu
3436
AGCACCAAGACCACAAUGUUGU
2490


954144.1
guuguaL96

ggugscsu

G






AD-
gsasgga(Uhd)gadCudCugaa
3257
VPusdCsucdGadTucagdAgdTcdAu
3437
UGGAGGAUGACUCUGAAUCGAG
2491


954152.1
ucgagaL96

ccucscsa

A






AD-
csusgaa(Ahd)uudGudGuuag
3258
VPusdAsccdGudCuaacdAcdAadTu
3438
UUCUGAAAUUGUGUUAGACGGU
 971


954160.1
acgguaL96

ucagsasa

A






AD-
uscscgc(Chd)uudTudAucug
3259
VPusdCsgadAgdCagaudAadAadGg
3439
UGUCCGCCUUUUAUCUGCUUCG
2492


954168.1
cuucgaL96

cggascsa

U






AD-
gsasacu(Ahd)cadTcdGauca
3260
VPusdCsucdCadTgaucdGadTgdTa
3440
UUGAACUACAUCGAUCAUGGAG
2493


954175.1
uggagaL96

guucsasa

A






AD-
gscscuc(Chd)audCudCauuu
3261
VPusdCsggdAgdAaaugdAgdAudGg
3441
CAGCCUCCAUCUCAUUUCUCCG
2494


954183.1
cuccgaL96

aggcsusg

U






AD-
gsusuug(Chd)audTudGgagu
3262
VPusdCscudAadAcuccdAadAudGc
3442
CAGUUUGCAUUUGGAGUUUAGG
2495


954191.1
uuaggaL96

aaacsusg

U






AD-
asgsaug(Chd)uudTgdAuuuu
3263
VPusdCsggdCcdAaaaudCadAadGc
3443
CAAGAUGCUUUGAUUUUGGCCG
2496


954199.1
ggccgaL96

aucususg

G






AD-
gsasaau(Chd)cudGcdTuuag
3264
VPusdCsucdGadCuaaadGcdAgdGa
3444
CUGAAAUCCUGCUUUAGUCGAG
2497


954207.1
ucgagaL96

uuucsasg

A






AD-
gscsuau(Uhd)cadTadAucac
3265
VPusdCsgadAudGugaudTadTgdAa
3445
AUGCUAUUCAUAAUCACAUUCG
 988


954215.1
auucgaL96

uagcsasu

U






AD-
gscsuuu(Ghd)audGgdAuucu
3266
VPusdAsgadTudAgaaudCcdAudCa
3446
AAGCUUUGAUGGAUUCUAAUCU
 946


954129.1
aaucuaL96

aagcsusu

U






AD-
gscsagc(Uhd)ugdTcdCaggu
3267
VPusdCsaudAadAccugdGadCadAg
3447
GAGCAGCUUGUCCAGGUUUAUG
2498


954137.1
uuaugaL96

cugcsusc

A






AD-
ascscaa(Ghd)acdCadCaaug
3268
VPusdCsacdAadCauugdTgdGudCu
3448
GCACCAAGACCACAAUGUUGUG
2499


954145.1
uugugaL96

uggusgsc

A






AD-
asgsgau(Ghd)acdTcdTgaau
3269
VPusdTscudCgdAuucadGadGudCa
3449
GGAGGAUGACUCUGAAUCGAGA
2500


954153.1
cgagaaL96

uccuscsc

U






AD-
usgsaaa(Uhd)ugdTgdTuaga
3270
VPusdTsacdCgdTcuaadCadCadAu
3450
UCUGAAAUUGUGUUAGACGGUA
1003


954161.1
cgguaaL96

uucasgsa

C






AD-
cscsgcc(Uhd)uudTadTcugc
3271
VPusdAscgdAadGcagadTadAadAg
3451
GUCCGCCUUUUAUCUGCUUCGU
2501


954169.1
uucguaL96

gcggsasc

U






AD-
csusuug(Ghd)cgdGadTugca
3272
VPusdAsggdAadTgcaadTcdCgdCc
3452
UUCUUUGGCGGAUUGCAUUCCU
2502


954176.1
uuccuaL96

aaagsasa

u






AD-
cscsucc(Ahd)ucdTcdAuuuc
3273
VPusdAscgdGadGaaaudGadGadTg
3453
AGCCUCCAUCUCAUUUCUCCGUC
2503


954184.1
uccguaL96

gaggscsu








AD-
gsuscua(Ghd)gadAgdAgcug
3274
VPusdCsggdTadCagcudCudTcdCu
3454
GAGUCUAGGAAGAGCUGUACCG
2504


954192.1
uaccgaL96

agacsusc

U






AD-
gsgsccg(Ghd)aadAcdTugcu
3275
VPusdCsugdCadAgcaadGudTudCc
3455
UUGGCCGGAAACUUGCUUGCAG
2505


954200.1
ugcagaL96

ggccsasa

C






AD-
ususuag(Uhd)cgdAgdAacca
3276
VPusdAsucdAudTgguudCudCgdAc
3456
GCUUUAGUCGAGAACCAAUGAU
2506


954208.1
augauaL96

uaaasgsc

G






AD-
ususcau(Ahd)audCadCauuc
3277
VPusdCsaadAcdGaaugdTgdAudTa
3457
UAUUCAUAAUCACAUUCGUUUG
 972


954216.1
guuugaL96

ugaasusa

U






AD-
gsasuuc(Uhd)aadTcdTucca
3278
VPusdAsacdCudTggaadGadTudAg
3458
UGGAUUCUAAUCUUCCAAGGUU
 952


954130.1
agguuaL96

aaucscsa

A






AD-
csasggu(Uhd)uadTgdAacug
3279
VPusdAsacdGudCaguudCadTadAa
3459
UCCAGGUUUAUGAACUGACGUU
 964


954138.1
acguuaL96

ccugsgsa

A






AD-
gsasgua(Uhd)ugdTgdGaacu
3280
VPusdCsuadTadAguucdCadCadAu
3460
GGGAGUAUUGUGGAACUUAUAG
 998


954146.1
uauagaL96

acucscsc

C






AD-
gsgsaug(Ahd)cudCudGaauc
3281
VPusdAsucdTcdGauucdAgdAgdTc
3461
GAGGAUGACUCUGAAUCGAGAU
2507


954154.1
gagauaL96

auccsusc

C






AD-
gsasaau(Uhd)gudGudTagac
3282
VPusdGsuadCcdGucuadAcdAcdAa
3462
CUGAAAUUGUGUUAGACGGUAC
2508


954162.1
gguacaL96

uuucsasg

C






AD-
ususugg(Chd)ggdAudTgcau
3283
VPusdAsagdGadAugcadAudCcdGc
3463
UCUUUGGCGGAUUGCAUUCCUU
2509


954177.1
uccuuaL96

caaasgsa

U






AD-
csuscca(Uhd)cudCadTuucu
3284
VPusdGsacdGgdAgaaadTgdAgdAu
3464
GCCUCCAUCUCAUUUCUCCGUC
2510


954185.1
ccgucaL96

ggagsgsc

A






AD-
uscsuag(Ghd)aadGadGcugu
3285
VPusdAscgdGudAcagcdTcdTudCc
3465
AGUCUAGGAAGAGCUGUACCGU
2511


954193.1
accguaL96

uagascsu

U






AD-
csusucu(Chd)uadAgdTccca
3286
VPusdTscgdGadTgggadCudTadGa
3466
CCCUUCUCUAAGUCCCAUCCGA
2512


954201.1
uccgaaL96

gaagsgsg

C






AD-
ususagu(Chd)gadGadAccaa
3287
VPusdCsaudCadTuggudTcdTcdGa
3467
CUUUAGUCGAGAACCAAUGAUG
2513


954209.1
ugaugaL96

cuaasasg

G






AD-
uscsaua(Ahd)ucdAcdAuucg
3288
VPusdAscadAadCgaaudGudGadTu
3468
AUUCAUAAUCACAUUCGUUUGU
 984


954217.1
uuuguaL96

augasasu

U






AD-
ususcag(Uhd)uadCgdGguua
3289
VPusdGsuadAudTaaccdCgdTadAc
3469
GGUUCAGUUACGGGUUAAUUAC
1007


954225.1
auuacaL96

ugaascsc

U






AD-
ascsugu(Chd)ucdGadCagau
3290
VPusdCsagdCudAucugdTcdGadGa
3470
CGACUGUCUCGACAGAUAGCUG
2379


954233.1
agcugaL96

caguscsg

A






AD-
ususacg(Ghd)agdTadTguuc
3291
VPusdGsugdAcdGaacadTadCudCc
3471
UUUUACGGAGUAUGUUCGUCAC
2380


954241.1
gucacaL96

guaasasa

U






AD-
gscsaac(Ahd)uadCudTucua
3292
VPusdGsgcdAadTagaadAgdTadTg
3472
CAGCAACAUACUUUCUAUUGCC
 993


954249.1
uugccaL96

uugcsusg

A






AD-
ascsucc(Ghd)agdCadCuuaa
3293
VPusdCscadCgdTuaagdTgdCudCg
3473
UGACUCCGAGCACUUAACGUGG
2381


954257.1
cguggaL96

gaguscsa

C






AD-
gscsaau(Uhd)cadGudCucgu
3294
VPusdTscadCadAcgagdAcdTgdAa
3474
AGGCAAUUCAGUCUCGUUGUGA
2382


954264.1
ugugaaL96

uugcscsu

A






AD-
usgsccu(Uhd)cadTgdAugaa
3295
VPusdCscgdAgdTucaudCadTgdAa
3475
AAUGCCUUCAUGAUGAACUCGG
2383


954272.1
cucggaL96

ggcasusu

A






AD-
csasaca(Ghd)cudAcdAcacg
3296
VPusdGscadCadCgugudGudAgdCu
3476
GUCAACAGCUACACACGUGUGC
2384


954280.1
ugugcaL96

guugsasc

C






AD-
gsascgc(Uhd)gadCadGaacu
3297
VPusdTsucdGcdAguucdTgdTcdAg
3477
GUGACGCUGACAGAACUGCGAA
2385


954288.1
gcgaaaL96

cgucsasc

G






AD-
csusgac(Uhd)ugdTudTacga
3298
VPusdAscadTudTcguadAadCadAg
3478
UGCUGACUUGUUUACGAAAUGU
2386


954296.1
aauguaL96

ucagscsa

C






AD-
asuscac(Ahd)uudCgdTuugu
3299
VPusdTsucdAadAcaaadCgdAadTg
3479
UAAUCACAUUCGUUUGUUUGAA
2387


954218.1
uugaaaL96

ugaususa

C






AD-
csasguu(Ahd)cgdGgdTuaau
3300
VPusdCsagdTadAuuaadCcdCgdTa
3480
UUCAGUUACGGGUUAAUUACUG
2388


954226.1
uacugaL96

acugsasa

U






AD-
asasgcc(Chd)uudGgdAgugu
3301
VPusdAsuudTadAcacudCcdAadGg
3481
UGAAGCCCUUGGAGUGUUAAAU
2389


954234.1
uaaauaL96

gcuuscsa

A






AD-
uscsuga(Uhd)uudCcdCaguc
3302
VPusdCsagdTudGacugdGgdAadAu
3482
GUUCUGAUUUCCCAGUCAACUG
2390


954242.1
aacugaL96

cagasasc

A






AD-
asuscuu(Chd)aadGudCugga
3303
VPusdAsacdAudTccagdAcdTudGa
3483
ACAUCUUCAAGUCUGGAAUGUU
1004


954250.1
auguuaL96

agausgsu

C






AD-
asuscca(Ghd)gcdAadTucag
3304
VPusdCsgadGadCugaadTudGcdCu
3484
UCAUCCAGGCAAUUCAGUCUCG
2391


954258.1
ucucgaL96

ggausgsa

U






AD-
asusggu(Chd)gadCadTccuu
3305
VPusdCsaadGcdAaggadTgdTcdGa
3485
GCAUGGUCGACAUCCUUGCUUG
2392


954265.1
gcuugaL96

ccausgsc

U






AD-
csusuca(Uhd)gadTgdAacuc
3306
VPusdAscudCcdGaguudCadTcdAu
3486
GCCUUCAUGAUGAACUCGGAGU
2393


954273.1
ggaguaL96

gaagsgsc

U






AD-
gsascca(Ghd)ucdGudAcuca
3307
VPusdCsaadAcdTgagudAcdGadCu
3487
UGGACCAGUCGUACUCAGUUUG
2394


954281.1
guuugaL96

ggucscsa

A






AD-
ascsgcu(Ghd)acdAgdAacug
3308
VPusdCsuudCgdCaguudCudGudCa
3488
UGACGCUGACAGAACUGCGAAG
2395


954289.1
cgaagaL96

gcguscsa

G






AD-
usgsacu(Uhd)gudTudAcgaa
3309
VPusdGsacdAudTucgudAadAcdAa
3489
GCUGACUUGUUUACGAAAUGUC
 950


954297.1
augucaL96

gucasgsc

C






AD-
usgsuuu(Ghd)aadCcdTcuug
3310
VPusdTsaudAadCaagadGgdTudCa
3490
UUUGUUUGAACCUCUUGUUAUA
 933


954219.1
uuauaaL96

aacasasa

A






AD-
uscsaga(Uhd)cadGgdTguuu
3311
VPusdCscadAudAaacadCcdTgdAu
3491
AUUCAGAUCAGGUGUUUAUUGG
2396


954227.1
auuggaL96

cugasasu

C






AD-
gscsccu(Uhd)ggdAgdTguua
3312
VPusdGsuadTudTaacadCudCcdAa
3492
AAGCCCUUGGAGUGUUAAAUAC
2397


954235.1
aauacaL96

gggcsusu

A






AD-
asasgau(Ahd)uudGudTcuuu
3313
VPusdAscgdAgdAaagadAcdAadTa
3493
UGAAGAUAUUGUUCUUUCUCGU
 919


954243.1
cucguaL96

ucuuscsa

A






AD-
uscsaag(Uhd)cudGgdAaugu
3314
VPusdCscgdGadAcauudCcdAgdAc
3494
CUUCAAGUCUGGAAUGUUCCGG
2398


954251.1
uccggaL96

uugasasg

A






AD-
uscscag(Ghd)cadAudTcagu
3315
VPusdAscgdAgdAcugadAudTgdCc
3495
CAUCCAGGCAAUUCAGUCUCGU
2399


954259.1
cucguaL96

uggasusg

Y






AD-
gsuscga(Chd)audCcdTugcu
3316
VPusdCsgadCadAgcaadGgdAudGu
3496
UGGUCGACAUCCUUGCUUGUCG
2400


954266.1
ugucgaL96

cgacscsa

C






AD-
csusgcu(Ahd)gcdTcdCaugc
3317
VPusdCsuudAadGcaugdGadGcdTa
3497
GCCUGCUAGCUCCAUGCUUAAG
2401


954274.1
uuaagaL96

gcagsgsc

C






AD-
ascscag(Uhd)cgdTadCucag
3318
VPusdTscadAadCugagdTadCgdAc
3498
GGACCAGUCGUACUCAGUUUGA
2402


954282.1
uuugaaL96

ugguscsc

A






AD-
gsasaag(Ghd)agdAadAguca
3319
VPusdCsggdAcdTgacudTudCudCc
3499
AGGAAAGGAGAAAGUCAGUCCG
2403


954290.1
guccgaL96

uuucscsu

G






AD-
usasacg(Uhd)aadCudCuuuc
3320
VPusdGscadTadGaaagdAgdTudAc
3500
UUUAACGUAACUCUUUCUAUGC
 982


954298.1
uaugcaL96

guuasasa

C






AD-
gsusuug(Ahd)acdCudCuugu
3321
VPusdTsuadTadAcaagdAgdGudTc
3501
UUGUUUGAACCUCUUGUUAUAA
 929


954220.1
uauaaaL96

aaacsasa

A






AD-
ususggc(Uhd)uudGudAuuga
3322
VPusdCsugdTudTcaaudAcdAadAg
3502
UAUUGGCUUUGUAUUGAAACAG
2404


954228.1
aacagaL96

ccaasusa

U






AD-
usasgac(Ahd)ugdCudTuuac
3323
VPusdAscudCcdGuaaadAgdCadTg
3503
GGUAGACAUGCUUUUACGGAGU
2405


954236.1
ggaguaL96

ucuascsc

A






AD-
gsasuau(Uhd)gudTcdTuucu
3324
VPusdAsuadCgdAgaaadGadAcdAa
3504
AAGAUAUUGUUCUUUCUCGUAU
 999


954244.1
cguauaL96

uaucsusu

U






AD-
csasagu(Chd)ugdGadAuguu
3325
VPusdTsccdGgdAacaudTcdCadGa
3505
UUCAAGUCUGGAAUGUUCCGGA
2406


954252.1
ccggaaL96

cuugsasa

G






AD-
cscsagg(Chd)aadTudCaguc
3326
VPusdAsacdGadGacugdAadTudGc
3506
AUCCAGGCAAUUCAGUCUCGUU
2407


954260.1
ucguuaL96

cuggsasu

G






AD-
csasugc(Ahd)agdAcdTcacu
3327
VPusdGsacdTadAgugadGudCudTg
3507
ACCAUGCAAGACUCACUUAGUC
1008


954267.1
uagucaL96

caugsgsu

C






AD-
usgscua(Ghd)cudCcdAugcu
3328
VPusdGscudTadAgcaudGgdAgdCu
3508
CCUGCUAGCUCCAUGCUUAAGC
2408


954275.1
uaagcaL96

agcasgsg

C






AD-
cscsagu(Chd)gudAcdTcagu
3329
VPusdTsucdAadAcugadGudAcdGa
3509
GACCAGUCGUACUCAGUUUGAA
 958


954283.1
uugaaaL96

cuggsusc

G






AD-
asgsaac(Uhd)ucdAgdAcccu
3330
VPusdGsgadTudAgggudCudGadAg
3510
GUAGAACUUCAGACCCUAAUCC
2409


954291.1
aauccaL96

uucusasc

U






AD-
uscsuau(Ghd)ccdCgdTguaa
3331
VPusdAsuadCudTuacadCgdGgdCa
3511
UUUCUAUGCCCGUGUAAAGUAU
2410


954299.1
aguauaL96

uagasasa

G






AD-
ususuga(Ahd)ccdTcdTuguu
3332
VPusdTsuudAudAacaadGadGgdTu
3512
UGUUUGAACCUCUUGUUAUAAA
 928


954221.1
auaaaaL96

caaascsa

A






AD-
ususaug(Ahd)acdGcdTauca
3333
VPusdTsugdAadTgauadGcdGudTc
3513
UCUUAUGAACGCUAUCAUUCAA
2411


954229.1
uucaaaL96

auaasgsa

A






AD-
ascsaug(Chd)uudTudAcgga
3334
VPusdCsaudAcdTccgudAadAadGc
3514
AGACAUGCUUUUACGGAGUAUG
2412


954237.1
guaugaL96

auguscsu

U






AD-
ususguu(Chd)uudTcdTcgua
3335
VPusdCsugdAadTacgadGadAadGa
3515
UAUUGUUCUUUCUCGUAUUCAG
 916


954245.1
uucagaL96

acaasusa

G






AD-
asgscac(Ahd)aadGudTacuu
3336
VPusdGsgadCudAaguadAcdTudTg
3516
CCAGCACAAAGUUACUUAGUCC
2413


954253.1
aguccaL96

ugcusgsg

C






AD-
csasggc(Ahd)audTcdAgucu
3337
VPusdCsaadCgdAgacudGadAudTg
3517
UCCAGGCAAUUCAGUCUCGUUG
2414


954261.1
cguugaL96

ccugsgsa

U






AD-
asusgca(Ahd)gadCudCacuu
3338
VPusdGsgadCudAagugdAgdTcdTu
3518
CCAUGCAAGACUCACUUAGUCC
2415


954268.1
aguccaL96

gcausgsg

C






AD-
ascsugg(Ahd)gcdAadGuuga
3339
VPusdAsucdAudTcaacdTudGcdTc
3519
CUACUGGAGCAAGUUGAAUGAU
2416


954276.1
augauaL96

cagusasg

C






AD-
csasguc(Ghd)uadCudCaguu
3340
VPusdCsuudCadAacugdAgdTadCg
3520
ACCAGUCGUACUCAGUUUGAAG
 926


954284.1
ugaagaL96

acugsgsu

A






AD-
uscsaug(Ahd)acdAadAguca
3341
VPusdTsccdGadTgacudTudGudTc
3521
CAUCAUGAACAAAGUCAUCGGA
2417


954292.1
ucggaaL96

augasusg

G






AD-
csusaug(Chd)ccdGudGuaaa
3342
VPusdCsaudAcdTuuacdAcdGgdGc
3522
UUCUAUGCCCGUGUAAAGUAUG
2418


954300.1
guaugaL96

auagsasa

U






AD-
asasgcu(Uhd)uadAadAcagu
3343
VPusdCsgudGudAcugudTudTadAa
3523
AAAAGCUUUAAAACAGUACACG
2419


954222.1
acacgaL96

gcuususu

A






AD-
asascgc(Uhd)audCadTucaa
3344
VPusdCsugdTudTugaadTgdAudAg
3524
UGAACGCUAUCAUUCAAAACAG
2420


954230.1
aacagaL96

cguuscsa

A






AD-
csusuuu(Ahd)cgdGadGuaug
3345
VPusdAscgdAadCauacdTcdCgdTa
3525
UGCUUUUACGGAGUAUGUUCGU
2421


954238.1
uucguaL96

aaagscsa

C






AD-
usgsuuc(Uhd)uudCudCguau
3346
VPusdCscudGadAuacgdAgdAadAg
3526
AUUGUUCUUUCUCGUAUUCAGG
 931


954246.1
ucaggaL96

aacasasu

A






AD-
asgsagg(Ahd)ggdAudTcuga
3347
VPusdCscadAgdTcagadAudCcdTc
3527
GAAGAGGAGGAUUCUGACUUGG
2422


954254.1
cuuggaL96

cucususc

C






AD-
asgsgca(Ahd)uudCadGucuc
3348
VPusdAscadAcdGagacdTgdAadTu
3528
CCAGGCAAUUCAGUCUCGUUGU
2423


954262.1
guuguaL96

gccusgsg

G






AD-
csascug(Ghd)aadAcdAguga
3349
VPusdCsggdAcdTcacudGudTudCc
3529
GUCACUGGAAACAGUGAGUCCG
2424


954269.1
guccgaL96

agugsasc

G






AD-
usgsuca(Ahd)cadGcdTacac
3350
VPusdCsacdGudGuguadGcdTgdTu
3530
CUUGUCAACAGCUACACACGUG
2425


954277.1
acgugaL96

gacasasg

U






AD-
asasgcu(Ghd)agdCadTuauc
3351
VPusdCscudCudGauaadTgdCudCa
3531
GGAAGCUGAGCAUUAUCAGAGG
2426


954285.1
agaggaL96

gcuuscsc

G






AD-
csgsgcu(Ghd)cudGadCuugu
3352
VPusdCsgudAadAcaagdTcdAgdCa
3532
ACCGGCUGCUGACUUGUUUACG
2427


954293.1
uuacgaL96

gccgsgsu

A






AD-
cscsgcu(Ghd)acdAudTuccg
3353
VPusdTsacdAadCggaadAudGudCa
3533
ACCCGCUGACAUUUCCGUUGUA
2428


954301.1
uuguaaL96

gcggsgsu

C






AD-
asgscug(Ghd)uudCadGuuac
3354
VPusdAsacdCcdGuaacdTgdAadCc
3534
GCAGCUGGUUCAGUUACGGGUU
2429


954223.1
ggguuaL96

agcusgsc

A






AD-
gsusgga(Ahd)gcdGadCuguc
3355
VPusdGsucdGadGacagdTcdGcdTu
3535
AAGUGGAAGCGACUGUCUCGAC
2430


954231.1
ucgacaL96

ccacsusu

A






AD-
ususuua(Chd)ggdAgdTaugu
3356
VPusdGsacdGadAcauadCudCcdGu
3536
GCUUUUACGGAGUAUGUUCGUC
2431


954239.1
ucgucaL96

aaaasgsc

A






AD-
asusuuu(Chd)aadGgdTuucu
3357
VPusdGsuadAudAgaaadCcdTudGa
3537
ACAUUUUCAAGGUUUCUAUUAC
 943


954247.1
auuacaL96

aaausgsu

A






AD-
csasaua(Ghd)agdAadAuagu
3358
VPusdTsucdGudAcuaudTudCudCu
3538
UGCAAUAGAGAAAUAGUACGAA
2432


954255.1
acgaaaL96

auugscsa

G






AD-
gsgscaa(Uhd)ucdAgdTcucg
3359
VPusdCsacdAadCgagadCudGadAu
3539
CAGGCAAUUCAGUCUCGUUGUG
2433


954263.1
uugugaL96

ugccsusg

A






AD-
asgscug(Ghd)ugdAadTcgga
3360
VPusdAsggdAadTccgadTudCadCc
3540
AGAGCUGGUGAAUCGGAUUCCU
2434


954270.1
uuccuaL96

agcuscsu

G






AD-
gsuscaa(Chd)agdCudAcaca
3361
VPusdAscadCgdTgugudAgdCudGu
3541
UUGUCAACAGCUACACACGUGU
2435


954278.1
cguguaL96

ugacsasa

G






AD-
ususgag(Chd)ugdAudGuaug
3362
VPusdCsgudCadCauacdAudCadGc
3542
GUUUGAGCUGAUGUAUGUGACG
2436


954286.1
ugacgaL96

ucaasasc

C






AD-
gsgscug(Chd)ugdAcdTuguu
3363
VPusdTscgdTadAacaadGudCadGc
3543
CCGGCUGCUGACUUGUUUACGA
2437


954294.1
uacgaaL96

agccsgsg

A






AD-
gsascug(Uhd)cadTgdTggcu
3364
VPusdAsacdCadAgccadCadTgdAc
3544
GCGACUGUCAUGUGGCUUGGUU
3556


954302.1
ugguuaL96

agucsgsc

U






AD-
gsusuca(Ghd)uudAcdGgguu
3365
VPusdTsaadTudAacccdGudAadCu
3545
UGGUUCAGUUACGGGUUAAUUA
 957


954224.1
aauuaaL96

gaacscsa

C






AD-
gsascug(Uhd)cudCgdAcaga
3366
VPusdAsgcdTadTcugudCgdAgdAc
3546
GCGACUGUCUCGACAGAUAGCU
2438


954232.1
uagcuaL96

agucsgsc

G






AD-
ususuac(Ghd)gadGudAuguu
3367
VPusdTsgadCgdAacaudAcdTcdCg
3547
CUUUUACGGAGUAUGUUCGUCA
2439


954240.1
cgucaaL96

uaaasasg

C






AD-
asasggu(Uhd)ucdTadTuaca
3368
VPusdCscadGudTguaadTadGadAa
3548
UCAAGGUUUCUAUUACAACUGG
2440


954248.1
acuggaL96

ccuusgsa

U






AD-
gsascuc(Chd)gadGcdAcuua
3369
VPusdCsacdGudTaagudGcdTcdGg
3549
AUGACUCCGAGCACUUAACGUG
2441


954256.1
acgugaL96

agucsasu

G






AD-
gscsugg(Uhd)gadAudCggau
3370
VPusdCsagdGadAuccgdAudTcdAc
3550
GAGCUGGUGAAUCGGAUUCCUG
2442


954271.1
uccugaL96

cagcsusc

C






AD-
uscsaac(Ahd)gcdTadCacac
3371
VPusdCsacdAcdGugugdTadGcdTg
3551
UGUCAACAGCUACACACGUGUG
2443


954279.1
gugugaL96

uugascsa

C






AD-
gsasgcu(Ghd)audGudAugug
3372
VPusdAsgcdGudCacaudAcdAudCa
3552
UUGAGCUGAUGUAUGUGACGCU
2444


954287.1
acgcuaL96

gcucsasa

G






AD-
csusgcu(Ghd)acdTudGuuua
3373
VPusdTsuudCgdTaaacdAadGudCa
3553
GGCUGCUGACUUGUUUACGAAA
938


954295.1
cgaaaaL96

gcagscsc

U
















TABLE 17







Modified Sense and Antisense Strand Sequences of Huntingtin (HTT) dsRNA Agents















SEQ

SEQ

SEQ


Duplex

ID

ID
mRNA Target
ID


ID
Sense Sequence 5′ to 3′
NO:
Antisense Sequence 5′ to 3′
NO:
Sequence 5′ to 3′
NO:





AD-
cscsgcu(Chd)AfgGfUfUfcu
3557
VPusUfsaaaAfgCfAfgaacCfuGfa
3644
GGCCGCUCAGGUUCUGC
3731


1019439.1
gcuuuusasa

gcggscsc

UUUUAC






AD-
csuscag(Ghd)UfuCfUfGfcu
3558
VPusAfsgguAfaAfAfgcagAfaCfc
3645
CGCUCAGGUUCUGCUUU
3732


1019442.1
uuuaccsusa

ugagscsg

UACCUG






AD-
gscscgc(Uhd)CfaGfGfUfuc
3559
VPusAfsaaaGfcAfGfaaccUfgAfg
3646
CGGCCGCUCAGGUUCUG
3733


1019438.1
ugcuuususa

cggcscsg

CUUUUA






AD-
asasagc(Uhd)GfaUfGfAfag
3560
VPusCfsgaag(G2p)ccuucaUfcAf
3647
GAAAAGCUGAUGAAGGC
3734


1019408.1
gccuucgaL96

gcuuususc

CUUCGA






AD-
uscsccu(Chd)AfaGfUfCfcu
3561
VPusUfsgcug(G2p)aaggacUfuGf
3648
AGUCCCUCAAGUCCUUC
3735


1019426.1
uccagcaaL96

agggascsu

CAGCAG






AD-
csgscuc(Ahd)GfgUfUfCfug
3562
VPusGfsuaaAfaGfCfagaaCfcUfg
3649
GCCGCUCAGGUUCUGCU
3736


1019440.1
cuuuuascsa

agcgsgsc

UUUACC






AD-
csusgau(Ghd)AfaGfGfCfcu
3563
VPusGfsacuc(G2p)aaggccUfuCf
3650
AGCUGAUGAAGGCCUUC
3737


1019410.1
ucgagucaL96

aucagscsu

GAGUCC






AD-
ascsccu(Ghd)GfaAfAfAfgc
3564
VPusUfsucau(C2p)agcuuuUfcCf
3651
CGACCCUGGAAAAGCUG
3738


1019405.1
ugaugaaaL96

aggguscsg

AUGAAG






AD-
csgsagu(Chd)CfcUfCfAfag
3565
VPusGfsgaag(G2p)acuugaGfgGf
3652
UUCGAGUCCCUCAAGUC
3739


1019422.1
uccuuccaL96

acucgsasa

CUUCCA






AD-
usgsgaa(Ahd)AfgCfUfGfau
3566
VPusGfsgccu(Tgn)caucagCfuUf
3653
CCUGGAAAAGCUGAUGA
3740


1019407.1
gaaggccaL96

uuccasgsg

AGGCCU






AD-
cscsuuc(Ghd)AfgUfCfCfcu
3567
VPusGfsgacu(Tgn)gagggaCfuCf
3654
GGCCUUCGAGUCCCUCA
3741


1019418.1
caaguccaL96

gaaggscsc

AGUCCU






AD-
ascsggc(Chd)GfcUfCfAfgg
3568
VPusAfsgcaGfaAfCfcugaGfcGfg
3655
GGACGGCCGCUCAGGUU
3742


1019436.1
uucugcsusa

ccguscsc

CUGCUU






AD-
csusgga(Ahd)AfaGfCfUfga
3569
VPusGfsccuu(C2p)aucagcUfuUf
3656
CCCUGGAAAAGCUGAUG
3743


1019406.1
ugaaggcaL96

uccagsgsg

AAGGCC






AD-
gscscuu(Chd)GfaGfUfCfcc
3570
VPusGfsacuu(G2p)agggacUfcGf
3657
AGGCCUUCGAGUCCCUC
3744


1019417.1
ucaagucaL96

aaggcscsu

AAGUCC






AD-
gscscgc(Uhd)CfaGfGfUfuc
3571
VPusAfsaaag(C2p)agaaccUfgAf
3658
CGGCCGCUCAGGUUCUG
3733


1019372.1
ugcuuuuaL96

gcggcscsg

CUUUUA






AD-
gscsuca(Ghd)GfuUfCfUfgc
3572
VPusGfsguaa(Agn)agcagaAfcCf
3659
CCGCUCAGGUUCUGCUU
3745


1019375.1


ugagcsgsg

UUACCU






AD-
csasggu(Uhd)CfuGfCfUfuu
3573
VPusGfscagGfuAfAfaagcAfgAfa
3660
CUCAGGUUCUGCUUUUA
3746


1019444.1
uaccugscsa

ccugsasg

CCUGCG






AD-
escsaga(Ghd)CfcCfCfAfuu
3574
VPusGfsgcaAfuGfAfauggGfgCfu
3661
GCCCAGAGCCCCAUUCA
3747


1019448.1
cauugcscsa

cuggsgsc

UUGCCC






AD-
uscscaa(Ghd)AfuGfGfAfcg
3575
VPusGfsagcg(G2p)ccguccAfuCf
3662
GGUCCAAGAUGGACGGC
3748


1019365.1
gccgcucaL96

uuggascsc

CGCUCA






AD-
csgscuc(Ahd)GfgUfUfCfug
3576
VPusGfsuaaa(Agn)gcagaaCfcUf
3663
GCCGCUCAGGUUCUGCU
3736


1019374.1
cuuuuacaL96

gagcgsgsc

UUUACC






AD-
gscsgac(Chd)CfuGfGfAfaa
3577
VPusAfsucag(C2p)uuuuccAfgGf
3664
UGGCGACCCUGGAAAAG
3749


1019402.1
agcugauaL96

gucgcscsa

CUGAUG






AD-
gscsuca(Ghd)GfuUfCfUfgc
3578
VPusGfsguaAfaAfGfcagaAfcCfu
3665
CCGCUCAGGUUCUGCUU
3745


1019441.1
uuuuacscsa

gagcsgsg

UUACCU






AD-
cscsaug(Ghd)CfgAfCfCfcu
3579
VPusCfsuuuu(C2p)caggguCfgCf
3666
CGCCAUGGCGACCCUGG
3750


1019399.1
ggaaaagaL96

cauggscsg

AAAAGC






AD-
csasggu(Uhd)CfuGfCfUfuu
3580
VPusGfscagg(Tgn)aaaagcAfgAf
3667
CUCAGGUUCUGCUUUUA
3746


1019378.1
uaccugcaL96

accugsasg

CCUGCG






AD-
csusucg(Ahd)GfuCfCfCfuc
3581
VPusAfsggac(Tgn)ugagggAfcUf
3668
GCCUUCGAGUCCCUCAA
3751


1019419.1
aaguccuaL96

cgaagsgsc

GUCCUU






AD-
gsasguc(Chd)CfuCfAfAfgu
3582
VPusUfsggaa(G2p)gacuugAfgGf
3669
UCGAGUCCCUCAAGUCC
3752


1019423.1
ccuuccaaL96

gacucsgsa

UUCCAG






AD-
csgsgcc(Ghd)CfuCfAfGfgu
3583
VPusAfsagcAfgAfAfccugAfgCfg
3670
GACGGCCGCUCAGGUUC
3753


1019437.1
ucugcususa

gccgsusc

UGCUUU






AD-
csuscag(Ghd)UfuCfUfGfcu
3584
VPusAfsggua(Agn)aagcagAfaCf
3671
CGCUCAGGUUCUGCUUU
3732


1019376.1
uuuaccuaL96

cugagscsg

UACCUG






AD-
cscsgcu(Chd)AfgGfUfUfcu
3585
VPusUfsaaaa(G2p)cagaacCfuGf
3672
GGCCGCUCAGGUUCUGC
3731


1019373.1
gcuuuuaaL96

agcggscsc

UUUUAC






AD-
gsgsacg(Ghd)CfcGfCfUfca
3586
VPusCfsagaAfcCfUfgagcGfgCfc
3673
AUGGACGGCCGCUCAGG
3754


1019435.1
gguucusgsa

guccsasu

UUCUGC






AD-
usgsaug(Ahd)AfgGfCfCfuu
3587
VPusGfsgacu(C2p)gaaggcCfuUf
3674
GCUGAUGAAGGCCUUCG
3755


1019411.1
cgaguccaL96

caucasgsc

AGUCCC






AD-
usgsgac(Ghd)GfcCfGfCfuc
3588
VPusAfsgaaCfcUfGfagcgGfcCfg
3675
GAUGGACGGCCGCUCAG
3756


1019434.1
agguucsusa

uccasusc

GUUCUG






AD-
uscsagg(Uhd)UfcUfGfCfuu
3589
VPusCfsaggu(Agn)aaagcaGfaAf
3676
GCUCAGGUUCUGCUUUU
3757


1019377.1
uuaccugaL96

ccugasgsc

ACCUGC






AD-
gsasuga(Ahd)GfgCfCfUfuc
3590
VPusGfsggac(Tgn)cgaaggCfcUf
3677
CUGAUGAAGGCCUUCGA
3758


1019412.1
gagucccaL96

ucaucsasg

GUCCCU






AD-
csgsacc(Chd)UfgGfAfAfaa
3591
VPusCfsauca(G2p)cuuuucCfaGf
3678
GGCGACCCUGGAAAAGC
3759


1019403.1
gcugaugaL96

ggucgscsc

UGAUGA






AD-
usgsgac(Ghd)GfcCfGfCfuc
3592
VPusAfsgaac(C2p)ugagcgGfcCf
3679
GAUGGACGGCCGCUCAG
3756


1019368.1
agguucuaL96

guccasusc

GUUCUG






AD-
gsasccc(Uhd)GfgAfAfAfag
3593
VPusUfscauc(Agn)gcuuuuCfcAf
3680
GCGACCCUGGAAAAGCU
3760


1019404.1
cugaugaaL96

gggucsgsc

GAUGAA






AD-
asasggc(Chd)UfuCfGfAfgu
3594
VPusUfsugag(G2p)gacucgAfaGf
3681
UGAAGGCCUUCGAGUCC
3761


1019415.1
cccucaaaL96

gccuuscsa

CUCAAG






AD-
uscsgag(Uhd)CfcCfUfCfaa
3595
VPusGfsaagg(Agn)cuugagGfgAf
3682
CUUCGAGUCCCUCAAGU
3762


1019421.1
guccuucaL96

cucgasasg

CCUUCC






AD-
asusggc(Ghd)AfcCfCfUfgg
3596
VPusAfsgcuu(Tgn)uccaggGfuCf
3683
CCAUGGCGACCCUGGAA
3763


1019400.1
aaaagcuaL96

gccausgsg

AAGCUG






AD-
cscsauu(Chd)AfuUfGfCfcc
3597
VPusAfsgcaCfcGfGfggcaAfuGfa
3684
CCCCAUUCAUUGCCCCG
3764


1019450.1
cggugcsusa

auggsgsg

GUGCUG






AD-
ususcga(Ghd)UfcCfCfUfca
3598
VPusAfsagga(C2p)uugaggGfaCf
3685
CCUUCGAGUCCCUCAAG
3765


1019420.1
aguccuuaL96

ucgaasgsg

UCCUUC






AD-
gsascgg(Ghd)UfcCfAfAfga
3599
VPusCfscguCfcAfUfcuugGfaCfc
3686
GGGACGGGUCCAAGAUG
3766


1019429.1
uggacgsgsa

cgucscsc

GACGGC






AD-
uscscaa(Ghd)AfuGfGfAfcg
3600
VPusGfsagcGfgCfCfguccAfuCfu
3687
GGUCCAAGAUGGACGGC
3748


1019431.1
gccgcuscsa

uggascsc

CGCUCA






AD-
gsgsacg(Ghd)GfuCfCfAfag
3601
VPusCfsgucCfaUfCfuuggAfcCfc
3688
CGGGACGGGUCCAAGAU
3767


1019428.1
auggacsgsa

guccscsg

GGACGG






AD-
ascsggg(Uhd)CfcAfAfGfau
3602
VPusGfsccgu(C2p)caucuuGfgAf
3689
GGACGGGUCCAAGAUGG
3768


1019364.1
ggacggcaL96

cccguscsc

ACGGCC






AD-
asusgaa(Ghd)GfcCfUfUfcg
3603
VPusAfsggga(C2p)ucgaagGfcCf
3690
UGAUGAAGGCCUUCGAG
3769


1019413.1
agucccuaL96

uucauscsa

UCCCUC






AD-
cscsucc(Ghd)GfgGfAfCfug
3604
VPusGfsgcac(G2p)gcagucCfcCf
3691
GGCCUCCGGGGACUGCC
3770


1019394.1
ccgugccaL96

ggaggscsc

GUGCCG






AD-
gscscau(Ghd)GfcGfAfCfcc
3605
VPusUfsuuuc(C2p)agggucGfcCf
3692
CCGCCAUGGCGACCCUG
3771


1019398.1
uggaaaaaL96

auggcsgsg

GAAAAG






AD-
asasgau(Ghd)GfaCfGfGfcc
3606
VPusCfscuga(G2p)cggccgUfcCf
3693
CCAAGAUGGACGGCCGC
3772


1019366.1
gcucaggaL96

aucuusgsg

UCAGGU






AD-
asasgau(Ghd)GfaCfGfGfcc
3607
VPusCfscugAfgCfGfgccgUfcCfa
3694
CCAAGAUGGACGGCCGC
3772


1019432.1
gcucagsgsa

ucuusgsg

UCAGGU






AD-
ususcug(Chd)UfuUfUfAfcc
3608
VPusGfsgccg(C2p)agguaaAfaGf
3695
GGUUCUGCUUUUACCUG
3773


1019380.1
ugcggccaL96

cagaascsc

CGGCCC






AD-
cscsaga(Ghd)CfcCfCfAfuu
3609
VPusGfsgcaa(Tgn)gaauggGfgCf
3696
GCCCAGAGCCCCAUUCA
3747


1019382.1
cauugccaL96

ucuggsgsc

UUGCCC






AD-
asgsaug(Ghd)AfcGfGfCfcg
3610
VPusAfsccuGfaGfCfggccGfuCfc
3697
CAAGAUGGACGGCCGCU
3774


1019433.1
cucaggsusa

aucususg

CAGGUU






AD-
asgsucc(Chd)UfcAfAfGfuc
3611
VPusCfsugga(Agn)ggacuuGfaGf
3698
CGAGUCCCUCAAGUCCU
3775


1019424.1
cuuccagaL96

ggacuscsg

UCCAGC






AD-
gsgsuuc(Uhd)GfcUfUfUfua
3612
VPusCfscgcAfgGfUfaaaaGfcAfg
3699
CAGGUUCUGCUUUUACC
3776


1019445.1
ccugcgsgsa

aaccsusg

UGCGGC






AD-
gsgsacg(Ghd)CfcGfCfUfca
3613
VPusCfsagaa(C2p)cugagcGfgCf
3700
AUGGACGGCCGCUCAGG
3754


1019369.1
gguucugaL96

cguccsasu

UUCUGC






AD-
gsgsccu(Uhd)CfgAfGfUfcc
3614
VPusAfscuug(Agn)gggacuCfgAf
3701
AAGGCCUUCGAGUCCCU
3777


1019416.1
cucaaguaL96

aggccsusu

CAAGUC






AD-
usgsaag(Ghd)CfcUfUfCfga
3615
VPusGfsaggg(Agn)cucgaaGfgCf
3702
GAUGAAGGCCUUCGAGU
3778


1019414.1
gucccucaL96

cuucasusc

CCCUCA






AD-
cscscag(Ahd)GfcCfCfCfau
3616
VPusGfscaaUfgAfAfugggGfcUfc
3703
GGCCCAGAGCCCCAUUC
3779


1019447.1
ucauugscsa

ugggscsc

AUUGCC






AD-
ascsggg(Uhd)CfcAfAfGfau
3617
VPusGfsccgUfcCfAfucuuGfgAfc
3704
GGACGGGUCCAAGAUGG
3768


1019430.1
ggacggscsa

ccguscsc

ACGGCC






AD-
csusccg(Ghd)GfgAfCfUfgc
3618
VPusCfsggca(C2p)ggcaguCfcCf
3705
GCCUCCGGGGACUGCCG
3780


1019395.1
cgugccgaL96

cggagsgsc

UGCCGG






AD-
cscsgug(Chd)CfgGfGfCfgg
3619
VPusCfsgguc(Tgn)cccgccCfgGf
3706
UGCCGUGCCGGGCGGGA
3781


1019396.1
gagaccgaL96

cacggscsa

GACCGC






AD-
gsusccc(Uhd)CfaAfGfUfcc
3620
VPusGfscugg(Agn)aggacuUfgAf
3707
GAGUCCCUCAAGUCCUU
3782


1019425.1
uuccagcaL96

gggacsusc

CCAGCA






AD-
gsascgg(Ghd)UfcCfAfAfga
3621
VPusCfscguc(C2p)aucuugGfaCf
3708
GGGACGGGUCCAAGAUG
3766


1019363.1
uggacggaL96

ccgucscsc

GACGGC






AD-
asgsaug(Ghd)AfcGfGfCfcg
3622
VPusAfsccug(Agn)gcggccGfuCf
3709
CAAGAUGGACGGCCGCU
3774


1019367.1
cucagguaL96

caucususg

CAGGUU






AD-
gsgsacg(Ghd)GfuCfCfAfag
3623
VPusCfsgucc(Agn)ucuuggAfcCf
3710
CGGGACGGGUCCAAGAU
3767


1019362.1
auggacgaL96

cguccscsg

GGACGG






AD-
gsgsuuc(Uhd)GfcUfUfUfua
3624
VPusCfscgca(G2p)guaaaaGfcAf
3711
CAGGUUCUGCUUUUACC
3776


1019379.1
ccugcggaL96

gaaccsusg

UGCGGC






AD-
ascscgc(Chd)AfuGfGfCfga
3625
VPusUfsccag(G2p)gucgccAfuGf
3712
AGACCGCCAUGGCGACC
3783


1019397.1
cccuggaaL96

gcgguscsu

CUGGAA






AD-
csgsagg(Chd)CfuCfCfGfgg
3626
VPusGfsgcag(Tgn)ccccggAfgGf
3713
CCCGAGGCCUCCGGGGA
3784


1019392.1
gacugccaL96

ccucgsgsg

CUGCCG






AD-
asasgcu(Ghd)AfuGfAfAfgg
3627
VPusUfscgaa(G2p)gccuucAfuCf
3714
AAAAGCUGAUGAAGGCC
3785


1019409.1
ccuucgaaL96

agcuususu

UUCGAG






AD-
csgsgga(Chd)GfgGfUfCfca
3628
VPusUfsccau(C2p)uuggacCfcGf
3715
GCCGGGACGGGUCCAAG
3786


1019361.1
agauggaaL96

ucccgsgsc

AUGGAC






AD-
csasgag(Chd)CfcCfAfUfuc
3629
VPusGfsggcAfaUfGfaaugGfgGfc
3716
CCCAGAGCCCCAUUCAU
3787


1019449.1
auugccscsa

ucugsgsg

UGCCCC






AD-
usgscug(Ahd)GfcGfGfCfgc
3630
VPusAfscucg(C2p)ggcgccGfcUf
3717
GGUGCUGAGCGGCGCCG
3788


1019385.1
cgcgaguaL96

cagcascsc

CGAGUC






AD-
csgsgga(Chd)GfgGfUfCfca
3631
VPusUfsccaUfcUfUfggacCfcGfu
3718
GCCGGGACGGGUCCAAG
3786


1019427.1
agauggsasa

cccgsgsc

AUGGAC






AD-
cscscga(Ghd)GfcCfUfCfcg
3632
VPusCfsaguc(C2p)ccggagGfcCf
3719
GGCCCGAGGCCUCCGGG
3789


1019390.1
gggacugaL96

ucgggscsc

GACUGC






AD-
csasgag(Chd)CfcCfAfUfuc
3633
VPusGfsggca(Agn)ugaaugGfgGf
3720
CCCAGAGCCCCAUUCAU
3787


1019383.1
auugcccaL96

cucugsgsg

UGCCCC






AD-
usgsgcg(Ahd)CfcCfUfGfga
3634
VPusCfsagcu(Tgn)uuccagGfgUf
3721
CAUGGCGACCCUGGAAA
3790


1019401.1
aaagcugaL96

cgccasusg

AGCUGA






AD-
gsasggc(Chd)UfcCfGfGfgg
3635
VPusCfsggca(G2p)uccccgGfaGf
3722
CCGAGGCCUCCGGGGAC
3791


1019393.1
acugccgaL96

gccucsgsg

UGCCGU






AD-
ascsggc(Chd)GfcUfCfAfgg
3636
VPusAfsgcag(Agn)accugaGfcGf
3723
GGACGGCCGCUCAGGUU
3742


1019370.1
uucugcuaL96

gccguscsc

CUGCUU






AD-
cscsgag(Ghd)CfcUfCfCfgg
3637
VPusGfscagu(C2p)cccggaGfgCf
3724
GCCCGAGGCCUCCGGGG
3792


1019391.1
ggacugcaL96

cucggsgsc

ACUGCC






AD-
ususcug(Chd)UfuUfUfAfcc
3638
VPusGfsgccGfcAfGfguaaAfaGfc
3725
GGUUCUGCUUUUACCUG
3773


1019446.1
ugcggcscsa

agaascsc

CGGCCC






AD-
csgsgcc(Ghd)CfuCfAfGfgu
3639
VPusAfsagca(G2p)aaccugAfgCf
3726
GACGGCCGCUCAGGUUC
3753


1019371.1
ucugcuuaL96

ggccgsusc

UGCUUU






AD-
gscsuga(Ghd)CfgGfCfGfcc
3640
VPusGfsacuc(G2p)cggcgcCfgCf
3727
GUGCUGAGCGGCGCCGC
3793


1019386.1
gcgagucaL96

ucagcsasc

GAGUCG






AD-
gscsccg(Ahd)GfgCfCfUfcc
3641
VPusAfsgucc(C2p)cggaggCfcUf
3728
CGGCCCGAGGCCUCCGG
3794


1019389.1
ggggacuaL96

cgggcscsg

GGACUG






AD-
gsasguc(Ghd)GfcCfCfGfag
3642
VPusCfsggag(G2p)ccucggGfcCf
3729
GCGAGUCGGCCCGAGGC
3795


1019387.1
gccuccgaL96

gacucsgsc

CUCCGG






AD-
cscscag(Ahd)GfcCfCfCfau
3643
VPusGfscaau(G2p)aaugggGfcUf
3730
GGCCCAGAGCCCCAUUC
3779


1019381.1
ucauugcaL96

cugggscsc

AUUGCC
















TABLE 18







Unmodified Sense and Antisense Strand Sequences of Huntingtin (HTT) dsRNA Agents















SEQ


SEQ




Sense Sequence
ID
Range in
Antisense Sequence
ID
Range in


Duplex ID
5′ to 3′
NO:
NM_002111.8
5′ to 3′
NO:
NM_002111.8





AD-1019439.1
CCGCUCAGGUUCUGCUUUUAA
3796
29-49
UUAAAAGCAGAACCUGAGCGGCC
3861
27-49





AD-1019442.1
CUCAGGUUCUGCUUUUACCUA
3797
32-52
UAGGUAAAAGCAGAACCUGAGCG
3862
30-52





AD-1019438.1
GCCGCUCAGGUUCUGCUUUUA
3798
28-48
UAAAAGCAGAACCUGAGCGGCCG
3863
26-48





AD-1019408.1
AAAGCUGAUGAAGGCCUUCGA
3799
160-180
UCGAAGGCCUUCAUCAGCUUUUC
3864
158-180





AD-1019426.1
UCCCUCAAGUCCUUCCAGCAA
3800
182-202
UUGCUGGAAGGACUUGAGGGACU
3865
180-202





AD-1019440.1
CGCUCAGGUUCUGCUUUUACA
3801
30-50
UGUAAAAGCAGAACCUGAGCGGC
3866
28-50





AD-1019410.1
CUGAUGAAGGCCUUCGAGUCA
3802
164-184
UGACUCGAAGGCCUUCAUCAGCU
3867
162-184





AD-1019405.1
ACCCUGGAAAAGCUGAUGAAA
3803
152-172
UUUCAUCAGCUUUUCCAGGGUCG
3868
150-172





AD-1019422.1
CGAGUCCCUCAAGUCCUUCCA
3804
178-198
UGGAAGGACUUGAGGGACUCGAA
3869
176-198





AD-1019407.1
UGGAAAAGCUGAUGAAGGCCA
3805
156-176
UGGCCUTCAUCAGCUUUUCCAGG
3870
154-176





AD-1019418.1
CCUUCGAGUCCCUCAAGUCCA
3806
174-194
UGGACUTGAGGGACUCGAAGGCC
3871
172-194





AD-1019436.1
ACGGCCGCUCAGGUUCUGCUA
3807
25-45
UAGCAGAACCUGAGCGGCCGUCC
3872
23-45





AD-1019406.1
CUGGAAAAGCUGAUGAAGGCA
3808
155-175
UGCCUUCAUCAGCUUUUCCAGGG
3873
153-175





AD-1019417.1
GCCUUCGAGUCCCUCAAGUCA
3809
173-193
UGACUUGAGGGACUCGAAGGCCU
3874
171-193





AD-1019372.1
GCCGCUCAGGUUCUGCUUUUA
3798
28-48
UAAAAGCAGAACCUGAGCGGCCG
3863
26-48





AD-1019375.1
GCUCAGGUUCUGCUUUUACCA
3810
31-51
UGGUAAAAGCAGAACCUGAGCGG
3875
29-51





AD-1019444.1
CAGGUUCUGCUUUUACCUGCA
3811
34-54
UGCAGGUAAAAGCAGAACCUGAG
3876
32-54





AD-1019448.1
CCAGAGCCCCAUUCAUUGCCA
3812
57-77
UGGCAAUGAAUGGGGCUCUGGGC
3877
55-77





AD-1019365.1
UCCAAGAUGGACGGCCGCUCA
3813
15-35
UGAGCGGCCGUCCAUCUUGGACC
3878
13-35





AD-1019374.1
CGCUCAGGUUCUGCUUUUACA
3801
30-50
UGUAAAAGCAGAACCUGAGCGGC
3866
28-50





AD-1019402.1
GCGACCCUGGAAAAGCUGAUA
3814
149-169
UAUCAGCUUUUCCAGGGUCGCCA
3879
147-169





AD-1019441.1
GCUCAGGUUCUGCUUUUACCA
3810
31-51
UGGUAAAAGCAGAACCUGAGCGG
3875
29-51





AD-1019399.1
CCAUGGCGACCCUGGAAAAGA
3815
144-164
UCUUUUCCAGGGUCGCCAUGGCG
3880
142-164





AD-1019378.1
CAGGUUCUGCUUUUACCUGCA
3811
34-54
UGCAGGTAAAAGCAGAACCUGAG
3881
32-54





AD-1019419.1
CUUCGAGUCCCUCAAGUCCUA
3816
175-195
UAGGACTUGAGGGACUCGAAGGC
3882
173-195





AD-1019423.1
GAGUCCCUCAAGUCCUUCCAA
3817
179-199
UUGGAAGGACUUGAGGGACUCGA
3883
177-199





AD-1019437.1
CGGCCGCUCAGGUUCUGCUUA
3818
26-46
UAAGCAGAACCUGAGCGGCCGUC
3884
24-46





AD-1019376.1
CUCAGGUUCUGCUUUUACCUA
3797
32-52
UAGGUAAAAGCAGAACCUGAGCG
3862
30-52





AD-1019373.1
CCGCUCAGGUUCUGCUUUUAA
3796
29-49
UUAAAAGCAGAACCUGAGCGGCC
3861
27-49





AD-1019435.1
GGACGGCCGCUCAGGUUCUGA
3819
23-43
UCAGAACCUGAGCGGCCGUCCAU
3885
21-43





AD-1019411.1
UGAUGAAGGCCUUCGAGUCCA
3820
165-185
UGGACUCGAAGGCCUUCAUCAGC
3886
163-185





AD-1019434.1
UGGACGGCCGCUCAGGUUCUA
3821
22-42
UAGAACCUGAGCGGCCGUCCAUC
3887
20-42





AD-1019377.1
UCAGGUUCUGCUUUUACCUGA
3822
33-53
UCAGGUAAAAGCAGAACCUGAGC
3888
31-53





AD-1019412.1
GAUGAAGGCCUUCGAGUCCCA
3823
166-186
UGGGACTCGAAGGCCUUCAUCAG
3889
164-186





AD-1019403.1
CGACCCUGGAAAAGCUGAUGA
3824
150-170
UCAUCAGCUUUUCCAGGGUCGCC
3890
148-170





AD-1019368.1
UGGACGGCCGCUCAGGUUCUA
3821
22-42
UAGAACCUGAGCGGCCGUCCAUC
3887
20-42





AD-1019404.1
GACCCUGGAAAAGCUGAUGAA
3825
151-171
UUCAUCAGCUUUUCCAGGGUCGC
3891
149-171





AD-1019415.1
AAGGCCUUCGAGUCCCUCAAA
3826
170-190
UUUGAGGGACUCGAAGGCCUUCA
3892
168-190





AD-1019421.1
UCGAGUCCCUCAAGUCCUUCA
3827
177-197
UGAAGGACUUGAGGGACUCGAAG
3893
175-197





AD-1019400.1
AUGGCGACCCUGGAAAAGCUA
3828
146-166
UAGCUUTUCCAGGGUCGCCAUGG
3894
144-166





AD-1019450.1
CCAUUCAUUGCCCCGGUGCUA
3829
65-85
UAGCACCGGGGCAAUGAAUGGGG
3895
63-85





AD-1019420.1
UUCGAGUCCCUCAAGUCCUUA
3830
176-196
UAAGGACUUGAGGGACUCGAAGG
3896
174-196





AD-1019429.1
GACGGGUCCAAGAUGGACGGA
3831
 9-29
UCCGUCCAUCUUGGACCCGUCCC
3897
 7-29





AD-1019431.1
UCCAAGAUGGACGGCCGCUCA
3813
15-35
UGAGCGGCCGUCCAUCUUGGACC
3878
13-35





AD-1019428.1
GGACGGGUCCAAGAUGGACGA
3832
 8-29
UCGUCCAUCUUGGACCCGUCCCG
3898
 6-29





AD-1019364.1
ACGGGUCCAAGAUGGACGGCA
3833
10-30
UGCCGUCCAUCUUGGACCCGUCC
3899
10-30





AD-1019413.1
AUGAAGGCCUUCGAGUCCCUA
3834
167-187
UAGGGACUCGAAGGCCUUCAUCA
3900
165-187





AD-1019394.1
CCUCCGGGGACUGCCGUGCCA
3835
111-131
UGGCACGGCAGUCCCCGGAGGCC
3901
109-131





AD-1019398.1
GCCAUGGCGACCCUGGAAAAA
3836
143-163
UUUUUCCAGGGUCGCCAUGGCGG
3902
141-163





AD-1019366.1
AAGAUGGACGGCCGCUCAGGA
3837
18-38
UCCUGAGCGGCCGUCCAUCUUGG
3903
16-38





AD-1019432.1
AAGAUGGACGGCCGCUCAGGA
3837
18-38
UCCUGAGCGGCCGUCCAUCUUGG
3903
16-38





AD-1019380.1
UUCUGCUUUUACCUGCGGCCA
3838
38-58
UGGCCGCAGGUAAAAGCAGAACC
3904
36-58





AD-1019382.1
CCAGAGCCCCAUUCAUUGCCA
3812
57-77
UGGCAATGAAUGGGGCUCUGGGC
3905
55-77





AD-1019433.1
AGAUGGACGGCCGCUCAGGUA
3839
19-39
UACCUGAGCGGCCGUCCAUCUUG
3906
17-39





AD-1019424.1
AGUCCCUCAAGUCCUUCCAGA
3840
180-200
UCUGGAAGGACUUGAGGGACUCG
3907
178-200





AD-1019445.1
GGUUCUGCUUUUACCUGCGGA
3841
36-56
UCCGCAGGUAAAAGCAGAACCUG
3908
34-56





AD-1019369.1
GGACGGCCGCUCAGGUUCUGA
3819
23-43
UCAGAACCUGAGCGGCCGUCCAU
3885
21-43





AD-1019416.1
GGCCUUCGAGUCCCUCAAGUA
3842
172-192
UACUUGAGGGACUCGAAGGCCUU
3909
170-192





AD-1019414.1
UGAAGGCCUUCGAGUCCCUCA
3843
168-188
UGAGGGACUCGAAGGCCUUCAUC
3910
166-188





AD-1019447.1
CCCAGAGCCCCAUUCAUUGCA
3844
56-76
UGCAAUGAAUGGGGCUCUGGGCC
3911
54-76





AD-1019430.1
ACGGGUCCAAGAUGGACGGCA
3833
10-30
UGCCGUCCAUCUUGGACCCGUCC
3899
10-30





AD-1019395.1
CUCCGGGGACUGCCGUGCCGA
3845
112-132
UCGGCACGGCAGUCCCCGGAGGC
3912
110-132





AD-1019396.1
CCGUGCCGGGCGGGAGACCGA
3846
124-144
UCGGUCTCCCGCCCGGCACGGCA
3913
122-144





AD-1019425.1
GUCCCUCAAGUCCUUCCAGCA
3847
181-201
UGCUGGAAGGACUUGAGGGACUC
3914
179-201





AD-1019363.1
GACGGGUCCAAGAUGGACGGA
3831
 9-29
UCCGUCCAUCUUGGACCCGUCCC
3897
 7-29





AD-1019367.1
AGAUGGACGGCCGCUCAGGUA
3839
19-39
UACCUGAGCGGCCGUCCAUCUUG
3906
17-39





AD-1019362.1
GGACGGGUCCAAGAUGGACGA
3832
 8-28
UCGUCCAUCUUGGACCCGUCCCG
3898
 6-28





AD-1019379.1
GGUUCUGCUUUUACCUGCGGA
3841
36-56
UCCGCAGGUAAAAGCAGAACCUG
3908
34-56





AD-1019397.1
ACCGCCAUGGCGACCCUGGAA
3848
140-160
UUCCAGGGUCGCCAUGGCGGUCU
3915
138-160





AD-1019392.1
CGAGGCCUCCGGGGACUGCCA
3849
106-126
UGGCAGTCCCCGGAGGCCUCGGG
3916
104-126





AD-1019409.1
AAGCUGAUGAAGGCCUUCGAA
3850
161-181
UUCGAAGGCCUUCAUCAGCUUUU
3917
159-181





AD-1019361.1
CGGGACGGGUCCAAGAUGGAA
3851
 6-26
UUCCAUCUUGGACCCGUCCCGGC
3918
 4-26





AD-1019449.1
CAGAGCCCCAUUCAUUGCCCA
3852
58-78
UGGGCAAUGAAUGGGGCUCUGGG
3919
56-78





AD-1019385.1
UGCUGAGCGGCGCCGCGAGUA
3853
81-101
UACUCGCGGCGCCGCUCAGCACC
3920
 79-101





AD-1019427.1
CGGGACGGGUCCAAGAUGGAA
3851
 6-26
UUCCAUCUUGGACCCGUCCCGGC
3918
 4-26





AD-1019390.1
CCCGAGGCCUCCGGGGACUGA
3854
104-124
UCAGUCCCCGGAGGCCUCGGGCC
3921
102-124





AD-1019383.1
CAGAGCCCCAUUCAUUGCCCA
3852
58-78
UGGGCAAUGAAUGGGGCUCUGGG
3919
56-78





AD-1019401.1
UGGCGACCCUGGAAAAGCUGA
3855
147-167
UCAGCUTUUCCAGGGUCGCCAUG
3922
145-167





AD-1019393.1
GAGGCCUCCGGGGACUGCCGA
3856
107-127
UCGGCAGUCCCCGGAGGCCUCGG
3923
105-127





AD-1019370.1
ACGGCCGCUCAGGUUCUGCUA
3807
25-45
UAGCAGAACCUGAGCGGCCGUCC
3872
23-45





AD-1019391.1
CCGAGGCCUCCGGGGACUGCA
3857
105-125
UGCAGUCCCCGGAGGCCUCGGGC
3924
103-125





AD-1019446.1
UUCUGCUUUUACCUGCGGCCA
3838
38-58
UGGCCGCAGGUAAAAGCAGAACC
3904
36-58





AD-1019371.1
CGGCCGCUCAGGUUCUGCUUA
3818
26-46
UAAGCAGAACCUGAGCGGCCGUC
3884
24-46





AD-1019386.1
GCUGAGCGGCGCCGCGAGUCA
3858
 82-102
UGACUCGCGGCGCCGCUCAGCAC
3925
 80-102





AD-1019389.1
GCCCGAGGCCUCCGGGGACUA
3859
103-123
UAGUCCCCGGAGGCCUCGGGCCG
3926
101-123





AD-1019387.1
GAGUCGGCCCGAGGCCUCCGA
3860
 97-117
UCGGAGGCCUCGGGCCGACUCGC
3927
 95-117





AD-1019381.1
CCCAGAGCCCCAUUCAUUGCA
3844
56-76
UGCAAUGAAUGGGGCUCUGGGCC
3911
54-76
















TABLE 20







Modified Sense and Antisense Strand Sequences of Huntingtin (HTT) dsRNA Agents















SEQ

SEQ

SEQ


Duplex

ID

ID
mRNA Target
ID


ID
Sense Sequence 5′ to 3′
NO:
Antisense Sequence 5′ to 3′
NO:
Sequence 5′ to 3′
NO:





AD-
csgsgga(Chd)GfgGfUfCfca
3631
VPusUfsccaUfcUfUfggacCfcGfu
3718
GCCGGGACGGGUCCAAG
3786


1019427
agauggsasa

cccgsgsc

AUGGAC






AD-
gsgsacg(Ghd)GfuCfCfAfag
3601
VPusCfsgucCfaUfCfuuggAfcCfc
3688
CGGGACGGGUCCAAGAU
3767


1019428
auggacsgsa

guccscsg

GGACGG






AD-
gsascgg(Ghd)UfcCfAfAfga
3599
VPusCfscguCfcAfUfcuugGfaCfc
3686
GGGACGGGUCCAAGAUG
3766


1019429
uggacgsgsa

cgucscsc

GACGGC






AD-
ascsggg(Uhd)CfcAfAfGfau
3617
VPusGfsccgUfcCfAfucuuGfgAfc
3704
GGACGGGUCCAAGAUGG
3768


1019430
ggacggscsa

ccguscsc

ACGGCC






AD-
uscscaa(Ghd)AfuGfGfAfcg
3600
VPusGfsagcGfgCfCfguccAfuCfu
3687
GGUCCAAGAUGGACGGC
3748


1019431
gccgcuscsa

uggascsc

CGCUCA






AD-
asasgau(Ghd)GfaCfGfGfcc
3607
VPusCfscugAfgCfGfgccgUfcCfa
3694
CCAAGAUGGACGGCCGC
3772


1019432
gcucagsgsa

ucuusgsg

UCAGGU






AD-
asgsaug(Ghd)AfcGfGfCfcg
3610
VPusAfsccuGfaGfCfggccGfuCfc
3697
CAAGAUGGACGGCCGCU
3774


1019433
cucaggsusa

aucususg

CAGGUU






AD-
usgsgac(Ghd)GfcCfGfCfuc
3588
VPusAfsgaaCfcUfGfagcgGfcCfg
3675
GAUGGACGGCCGCUCAG
3756


1019434
agguucsusa

uccasusc

GUUCUG






AD-
gsgsacg(Ghd)CfcGfCfUfca
3586
VPusCfsagaAfcCfUfgagcGfgCfc
3673
AUGGACGGCCGCUCAGG
3754


1019435
gguucusgsa

guccsasu

UUCUGC






AD-
ascsggc(Chd)GfcUfCfAfgg
3568
VPusAfsgcaGfaAfCfcugaGfcGfg
3655
GGACGGCCGCUCAGGUU
3742


1019436
uucugcsusa

ccguscsc

CUGCUU






AD-
csgsgcc(Ghd)CfuCfAfGfgu
3583
VPusAfsagcAfgAfAfccugAfgCfg
3670
GACGGCCGCUCAGGUUC
3753


1019437
ucugcususa

gccgsusc

UGCUUU






AD-
gscscgc(Uhd)CfaGfGfUfuc
3559
VPusAfsaaaGfcAfGfaaccUfgAfg
3646
CGGCCGCUCAGGUUCUG
3733


1019438
ugcuuususa

cggcscsg

CUUUUA






AD-
cscsgcu(Chd)AfgGfUfUfcu
3557
VPusUfsaaaAfgCfAfgaacCfuGfa
3644
GGCCGCUCAGGUUCUGC
3731


1019439
gcuuuusasa

gcggscsc

UUUUAC






AD-
csgscuc(Ahd)GfgUfUfCfug
3562
VPusGfsuaaAfaGfCfagaaCfcUfg
3649
GCCGCUCAGGUUCUGCU
3736


1019440
cuuuuascsa

agcgsgsc

UUUACC






AD-
gscsuca(Ghd)GfuUfCfUfgc
3578
VPusGfsguaAfaAfGfcagaAfcCfu
3665
CCGCUCAGGUUCUGCUU
3745


1019441
uuuuacscsa

gagcsgsg

UUACCU






AD-
csuscag(Ghd)UfuCfUfGfcu
3558
VPusAfsgguAfaAfAfgcagAfaCfc
3645
CGCUCAGGUUCUGCUUU
3732


1019442
uuuaccsusa

ugagscsg

UACCUG






AD-
csasggu(Uhd)CfuGfCfUfuu
3573
VPusGfscagGfuAfAfaagcAfgAfa
3660
CUCAGGUUCUGCUUUUA
3746


1019444
uaccugscsa

ccugsasg

CCUGCG






AD-
gsgsuuc(Uhd)GfcUfUfUfua
3612
VPusCfscgcAfgGfUfaaaaGfcAfg
3699
CAGGUUCUGCUUUUACC
3776


1019445
ccugcgsgsa

aaccsusg

UGCGGC






AD-
ususcug(Chd)UfuUfUfAfcc
3638
VPusGfsgccGfcAfGfguaaAfaGfc
3725
GGUUCUGCUUUUACCUG
3773


1019446
ugcggcscsa

agaascsc

CGGCCC






AD-
cscscag(Ahd)GfcCfCfCfau
3616
VPusGfscaaUfgAfAfugggGfcUfc
3703
GGCCCAGAGCCCCAUUC
3779


1019447
ucauugscsa

ugggscsc

AUUGCC






AD-
cscsaga(Ghd)CfcCfCfAfuu
3574
VPusGfsgcaAfuGfAfauggGfgCfu
3661
GCCCAGAGCCCCAUUCA
3747


1019448
cauugcscsa

cuggsgsc

UUGCCC






AD-
csasgag(Chd)CfcCfAfUfuc
3629
VPusGfsggcAfaUfGfaaugGfgGfc
3716
CCCAGAGCCCCAUUCAU
3787


1019449
auugccscsa

ucugsgsg

UGCCCC






AD-
cscsauu(Chd)AfuUfGfCfcc
3597
VPusAfsgcaCfcGfGfggcaAfuGfa
3684
CCCCAUUCAUUGCCCCG
3764


1019450
cggugcsusa

auggsgsg

GUGCUG

















TABLE 21







Unmodified Sense and Antisense Strand Sequences of Huntingtin (HTT) dsRNA Agents















SEQ


SEQ



Duplex
Sense Sequence
ID
Range in
Antisense Sequence
ID
Range in


Name
5′ to 3′
NO:
NM_002111.8
5′ to 3′
NO:
NM_002111.8
















AD-1019427
CGGGACGGGUCCAAGAUGGAA
3851
 6-26
UUCCAUCUUGGACCCGUCCCGGC
3918
 4-26





AD-1019428
GGACGGGUCCAAGAUGGACGA
3832
 8-28
UCGUCCAUCUUGGACCCGUCCCG
3898
 6-28





AD-1019429
GACGGGUCCAAGAUGGACGGA
3831
 9-29
UCCGUCCAUCUUGGACCCGUCCC
3897
 7-29





AD-1019430
ACGGGUCCAAGAUGGACGGCA
3833
10-30
UGCCGUCCAUCUUGGACCCGUCC
3899
 8-30





AD-1019431
UCCAAGAUGGACGGCCGCUCA
3813
15-35
UGAGCGGCCGUCCAUCUUGGACC
3878
13-35





AD-1019432
AAGAUGGACGGCCGCUCAGGA
3837
18-38
UCCUGAGCGGCCGUCCAUCUUGG
3903
16-38





AD-1019433
AGAUGGACGGCCGCUCAGGUA
3839
19-39
UACCUGAGCGGCCGUCCAUCUUG
3906
17-39





AD-1019434
UGGACGGCCGCUCAGGUUCUA
3821
22-42
UAGAACCUGAGCGGCCGUCCAUC
3887
20-42





AD-1019435
GGACGGCCGCUCAGGUUCUGA
3819
23-43
UCAGAACCUGAGCGGCCGUCCAU
3885
21-43





AD-1019436
ACGGCCGCUCAGGUUCUGCUA
3807
25-45
UAGCAGAACCUGAGCGGCCGUCC
3872
23-45





AD-1019437
CGGCCGCUCAGGUUCUGCUUA
3818
26-46
UAAGCAGAACCUGAGCGGCCGUC
3884
24-46





AD-1019438
GCCGCUCAGGUUCUGCUUUUA
3798
28-48
UAAAAGCAGAACCUGAGCGGCCG
3863
26-48





AD-1019439
CCGCUCAGGUUCUGCUUUUAA
3796
29-49
UUAAAAGCAGAACCUGAGCGGCC
3861
27-49





AD-1019440
CGCUCAGGUUCUGCUUUUACA
3801
30-50
UGUAAAAGCAGAACCUGAGCGGC
3866
28-50





AD-1019441
GCUCAGGUUCUGCUUUUACCA
3810
31-51
UGGUAAAAGCAGAACCUGAGCGG
3875
29-51





AD-1019442
CUCAGGUUCUGCUUUUACCUA
3797
32-52
UAGGUAAAAGCAGAACCUGAGCG
3862
30-52





AD-1019444
CAGGUUCUGCUUUUACCUGCA
3811
34-54
UGCAGGUAAAAGCAGAACCUGAG
3876
32-54





AD-1019445
GGUUCUGCUUUUACCUGCGGA
3841
36-56
UCCGCAGGUAAAAGCAGAACCUG
3908
34-56





AD-1019446
UUCUGCUUUUACCUGCGGCCA
3838
38-58
UGGCCGCAGGUAAAAGCAGAACC
3904
36-58





AD-1019447
CCCAGAGCCCCAUUCAUUGCA
3844
56-76
UGCAAUGAAUGGGGCUCUGGGCC
3911
54-76





AD-1019448
CCAGAGCCCCAUUCAUUGCCA
3812
57-77
UGGCAAUGAAUGGGGCUCUGGGC
3877
55-77





AD-1019449
CAGAGCCCCAUUCAUUGCCCA
3852
58-78
UGGGCAAUGAAUGGGGCUCUGGG
3919
56-78





AD-1019450
CCAUUCAUUGCCCCGGUGCUA
3829
65-85
UAGCACCGGGGCAAUGAAUGGGG
3895
63-85
















TABLE 24







Modified Sense and Antisense Strand Sequences of Huntingtin (HTT) dsRNA Agents















SEQ

SEQ

SEQ




ID

ID
mRNA Target
ID


Duplex ID
Sense Sequence 5′ to 3′
NO:
Antisense Sequence 5′ to 3′
NO:
Sequence 5′ to 3′
NO:





AD-
usgscug(Ahd)GfcGfGfCfgc
3928
VPusAfscucGfcGfGfcgccGfcUfc
3968
GGUGCUGAGCGGCGCCGC
3788


1019451
cgcgagsusa

agcascsc

GAGUC






AD-
gscsuga(Ghd)CfgGfCfGfcc
3929
VPusGfsacuCfgCfGfgcgcCfgCfu
3969
GUGCUGAGCGGCGCCGCG
3793


1019452
gcgaguscsa

cagcsasc

AGUCG






AD-
gsasguc(Ghd)GfcCfCfGfag
3930
VPusCfsggaGfgCfCfucggGfcCfg
3970
GCGAGUCGGCCCGAGGCC
3795


1019453
gccuccsgsa

acucsgsc

UCCGG






AD-
asgsucg(Ghd)CfcCfGfAfgg
3931
VPusCfscggAfgGfCfcucgGfgCfc
3971
CGAGUCGGCCCGAGGCCU
4008


1019454
ccuccgsgsa

gacuscsg

CCGGG






AD-
gscsccg(Ahd)GfgCfCfUfcc
3932
VPusAfsgucCfcCfGfgaggCfcUfc
3972
CGGCCCGAGGCCUCCGGG
3794


1019455
ggggacsusa

gggcscsg

GACUG






AD-
cscscga(Ghd)GfcCfUfCfcg
3933
VPusCfsaguCfcCfCfggagGfcCfu
3973
GGCCCGAGGCCUCCGGGG
3789


1019456
gggacusgsa

cgggscsc

ACUGC






AD-
cscsgag(Ghd)CfcUfCfCfgg
3934
VPusGfscagUfcCfCfcggaGfgCfc
3974
GCCCGAGGCCUCCGGGGA
3792


1019457
ggacugscsa

ucggsgsc

CUGCC






AD-
csgsagg(Chd)CfuCfCfGfgg
3935
VPusGfsgcaGfuCfCfccggAfgGfc
3975
CCCGAGGCCUCCGGGGAC
3784


1019458
gacugcscsa

cucgsgsg

UGCCG






AD-
gsasggc(Chd)UfcCfGfGfgg
3936
VPusCfsggcAfgUfCfcccgGfaGfg
3976
CCGAGGCCUCCGGGGACU
3791


1019459
acugccsgsa

ccucsgsg

GCCGU






AD-
cscsucc(Ghd)GfgGfAfCfug
3937
VPusGfsgcaCfgGfCfagucCfcCfg
3977
GGCCUCCGGGGACUGCCG
3770


1019460
ccgugcscsa

gaggscsc

UGCCG






AD-
csusccg(Ghd)GfgAfCfUfgc
3938
VPusCfsggcAfcGfGfcaguCfcCfc
3978
GCCUCCGGGGACUGCCGU
3780


1019461
cgugccsgsa

ggagsgsc

GCCGG






AD-
cscsgug(Chd)CfgGfGfCfgg
3939
VPusCfsgguCfuCfCfcgccCfgGfc
3979
UGCCGUGCCGGGCGGGAG
3781


1019462
gagaccsgsa

acggscsa

ACCGC






AD-
ascscgc(Chd)AfuGfGfCfga
3940
VPusUfsccaGfgGfUfcgccAfuGfg
3980
AGACCGCCAUGGCGACCC
3783


1019463
cccuggsasa

cgguscsu

UGGAA






AD-
gscscau(Ghd)GfcGfAfCfcc
3941
VPusUfsuuuCfcAfGfggucGfcCfa
3981
CCGCCAUGGCGACCCUGG
3771


1019464
uggaaasasa

uggcsgsg

AAAAG






AD-
cscsaug(Ghd)CfgAfCfCfcu
3942
VPusCfsuuuUfcCfAfggguCfgCfc
3982
CGCCAUGGCGACCCUGGA
3750


1019465
ggaaaasgsa

auggscsg

AAAGC






AD-
asusggc(Ghd)AfcCfCfUfgg
3943
VPusAfsgcuUfuUfCfcaggGfuCfg
3983
CCAUGGCGACCCUGGAAA
3763


1019466
aaaagcsusa

ccausgsg

AGCUG






AD-
usgsgcg(Ahd)CfcCfUfGfga
3944
VPusCfsagcUfuUfUfccagGfgUfc
3984
CAUGGCGACCCUGGAAAA
3790


1019467
aaagcusgsa

gccasusg

GCUGA






AD-
gscsgac(Chd)CfuGfGfAfaa
3945
VPusAfsucaGfcUfUfuuccAfgGfg
3985
UGGCGACCCUGGAAAAGC
3749


1019468
agcugasusa

ucgcscsa

UGAUG






AD-
csgsacc(Chd)UfgGfAfAfaa
3946
VPusCfsaucAfgCfUfuuucCfaGfg
3986
GGCGACCCUGGAAAAGCU
3759


1019469
gcugausgsa

gucgscsc

GAUGA






AD-
gsasccc(Uhd)GfgAfAfAfag
3947
VPusUfscauCfaGfCfuuuuCfcAfg
3987
GCGACCCUGGAAAAGCUG
3760


1019470
cugaugsasa

ggucsgsc

AUGAA






AD-
ascsccu(Ghd)GfaAfAfAfgc
3948
VPusUfsucaUfcAfGfcuuuUfcCfa
3988
CGACCCUGGAAAAGCUGA
3738


1019471
ugaugasasa

ggguscsg

UGAAG






AD-
csusgga(Ahd)AfaGfCfUfga
3949
VPusGfsccuUfcAfUfcagcUfuUfu
3989
CCCUGGAAAAGCUGAUGA
3743


1019472
ugaaggscsa

ccagsgsg

AGGCC






AD-
usgsgaa(Ahd)AfgCfUfGfau
3950
VPusGfsgccUfuCfAfucagCfuUfu
3990
CCUGGAAAAGCUGAUGAA
3740


1019473
gaaggcscsa

uccasgsg

GGCCU






AD-
asasagc(Uhd)GfaUfGfAfag
3951
VPusCfsgaaGfgCfCfuucaUfcAfg
3991
GAAAAGCUGAUGAAGGCC
3734


1019474
gccuucsgsa

cuuususc

UUCGA






AD-
asasgcu(Ghd)AfuGfAfAfgg
3952
VPusUfscgaAfgGfCfcuucAfuCfa
3992
AAAAGCUGAUGAAGGCCU
3785


1019475
ccuucgsasa

gcuususu

UCGAG






AD-
csusgau(Ghd)AfaGfGfCfcu
3953
VPusGfsacuCfgAfAfggccUfuCfa
3993
AGCUGAUGAAGGCCUUCG
3737


1019476
ucgaguscsa

ucagscsu

AGUCC






AD-
usgsaug(Ahd)AfgGfCfCfuu
3954
VPusGfsgacUfcGfAfaggcCfuUfc
3994
GCUGAUGAAGGCCUUCGA
3755


1019477
cgagucscsa

aucasgsc

GUCCC






AD-
gsasuga(Ahd)GfgCfCfUfuc
3955
VPusGfsggaCfuCfGfaaggCfcUfu
3995
CUGAUGAAGGCCUUCGAG
3758


1019478
gaguccscsa

caucsasg

UCCCU






AD-
asusgaa(Ghd)GfcCfUfUfcg
3956
VPusAfsgggAfcUfCfgaagGfcCfu
3996
UGAUGAAGGCCUUCGAGU
3769


1019479
agucccsusa

ucauscsa

CCCUC






AD-
usgsaag(Ghd)CfcUfUfCfga
3957
VPusGfsaggGfaCfUfcgaaGfgCfc
3997
GAUGAAGGCCUUCGAGUC
3778


1019480
gucccuscsa

uucasusc

CCUCA






AD-
asasggc(Chd)UfuCfGfAfgu
3958
VPusUfsugaGfgGfAfcucgAfaGfg
3998
UGAAGGCCUUCGAGUCCC
3761


1019481
cccucasasa

ccuuscsa

UCAAG






AD-
gsgsccu(Uhd)CfgAfGfUfcc
3959
VPusAfscuuGfaGfGfgacuCfgAfa
3999
AAGGCCUUCGAGUCCCUC
3777


1019482
cucaagsusa

ggccsusu

AAGUC






AD-
gscscuu(Chd)GfaGfUfCfcc
3960
VPusGfsacuUfgAfGfggacUfcGfa
4000
AGGCCUUCGAGUCCCUCA
3744


1019483
ucaaguscsa

aggcscsu

AGUCC






AD-
cscsuuc(Ghd)AfgUfCfCfcu
3961
VPusGfsgacUfuGfAfgggaCfuCfg
4001
GGCCUUCGAGUCCCUCAA
3741


1019484
caagucscsa

aaggscsc

GUCCU






AD-
csusucg(Ahd)GfuCfCfCfuc
3962
VPusAfsggaCfuUfGfagggAfcUfc
4002
GCCUUCGAGUCCCUCAAG
3751


1019485
aaguccsusa

gaagsgsc

UCCUU






AD-
ususcga(Ghd)UfcCfCfUfca
3963
VPusAfsaggAfcUfUfgaggGfaCfu
4003
CCUUCGAGUCCCUCAAGU
3765


1019486
aguccususa

cgaasgsg

CCUUC






AD-
uscsgag(Uhd)CfcCfUfCfaa
3964
VPusGfsaagGfaCfUfugagGfgAfc
4004
CUUCGAGUCCCUCAAGUC
3762


1019487
guccuuscsa

ucgasasg

CUUCC






AD-
csgsagu(Chd)CfcUfCfAfag
3965
VPusGfsgaaGfgAfCfuugaGfgGfa
4005
UUCGAGUCCCUCAAGUCC
3739


1019488
uccuucscsa

cucgsasa

UUCCA






AD-
gsasguc(Chd)CfuCfAfAfgu
3966
VPusUfsggaAfgGfAfcuugAfgGfg
4006
UCGAGUCCCUCAAGUCCU
3752


1019489
ccuuccsasa

acucsgsa

UCCAG






AD-
gsusccc(Uhd)CfaAfGfUfcc
3967
VPusGfscugGfaAfGfgacuUfgAfg
4007
GAGUCCCUCAAGUCCUUC
3782


1019491
uuccagscsa

ggacsusc

CAGCA

















TABLE 25







Unmodified Sense and Antisense Strand Sequences of Huntingtin (HTT) dsRNA Agents















SEQ


SEQ



Duplex
Sense Sequence
ID
Range in
Antisense Sequence
ID
Range in


Name
5′ to 3′
NO:
NM_002111.8
5′ to 3′
NO:
NM_002111.8





AD-1019451
UGCUGAGCGGCGCCGCGAGUA
3853
 81-101
UACUCGCGGCGCCGCUCAGCACC
3920
 79-101





AD-1019452
GCUGAGCGGCGCCGCGAGUCA
3858
 82-102
UGACUCGCGGCGCCGCUCAGCAC
3925
 80-102





AD-1019453
GAGUCGGCCCGAGGCCUCCGA
3860
 97-117
UCGGAGGCCUCGGGCCGACUCGC
3927
 95-117





AD-1019454
AGUCGGCCCGAGGCCUCCGGA
4009
 98-118
UCCGGAGGCCUCGGGCCGACUCG
4010
 96-118





AD-1019455
GCCCGAGGCCUCCGGGGACUA
3859
103-123
UAGUCCCCGGAGGCCUCGGGCCG
3926
101-123





AD-1019456
CCCGAGGCCUCCGGGGACUGA
3854
104-124
UCAGUCCCCGGAGGCCUCGGGCC
3921
102-124





AD-1019457
CCGAGGCCUCCGGGGACUGCA
3857
105-125
UGCAGUCCCCGGAGGCCUCGGGC
3924
103-125





AD-1019458
CGAGGCCUCCGGGGACUGCCA
3849
106-126
UGGCAGUCCCCGGAGGCCUCGGG
4011
104-126





AD-1019459
GAGGCCUCCGGGGACUGCCGA
3856
107-127
UCGGCAGUCCCCGGAGGCCUCGG
3923
105-127





AD-1019460
CCUCCGGGGACUGCCGUGCCA
3835
111-131
UGGCACGGCAGUCCCCGGAGGCC
3901
109-131





AD-1019461
CUCCGGGGACUGCCGUGCCGA
3845
112-132
UCGGCACGGCAGUCCCCGGAGGC
3912
110-132





AD-1019462
CCGUGCCGGGCGGGAGACCGA
3846
124-144
UCGGUCUCCCGCCCGGCACGGCA
4012
122-144





AD-1019463
ACCGCCAUGGCGACCCUGGAA
3848
140-160
UUCCAGGGUCGCCAUGGCGGUCU
3915
138-160





AD-1019464
GCCAUGGCGACCCUGGAAAAA
3836
143-163
UUUUUCCAGGGUCGCCAUGGCGG
3902
141-163





AD-1019465
CCAUGGCGACCCUGGAAAAGA
3815
144-164
UCUUUUCCAGGGUCGCCAUGGCG
3880
142-164





AD-1019466
AUGGCGACCCUGGAAAAGCUA
3828
146-166
UAGCUUUUCCAGGGUCGCCAUGG
4013
144-166





AD-1019467
UGGCGACCCUGGAAAAGCUGA
3855
147-167
UCAGCUUUUCCAGGGUCGCCAUG
4014
145-167





AD-1019468
GCGACCCUGGAAAAGCUGAUA
3814
149-169
UAUCAGCUUUUCCAGGGUCGCCA
3879
147-169





AD-1019469
CGACCCUGGAAAAGCUGAUGA
3824
150-170
UCAUCAGCUUUUCCAGGGUCGCC
3890
148-170





AD-1019470
GACCCUGGAAAAGCUGAUGAA
3825
151-171
UUCAUCAGCUUUUCCAGGGUCGC
3891
149-171





AD-1019471
ACCCUGGAAAAGCUGAUGAAA
3803
152-172
UUUCAUCAGCUUUUCCAGGGUCG
3868
150-172





AD-1019472
CUGGAAAAGCUGAUGAAGGCA
3808
155-175
UGCCUUCAUCAGCUUUUCCAGGG
3873
153-175





AD-1019473
UGGAAAAGCUGAUGAAGGCCA
3805
156-176
UGGCCUUCAUCAGCUUUUCCAGG
4015
154-176





AD-1019474
AAAGCUGAUGAAGGCCUUCGA
3799
160-180
UCGAAGGCCUUCAUCAGCUUUUC
3864
158-180





AD-1019475
AAGCUGAUGAAGGCCUUCGAA
3850
161-181
UUCGAAGGCCUUCAUCAGCUUUU
3917
159-181





AD-1019476
CUGAUGAAGGCCUUCGAGUCA
3802
164-184
UGACUCGAAGGCCUUCAUCAGCU
3867
162-184





AD-1019477
UGAUGAAGGCCUUCGAGUCCA
3820
165-185
UGGACUCGAAGGCCUUCAUCAGC
3886
163-185





AD-1019478
GAUGAAGGCCUUCGAGUCCCA
3823
166-186
UGGGACUCGAAGGCCUUCAUCAG
4016
164-186





AD-1019479
AUGAAGGCCUUCGAGUCCCUA
3834
167-187
UAGGGACUCGAAGGCCUUCAUCA
3900
165-187





AD-1019480
UGAAGGCCUUCGAGUCCCUCA
3843
168-188
UGAGGGACUCGAAGGCCUUCAUC
3910
166-188





AD-1019481
AAGGCCUUCGAGUCCCUCAAA
3826
170-190
UUUGAGGGACUCGAAGGCCUUCA
3892
168-190





AD-1019482
GGCCUUCGAGUCCCUCAAGUA
3842
172-192
UACUUGAGGGACUCGAAGGCCUU
3909
170-192





AD-1019483
GCCUUCGAGUCCCUCAAGUCA
3809
173-193
UGACUUGAGGGACUCGAAGGCCU
3874
171-193





AD-1019484
CCUUCGAGUCCCUCAAGUCCA
3806
174-194
UGGACUUGAGGGACUCGAAGGCC
4017
172-194





AD-1019485
CUUCGAGUCCCUCAAGUCCUA
3816
175-195
UAGGACUUGAGGGACUCGAAGGC
4018
173-195





AD-1019486
UUCGAGUCCCUCAAGUCCUUA
3830
176-196
UAAGGACUUGAGGGACUCGAAGG
3896
174-196





AD-1019487
UCGAGUCCCUCAAGUCCUUCA
3827
177-197
UGAAGGACUUGAGGGACUCGAAG
3893
175-197





AD-1019488
CGAGUCCCUCAAGUCCUUCCA
3804
178-198
UGGAAGGACUUGAGGGACUCGAA
3869
176-198





AD-1019489
GAGUCCCUCAAGUCCUUCCAA
3817
179-199
UUGGAAGGACUUGAGGGACUCGA
3883
177-199





AD-1019491
GUCCCUCAAGUCCUUCCAGCA
3847
181-201
UGCUGGAAGGACUUGAGGGACUC
3914
179-201
















TABLE 27







Modified Sense and Antisense Strand Sequences of Huntingtin (HTT) dsRNA Agents















SEQ

SEQ

SEQ




ID

ID
mRNA Target
ID


Duplex ID
Sense Sequence 5′ to 3′
NO:
Antisense Sequence 5′ to 3′
NO:
Sequence 5′ to 3′
NO:





AD-
ascscc(Uhd)ggaAfAfAfgcu
4019
VPusUfsucdAu(C2p)agcuuuUfcC
4070
CGACCCUGGAAAAGCUG
3738


1289928.1
gaugaaaL96

fagggususc

AUGAAG






AD-
cscsaucg(Chd)gAfCfCfcug
4020
VPusCfsuudTu(C2p)caggguCfgC
4071
CGCCAUGGCGACCCUGG
3750


1289833.1
gaaaagaL96

fgauggscsg

AAAAGC






AD-
cscsuggaAfAfAfgcuga
4021
VPusUfsucdAu(C2p)agcuuuUfcC
4072
ACCCUGGAAAAGCUGAU
4134


1289929.1
(Uhd)gaaaL96

faggsgsu

GAAG






AD-
cscs(Uhd)ggaAfAfAfguuga
4022
VPusUfsucdAudCaacuuuUfcCfag
4073
ACCCUGGAAAAGCUGAU
4134


1289927.1
ugaaaL96

gsgsu

GAAG






AD-
cscsaugg(Chd)gAfCfCfcug
4023
VPusCfsuudTudCcaggguCfgCfca
4074
CGCCAUGGCGACCCUGG
3750


1289826.1
gaaaagaL96

uggscsg

AAAAGC






AD-
asusgg(Chd)gAfCfCfcugga
4024
VPusCfsuudTu(C2p)caggguCfgC
4075
CCAUGGCGACCCUGGAA
4135


1289831.1
aaagaL96

fcausgsg

AAGC






AD-
ascscc(Uhd)ggaAfAfAfgcu
4019
VPusUfsucdAu(C2p)agcuuuUfcC
4076
CGACCCUGGAAAAGCUG
3738


1289925.1
gaugaaaL96

faggguscsg

AUGAAG






AD-
cscsaugg(Chd)gAfCfCfcug
4023
VPusCfsuuuUfcCfAfggguCfgCfc
3982
CGCCAUGGCGACCCUGG
3750


1289824.1
gaaaagaL96

auggscsg

AAAAGC






AD-
asusgg(Chd)gAfCfCfcugga
4024
VPusCfsuudTu(C2p)caggguCfgC
4077
CCAUGGCGACCCUGGAA
4135


1289832.1
aaagaL96

fcaususc

AAGC






AD-
cscsauggcgAfCfCfcugg
4025
VPusCfsuuuUfcCfAfggguCfgCfc
3982
CGCCAUGGCGACCCUGG
3750


1289825.1
(Ahd)aaagaL96

auggscsg

AAAAGC






AD-
cscsgcucAfgGfUfUfcugcu
4026
VPusUfsaadAadGcagaacCfudGag
4078
GGCCGCUCAGGUUCUGC
3731


1289852.1
(Uhd)uuaaL96

cggscsc

UUUUAC






AD-
csusu(Chd)GfaGfUfCfccuc
4027
VPusdGsacdTu(G2p)agggacUfcG
4079
GCCUUCGAGUCCCUCAA
4136


1289867.1
aagucaL96

faagsgsc

GUCC






AD-
ascsccuggaAfAfAfgcuga
4028
VPusUfsucau(C2p)agcuuuUfcCf
3651
CGACCCUGGAAAAGCUG
3738


1289924.1
(Uhd)gaaaL96

aggguscsg

AUGAAG






AD-
cscsgcu(Chd)AfgGfUfUfcu
4029
VPusUfsaadAadTcagaacCfudGag
4080
GGCCGCUCAGGUUCUGC
3731


1289853.1
gauuuuaaL96

cggscsc

UUUUAC






AD-
cscsggu(Chd)AfgGfUfUfcu
4030
VPusUfsaadAadGcagaacCfudGac
4081
GGCCGCUCAGGUUCUGC
3731


1289860.1
gcuuuuaaL96

cggscsc

UUUUAC






AD-
cscs(Ahd)ggaAfAfAfgcuga
4031
VPusUfsucdAu(C2p)agcuuuUfcC
4082
ACCCUGGAAAAGCUGAU
4134


1289931.1
ugaaaL96

fuggsgsu

GAAG






AD-
cscs(Uhd)ggaAfAfAfgcuua
4032
VPusUfsucdAudAagcuuuUfcCfag
4083
ACCCUGGAAAAGCUGAU
4134


1289926.1
ugaaaL96

gsgsu

GAAG






AD-
cscsgcu(Chd)AfgGfUfUfcu
3585
VPusUfsaadAadGcagaacCfudGag
4078
GGCCGCUCAGGUUCUGC
3731


1289851.1
gcuuuuaaL96

cggscsc

UUUUAC






AD-
cscsuggaAfAfAfgcuga
4021
VPusUfsucdAu(C2p)agcuuuUfcC
4084
ACCCUGGAAAAGCUGAU
4134


1289930.1
(Uhd)gaaaL96

faggsusc

GAAG






AD-
cscsgca(Chd)AfgGfUfUfcu
4033
VPusUfsaadAadGcagaacCfudGug
4085
GGCCGCUCAGGUUCUGC
3731


1289859.1
gcuuuuaaL96

cggscsc

UUUUAC






AD-
csgs(Uhd)ggaAfAfAfgcuga
4034
VPusUfsucdAu(C2p)agcuuuUfcC
4086
ACCCUGGAAAAGCUGAU
4134


1289932.1
ugaaaL96

facgsgsu

GAAG






AD-
ascsccu(Ghd)GfaAfAfAfgc
3564
VPusUfsucau(C2p)agcuuuUfcCf
3651
CGACCCUGGAAAAGCUG
3738


1019405.3
ugaugaaaL96

aggguscsg

AUGAAG






AD-
cscsccu(Chd)AfgGfUfUfcu
4035
VPusUfsaadAadGcagaacCfudGag
4087
GGCCGCUCAGGUUCUGC
3731


1289861.1
gcuuuuaaL96

gggscsc

UUUUAC






AD-
cscsaug(Ghd)CfgAfCfCfcu
3579
VPusCfsuuuUfcCfAfggguCfgCfc
3982
CGCCAUGGCGACCCUGG
3750


1107447.5
ggaaaagaL96

auggscsg

AAAAGC






AD-
uscsccu(Chd)AfagUfCfcuu
4036
VPusUfsgcdTg(G2p)aaggacUfud
4088
AGUCCCUCAAGUCCUUC
3735


1289948.1
ccagcaaL96

Gagggasusc

CAGCAG






AD-
gscscuu(Chd)GfaGfUfCfcc
3570
VPusdGsacdTu(G2p)agggacUfcG
4089
AGGCCUUCGAGUCCCUC
3744


1289864.1
ucaagucaL96

faaggcscsu

AAGUCC






AD-
gscsgac(Chd)CfudGgAfaaa
4037
VPusAfsucdAg(C2p)uuuuccAfgd
4090
UGGCGACCCUGGAAAAG
3749


1289913.1
gcugauaL96

Ggucgcscsg

CUGAUG






AD-
ascscc(Uhd)ggaAfAfAfgcu
4019
VPusUfsucau(C2p)agcuuuUfcCf
3651
CGACCCUGGAAAAGCUG
3738


1289923.1
gaugaaaL96

aggguscsg

AUGAAG






AD-
gscsguc(Chd)CfudGgAfaaa
4038
VPusAfsucdAg(C2p)uuuuccAfgd
4091
UGGCGACCCUGGAAAAG
3749


1289921.1
gcugauaL96

Ggacgcscsg

CUGAUG






AD-
gscscuu(Chd)GfaGfUfCfcc
4039
VPusdGsacdTudAagggacUfcGfaag
4092
AGGCCUUCGAGUCCCUC
3744


1289865.1
uuaagucaL96

gcscsu

AAGUCC






AD-
cscsgcu(Chd)AfgGfUfUfcu
3585
VPusUfsaaaAfgCfAfgaacCfuGfag
3644
GGCCGCUCAGGUUCUGC
3731


1107442.5
gcuuuuaaL96

cggscsc

UUUUAC






AD-
cscsaugg(Uhd)gAfCfCfcug
4040
VPusCfsuudTudCcaggguCfaCfcau
4093
CCAUGGCGACCCUGGAA
4135


1289830.1
gaaaagaL96

ggsusc

AAGC






AD-
gscscuu(Chd)GfaGfUfCfcc
3570
VPusdGsacdTu(G2p)agggacUfcGf
4094
AGGCCUUCGAGUCCCUC
3744


1289866.1
ucaagucaL96

aaggcsusc

AAGUCC






AD-
uscsccu(Chd)AfagUfCfcuu
4036
VPusUfsgcdTg(G2p)aaggacUfudG
4095
AGUCCCUCAAGUCCUUC
3735


1289947.1
ccagcaaL96

agggascsu

CAGCAG






AD-
gscs(Uhd)ggaAfAfAfgcuga
4041
VPusUfsucdAu(C2p)agcuuuUfcCf
4096
ACCCUGGAAAAGCUGAU
4134


1289933.1
ugaaaL96

agcsgsu

GAAG






AD-
uscscca(Chd)AfagUfCfcuu
4042
VPusUfsgcdTg(G2p)aaggacUfudG
4097
AGUCCCUCAAGUCCUUC
3735


1289950.1
ccagcaaL96

ugggascsu

CAGCAG






AD-
csusu(Chd)GfaGfUfCfccuc
4027
VPusdGsacdTu(G2p)agggacUfcGf
4098
GCCUUCGAGUCCCUCAA
4136


1289868.1
aagucaL96

aagscsu

GUCC






AD-
uscsgcu(Chd)AfaGfUfCfcu
4043
VPusUfsgcdTgdAaaggacUfuGfagc
4099
AGUCCCUCAAGUCCUUC
3735


1289946.1
uucagcaaL96

gascsu

CAGCAG






AD-
gscsguc(Chd)CfudGgAfaaa
4038
VPusAfsucdAg(C2p)uuuudCcAfgd
4100
UGGCGACCCUGGAAAAG
3749


1289960.1
gcugauaL96

Ggacgcsusc

CUGAUG






AD-
gscsgac(Chd)CfudGgAfaaa
4037
VPusAfsucdAgdCuuuudCcAfgdGgu
4101
UGGCGACCCUGGAAAAG
3749


1289956.1
gcugauaL96

cgcscsg

CUGAUG






AD-
cscsaugg(Chd)gAfCfCfcug
4023
VPusCfsuudTu(C2p)caggguCfgCf
4102
CGCCAUGGCGACCCUGG
3750


1289827.1
gaaaagaL96

cauggscsg

AAAAGC






AD-
cscsaugg(Chd)gAfUfCfcug
4044
VPusCfsuudTudCcaggauCfgCfcau
4103
CGCCAUGGCGACCCUGG
3750


1289829.1
gaaaagaL96

ggsusc

AAAAGC






AD-
cscsgcu(Chd)aggUfUfcugc
4045
VPusUfsaaaAfgCfAfgaacCfuGfag
3644
GGCCGCUCAGGUUCUGC
3731


1289850.1
uuuuaaL96

cggscsc

UUUUAC






AD-
uscsccu(Chd)AfaGfUfCfcu
4046
VPusUfsgcdTgdAaaggacUfuGfagg
4104
AGUCCCUCAAGUCCUUC
3735


1289945.1
uucagcaaL96

gascsu

CAGCAG






AD-
cscsuugg(Chd)gAfCfCfcug
4047
VPusCfsuudTu(C2p)caggguCfgCf
4105
CGCCAUGGCGACCCUGG
3750


1289835.1
gaaaagaL96

caaggscsg

AAAAGC






AD-
cscsaugg(Chd)gAfCfCfcug
4023
VPusCfsuudTu(C2p)caggguCfgCf
4106
CGCCAUGGCGACCCUGG
3750


1289828.1
gaaaagaL96

cauggsusc

AAAAGC






AD-
cscsu(Chd)AfagUfCfcuucc
4048
VPusUfsgcdTg(G2p)aaggacUfudG
4107
UCCCUCAAGUCCUUCCA
4137


1289949.1
agcaaL96

aggscsg

GCAG






AD-
gscsguu(Chd)GfaGfUfCfcc
4049
VPusdGsacdTu(G2p)agggacUfcGf
4108
AGGCCUUCGAGUCCCUC
3744


1289871.1
ucaagucaL96

aacgcscsu

AAGUCC






AD-
gscsgac(Chd)CfudGgAfaaa
4037
VPusAfsucdAg(C2p)uuuudCcAfgd
4109
UGGCGACCCUGGAAAAG
3749


1289914.1
gcugauaL96

Ggucgcscsg

CUGAUG






AD-
gscsgaccCfuGfGfAfaaagc
4050
VPusAfsucag(C2p)uuuuccAfgGfg
3664
UGGCGACCCUGGAAAAG
3749


1289911.1
(Uhd)gauaL96

ucgcscsa

CUGAUG






AD-
gscsu(Chd)AfgGfUfUfcugc
4051
VPusUfsaadAadGcagaacCfudGagc
4110
CCGCUCAGGUUCUGCUU
4138


1289857.1
uuuuaaL96

susg

UUAC






AD-
uscsccucAfaGfUfCfcuucc
4052
VPusUfsgcug(G2p)aaggacUfuGfa
3648
AGUCCCUCAAGUCCUUC
3735


1289944.1
(Ahd)gcaaL96

gggascsu

CAGCAG






AD-
gscsgac(Chd)CfuGfGfAfaa
3577
VPusAfsucdAg(C2p)uuuudCcAfgd
4109
UGGCGACCCUGGAAAAG
3749


1289957.1
agcugauaL96

Ggucgcscsg

CUGAUG






AD-
gscsgac(Chd)CfudGgAfaaa
4037
VPusAfsucaGfcUfUfuuccAfgGfgu
4111
UGGCGACCCUGGAAAAG
3749


1289955.1
gcugauaL96

cgcscsg

CUGAUG






AD-
cscsaagg(Chd)gAfCfCfcug
4053
VPusCfsuudTu(C2p)caggguCfgCf
4112
CGCCAUGGCGACCCUGG
3750


1289834.1
gaaaagaL96

cuuggscsg

AAAAGC






AD-
cscsgcu(Chd)agdGuUfcugc
4054
VPusUfsaadAadGcagadAcCfudGag
4113
GGCCGCUCAGGUUCUGC
3731


1289855.1
uuuuaaL96

cggscsc

UUUUAC






AD-
gscsgac(Chd)CfuGfGfAfaa
3577
VPusAfsucag(C2p)uuuuccAfgGfg
3664
UGGCGACCCUGGAAAAG
3749


1019402.3
agcugauaL96

ucgcscsa

CUGAUG






AD-
gsasccCfuGfGfAfaaugc
4055
VPusAfsucdAgdCauuudCcAfgdGgu
4114
GCGACCCUGGAAAAGCU
4139


1289954.1
(Uhd)gauaL96

csusc

GAUG






AD-
gscsgag(Chd)CfudGgAfaaa
4056
VPusAfsucdAg(C2p)uuuuccAfgdG
4115
UGGCGACCCUGGAAAAG
3749


1289920.1
gcugauaL96

cucgcscsg

CUGAUG






AD-
uscsccu(Chd)AfaGfUfCfcu
3561
VPusUfsgcug(G2p)aaggacUfuGfa
3648
AGUCCCUCAAGUCCUUC
3735


1019426.3
uccagcaaL96

gggascsu

CAGCAG






AD-
cscsgcu(Chd)agGfUfUfcug
4057
VPusdTsaadAadGcagadAcCfudGag
4116
GGCCGCUCAGGUUCUGC
3731


1289862.1
cuuuuaaL96

cggscsc

UUUUAC






AD-
cscsgcu(Chd)aggUfUfcugc
4045
VPusUfsaadAadGcagaacCfudGagc
4078
GGCCGCUCAGGUUCUGC
3731


1289854.1
uuuuaaL96

ggscsc

UUUUAC






AD-
gscsgac(Chd)CfudGgAfaaa
4037
VPusAfsucdAg(C2p)uuuudCcAfgd
4109
UGGCGACCCUGGAAAAG
3749


1289914.2
gcugauaL96

Ggucgcscsg

CUGAUG






AD-
gscsgac(Chd)CfudGgAfaaa
4037
VPusAfsucdAg(C2p)uuuudCcAfgd
4117
UGGCGACCCUGGAAAAG
3749


1289915.1
gcugauaL96

Ggucgcsusg

CUGAUG






AD-
gscsgac(Chd)CfuGfGfAfaa
3577
VPusAfsucaGfcUfUfuuccAfgGfgu
3985
UGGCGACCCUGGAAAAG
3749


1107449.5
agcugauaL96

cgcscsa

CUGAUG






AD-
gscscau(Chd)GfaGfUfCfcc
4058
VPusdGsacdTu(G2p)agggacUfcGf
4118
AGGCCUUCGAGUCCCUC
3744


1289870.1
ucaagucaL96

auggcscsu

AAGUCC






AD-
gscsgaccCfuGfGfAfaaagc
4050
VPusAfsucaGfcUfUfuuccAfgGfgu
4111
UGGCGACCCUGGAAAAG
3749


1289953.1
(Uhd)gauaL96

cgcscsg

CUGAUG






AD-
gscscuu(Chd)GfaGfUfCfcc
3570
VPusGfsacuUfgAfGfggacUfcGfaa
4000
AGGCCUUCGAGUCCCUC
3744


1107451.5
ucaagucaL96

ggcscsu

AAGUCC






AD-
gscscac(Chd)CfudGgAfaaa
4059
VPusAfsucdAg(C2p)uuuudCcAfgd
4119
CCAUGGCGACCCUGGAA
4135


1289961.1
gcugauaL96

Gguggcsusc

AAGC






AD-
uscscgu(Chd)AfagUfCfcuu
4060
VPusUfsgcdTg(G2p)aaggacUfudG
4120
AGUCCCUCAAGUCCUUC
3735


1289951.1
ccagcaaL96

acggascsu

CAGCAG






AD-
gscsgac(Chd)CfudGgAfaaa
4037
VPusAfsucdAg(C2p)uuuudCcAfgd
4117
UGGCGACCCUGGAAAAG
3749


1289915.2
gcugauaL96

Ggucgcsusg

CUGAUG






AD-
gscsgac(Chd)CfudGgAfaaa
4037
VPusAfsucag(C2p)uuuuccAfgGfg
4121
UGGCGACCCUGGAAAAG
3749


1289912.1
gcugauaL96

ucgcscsg

CUGAUG






AD-
gsasc(Chd)CfudGgAfaaagc
4061
VPusAfsucdAg(C2p)uuuudCcAfgd
4122
GCGACCCUGGAAAAGCU
4139


1289958.1
ugauaL96

Ggucsusg

GAUG






AD-
gscscua(Chd)GfaGfUfCfcc
4062
VPusdGsacdTu(G2p)agggacUfcGf
4123
AGGCCUUCGAGUCCCUC
3744


1289869.1
ucaagucaL96

uaggcscsu

AAGUCC






AD-
gsasc(Chd)CfudGgAfaaagc
4061
VPusAfsucdAg(C2p)uuuudCcAfgd
4124
GCGACCCUGGAAAAGCU
4139


1289916.2
ugauaL96

Ggucsgsc

GAUG






AD-
gscsu(Chd)AfgGfUfUfcugc
4051
VPusUfsaadAa(G2p)cagaacCfudG
4125
CCGCUCAGGUUCUGCUU
4138


1289858.1
uuuuaaL96

agcsusg

UUAC






AD-
csasgcu(Uhd)CfcUfCfAfgc
4063
VPusGfsgcgGfcGfGfcugaGfgAfag
4126
CUCAGCUUCCUCAGCCG
4140


1289789.1
cgccgccaL96

cugsasg

CCGCCG






AD-
uscsagc(Uhd)UfcCfUfCfag
4064
VPusGfscggCfgGfCfugagGfaAfgc
4127
CCUCAGCUUCCUCAGCC
4141


1255821.1
ccgccgcaL96

ugasgsg

GCCGCC






AD-
gscsgag(Chd)CfudGgAfaaa
4056
VPusAfsucdAg(C2p)uuuudCcAfgd
4128
UGGCGACCCUGGAAAAG
3749


1289959.1
gcugauaL96

Gcucgcsusc

CUGAUG






AD-
asgscuu(Chd)CfuCfAfGfcc
4065
VPusCfsggcGfgCfGfgcugAfgGfaa
4129
UCAGCUUCCUCAGCCGC
4142


1289790.1
gccgccgaL96

gcusgsa

CGCCGC






AD-
uscsgcu(Chd)AfagUfCfcuu
4066
VPusUfsgcdTg(G2p)aaggacUfudG
4130
AGUCCCUCAAGUCCUUC
3735


1289952.1
ccagcaaL96

agcgascsu

CAGCAG






AD-
gscsuuc(Chd)UfcAfGfCfcg
4067
VPusGfscggCfgGfCfggcuGfaGfga
4131
CAGCUUCCUCAGCCGCC
4143


1289791.1
ccgccgcaL96

agcsusg

GCCGCA






AD-
gscscac(Chd)CfudGgAfaaa
4059
VPusAfsucdAg(C2p)uuuuccAfgdG
4132
UGGCGACCCUGGAAAAG
3749


1289922.1
gcugauaL96

guggcscsg

CUGAUG






AD-
gscsgaccCfuGfGfAfaaugc
4068
VPusAfsucdAgdCauuudCcAfgdGgu
4133
UGGCGACCCUGGAAAAG
3749


1289919.1
(Uhd)gauaL96

cscsu

CUGAUG






AD-
gsasc(Chd)CfudGgAfaaagc
4061
VPusAfsucdAg(C2p)uuuudCcAfgd
4124
GCGACCCUGGAAAAGCU
4139


1289916.1
ugauaL96

Ggucsgsc

GAUG






AD-
gscscuu(Chd)gagUfCfccuc
4069
VPusGfsacuUfgAfGfggacUfcGfaa
4000
AGGCCUUCGAGUCCCUC
3744


1289863.1
aagucaL96

ggcscsu

AAGUCC
















TABLE 28







Unmodified Sense and Antisense Strand Sequences of Huntingtin (HTT) dsRNA Agents















SEQ


SEQ




Sense Sequence
ID
Range in
Antisense Sequence
ID
Range in


Duplex Name
5′ to 3′
NO:
NM_002111.8
5′ to 3′
NO:
NM_002111.8





AD-1289928.1
ACCCUGGAAAAGCUGAUGAAA
3803
152-172
UUUCAUCAGCUUUUCCAGGGUUC
4182
150-172





AD-1289833.1
CCAUCGCGACCCUGGAAAAGA
4144
144-164
UCUUTUCCAGGGUCGCGAUGGCG
4183
142-164





AD-1289929.1
CCUGGAAAAGCUGAUGAAA
4145
154-172
UUUCAUCAGCUUUUCCAGGGU
4184
152-172





AD-1289927.1
CCUGGAAAAGUUGAUGAAA
4146
154-172
UUUCAUCAACUUUUCCAGGGU
4185
152-172





AD-1289826.1
CCAUGGCGACCCUGGAAAAGA
3815
144-164
UCUUTUCCAGGGUCGCGAUGGCG
4186
142-164





AD-1289831.1
AUGGCGACCCUGGAAAAGA
4147
146-164
UCUUTUCCAGGGUCGCCAUGG
4187
144-164





AD-1289925.1
ACCCUGGAAAAGCUGAUGAAA
3803
152-172
UUUCAUCAGCUUUUCCAGGGUCG
3868
150-172





AD-1289824.1
CCAUGGCGACCCUGGAAAAGA
3815
144-164
UCUUUUCCAGGGUCGCCAUGGCG
3880
142-164





AD-1289832.1
AUGGCGACCCUGGAAAAGA
4147
146-164
UCUUTUCCAGGGUCGCCAUUC
4188
144-164





AD-1289825.1
CCAUGGCGACCCUGGAAAAGA
3815
144-164
UCUUUUCCAGGGUCGCCAUGGCG
3880
142-164





AD-1289852.1
CCGCUCAGGUUCUGCUUUUAA
3796
29-49
UUAAAAGCAGAACCUGAGCGGCC
3861
27-49





AD-1289867.1
CUUCGAGUCCCUCAAGUCA
4148
175-193
UGACTUGAGGGACUCGAAGGC
4189
173-193





AD-1289924.1
ACCCUGGAAAAGCUGAUGAAA
3803
152-172
UUUCAUCAGCUUUUCCAGGGUCG
3868
150-172





AD-1289853.1
CCGCUCAGGUUCUGAUUUUAA
4149
29-49
UUAAAATCAGAACCUGAGCGGCC
4190
27-49





AD-1289860.1
CCGGUCAGGUUCUGCUUUUAA
4150
29-49
UUAAAAGCAGAACCUGACCGGCC
4191
27-49





AD-1289931.1
CCAGGAAAAGCUGAUGAAA
4151
154-172
UUUCAUCAGCUUUUCCUGGGU
4192
152-172





AD-1289926.1
CCUGGAAAAGCUUAUGAAA
4152
154-172
UUUCAUAAGCUUUUCCAGGGU
4193
152-172





AD-1289851.1
CCGGUCAGGUUCUGCUUUUAA
3796
29-49
UUAAAAGCAGAACCUGAGCGGCC
3861
27-49





AD-1289930.1
CCUGGAAAAGCUGAUGAAA
4145
154-172
UUUCAUCAGCUUUUCCAGGUC
4194
152-172





AD-1289859.1
CCGCACAGGUUCUGCUUUUAA
4153
29-49
UUAAAAGCAGAACCUGUGCGGCC
4195
27-49





AD-1289932.1
CGUGGAAAAGCUGAUGAAA
4154
154-172
UUUCAUCAGCUUUUCCACGGU
4196
152-172





AD-1019405.3
ACCCUGGAAAAGCUGAUGAAA
3803
152-172
UUUCAUCAGCUUUUCCAGGGUCG
3868
150-172





AD-1289861.1
CCGGUCAGGUUCUGCUUUUAA
4155
29-49
UUAAAAGCAGAACCUGAGGGGCC
4197
27-49





AD-1107447.5
CCAUGGCGACCCUGGAAAAGA
3815
144-164
UCUUUUCCAGGGUCGCCAUGGCG
3880
142-164





AD-1289948.1
UCCCUCAAGUCCUUCCAGCAA
3800
182-202
UUGCTGGAAGGACUUGAGGGAUC
4198
180-202





AD-1289864.1
GCCUUCGAGUCCCUCAAGUCA
3809
173-193
UGACTUGAGGGACUCGAAGGCCU
4199
171-193





AD-1289913.1
GCGACCCUGGAAAAGCUGAUA
3814
149-169
UAUCAGCUUUUCCAGGGUCGCCG
4200
147-169





AD-1289923.1
ACCCUGGAAAAGCUGAUGAAA
3803
152-172
UUUCAUCAGCUUUUCCAGGGUCG
3868
150-172





AD-1289921.1
GCGUCCCUGGAAAAGCUGAUA
4156
149-169
UAUCAGCUUUUCCAGGGACGCCG
4201
147-169





AD-1289865.1
GCCUUCGAGUCCCUUAAGUCA
4157
173-193
UGACTUAAGGGACUCGAAGGCCU
4202
171-193





AD-1107442.5
CCGGUCAGGUUCUGCUUUUAA
3796
29-49
UUAAAAGCAGAACCUGAGCGGCC
3861
27-49





AD-1289830.1
CCAUGGUGACCCUGGAAAAGA
4158
144-164
UCUUTUCCAGGGUCACCAUGGUC
4203
142-164





AD-1289866.1
GCCUUCGAGUCCCUCAAGUCA
3809
173-193
UGACTUGAGGGACUCGAAGGCUC
4204
171-193





AD-1289947.1
UCCCUCAAGUCCUUCCAGCAA
3800
182-202
UUGCTGGAAGGACUUGAGGGACU
4205
180-202





AD-1289933.1
GCUGGAAAAGCUGAUGAAA
4159
154-172
UUUCAUCAGCUUUUCCAGCGU
4206
152-172





AD-1289950.1
UCCCACAAGUCCUUCCAGCAA
4160
182-202
UUGCTGGAAGGACUUGUGGGACU
4207
180-202





AD-1289868.1
CUUCGAGUCCCUCAAGUCA
4148
175-193
UGACTUGAGGGACUCGAAGCU
4208
173-193





AD-1289946.1
UCGCUCAAGUCCUUUCAGCAA
4161
182-202
UUGCTGAAAGGACUUGAGCGACU
4209
180-202





AD-1289960.1
GCGUCCCUGGAAAAGCUGAUA
4156
149-169
UAUCAGCUUUUCCAGGGACGCUC
4210
147-169





AD-1289956.1
GCGACCCUGGAAAAGCUGAUA
3814
149-169
UAUCAGCUUUUCCAGGGUCGCCG
4200
147-169





AD-1289827.1
CCAUGGCGACCCUGGAAAAGA
3815
144-164
UCUUTUCCAGGGUCGCCAUGGCG
4186
142-164





AD-1289829.1
CCAUGGCGAUCCUGGAAAAGA
4162
144-164
UCUUTUCCAGGAUCGCCAUGGUC
4211
142-164





AD-1289850.1
CCGCUCAGGUUCUGCUUUUAA
3796
29-49
UUAAAAGCAGAACCUGAGCGGCC
3861
27-49





AD-1289945.1
UCCCUCAAGUCCUUUCAGCAA
4163
182-202
UUGCTGAAAGGACUUGAGGGACU
4212
180-202





AD-1289835.1
CCUUGGCGACCCUGGAAAAGA
4164
144-164
UCUUTUCCAGGGUCGCCAAGGCG
4213
142-164





AD-1289828.1
CCAUGGCGACCCUGGAAAAGA
3815
144-164
UCUUTUCCAGGGUCGCCAUGGUC
4214
142-164





AD-1289949.1
CCUCAAGUCCUUCCAGCAA
4165
184-202
UUGCTGGAAGGACUUGAGGCG
4215
182-202





AD-1289871.1
GCGUUCGAGUCCCUCAAGUCA
4166
173-193
UGACTUGAGGGACUCGAACGCCU
4216
171-193





AD-1289914.1
GCGACCCUGGAAAAGCUGAUA
3814
149-169
UAUCAGCUUUUCCAGGGUCGCCG
4200
147-169





AD-1289911.1
GCGACCCUGGAAAAGCUGAUA
3814
149-169
UAUCAGCUUUUCCAGGGUCGCCA
3879
147-169





AD-1289857.1
GCUCAGGUUCUGCUUUUAA
4167
31-49
UUAAAAGCAGAACCUGAGCUG
4217
29-49





AD-1289944.1
UCCCUCAAGUCCUUCCAGCAA
3800
182-202
UUGCUGGAAGGACUUGAGGGACU
3865
180-202





AD-1289957.1
GCGACCCUGGAAAAGCUGAUA
3814
149-169
UAUCAGCUUUUCCAGGGUCGCCG
4200
147-169





AD-1289955.1
GCGACCCUGGAAAAGCUGAUA
3814
149-169
UAUCAGCUUUUCCAGGGUCGCCG
4200
147-169





AD-1289834.1
CCAAGGCGACCCUGGAAAAGA
4168
144-164
UCUUTUCCAGGGUCGCCUUGGCG
4218
142-164





AD-1289855.1
CCGCUCAGGUUCUGCUUUUAA
3796
29-49
UUAAAAGCAGAACCUGAGCGGCC
3861
27-49





AD-1019402.3
GCGACCCUGGAAAAGCUGAUA
3814
149-169
UAUCAGCUUUUCCAGGGUCGCCA
3879
147-169





AD-1289954.1
GACCCUGGAAAUGCUGAUA
4169
151-169
UAUCAGCAUUUCCAGGGUCUC
4219
149-169





AD-1289920.1
GCGAGCCUGGAAAAGCUGAUA
4170
149-169
UAUCAGCUUUUCCAGGGUCGCCG
4220
147-169





AD-1019426.3
UCCCUCAAGUCCUUCCAGCAA
3800
182-202
UUGCUGGAAGGACUUGAGGGACU
3865
180-202





AD-1289862.1
CCGCUCAGGUUCUGCUUUUAA
3796
29-49
UTAAAAGCAGAACCUGAGCGGCC
4221
27-49





AD-1289854.1
CCGCUCAGGUUCUGCUUUUAA
3796
29-49
UUAAAAGCAGAACCUGAGCGGCC
3861
27-49





AD-1289914.2
GCGACCCUGGAAAAGCUGAUA
3814
149-169
UAUCAGCUUUUCCAGGGUCGCCG
4200
147-169





AD-1289915.1
GCGACCCUGGAAAAGCUGAUA
3814
149-169
UAUCAGCUUUUCCAGGGUCGCUG
4222
147-169





AD-1107449.5
GCGACCCUGGAAAAGCUGAUA
3814
149-169
UAUCAGCUUUUCCAGGGUCGCCA
3879
147-169





AD-1289870.1
GCCAUCGAGUCCCUCAAGUCA
4171
173-193
UGACTUGAGGGACUCGAUGGCCU
4223
171-193





AD-1289953.1
GCGACCCUGGAAAAGCUGAUA
3814
149-169
UAUCAGCUUUUCCAGGGUCGCCG
4200
147-169





AD-1107451.5
GCCUUCGAGUCCCUCAAGUCA
3809
173-193
UGACUUGAGGGACUCGAAGGCCU
3874
171-193





AD-1289961.1
GCCACCCUGGAAAAGCUGAUA
4172
149-169
UAUCAGCUUUUCCAGGGUGGCUC
4224
147-169





AD-1289951.1
UCCGUCAAGUCCUUCCAGCAA
4173
182-202
UUGCTGGAAGGACUUGACGGACU
4225
180-202





AD-1289915.2
GCGACCCUGGAAAAGCUGAUA
3814
149-169
UAUCAGCUUUUCCAGGGUCGCUG
4222
147-169





AD-1289912.1
GCGACCCUGGAAAAGCUGAUA
3814
149-169
UAUCAGCUUUUCCAGGGUCGCCG
4200
147-169





AD-1289958.1
GACCCUGGAAAAGCUGAUA
4174
151-169
UAUCAGCUUUUCCAGGGUCUG
4226
149-169





AD-1289869.1
GCCUACGAGUCCCUCAAGUCA
4175
173-193
UGACTUGAGGGACUCGUAGGCCU
4227
171-193





AD-1289916.2
GACCCUGGAAAAGCUGAUA
4174
151-169
UAUCAGCUUUUCCAGGGUCGC
4228
149-169





AD-1289858.1
GCUCAGGUUCUGCUUUUAA
4167
31-49
UUAAAAGCAGAACCUGAGCUG
4217
29-49





AD-1289789.1
CAGCUUCCUCAGCCGCCGCCA
4176
299-319
UGGCGGCGGCUGAGGAAGCUGAG
4229
297-319





AD-1255821.1
UCAGCUUCCUCAGCCGCCGCA
4177
298-318
UGCGGCGGCUGAGGAAGCUGAGG
4230
296-318





AD-1289959.1
GCGAGCCUGGAAAAGCUGAUA
4170
149-169
UAUCAGCUUUUCCAGGCUCGCUC
4231
147-149





AD-1289790.1
AGCUUCCUCAGCCGCCGCCGA
4178
300-320
UCGGCGGCGGCUGAGGAAGCUGA
4232
298-320





AD-1289952.1
UCGCUCAAGUCCUUCCAGCAA
4179
182-202
UUGCTGGAAGGACUUGAGCGACU
4233
180-202





AD-1289791.1
GCUUCCUCAGCCGCCGCCGCA
4180
301-321
UGCGGCGGCGGCUGAGGAAGCUG
4234
299-321





AD-1289922.1
GCGACCCUGGAAAAGCUGAUA
4172
149-169
UAUCAGCUUUUCCAGGGUGGCCG
4235
147-169





AD-1289919.1
GCGACCCUGGAAAUGCUGAUA
4181
149-169
UAUCAGCAUUUCCAGGGUCCU
4236
147-169





AD-1289916.1
GACCCUGGAAAAGCUGAUA
4174
151-169
UAUCAGCUUUUCCAGGGUCGC
4228
149-169





AD-1289863.1
GCCUUCGAGUCCCUCAAGUCA
3809
173-193
UGACUUGAGGGACUCGAAGGCCU
3874
171-193
















TABLE 29







Modified Sense and Antisense Strand Sequences of Huntingtin (HTT) dsRNA Agents















SEQ

SEQ

SEQ




ID

ID
mRNA Target
ID


Duplex ID
Sense Sequence 5′ to 3′
NO:
Antisense Sequence 5′ to 3′
NO:
Sequence 5′ to 3′
NO:





AD-
ascsagc(Chd)GfcUfGfCfug
4237
VPusGfscugAfgGfCfagcaGfcGfg
4282
GCACAGCCGCUGCUGCCU
4327


1255829.1
ccucagcaL96

cugusgsc

CAGCC






AD-
cscsgcc(Ghd)CfaGfGfCfac
4238
VPusAfsgcgGfcUfGfugccUfgCfg
4283
CGCCGCCGCAGGCACAGC
4328


1289804.1
agccgcuaL96

gcggscsg

CGCUG






AD-
usgsagg(Ahd)GfcCfGfCfug
4239
VPusGfsucgGfuGfCfagcgGfcUfc
4284
GCUGAGGAGCCGCUGCAC
4329


1255847.1
caccgacaL96

cucasgsc

CGACC






AD-
csusgag(Ghd)AfgCfCfGfcu
4240
VPusUfscggUfgCfAfgcggCfuCfc
4285
GGCUGAGGAGCCGCUGCA
4330


1255846.1
gcaccgaaL96

ucagscsc

CCGAC






AD-
gsusggc(Uhd)GfaGfGfAfgc
4241
VPusUfsgcaGfcGfGfcuccUfcAfg
4286
CUGUGGCUGAGGAGCCGC
4331


1255842.1
cgcugcaaL96

ccacsasg

UGCAC






AD-
gsgscac(Ahd)GfcCfGfCfug
4242
VPusGfsaggCfaGfCfagcgGfcUfg
4287
CAGGCACAGCCGCUGCUG
4332


1255826.1
cugccucaL96

ugccsusg

CCUCA






AD-
csascag(Chd)CfgCfUfGfcu
4243
VPusCfsugaGfgCfAfgcagCfgGfc
4288
GGCACAGCCGCUGCUGCC
4333


1255828.1
gccucagaL96

ugugscsc

UCAGC






AD-
gsgscug(Ahd)GfgAfGfCfcg
4244
VPusGfsgugCfaGfCfggcuCfcUfc
4289
GUGGCUGAGGAGCCGCUG
4334


1255844.1
cugcaccaL96

agccsasc

CACCG






AD-
csusucc(Uhd)CfaGfCfCfgc
4245
VPusUfsgcgGfcGfGfcggcUfgAfg
4290
AGCUUCCUCAGCCGCCGC
4335


1289792.1
cgccgcaaL96

gaagscsu

CGCAG






AD-
asgsgca(Chd)AfgCfCfGfcu
4246
VPusAfsggcAfgCfAfgcggCfuGfu
4291
GCAGGCACAGCCGCUGCU
4336


1255825.1
gcugccuaL96

gccusgsc

GCCUC






AD-
cscsgca(Ghd)GfcAfCfAfgc
4247
VPusAfsgcaGfcGfGfcuguGfcCfu
4292
CGCCGCAGGCACAGCCGC
4337


1255822.1
cgcugcuaL96

gcggscsg

UGCUG






AD-
gscsugu(Ghd)GfcUfGfAfgg
4248
VPusAfsgcgGfcUfCfcucaGfcCfa
4293
CGGCUGUGGCUGAGGAGC
4338


1255839.1
agccgcuaL96

cagcscsg

CGCUG






AD-
gscsaca(Ghd)CfcGfCfUfgc
4249
VPusUfsgagGfcAfGfcagcGfgCfu
4294
AGGCACAGCCGCUGCUGC
4339


1255827.1
ugccucaaL96

gugcscsu

CUCAG






AD-
gscsagg(Chd)AfcAfGfCfcg
4250
VPusGfscagCfaGfCfggcuGfuGfc
4295
CCGCAGGCACAGCCGCUG
4340


1255824.1
cugcugcaL96

cugcsgsg

CUGCC






AD-
gscsuga(Ghd)GfaGfCfCfgc
4251
VPusCfsgguGfcAfGfcggcUfcCfu
4296
UGGCUGAGGAGCCGCUGC
4341


1255845.1
ugcaccgaL96

cagcscsa

ACCGA






AD-
cscsgcu(Ghd)CfuGfCfCfuc
4252
VPusUfsgcgGfcUfGfaggcAfgCfa
4297
AGCCGCUGCUGCCUCAGC
4342


1255830.1
agccgcaaL96

gcggscsu

CGCAG






AD-
gscscgc(Ahd)GfgCfAfCfag
4253
VPusGfscagCfgGfCfugugCfcUfg
4298
CCGCCGCAGGCACAGCCG
4343


1289806.1
ccgcugcaL96

cggcsgsg

CUGCU






AD-
cscsggc(Uhd)GfuGfGfCfug
4254
VPusGfsgcuCfcUfCfagccAfcAfg
4299
GCCCGGCUGUGGCUGAGG
4344


1255836.1
aggagccaL96

ccggsgsc

AGCCG






AD-
csasggc(Ahd)CfaGfCfCfgc
4255
VPusGfsgcaGfcAfGfcggcUfgUfg
4300
CGCAGGCACAGCCGCUGC
4345


1289807.1
ugcugccaL96

ccugscsg

UGCCU






AD-
csgsccg(Chd)AfgGfCfAfca
4256
VPusCfsagcGfgCfUfgugcCfuGfc
4301
GCCGCCGCAGGCACAGCC
4346


1289805.1
gccgcugaL96

ggcgsgsc

GCUGC






AD-
csusgug(Ghd)CfuGfAfGfga
4257
VPusCfsagcGfgCfUfccucAfgCfc
4302
GGCUGUGGCUGAGGAGCC
4347


1255840.1
gccgcugaL96

acagscsc

GCUGC






AD-
csasgcc(Ghd)CfuGfCfUfgc
4258
VPusGfsgcuGfaGfGfcagcAfgCfg
4303
CACAGCCGCUGCUGCCUC
4348


1289808.1
cucagccaL96

gcugsusg

AGCCG






AD-
gscscgc(Chd)GfcCfGfCfag
4259
VPusGfscugUfgCfCfugcgGfcGfg
4304
CAGCCGCCGCCGCAGGCA
4349


1289800.1
gcacagcaL96

cggcsusg

CAGCC






AD-
gsgscug(Uhd)GfgCfUfGfag
4260
VPusGfscggCfuCfCfucagCfcAfc
4305
CCGGCUGUGGCUGAGGAG
4350


1255838.1
gagccgcaL96

agccsgsg

CCGCU






AD-
usgsgcu(Ghd)AfgGfAfGfcc
4261
VPusGfsugcAfgCfGfgcucCfuCfa
4306
UGUGGCUGAGGAGCCGCU
4351


1255843.1
gcugcacaL96

gccascsa

GCACC






AD-
csgsgcu(Ghd)UfgGfCfUfga
4262
VPusCfsggcUfcCfUfcagcCfaCfa
4307
CCCGGCUGUGGCUGAGGA
4352


1255837.1
ggagccgaL96

gccgsgsg

GCCGC






AD-
gsgsccc(Ghd)GfcUfGfUfgg
4263
VPusUfsccuCfaGfCfcacaGfcCfg
4308
CCGGCCCGGCUGUGGCUG
4353


1255833.1
cugaggaaL96

ggccsgsg

AGGAG






AD-
uscsagc(Chd)GfcCfGfCfcg
4264
VPusGfsugcCfuGfCfggcgGfcGfg
4309
CCUCAGCCGCCGCCGCAG
4354


1289797.1
caggcacaL96

cugasgsg

GCACA






AD-
csgscag(Ghd)CfaCfAfGfcc
4265
VPusCfsagcAfgCfGfgcugUfgCfc
4310
GCCGCAGGCACAGCCGCU
4355


1255823.1
gcugcugaL96

ugcgsgsc

GCUGC






AD-
gscscgc(Uhd)GfcUfGfCfcu
4266
VPusGfscggCfuGfAfggcaGfcAfg
4311
CAGCCGCUGCUGCCUCAG
4356


1289810.1
cagccgcaL96

cggcsusg

CCGCA






AD-
cscsggc(Chd)CfgGfCfUfgu
4267
VPusCfsucaGfcCfAfcagcCfgGfg
4312
ACCCGGCCCGGCUGUGGC
4357


1289811.1
ggcugagaL96

ccggsgsu

UGAGG






AD-
csgsgcc(Chd)GfgCfUfGfug
4268
VPusCfscucAfgCfCfacagCfcGfg
4313
CCCGGCCCGGCUGUGGCU
4358


1289812.1
gcugaggaL96

gccgsgsg

GAGGA






AD-
usgsugg(Chd)UfgAfGfGfag
4269
VPusGfscagCfgGfCfuccuCfaGfc
4314
GCUGUGGCUGAGGAGCCG
4359


1255841.1
ccgcugcaL96

cacasgsc

CUGCA






AD-
asgsccg(Chd)CfgCfCfGfca
4270
VPusCfsuguGfcCfUfgcggCfgGfc
4315
UCAGCCGCCGCCGCAGGC
4360


1289799.1
ggcacagaL96

ggcusgsa

ACAGC






AD-
gscsccg(Ghd)CfuGfUfGfgc
4271
VPusCfsuccUfcAfGfccacAfgCfc
4316
CGGCCCGGCUGUGGCUGA
4361


1255834.1
ugaggagaL96

gggcscsg

GGAGC






AD-
asgsccg(Chd)UfgCfUfGfcc
4272
VPusCfsggcUfgAfGfgcagCfaGfc
4317
ACAGCCGCUGCUGCCUCA
4362


1289809.1
ucagccgaL96

ggcusgsu

GCCGC






AD-
cscsgcc(Ghd)CfcGfCfAfgg
4273
VPusGfsgcuGfuGfCfcugcGfgCfg
4318
AGCCGCCGCCGCAGGCAC
4363


1289801.1
cacagccaL96

gcggscsu

AGCCG






AD-
ususccu(Chd)AfgCfCfGfcc
4274
VPusCfsugcGfgCfGfgcggCfuGfa
4319
GCUUCCUCAGCCGCCGCC
4364


1289793.1
gccgcagaL96

ggaasgsc

GCAGG






AD-
csasgcc(Ghd)CfcGfCfCfgc
4275
VPusUfsgugCfcUfGfcggcGfgCfg
4320
CUCAGCCGCCGCCGCAGG
4365


1289798.1
aggcacaaL96

gcugsasg

CACAG






AD-
csuscag(Chd)CfgCfCfGfcc
4276
VPusUfsgccUfgCfGfgcggCfgGfc
4321
UCCUCAGCCGCCGCCGCA
4366


1289796.1
gcaggcaaL96

ugagsgsa

GGCAC






AD-
gscscgc(Chd)GfcAfGfGfca
4277
VPusGfscggCfuGfUfgccuGfcGfg
4322
CCGCCGCCGCAGGCACAG
4367


1289803.1
cagccgcaL96

cggcsgsg

CCGCU






AD-
cscscgg(Chd)UfgUfGfGfcu
4278
VPusGfscucCfuCfAfgccaCfaGfc
4323
GGCCCGGCUGUGGCUGAG
4368


1255835.1
gaggagcaL96

cgggscsc

GAGCC






AD-
csgsccg(Chd)CfgCfAfGfgc
4279
VPusCfsggcUfgUfGfccugCfgGfc
4324
GCCGCCGCCGCAGGCACA
4369


1289802.1
acagccgaL96

ggcgsgsc

GCCGC






AD-
uscscuc(Ahd)GfcCfGfCfcg
4280
VPusCfscugCfgGfCfggcgGfcUfg
4325
CUUCCUCAGCCGCCGCCG
4370


1289794.1
ccgcaggaL96

aggasasg

CAGGC






AD-
cscsuca(Ghd)CfcGfCfCfgc
4281
VPusGfsccuGfcGfGfcggcGfgCfu
4326
UUCCUCAGCCGCCGCCGC
4371


1289795.1
cgcaggcaL96

gaggsasa

AGGCA
















TABLE 30







Unmodified Sense and Antisense Strand Sequences of Huntingtin (HTT) dsRNA Agents















SEQ


SEQ




Sense Sequence
ID
Range in
Antisense Sequence
ID
Range in


Duplex Name
5′ to 3′
NO:
NM_002111.8
5′ to 3′
NO:
NM_002111.8





AD-1255829.1
ACAGCCGCUGCUGCCUCAGCA
4372
325-345
UGCUGAGGCAGCAGCGGCUGUGC
4417
323-345





AD-1289804.1
CCGCCGCAGGCACAGCCGCUA
4373
314-334
UAGCGGCUGUGCCUGCGGCGGCG
4418
312-334





AD-1255847.1
UGAGGAGCCGCUGCACCGACA
4374
394-414
UGUCGGUGCAGCGGCUCCUCAGC
4419
392-414





AD-1255846.1
CUGAGGAGCCGCUGCACCGAA
4375
393-413
UUCGGUGCAGCGGCUCCUCAGCC
4420
391-413





AD-1255842.1
GUGGCUGAGGAGCCGCUGCAA
4376
389-409
UUGCAGCGGCUCCUCAGCCACAG
4421
387-409





AD-1255826.1
GGCACAGCCGCUGCUGCCUCA
4377
322-342
UGAGGCAGCAGCGGCUGUGCCUG
4422
320-342





AD-1255828.1
CACAGCCGCUGCUGCCUCAGA
4378
324-344
UCUGAGGCAGCAGCGGCUGUGCC
4423
322-344





AD-1255844.1
GGCUGAGGAGCCGCUGCACCA
4379
391-411
UGGUGCAGCGGCUCCUCAGCCAC
4424
389-411





AD-1289792.1
CUUCCUCAGCCGCCGCCGCAA
4380
302-322
UUGCGGCGGCGGCUGAGGAAGCU
4425
300-322





AD-1255825.1
AGGCACAGCCGCUGCUGCCUA
4381
321-341
UAGGCAGCAGCGGCUGUGCCUGC
4426
319-341





AD-1255822.1
CCGCAGGCACAGCCGCUGCUA
4382
317-337
UAGCAGCGGCUGUGCCUGCGGCG
4427
315-337





AD-1255839.1
GCUGUGGCUGAGGAGCCGCUA
4383
386-406
UAGCGGCUCCUCAGCCACAGCCG
4428
384-406





AD-1255827.1
GCACAGCCGCUGCUGCCUCAA
4384
323-343
UUGAGGCAGCAGCGGCUGUGCCU
4429
321-343





AD-1255824.1
GCAGGCACAGCCGCUGCUGCA
4385
319-339
UGCAGCAGCGGCUGUGCCUGCGG
4430
317-339





AD-1255845.1
GCUGAGGAGCCGCUGCACCGA
4386
392-412
UCGGUGCAGCGGCUCCUCAGCCA
4431
390-412





AD-1255830.1
CCGCUGCUGCCUCAGCCGCAA
4387
329-349
UUGCGGCUGAGGCAGCAGCGGCU
4432
327-349





AD-1289806.1
GCCGCAGGCACAGCCGCUGCA
4388
316-336
UGCAGCGGCUGUGCCUGCGGCGG
4433
314-336





AD-1255836.1
CCGGCUGUGGCUGAGGAGCCA
4389
383-403
UGGCUCCUCAGCCACAGCCGGGC
4434
381-403





AD-1289807.1
CAGGCACAGCCGCUGCUGCCA
4390
320-340
UGGCAGCAGCGGCUGUGCCUGCG
4435
318-340





AD-1289805.1
CGCCGCAGGCACAGCCGCUGA
4391
315-335
UCAGCGGCUGUGCCUGCGGCGGC
4436
313-335





AD-1255840.1
CUGUGGCUGAGGAGCCGCUGA
4392
387-407
UCAGCGGCUCCUCAGCCACAGCC
4437
385-407





AD-1289808.1
CAGCCGCUGCUGCCUCAGCCA
4393
326-346
UGGCUGAGGCAGCAGCGGCUGUG
4438
324-346





AD-1289800.1
GCCGCCGCCGCAGGCACAGCA
4394
310-330
UGCUGUGCCUGCGGCGGCGGCUG
4439
308-330





AD-1255838.1
GGCUGUGGCUGAGGAGCCGCA
4395
385-405
UGCGGCUCCUCAGCCACAGCCGG
4440
383-405





AD-1255843.1
UGGCUGAGGAGCCGCUGCACA
4396
390-410
UGUGCAGCGGCUCCUCAGCCACA
4441
388-410





AD-1255837.1
CGGCUGUGGCUGAGGAGCCGA
4397
384-404
UCGGCUCCUCAGCCACAGCCGGG
4442
382-404





AD-1255833.1
GGCCCGGCUGUGGCUGAGGAA
4398
380-400
UUCCUCAGCCACAGCCGGGCCGG
4443
378-400





AD-1289797.1
UCAGCCGCCGCCGCAGGCACA
4399
307-327
UGUGCCUGCGGCGGCGGCUGAGG
4444
305-327





AD-1255823.1
CGCAGGCACAGCCGCUGCUGA
4400
318-338
UCAGCAGCGGCUGUGCCUGCGGC
4445
316-338





AD-1289810.1
GCCGCUGCUGCCUCAGCCGCA
4401
328-348
UGCGGCUGAGGCAGCAGCGGCUG
4446
326-348





AD-1289811.1
CCGGCCCGGCUGUGGCUGAGA
4402
378-398
UCUCAGCCACAGCCGGGCCGGGU
4447
376-398





AD-1289812.1
CGGCCCGGCUGUGGCUGAGGA
4403
379-399
UCCUCAGCCACAGCCGGGCCGGG
4448
377-399





AD-1255841.1
UGUGGCUGAGGAGCCGCUGCA
4404
388-408
UGCAGCGGCUCCUCAGCCACAGC
4449
386-408





AD-1289799.1
AGCCGCCGCCGCAGGCACAGA
4405
309-329
UCUGUGCCUGCGGCGGCGGCUGA
4450
307-329





AD-1255834.1
GCCCGGCUGUGGCUGAGGAGA
4406
381-401
UCUCCUCAGCCACAGCCGGGCCG
4451
379-401





AD-1289809.1
AGCCGCUGCUGCCUCAGCCGA
4407
327-347
UCGGCUGAGGCAGCAGCGGCUGU
4452
325-347





AD-1289801.1
CCGCCGCCGCAGGCACAGCCA
4408
311-331
UGGCUGUGCCUGCGGCGGCGGCU
4453
309-331





AD-1289793.1
UUCCUCAGCCGCCGCCGCAGA
4409
303-323
UCUGCGGCGGCGGCUGAGGAAGC
4454
301-323





AD-1289798.1
CAGCCGCCGCCGCAGGCACAA
4410
308-328
UUGUGCCUGCGGCGGCGGCUGAG
4455
306-328





AD-1289796.1
CUCAGCCGCCGCCGCAGGCAA
4411
306-326
UUGCCUGCGGCGGCGGCUGAGGA
4456
304-326





AD-1289803.1
GCCGCCGCAGGCACAGCCGCA
4412
313-333
UGCGGCUGUGCCUGCGGCGGCGG
4457
311-333





AD-1255835.1
CCCGGCUGUGGCUGAGGAGCA
4413
382-402
UGCUCCUCAGCCACAGCCGGGCC
4458
380-402





AD-1289802.1
CGCCGCCGCAGGCACAGCCGA
4414
312-332
UCGGCUGUGCCUGCGGCGGCGGC
4459
310-332





AD-1289794.1
UCCUCAGCCGCCGCCGCAGGA
4415
304-324
UCCUGCGGCGGCGGCUGAGGAAG
4460
302-324





AD-1289795.1
CCUCAGCCGCCGCCGCAGGCA
4416
305-325
UGCCUGCGGCGGCGGCUGAGGAA
4461
303-325
















TABLE 32







Modified Sense and Antisense Strand Sequences of Huntingtin (HTT) dsRNA Agents















SEQ

SEQ

SEQ




ID

ID
mRNA Target
ID


Duplex ID
Sense Sequence 5′ to 3′
NO:
Antisense Sequence 5′ to 3′
NO:
Sequence 5′ to 3′
NO:





AD-1107441
ascsggc(Chd)GfcUfCfAfgg
3636
VPusAfsgcaGfaAfCfcugaGfcGfg
3655
GGACGGCCGCUCAGGUU
3742



uucugcuaL96

ccguscsc

CUGCUU






AD-1107446
cscsaga(Ghd)CfcCfCfAfuu
3609
VPusGfsgcaAfuGfAfauggGfgCfu
3661
GCCCAGAGCCCCAUUCA
3747



cauugccaL96

cuggsgsc

UUGCCC






AD-1107445
csuscag(Ghd)UfuCfUfGfcu
3584
VPusAfsgguAfaAfAfgcagAfaCfc
3645
CGCUCAGGUUCUGCUUU
3732



uuuaccuaL96

ugagscsg

UACCUG






AD-1107440
gsgsacg(Ghd)CfcGfCfUfca
3613
VPusCfsagaAfcCfUfgagcGfgCfc
3673
AUGGACGGCCGCUCAGG
3754



gguucugaL96

guccsasu

UUCUGC






AD-1107444
gscsuca(Ghd)GfuUfCfUfgc
3572
VPusGfsguaAfaAfGfcagaAfcCfu
3665
CCGCUCAGGUUCUGCUU
3745



uuuuaccaL96

gagcsgsg

UUACCU






AD-1107443
csgscuc(Ahd)GfgUfUfCfug
3576
VPusGfsuaaAfaGfCfagaaCfcUfg
3649
GCCGCUCAGGUUCUGCU
3736



cuuuuacaL96

agcgsgsc

UUUACC






AD-1107450
csusgau(Ghd)AfaGfGfCfcu
3563
VPusGfsacuCfgAfAfggccUfuCfa
3993
AGCUGAUGAAGGCCUUC
3737



ucgagucaL96

ucagscsu

GAGUCC






AD-1107452
cscsuuc(Ghd)AfgUfCfCfcu
3567
VPusGfsgacUfuGfAfgggaCfuCfg
4001
GGCCUUCGAGUCCCUCA
3741



caaguccaL96

aaggscsc

AGUCCU






AD-1107454
gsusccc(Uhd)CfaAfGfUfcc
3620
VPusGfscugGfaAfGfgacuUfgAfg
4007
GAGUCCCUCAAGUCCUU
3782



uuccagcaL96

ggacsusc

CCAGCA






AD-1107453
ususcga(Ghd)UfcCfCfUfca
3598
VPusAfsaggAfcUfUfgaggGfaCfu
4003
CCUUCGAGUCCCUCAAG
3765



aguccuuaL96

cgaasgsg

UCCUUC






AD-1107439
usgsgac(Ghd)GfcCfGfCfuc
3592
VPusAfsgaaCfcUfGfagcgGfcCfg
3675
GAUGGACGGCCGCUCAG
3756



agguucuaL96

uccasusc

GUUCUG






AD-1107448
asusggc(Ghd)AfcCfCfUfgg
3596
VPusAfsgcuUfuUfCfcaggGfuCfg
3983
CCAUGGCGACCCUGGAA
3763



aaaagcuaL96

ccausgsg

AAGCUG






AD-1289840
csusga(Uhd)gAfaGfGfCfcu
4462
VPusdGsacdTc(G2p)aaggccUfuC
4470
AGCUGAUGAAGGCCUUC
3737



ucgagucaL96

faucagscsu

GAGUCC






AD-1289848
csusga(Ahd)gAfaGfGfCfcu
4463
VPusdGsacdTc(G2p)aaggccUfuC
4471
AGCUGAUGAAGGCCUUC
3737



ucgagucaL96

fuucagscsu

GAGUCC






AD-1210232
gsasccc(Uhd)GfgAfAfAfag
3593
VPusUfscauCfaGfCfuuuuCfcAfg
3987
GCGACCCUGGAAAAGCU
3760



cugaugaaL96

ggucsgsc

GAUGAA






AD-1210237
usgsgaa(Ahd)AfgCfUfGfau
3566
VPusGfsgccUfuCfAfucagCfuUfu
3990
CCUGGAAAAGCUGAUGA
3740



gaaggccaL96

uccasgsg

AGGCCU






AD-1210241
asasagc(Uhd)GfaUfGfAfag
3560
VPusCfsgaaGfgCfCfuucaUfcAfg
3991
GAAAAGCUGAUGAAGGC
3734



gccuucgaL96

cuuususc

CUUCGA






AD-1210242
usgsaug(Ahd)AfgGfCfCfuu
3587
VPusGfsgacUfcGfAfaggcCfuUfc
3994
GCUGAUGAAGGCCUUCG
3755



cgaguccaL96

aucasgsc

AGUCCC






AD-1210244
gsgsccu(Uhd)CfgAfGfUfcc
3614
VPusAfscuuGfaGfGfgacuCfgAfa
3999
AAGGCCUUCGAGUCCCU
3777



cucaaguaL96

ggccsusu

CAAGUC






AD-1210245
csusucg(Ahd)GfuCfCfCfuc
3581
VPusAfsggaCfuUfGfagggAfcUfc
4002
GCCUUCGAGUCCCUCAA
3751



aaguccuaL96

gaagsgsc

GUCCUU






AD-1210247
gsasguc(Chd)CfuCfAfAfgu
3582
VPusUfsggaAfgGfAfcuugAfgGfg
4006
UCGAGUCCCUCAAGUCC
3752



ccuuccaaL96

acucsgsa

UUCCAG






AD-1289816
gscsucagguUfCfUfgcuu
4464
VPusdGsgudAa(Agn)agcagaAfcC
4472
CCGCUCAGGUUCUGCUU
3745



(Uhd)uaccaL96

fugagcsgsg

UUACCU






AD-1289819
uscsagguUfCfUfgcuu(Uhd)
4465
VPusdGsgudAa(A2p)agcagaAfcC
4473
GCUCAGGUUCUGCUUUU
4479



uaccaL96

fugasgsc

ACCU






AD-1289886
csuscaggUfuCfUfGfcuuu
4466
VPusAfsggdTa(Agn)aagcagAfaC
4474
CGCUCAGGUUCUGCUUU
3732



(Uhd)accuaL96

fcugagscsg

UACCUG






AD-1289906
uscsg(Ahd)guCfCfCfucaag
4467
VPusAfsggdAc(Tgn)ugagggAfcU
4475
CUUCGAGUCCCUCAAGU
4480



uccuaL96

fcgasgsg

CCUU






AD-1289907
uscsg(Ahd)guCfCfCfucaag
4467
VPusAfsggdAc(U2p)ugagggAfcU
4476
CUUCGAGUCCCUCAAGU
4480



uccuaL96

fcgasusc

CCUU






AD-1289909
csusugg(Ahd)guCfCfCfuca
4468
VPusAfsggdAc(U2p)ugagggAfcU
4477
GCCUUCGAGUCCCUCAA
3751



aguccuaL96

fccaagsgsc

GUCCUU






AD-1289964
gscscgc(Uhd)CfadGgUfucu
4469
VPusAfsaadAg(C2p)agaadCcUfg
4478
CGGCCGCUCAGGUUCUG
3733



gcuuuuaL96

Afgcggcscsg

CUUUUA
















TABLE 33







Unmodified Sense and Antisense Strand Sequences of Huntingtin (HTT) dsRNA Agents















SEQ


SEQ



Duplex
Sense Sequence
ID
Range in
Antisense Sequence
ID
Range in


Name
5′ to 3′
NO:
NM_002111.8
5′ to 3′
NO:
NM_002111.8





AD-1107441
ACGGCCGCUCAGGUUCUGCUA
3807
25-45
UAGCAGAACCUGAGCGGCCGUCC
3872
23-45





AD-1107446
CCAGAGCCCCAUUCAUUGCCA
3812
57-77
UGGCAAUGAAUGGGGCUCUGGGC
3877
55-77





AD-1107445
CUCAGGUUCUGCUUUUACCUA
3797
32-52
UAGGUAAAAGCAGAACCUGAGCG
3862
30-52





AD-1107440
GGACGGCCGCUCAGGUUCUGA
3819
23-43
UCAGAACCUGAGCGGCCGUCCAU
3885
21-43





AD-1107444
GCUCAGGUUCUGCUUUUACCA
3810
31-51
UGGUAAAAGCAGAACCUGAGCGG
3875
29-51





AD-1107443
CGCUCAGGUUCUGCUUUUACA
3801
30-50
UGUAAAAGCAGAACCUGAGCGGC
3866
28-50





AD-1107450
CUGAUGAAGGCCUUCGAGUCA
3802
164-184
UGACUCGAAGGCCUUCAUCAGCU
3867
162-184





AD-1107452
CCUUCGAGUCCCUCAAGUCCA
3806
174-194
UGGACUUGAGGGACUCGAAGGCC
4017
172-194





AD-1107454
GUCCCUCAAGUCCUUCCAGCA
3847
181-201
UGCUGGAAGGACUUGAGGGACUC
3914
179-201





AD-1107453
UUCGAGUCCCUCAAGUCCUUA
3830
176-196
UAAGGACUUGAGGGACUCGAAGG
3896
174-196





AD-1107439
UGGACGGCCGCUCAGGUUCUA
3821
22-42
UAGAACCUGAGCGGCCGUCCAUC
3887
20-42





AD-1107448
AUGGCGACCCUGGAAAAGCUA
3828
146-166
UAGCUUUUCCAGGGUCGCCAUGG
4013
144-166





AD-1289840
CUGAUGAAGGCCUUCGAGUCA
3802
164-184
UGACTCGAAGGCCUUCAUCAGCU
4485
162-184





AD-1289848
CUGAAGAAGGCCUUCGAGUCA
4481
164-184
UGACTCGAAGGCCUUCUUCAGCU
4486
162-184





AD-1210232
GACCCUGGAAAAGCUGAUGAA
3825
151-171
UUCAUCAGCUUUUCCAGGGUCGC
3891
149-171





AD-1210237
UGGAAAAGCUGAUGAAGGCCA
3805
156-176
UGGCCUUCAUCAGCUUUUCCAGG
4015
154-176





AD-1210241
AAAGCUGAUGAAGGCCUUCGA
3799
160-180
UCGAAGGCCUUCAUCAGCUUUUC
3864
158-180





AD-1210242
UGAUGAAGGCCUUCGAGUCCA
3820
165-185
UGGACUCGAAGGCCUUCAUCAGC
3886
163-185





AD-1210244
GGCCUUCGAGUCCCUCAAGUA
3842
172-192
UACUUGAGGGACUCGAAGGCCUU
3909
170-192





AD-1210245
CUUCGAGUCCCUCAAGUCCUA
3816
175-195
UAGGACUUGAGGGACUCGAAGGC
4018
173-195





AD-1210247
GAGUCCCUCAAGUCCUUCCAA
3817
179-199
UUGGAAGGACUUGAGGGACUCGA
3883
177-199





AD-1289816
GCUCAGGUUCUGCUUUUACCA
3810
31-51
UGGUAAAAGCAGAACCUGAGCGG
3875
29-51





AD-1289819
UCAGGUUCUGCUUUUACCA
4482
33-51
UGGUAAAAGCAGAACCUGAGC
4487
31-51





AD-1289886
CUCAGGUUCUGCUUUUACCUA
3797
32-52
UAGGTAAAAGCAGAACCUGAGCG
4488
30-52





AD-1289906
UCGAGUCCCUCAAGUCCUA
4483
177-195
UAGGACTUGAGGGACUCGAGG
4489
175-195





AD-1289907
UCGAGUCCCUCAAGUCCUA
4483
177-195
UAGGACUUGAGGGACUCGAUC
4490
175-195





AD-1289909
CUUGGAGUCCCUCAAGUCCUA
4484
175-195
UAGGACUUGAGGGACUCGAAGGC
4491
173-195





AD-1289964
GCCGCUCAGGUUCUGCUUUUA
3798
28-48
UAAAAGCAGAACCUGAGCGGCCG
3863
26-48
















TABLE 4







HTT Single Dose Screens in BE(2)C Cells












10 nM Dose

0.1 nM Dose













Avg % HTT

Avg % HTT




mRNA

mRNA


Duplex
Remaining
SD
Remaining
SD














AD-384118.1
51.69
25.40
46.89
7.33


AD-380543.1
95.92
27.12
71.60
24.68


AD-380533.1
105.39
28.38
91.67
26.80


AD-384038.1
154.15
20.25
125.43
25.19


AD-380805.1
101.15
19.55
114.28
15.36


AD-380117.1
130.05
21.16
122.25
14.15


AD-381341.1
138.31
25.62
146.74
39.17


AD-379426.1
145.46
25.51
151.86
38.36


AD-380888.1
130.28
16.92
134.28
21.73


AD-384841.1
125.51
34.07
115.98
15.20


AD-380853.1
107.44
23.39
98.68
4.67


AD-379602.1
84.02
18.25
172.53
35.05


AD-382484.1
75.19
25.05
57.22
13.43


AD-380741.1
118.53
24.70
73.00
3.77


AD-380534.1
143.75
30.13
103.24
23.54


AD-384053.1
87.87
16.27
130.20
13.77


AD-380916.1
95.50
29.09
144.05
13.23


AD-380402.1
139.27
15.07
126.43
16.30


AD-381464.1
135.36
39.85
134.37
31.20


AD-379729.1
84.36
24.54
137.33
26.49


AD-381065.1
141.96
30.56
136.29
12.84


AD-379466.1
115.44
40.22
120.93
21.48


AD-380885.1
95.86
10.93
139.28
22.72


AD-379897.1
95.59
22.26
172.12
33.52


AD-381124.1
59.94
26.80
51.93
10.57


AD-380807.1
99.61
30.47
77.87
21.23


AD-380806.1
132.18
39.93
102.86
19.45


AD-384843.1
117.21
24.86
123.71
11.78


AD-381257.1
99.30
30.21
124.74
10.99


AD-380408.1
157.70
44.86
129.06
19.38


AD-381570.1
193.38
37.37
125.32
13.13


AD-380093.1
192.68
42.81
135.16
26.86


AD-381148.1
187.13
28.75
137.42
11.82


AD-379475.1
149.83
36.22
124.88
9.89


AD-381142.1
131.62
40.12
121.85
12.50


AD-380852.1
76.23
5.88
198.90
40.31


AD-379935.1
64.90
29.25
53.70
13.77


AD-381117.1
95.64
33.48
68.03
15.97


AD-380808.1
124.46
39.75
95.85
8.44


AD-379471.1
93.97
29.87
104.28
18.99


AD-381342.1
107.50
20.99
126.66
32.01


AD-380411.1
148.77
15.63
134.25
21.15


AD-382487.1
155.26
47.54
136.80
13.12


AD-380116.1
156.98
36.49
156.00
25.80


AD-381150.1
149.99
39.15
135.76
22.27


AD-379476.1
132.34
43.09
131.15
14.36


AD-382444.1
122.07
26.37
118.65
22.02


AD-380883.1
52.18
15.97
257.45
13.08


AD-379941.1
59.35
31.34
58.84
13.25


AD-381578.1
75.64
37.02
60.08
4.32


AD-381460.1
101.15
24.87
96.09
11.60


AD-379939.1
156.24
25.09
99.44
17.05


AD-384039.1
127.13
42.92
108.45
32.25


AD-380735.1
137.74
42.47
128.37
15.25


AD-382525.1
154.67
44.65
124.68
26.66


AD-380713.1
163.12
43.55
130.38
21.77


AD-382149.1
135.62
22.90
139.99
28.87


AD-379855.1
145.22
39.96
122.14
13.22


AD-383508.1
135.52
24.12
118.15
5.12


AD-381273.1
74.96
3.61
192.17
24.11


AD-382483.1
51.15
24.35
67.84
17.97


AD-382481.1
82.28
22.45
74.06
8.54


AD-382485.1
100.70
33.99
90.08
11.68


AD-380092.1
101.09
37.56
93.42
10.74


AD-379420.1
102.06
37.49
99.35
10.17


AD-380800.1
84.91
25.98
116.09
25.96


AD-384030.1
143.57
39.66
115.50
24.98


AD-380737.1
149.04
34.89
137.50
24.60


AD-382780.1
155.32
21.47
145.73
18.80


AD-379944.1
146.65
40.50
148.17
14.59


AD-379461.1
134.09
14.71
129.84
8.09


AD-381856.1
51.32
13.29
125.92
43.49


AD-379418.1
23.32
9.32
37.51
6.01


AD-382924.1
76.58
31.10
51.58
11.97


AD-383759.1
88.53
29.71
73.95
12.45


AD-380409.1
121.08
24.07
83.54
6.71


AD-379380.1
33.65
6.37
100.25
16.79


AD-381145.1
113.55
24.69
100.19
22.11


AD-384054.1
113.24
20.54
116.75
20.01


AD-380796.1
145.88
42.84
140.74
14.73


AD-382960.1
145.68
37.86
138.28
27.41


AD-380555.1
106.36
26.58
139.27
18.75


AD-379462.1
158.82
47.01
119.08
13.60


AD-382118.1
88.57
19.33
110.03
27.29


AD-380414.1
37.65
8.76
33.69
1.29


AD-380091.1
52.46
27.92
47.36
13.94


AD-383761.1
51.55
19.45
61.12
13.37


AD-380740.1
32.40
12.55
65.91
18.47


AD-379945.1
47.84
25.04
94.57
15.24


AD-379425.1
52.33
16.94
89.98
12.20


AD-380886.1
111.81
24.52
137.52
37.78


AD-384366.1
103.34
14.61
105.10
18.86


AD-380798.1
109.34
31.61
103.41
21.42


AD-379463.1
112.46
30.89
92.69
9.78


AD-382148.1
40.89
7.63
59.31
20.48


AD-357754.1
25.92
3.91
59.47
11.65


AD-356938.1
19.38
3.74
66.11
22.41


AD-355054.1
73.88
18.14
121.65
15.38


AD-357748.1
58.16
15.88
122.16
5.44


AD-355704.1
37.44
4.59
165.32
50.68


AD-356946.1
48.39
8.85
162.43
42.24


AD-353499.1
32.30
7.21
139.76
50.75


AD-354076.1
88.26
13.12
133.42
42.69


AD-356630.1
37.53
3.16
92.04
25.79


AD-353351.1
41.71
6.98
96.78
14.30


AD-359803.1
54.29
19.36
177.30
41.38


AD-382526.1
38.58
7.17
54.67
10.40


AD-356975.1
33.90
7.35
80.03
9.50


AD-356974.1
32.22
5.95
120.19
17.90


AD-355117.1
37.63
2.69
117.21
11.97


AD-357755.1
104.49
8.71
136.50
16.63


AD-356382.1
94.77
7.03
150.60
13.96


AD-356973.1
85.49
7.63
148.93
18.16


AD-358488.1
46.44
2.36
139.29
25.52


AD-354078.1
46.34
5.84
129.77
43.58


AD-356638.1
77.64
14.67
138.53
22.89


AD-357096.1
48.16
2.44
135.84
19.68


AD-361492.1
56.56
15.98
124.38
30.67


AD-382775.1
42.95
11.66
76.60
16.23


AD-357239.1
24.39
3.37
60.14
11.30


AD-357756.1
78.94
10.48
109.26
30.70


AD-356384.1
36.95
9.36
105.38
12.36


AD-357879.1
42.50
4.51
117.99
20.11


AD-356386.1
68.71
7.28
147.92
36.10


AD-356995.1
60.22
5.01
168.66
25.76


AD-353516.1
33.15
9.36
133.30
18.51


AD-354079.1
49.35
5.31
130.79
14.08


AD-356639.1
36.33
3.49
117.25
22.43


AD-357649.1
85.70
2.07
91.78
58.01


AD-361496.1
41.93
12.04
140.37
30.87


AD-382777.1
56.23
13.88
58.04
19.93


AD-353525.1
21.75
2.08
58.46
7.82


AD-358480.1
26.74
5.28
64.94
13.24


AD-356388.1
45.10
10.22
109.51
34.60


AD-353500.1
40.43
3.34
102.99
14.32


AD-356407.1
61.59
6.59
157.31
42.34


AD-357068.1
45.70
7.82
160.84
46.87


AD-359802.1
33.72
4.31
149.89
20.91


AD-354638.1
65.21
2.80
170.34
27.30


AD-356663.1
58.99
6.53
128.37
38.64


AD-357651.1
88.23
17.45
107.54
38.79


AD-362085.1
86.17
27.21
170.36
24.85


AD-384329.1
61.30
6.83
52.87
3.24


AD-354067.1
23.37
4.21
62.78
10.75


AD-353526.1
50.82
2.45
106.49
16.48


AD-356422.1
51.12
12.80
99.93
3.64


AD-353519.1
43.78
4.69
109.71
25.51


AD-356443.1
80.02
8.39
151.50
30.84


AD-357115.1
64.98
6.65
178.41
43.34


AD-361493.1
29.23
6.24
136.35
20.49


AD-354639.1
48.20
4.60
155.53
33.91


AD-356955.1
62.09
6.19
164.98
46.88


AD-358471.1
31.12
3.36
108.67
37.20


AD-354066.1
77.57
12.13
205.05
15.39


AD-384665.1
62.62
11.80
51.01
1.70


AD-355045.1
13.21
1.82
32.78
5.49


AD-353715.1
19.44
1.85
51.85
13.55


AD-356429.1
35.74
7.82
76.89
14.02


AD-359761.1
53.86
7.22
92.90
36.39


AD-356669.1
67.14
12.99
122.69
54.26


AD-357684.1
38.66
2.19
171.32
21.29


AD-361981.1
89.01
10.03
136.10
45.50


AD-355423.1
50.85
3.22
126.34
24.37


AD-356956.1
45.99
3.04
152.10
57.21


AD-353522.1
60.07
5.92
119.82
39.14


AD-354075.1
30.04
2.60
154.25
28.87


AD-355059.1
32.62
6.80
43.67
9.90


AD-356951.1
19.64
3.03
41.52
5.36


AD-353871.1
57.71
3.61
59.99
14.88


AD-356996.1
36.58
9.28
77.80
17.06


AD-354068.1
27.76
6.17
47.95
10.59


AD-356678.1
32.90
4.26
87.03
18.12


AD-357963.1
45.86
6.23
132.93
44.34


AD-362090.1
94.25
8.99
125.66
40.95


AD-355745.1
41.18
3.07
103.13
19.96


AD-357066.1
90.93
13.20
112.28
36.69


AD-353527.1
57.92
8.02
112.27
9.38


AD-354236.1
56.76
5.34
193.83
27.51


AD-357750.1
7.74
2.65
18.65
3.02


AD-356389.1
13.11
2.30
35.47
3.73


AD-354939.1
18.83
5.26
49.46
4.06


AD-357218.1
16.19
4.22
32.72
6.57


AD-354640.1
18.37
2.59
41.06
5.66


AD-358018.1
25.29
8.01
63.68
15.77


AD-362093.1
95.57
21.34
100.80
19.61


AD-356385.1
28.71
2.03
63.42
13.57


AD-357069.1
31.85
2.96
90.71
14.52


AD-358764.1
17.72
5.20
54.27
8.41


AD-354316.1
83.70
20.63
199.24
10.55


AD-355775.1
61.70
17.03
158.42
20.42


AD-354320.1
61.59
15.49
160.96
7.90


AD-355783.1
55.33
15.69
133.29
18.94


AD-354322.1
191.64
54.47
179.71
36.74


AD-356408.1
159.84
36.30
213.32
24.70


AD-354805.1
172.07
29.14
199.39
27.62


AD-356409.1
83.23
12.52
173.24
19.82


AD-355118.1
102.46
24.74
170.98
23.64


AD-358958.1
187.06
30.88
199.91
32.39


AD-355422.1
72.78
24.21
226.00
37.15


AD-358959.1
100.77
30.11
199.23
10.37


AD-355424.1
54.88
14.67
156.21
37.30


AD-379420.2
162.26
36.61
179.07
34.36


AD-355524.1
85.94
17.37
175.30
31.43


AD-379380.2
90.64
12.90
153.32
39.65
















TABLE 7







HTT Single Dose Screens in BE(2)C Cells












50 nM dose
10 nM dose
1 nM dose
0.1 nM dose
















Avg %

Avg %

Avg %

Avg %




HTT mRNA

HTT mRNA

HTT mRNA

HTT mRNA


Duplex
Remaining
SD
Remaining
SD
Remaining
SD
Remaining
SD


















AD-953583.1
65.73
3.69
68.52
3.59
81.29
4.52
81.77
7.38


AD-953591.1
58.10
7.40
62.11
6.03
78.16
9.19
87.18
7.93


AD-953599.1
57.26
5.59
58.05
5.65
67.00
6.55
75.18
7.92


AD-953607.1
76.53
11.31
78.85
9.00
89.54
4.07
93.39
7.95


AD-953615.1
76.53
6.30
80.78
4.38
92.95
6.29
106.03
9.52


AD-953623.1
66.90
7.69
67.88
6.90
82.93
8.14
92.69
11.53


AD-953630.1
94.68
3.29
101.89
11.32
104.63
8.08
105.94
3.82


AD-953638.1
42.99
6.32
41.59
3.46
64.62
4.89
73.39
3.32


AD-953646.1
70.95
4.23
66.70
4.72
97.86
8.88
95.46
13.41


AD-953654.1
100.02
6.41
98.76
5.28
101.05
3.32
94.44
9.22


AD-953662.1
58.24
3.55
59.42
4.65
70.38
3.35
81.97
6.26


AD-953670.1
94.50
6.27
104.75
19.49
101.22
16.84
98.02
9.61


AD-953584.1
75.92
8.67
64.59
3.37
83.74
4.97
83.52
8.34


AD-953592.1
74.32
6.15
83.15
3.03
91.25
3.66
87.69
2.83


AD-953600.1
66.63
5.56
72.19
4.32
82.18
7.79
88.40
8.30


AD-953608.1
39.95
1.44
37.97
2.56
50.35
1.45
59.10
4.86


AD-953616.1
55.54
6.07
58.76
3.89
66.92
2.95
82.14
3.85


AD-953624.1
59.50
6.03
65.30
8.40
84.89
4.79
99.56
8.34


AD-953631.1
58.38
5.72
65.35
6.45
51.38
25.23
91.21
10.80


AD-953639.1
61.64
3.35
66.52
8.42
79.18
19.97
93.20
7.44


AD-953647.1
85.61
6.31
88.65
3.05
106.42
7.45
99.83
6.89


AD-953655.1
104.92
13.38
100.12
4.72
115.45
11.59
102.49
2.83


AD-953663.1
82.13
6.07
81.32
3.82
91.83
1.33
92.32
8.82


AD-953671.1
100.07
15.43
99.10
7.82
107.01
9.34
105.01
12.00


AD-953585.1
68.95
9.55
61.23
3.65
74.87
7.80
81.74
7.20


AD-953593.1
85.35
3.46
97.48
1.55
100.73
13.93
93.10
10.76


AD-953601.1
77.13
7.42
84.97
5.15
89.10
4.71
91.41
9.31


AD-953609.1
46.34
3.08
47.10
5.91
51.32
1.83
64.58
5.59


AD-953617.1
77.35
6.64
86.08
6.66
94.95
9.83
93.88
7.96


AD-953625.1
74.64
7.17
81.66
5.25
78.02
9.39
95.15
7.25


AD-953632.1
77.51
7.12
89.57
9.14
90.60
3.10
98.16
23.71


AD-953640.1
83.31
3.82
89.18
7.83
102.72
9.30
96.01
7.82


AD-953648.1
57.67
1.63
65.09
6.24
76.89
8.29
87.91
7.83


AD-953656.1
99.23
7.82
93.97
6.04
105.33
7.69
114.77
15.98


AD-953664.1
98.54
7.70
99.52
1.09
104.78
10.71
92.95
5.76


AD-953672.1
100.25
12.34
88.22
6.82
96.10
5.13
113.16
16.49


AD-953586.1
55.47
7.17
51.83
2.45
70.27
6.04
85.64
11.03


AD-953594.1
85.85
15.81
87.47
4.38
98.58
6.57
101.50
8.72


AD-953602.1
41.93
3.04
47.45
5.33
58.52
8.83
74.66
7.74


AD-953610.1
38.40
3.08
43.49
5.30
53.06
6.83
69.18
8.59


AD-953618.1
53.81
1.55
55.94
4.80
76.25
4.38
84.62
4.50


AD-953626.1
132.27
15.59
123.27
12.89
120.22
12.84
107.76
14.81


AD-953633.1
98.35
3.09
111.46
12.11
109.58
14.76
107.71
14.87


AD-953641.1
75.61
6.32
86.93
8.49
86.57
8.36
89.55
3.27


AD-953649.1
92.18
8.31
97.93
5.62
97.81
4.37
94.25
5.70


AD-953657.1
69.99
10.60
85.39
4.71
101.53
6.78
112.01
13.76


AD-953665.1
97.57
5.24
87.23
8.45
107.27
13.55
95.34
7.96


AD-953673.1
92.01
9.92
94.45
18.78
111.78
7.01
100.86
12.99


AD-953587.1
68.70
6.66
61.13
3.55
74.72
0.99
75.52
5.19


AD-953595.1
55.25
2.40
59.95
10.47
73.01
14.85
83.12
6.44


AD-953603.1
41.36
4.30
45.84
6.02
50.82
4.36
72.34
5.27


AD-953611.1
30.59
6.97
42.23
5.89
49.55
3.33
58.05
4.27


AD-953619.1
85.04
6.60
84.15
2.66
92.49
6.64
105.62
13.92


AD-953627.1
122.45
6.77
121.67
8.15
115.37
10.37
101.98
3.81


AD-953634.1
94.74
5.02
98.17
2.46
94.99
4.68
103.34
14.41


AD-953642.1
97.38
4.57
101.48
3.54
102.35
5.46
108.12
7.59


AD-953650.1
87.24
8.42
92.14
4.81
86.84
5.30
109.74
5.84


AD-953658.1
84.73
6.08
89.05
8.27
97.51
11.09
98.79
13.15


AD-953666.1
85.26
5.11
89.22
12.04
102.53
5.36
100.98
5.34


AD-953674.1
77.69
11.54
89.93
11.06
111.28
16.28
121.78
24.22


AD-953588.1
61.12
3.42
52.22
3.21
74.78
6.36
81.13
3.04


AD-953596.1
62.94
11.35
68.95
5.19
67.32
6.16
99.40
12.55


AD-953604.1
55.03
9.69
61.31
6.72
73.83
5.30
98.96
6.64


AD-953612.1
43.94
3.27
48.39
4.57
52.67
1.79
58.41
6.63


AD-953620.1
91.36
14.02
94.64
8.89
105.50
7.50
99.73
10.63


AD-953628.1
109.80
6.56
130.58
21.51
110.07
9.27
102.73
8.48


AD-953635.1
65.33
12.81
71.01
5.41
78.77
14.06
102.21
16.98


AD-953643.1
113.32
10.85
114.70
7.78
113.65
1.32
119.32
13.91


AD-953651.1
92.51
8.51
102.42
11.22
96.93
2.88
101.02
13.41


AD-953659.1
110.37
6.31
110.02
7.07
114.25
8.01
102.65
2.34


AD-953667.1
80.72
6.03
82.89
4.05
98.54
5.69
102.25
17.23


AD-953675.1
92.90
16.65
83.78
11.99
105.12
8.40
117.15
13.27


AD-953589.1
36.03
3.99
37.09
3.93
47.90
8.18
65.62
8.58


AD-953597.1
84.76
6.85
83.08
5.17
70.66
15.70
90.06
9.84


AD-953605.1
31.15
1.73
36.82
5.10
41.77
3.33
62.59
7.87


AD-953613.1
40.91
2.79
50.41
8.12
57.95
6.23
82.40
11.89


AD-953621.1
95.71
7.99
107.50
8.86
105.83
6.97
103.24
10.64


AD-953629.1
94.99
2.17
99.81
5.71
104.87
13.34
106.22
15.58


AD-953636.1
34.50
2.03
44.33
6.24
53.82
3.03
69.97
4.61


AD-953644.1
75.18
2.13
84.50
4.58
93.01
4.04
102.93
8.86


AD-953652.1
102.12
6.62
108.95
3.92
102.50
14.43
102.09
6.83


AD-953660.1
100.98
4.32
105.70
9.85
103.96
9.02
105.07
15.10


AD-953676.1
97.29
12.62
90.38
6.80
104.26
13.38
113.36
14.80


AD-953590.1
40.56
6.67
37.30
8.25
60.77
5.55
64.45
11.54


AD-953598.1
47.12
5.20
48.93
3.87
66.94
9.54
75.49
4.38


AD-953606.1
38.33
3.00
43.30
2.46
53.37
4.82
71.51
5.85


AD-953614.1
45.05
3.95
52.34
5.39
65.63
4.84
86.96
7.13


AD-953622.1
84.86
8.26
87.00
6.92
93.95
6.81
91.20
5.59


AD-953637.1
32.84
1.10
42.70
7.04
56.90
8.71
95.38
19.98


AD-953645.1
47.64
4.52
53.70
5.27
69.42
3.59
92.71
7.28


AD-953653.1
105.41
8.04
111.93
16.66
102.13
12.99
106.61
10.07


AD-953661.1
49.36
2.09
53.43
5.21
67.92
12.66
101.20
13.79


AD-953677.1
45.65
3.56
42.77
4.59
57.33
10.35
77.95
5.43


AD-953685.1
48.42
10.41
46.82
4.11
63.78
7.35
86.60
11.82


AD-953693.1
93.50
6.26
89.55
14.61
95.96
25.61
98.07
8.42


AD-953701.1
100.99
25.01
90.05
6.66
106.35
9.81
99.41
4.05


AD-953709.1
111.06
20.00
99.36
11.71
107.61
8.85
111.13
31.48


AD-953717.1
87.09
9.97
72.85
12.95
90.34
12.98
102.74
8.46


AD-953724.1
61.62
2.67
59.42
7.22
72.38
6.31
97.59
8.53


AD-953732.1
36.91
3.27
36.45
2.72
49.11
4.45
75.61
9.88


AD-953740.1
57.47
6.77
55.67
9.18
78.54
4.76
94.03
7.16


AD-953748.1
41.94
4.36
34.60
5.45
53.28
4.89
75.42
7.20


AD-953756.1
26.38
1.58
25.66
2.26
31.90
4.42
52.80
4.10


AD-953678.1
39.42
4.37
42.44
2.89
54.37
4.54
70.49
8.50


AD-953686.1
47.73
4.51
49.18
7.58
63.76
10.38
78.32
18.31


AD-953694.1
78.72
6.97
85.82
12.25
97.80
10.27
111.29
11.78


AD-953702.1
101.14
10.57
101.53
10.33
117.42
7.40
105.83
11.09


AD-953710.1
107.38
6.85
107.87
8.46
112.98
6.08
115.03
19.01


AD-953718.1
105.19
12.03
102.57
14.87
108.64
7.61
104.65
7.29


AD-953733.1
54.90
6.22
63.24
10.51
70.74
5.85
103.23
2.58


AD-953741.1
53.57
4.65
56.02
4.29
81.67
10.58
101.25
13.78


AD-953749.1
82.34
4.62
81.11
7.23
94.63
7.27
100.71
11.80


AD-953757.1
31.43
1.99
38.04
2.38
42.02
8.56
63.01
7.88


AD-953679.1
68.32
7.90
73.96
3.66
75.85
6.87
82.08
5.08


AD-953687.1
54.92
7.52
54.63
7.06
65.52
8.91
83.85
14.01


AD-953695.1
101.51
14.48
95.01
6.55
104.09
7.93
105.23
12.85


AD-953703.1
85.19
6.51
80.28
4.95
92.69
3.83
103.61
10.67


AD-953711.1
112.96
8.24
109.11
7.12
120.35
12.16
106.85
15.15


AD-953719.1
114.81
12.49
119.99
7.03
113.69
8.85
119.23
9.37


AD-953726.1
35.11
2.22
31.46
15.34
57.67
6.30
69.34
8.95


AD-953734.1
65.77
6.38
69.99
3.84
81.13
3.99
106.57
11.42


AD-953742.1
58.72
7.50
61.53
6.18
80.00
3.55
119.74
27.68


AD-953750.1
49.32
3.17
51.48
4.12
68.72
6.03
100.69
9.29


AD-953758.1
44.88
3.61
44.90
4.85
63.24
5.71
84.39
11.25


AD-953680.1
74.90
10.00
75.77
8.06
83.61
5.45
86.00
5.23


AD-953688.1
81.42
6.03
82.20
12.97
92.96
14.02
95.86
15.69


AD-953696.1
72.19
7.93
67.92
6.92
94.23
6.09
104.55
13.60


AD-953704.1
61.45
5.62
57.14
12.13
83.24
6.56
95.70
13.67


AD-953712.1
91.32
22.75
93.92
23.35
103.07
5.72
115.58
24.96


AD-953720.1
49.31
2.84
54.74
6.31
73.48
3.04
104.52
14.03


AD-953727.1
45.24
3.13
49.26
0.69
71.27
8.02
99.78
13.10


AD-953735.1
31.95
3.33
40.15
0.28
57.09
5.22
67.75
11.15


AD-953743.1
78.37
2.03
85.25
4.14
108.96
9.61
117.13
18.52


AD-953751.1
69.59
6.18
79.91
15.30
91.65
8.73
111.31
15.81


AD-953759.1
32.77
2.20
36.29
3.15
46.58
3.68
63.10
0.91


AD-953681.1
63.72
8.96
62.53
10.90
69.20
7.75
73.85
14.26


AD-953689.1
84.37
9.37
89.59
8.90
87.64
6.11
94.10
8.40


AD-953697.1
68.67
6.28
70.47
3.84
93.16
11.56
87.50
27.30


AD-953705.1
76.26
9.26
82.71
9.78
101.83
5.76
113.88
25.71


AD-953713.1
72.81
6.33
122.98
18.47
121.70
6.11
126.85
17.30


AD-953721.1
60.09
9.07
61.94
6.28
83.99
7.06
113.53
27.30


AD-953728.1
95.99
7.09
108.81
4.05
105.69
2.61
114.43
15.15


AD-953736.1
43.65
2.02
52.40
3.01
64.42
5.17
107.14
11.36


AD-953744.1
34.38
1.85
38.20
1.43
52.26
2.92
87.44
11.10


AD-953752.1
39.11
3.78
42.14
3.86
55.97
4.34
65.34
13.30


AD-953760.1
39.56
5.60
48.26
1.06
57.17
2.95
69.88
14.70


AD-953682.1
72.92
6.13
77.05
5.65
64.24
10.41
68.65
12.16


AD-953690.1
56.69
5.84
63.32
3.95
69.67
3.82
87.15
7.13


AD-953698.1
84.41
5.61
93.42
7.30
100.01
7.77
108.17
23.60


AD-953706.1
79.57
29.33
101.33
7.52
109.13
5.67
95.20
13.29


AD-953714.1
111.33
25.98
125.62
15.31
121.04
5.09
121.24
16.17


AD-953722.1
93.22
15.35
99.91
7.15
108.30
8.00
119.11
13.70


AD-953729.1
42.66
6.10
48.25
6.35
69.79
3.86
81.80
40.67


AD-953737.1
86.74
4.91
92.04
8.22
106.08
8.22
112.46
14.11


AD-953745.1
45.37
6.06
51.60
3.18
72.29
6.94
101.78
13.92


AD-953753.1
43.19
1.55
48.00
4.80
52.93
1.12
68.38
8.85


AD-953761.1
39.17
3.62
48.79
4.14
67.01
4.98
107.76
31.81


AD-953683.1
54.19
11.40
55.49
9.00
47.23
9.63
50.48
20.26


AD-953691.1
51.35
3.73
52.28
5.39
56.24
0.80
75.71
12.94


AD-953699.1
64.00
6.71
70.30
2.19
77.97
8.78
76.70
4.51


AD-953707.1
82.64
4.93
99.12
4.80
93.51
14.02
103.34
13.49


AD-953715.1
67.17
5.00
74.93
8.83
89.71
4.29
107.26
12.67


AD-953723.1
53.25
5.37
57.01
4.45
60.65
5.16
72.75
16.34


AD-953730.1
41.03
3.52
48.59
3.57
57.66
2.68
85.34
8.56


AD-953738.1
88.72
13.13
100.11
3.39
112.47
11.06
111.34
12.58


AD-953746.1
40.09
4.99
42.65
2.74
56.37
4.56
80.77
15.66


AD-953754.1
56.31
8.93
60.39
6.69
74.84
4.85
88.46
30.20


AD-953762.1
32.45
1.33
39.24
2.29
45.27
4.18
63.80
2.81


AD-953684.1
33.34
3.17
33.75
3.02
36.55
4.48
65.44
4.73


AD-953692.1
36.65
6.50
37.31
4.94
43.81
6.87
49.97
13.15


AD-953700.1
58.41
8.15
79.31
15.47
81.12
8.60
75.62
22.12


AD-953708.1
88.19
10.97
104.34
10.02
89.15
12.84
95.41
18.93


AD-953716.1
65.20
4.34
69.54
15.10
84.30
10.53
98.17
23.29


AD-953731.1
41.68
2.39
46.72
5.76
55.67
1.61
78.17
10.58


AD-953739.1
67.29
5.08
75.80
4.41
84.19
5.33
85.46
21.86


AD-953747.1
39.12
1.33
48.43
3.51
71.76
8.07
84.11
5.65


AD-953755.1
34.37
1.72
43.66
1.92
40.70
4.34
56.45
12.42
















TABLE 10







HTT Single Dose Screens in BE(2)C Cells












50 nM dose
10 nM dose
1 nM dose
0.1 nM dose
















Avg %

Avg %

Avg %

Avg %




HTT mRNA

HTT mRNA

HTT mRNA

HTT mRNA


Duplex
Remaining
SD
Remaining
SD
Remaining
SD
Remaining
SD


















AD-953857.1
16.05
2.43
18.37
6.33
37.83
3.99
61.37
32.24


AD-953865.1
21.46
1.84
21.52
2.08
41.90
6.47
66.45
9.60


AD-953873.1
47.68
1.44
41.42
6.98
66.65
7.70
107.00
4.95


AD-953881.1
57.77
5.42
61.52
12.28
71.46
8.69
93.49
10.37


AD-953889.1
21.18
1.43
21.45
3.67
36.96
5.59
49.35
5.80


AD-953897.1
26.52
2.95
25.80
4.38
44.35
0.36
62.96
9.00


AD-953904.1
15.29
2.08
14.33
1.46
27.94
3.94
38.13
10.23


AD-953912.1
20.77
1.06
17.31
1.44
32.90
3.56
42.66
3.78


AD-953920.1
29.21
5.44
23.86
2.65
41.37
5.53
60.07
6.41


AD-953928.1
26.06
5.15
23.19
2.25
45.61
1.04
59.95
10.49


AD-953936.1
20.24
1.03
18.53
1.67
38.84
3.09
49.16
2.52


AD-953858.1
15.45
1.79
15.12
3.49
29.10
5.63
44.55
6.67


AD-953866.1
22.40
0.79
19.07
1.56
33.29
1.60
61.67
5.23


AD-953874.1
22.91
3.18
21.92
2.47
32.57
1.93
55.52
7.14


AD-953882.1
23.56
2.92
25.69
4.05
42.19
5.80
73.33
9.11


AD-953890.1
22.71
1.67
24.89
2.42
37.31
6.20
49.23
5.16


AD-953898.1
24.80
0.30
22.21
2.80
35.18
2.80
43.93
4.68


AD-953905.1
26.85
2.44
24.82
2.69
42.91
5.14
72.01
10.43


AD-953913.1
25.90
1.86
25.28
1.84
43.55
7.23
69.03
11.98


AD-953921.1
22.21
1.76
19.64
1.53
34.67
3.91
54.24
8.28


AD-953929.1
36.47
5.87
36.02
2.85
61.06
2.86
83.91
22.13


AD-953937.1
16.73
0.96
19.44
3.72
31.00
4.55
34.78
4.00


AD-953859.1
16.27
1.03
16.96
0.82
30.38
3.42
53.51
10.75


AD-953867.1
22.01
3.84
21.97
2.10
35.05
3.59
57.11
1.53


AD-953875.1
24.36
1.23
26.15
2.97
38.19
2.22
74.02
8.43


AD-953883.1
24.73
1.85
21.07
1.38
30.54
4.74
46.61
7.10


AD-953891.1
24.26
0.86
24.22
4.04
38.49
5.50
47.81
7.76


AD-953899.1
24.59
2.33
20.26
2.51
31.05
4.32
41.14
13.31


AD-953906.1
22.78
1.44
20.10
7.25
46.92
2.16
75.40
9.82


AD-953914.1
28.46
1.16
29.74
4.80
64.66
8.34
96.65
11.03


AD-953922.1
19.19
1.32
19.92
3.18
29.66
1.82
34.86
3.55


AD-953930.1
21.85
5.90
21.01
0.82
43.94
3.67
62.33
7.01


AD-953938.1
63.20
5.78
66.64
7.02
79.51
8.87
80.39
3.46


AD-953860.1
19.05
4.26
18.65
0.79
33.32
5.75
48.63
5.08


AD-953868.1
19.63
3.05
18.41
0.48
32.04
2.63
45.92
4.72


AD-953876.1
33.16
2.94
31.85
1.36
66.49
7.48
102.46
4.40


AD-953884.1
14.13
2.63
16.42
2.11
29.70
2.63
38.29
1.64


AD-953892.1
27.64
2.38
25.56
1.96
47.71
9.73
73.34
17.01


AD-953900.1
17.05
0.96
18.87
1.40
32.04
4.65
42.31
8.16


AD-953907.1
26.95
3.88
22.93
2.59
39.97
8.06
71.61
4.01


AD-953915.1
30.95
4.60
28.16
5.40
46.16
10.23
71.46
7.54


AD-953923.1
21.89
2.66
17.20
1.12
27.43
1.64
40.87
3.85


AD-953931.1
27.06
2.01
27.01
2.05
42.09
4.90
63.01
3.94


AD-953939.1
77.68
4.69
76.66
10.80
88.25
6.19
94.95
4.51


AD-953861.1
20.65
1.55
18.60
2.50
29.63
3.05
40.90
5.14


AD-953869.1
21.08
2.86
21.03
2.28
33.09
2.30
55.70
4.88


AD-953877.1
31.47
1.50
32.22
0.31
60.90
5.92
88.72
15.86


AD-953885.1
22.81
2.02
22.11
1.91
33.11
1.36
54.46
6.06


AD-953893.1
25.43
3.20
26.90
1.72
35.40
3.43
58.81
5.74


AD-953901.1
23.55
2.39
22.74
2.14
30.83
2.19
46.56
6.45


AD-953908.1
28.14
3.66
24.79
4.32
49.98
6.67
74.89
11.28


AD-953916.1
20.50
1.45
20.84
3.59
32.80
3.07
55.53
5.20


AD-953924.1
20.30
2.89
19.94
2.37
31.99
1.48
53.87
2.32


AD-953932.1
22.26
4.04
22.14
1.06
37.97
1.68
64.51
5.33


AD-953940.1
78.14
8.15
84.67
10.84
91.71
2.98
95.60
7.68


AD-953862.1
22.74
1.44
21.07
0.21
32.76
4.07
51.54
3.32


AD-953870.1
20.18
2.42
19.12
1.30
30.42
3.19
40.34
7.91


AD-953878.1
33.07
2.38
31.34
3.70
53.01
3.47
88.88
9.26


AD-953886.1
17.86
1.46
19.86
1.08
31.56
1.68
55.48
5.88


AD-953894.1
27.61
2.51
28.83
1.74
56.14
0.45
82.15
15.86


AD-953902.1
18.50
2.11
19.26
1.83
28.69
1.66
37.61
5.71


AD-953909.1
26.17
1.74
28.69
2.80
48.35
4.44
68.14
4.57


AD-953917.1
26.83
2.16
27.61
2.62
36.73
1.02
70.07
10.65


AD-953925.1
46.16
7.34
44.27
1.82
71.56
4.90
107.36
4.41


AD-953933.1
18.24
2.49
20.81
2.28
31.13
1.91
52.83
9.20


AD-953941.1
59.99
7.78
52.78
7.30
82.81
6.48
110.20
9.13


AD-953863.1
32.05
2.19
28.11
1.01
34.98
0.73
50.43
7.83


AD-953871.1
28.02
2.21
28.90
2.25
34.68
3.48
46.87
5.69


AD-953879.1
23.07
2.42
25.80
2.96
36.76
3.23
59.20
7.03


AD-953887.1
18.24
1.05
20.75
1.99
28.07
2.87
41.77
7.81


AD-953895.1
20.39
2.35
22.41
3.55
26.86
3.42
43.97
4.42


AD-953903.1
15.66
2.01
19.65
2.14
29.56
1.93
39.81
7.11


AD-953910.1
23.32
4.24
23.75
2.89
37.97
3.81
62.99
3.58


AD-953918.1
31.96
4.06
32.74
2.53
45.30
1.60
79.21
8.97


AD-953926.1
21.45
0.48
24.19
2.05
40.34
5.85
72.83
12.05


AD-953934.1
23.64
1.04
25.29
0.71
38.99
2.17
67.06
7.90


AD-953864.1
26.24
3.28
22.71
2.58
38.72
3.45
52.72
12.31


AD-953872.1
25.36
5.20
25.00
2.09
37.92
4.88
45.09
6.85


AD-953880.1
21.96
1.35
23.44
2.50
37.41
4.29
49.37
9.72


AD-953888.1
26.33
2.91
24.11
1.45
40.29
3.43
55.22
10.38


AD-953896.1
21.04
0.64
22.26
2.38
36.44
4.77
56.58
9.76


AD-953911.1
22.96
1.06
24.03
2.14
37.86
2.21
66.71
11.29


AD-953919.1
62.76
5.76
56.02
5.60
76.99
2.81
99.08
13.73


AD-953927.1
25.86
2.58
23.39
2.44
31.73
2.85
46.22
9.20


AD-953935.1
16.38
1.42
17.59
1.08
29.00
3.19
53.23
4.33


AD-953763.1
33.44
10.21
31.06
6.57
43.69
4.70
48.31
5.99


AD-953771.1
42.75
6.50
41.28
9.16
75.61
9.00
92.60
10.47


AD-953779.1
27.92
5.35
31.67
9.74
37.29
4.50
57.23
5.65


AD-953787.1
32.95
4.58
35.35
8.17
41.84
4.58
59.06
4.46


AD-953795.1
34.28
2.28
41.91
3.73
53.55
5.26
85.25
1.65


AD-953803.1
61.61
10.04
46.74
4.05
83.38
4.24
110.46
5.45


AD-953810.1
32.03
4.20
30.31
3.53
46.84
8.35
52.79
9.88


AD-953818.1
35.62
7.77
39.33
3.83
64.80
4.51
83.71
8.90


AD-953834.1
38.17
10.19
39.24
9.05
69.47
5.13
84.84
12.05


AD-953842.1
48.14
5.74
42.18
11.18
64.07
8.26
83.21
9.99


AD-953764.1
35.95
3.92
32.36
4.78
52.82
1.31
84.76
7.49


AD-953772.1
34.22
7.68
38.93
10.45
43.52
4.44
68.49
4.03


AD-953780.1
30.99
9.57
31.93
10.20
39.08
2.92
60.57
5.48


AD-953788.1
38.27
4.23
37.18
5.59
47.91
5.42
76.84
1.80


AD-953796.1
42.51
6.58
44.21
4.90
67.01
5.42
102.06
6.64


AD-953804.1
37.65
5.98
34.34
7.25
41.18
3.27
67.16
2.81


AD-953811.1
35.49
4.59
33.88
3.83
69.90
4.22
92.57
4.77


AD-953819.1
72.71
8.61
64.21
4.15
84.79
6.50
115.08
3.54


AD-953827.1
54.49
6.72
47.64
2.73
68.71
6.19
102.52
4.97


AD-953835.1
50.86
9.70
45.75
3.45
70.68
2.02
109.76
6.91


AD-953843.1
40.24
13.59
34.25
4.72
42.61
4.27
72.86
11.78


AD-953851.1
28.35
1.65
29.66
1.70
38.15
2.59
52.40
6.40


AD-953765.1
28.75
5.69
26.86
10.34
41.08
2.80
59.02
5.49


AD-953773.1
47.21
11.49
44.85
8.81
49.28
4.61
75.12
5.20


AD-953781.1
36.10
8.50
36.11
10.46
52.43
3.14
88.89
6.54


AD-953789.1
33.84
5.38
30.41
2.64
41.12
5.33
61.12
4.22


AD-953797.1
50.45
9.38
48.61
3.65
74.12
3.88
107.92
12.56


AD-953805.1
38.52
4.74
35.18
3.86
48.85
6.72
74.95
4.48


AD-953812.1
50.94
4.43
47.30
4.06
44.30
3.90
65.73
4.56


AD-953828.1
41.55
3.96
36.91
1.60
48.35
3.41
84.09
2.25


AD-953836.1
77.62
9.75
74.18
18.66
102.18
6.41
126.56
2.57


AD-953852.1
36.55
1.38
38.33
2.34
49.12
9.28
76.84
7.57


AD-953766.1
26.95
4.97
26.63
9.68
34.64
4.42
55.02
6.92


AD-953774.1
31.82
8.79
29.89
6.65
47.56
6.79
76.30
11.63


AD-953782.1
33.99
4.66
33.27
1.66
58.33
2.52
88.13
2.99


AD-953790.1
35.99
9.97
36.56
5.57
52.53
6.12
76.07
5.88


AD-953798.1
31.59
5.99
30.43
2.92
48.48
9.26
58.30
7.98


AD-953806.1
29.95
2.89
29.95
3.45
47.19
0.64
72.89
3.91


AD-953813.1
35.04
6.15
31.69
2.55
37.67
2.51
55.37
5.38


AD-953821.1
30.63
2.16
27.43
2.03
35.15
2.54
51.11
4.67


AD-953829.1
68.42
15.84
60.97
8.15
84.94
2.74
110.99
4.30


AD-953837.1
36.88
3.79
32.34
0.88
41.99
3.69
79.41
5.74


AD-953845.1
49.96
25.03
37.73
5.40
51.07
4.49
71.53
4.38


AD-953853.1
17.30
1.56
22.03
4.16
37.46
4.85
62.29
9.25


AD-953767.1
24.93
5.50
28.42
10.66
40.33
3.22
69.76
2.61


AD-953775.1
45.40
10.62
36.34
9.82
73.68
7.21
102.63
7.31


AD-953783.1
29.99
12.53
29.51
4.63
49.16
6.13
80.74
6.86


AD-953791.1
30.97
8.17
29.31
7.02
46.06
7.18
74.93
6.54


AD-953799.1
32.72
4.42
31.33
1.95
54.01
3.60
86.02
6.50


AD-953807.1
37.52
7.06
37.17
3.09
55.11
2.71
82.01
4.66


AD-953822.1
33.78
5.99
30.78
3.36
46.16
8.11
69.15
2.45


AD-953830.1
34.73
3.76
31.58
2.53
41.37
0.94
66.10
6.80


AD-953838.1
33.55
9.39
34.52
2.10
49.15
2.33
86.79
3.75


AD-953846.1
33.45
7.53
33.66
5.78
50.46
4.49
78.12
13.11


AD-953854.1
23.08
2.75
19.69
3.46
27.90
1.19
48.41
6.99


AD-953768.1
26.98
4.47
27.38
10.87
33.82
3.92
45.54
4.57


AD-953776.1
39.69
16.74
31.10
7.28
54.45
2.97
90.09
8.42


AD-953784.1
29.34
10.82
24.02
5.30
40.23
2.64
61.39
5.18


AD-953792.1
31.76
9.30
29.07
4.26
37.11
3.03
56.21
8.23


AD-953800.1
29.00
3.03
28.36
1.20
35.08
3.37
55.13
4.63


AD-953808.1
31.85
5.96
28.41
1.27
40.18
3.14
60.87
3.28


AD-953815.1
35.68
6.34
33.39
1.73
56.62
1.49
89.20
2.68


AD-953823.1
47.61
8.60
43.41
7.31
76.73
6.34
105.86
12.49


AD-953831.1
33.88
4.75
29.70
2.85
51.07
2.83
87.65
1.33


AD-953839.1
36.98
6.09
30.68
4.56
43.56
4.04
73.41
4.37


AD-953847.1
36.41
2.21
28.52
3.20
37.39
4.16
50.12
2.49


AD-953855.1
17.03
0.92
20.33
2.28
31.95
1.93
50.61
5.00


AD-953769.1
20.41
6.91
19.71
9.17
31.58
2.32
36.59
3.40


AD-953777.1
27.72
11.77
25.22
7.75
41.72
3.97
70.38
3.27


AD-953785.1
30.05
8.76
25.46
3.08
47.74
2.90
81.22
2.03


AD-953793.1
32.70
14.69
26.09
4.10
45.08
5.84
70.67
4.24


AD-953801.1
38.99
5.29
35.13
6.56
41.40
2.07
60.29
1.63


AD-953809.1
28.15
2.21
26.23
3.63
40.42
2.30
54.00
6.94


AD-953816.1
28.53
4.61
25.41
3.81
36.82
2.32
54.76
2.99


AD-953824.1
30.25
1.84
30.25
1.56
58.47
3.40
80.60
4.45


AD-953832.1
43.14
6.36
40.76
5.26
72.55
2.64
92.56
7.75


AD-953840.1
30.53
5.72
28.62
1.53
40.53
1.46
67.24
4.83


AD-953848.1
24.84
5.73
25.53
2.19
28.59
3.67
43.01
1.45


AD-953856.1
24.53
4.30
32.92
13.93
40.47
4.05
64.17
6.57


AD-953770.1
24.22
4.79
24.71
11.20
33.60
2.40
49.01
2.65


AD-953778.1
25.28
9.47
20.21
6.37
33.84
2.50
48.13
5.65


AD-953786.1
26.47
9.22
22.25
7.17
40.55
4.25
62.15
3.45


AD-953794.1
36.49
20.58
28.21
9.14
45.54
5.69
67.37
2.13


AD-953802.1
35.57
5.56
25.34
4.52
42.55
3.28
64.50
4.55


AD-953817.1
32.24
3.60
26.88
7.17
39.15
4.10
62.75
8.52


AD-953825.1
38.84
3.96
35.19
5.34
42.76
5.17
52.16
11.63


AD-953833.1
25.14
4.13
26.42
6.33
38.39
5.09
50.29
8.28


AD-953841.1
29.86
1.31
31.23
3.65
53.57
9.16
66.57
2.48


AD-953849.1
22.59
4.11
22.30
7.94
27.51
5.06
37.40
3.16
















TABLE 13







HTT Single Dose Screens in BE(2)C Cells












50 nM dose
10 nM dose
1 nM dose
0.1 nM dose
















Avg %

Avg %

Avg %

Avg %




HTT mRNA

HTT mRNA

HTT mRNA

HTT mRNA


Duplex
Remaining
SD
Remaining
SD
Remaining
SD
Remaining
SD


















AD-953943.1
25.28
8.03
29.30
6.44
32.57
12.47
46.70
13.54


AD-953944.1
41.24
7.70
40.89
7.91
59.91
20.20
85.25
18.83


AD-953945.1
33.55
5.45
42.11
3.45
70.29
23.77
73.31
19.65


AD-953946.1
52.10
8.38
60.45
8.41
81.46
14.40
91.79
18.06


AD-953947.1
71.37
9.54
78.72
8.60
106.79
23.62
87.11
18.93


AD-953948.1
28.84
2.55
32.11
3.84
51.95
11.17
66.84
15.72


AD-953949.1
27.80
2.41
28.29
0.53
48.44
9.11
57.01
13.39


AD-953950.1
19.18
1.56
22.28
2.23
41.90
4.85
50.60
10.20


AD-953951.1
35.52
3.47
40.06
2.38
59.55
8.65
63.30
13.81


AD-953952.1
40.78
3.62
47.38
6.25
73.82
14.74
83.70
15.18


AD-953953.1
35.33
4.75
40.88
5.35
54.48
11.58
76.41
16.22


AD-953954.1
80.48
13.33
94.11
5.00
114.77
17.14
112.09
13.16


AD-953955.1
61.44
7.57
67.95
5.96
100.83
16.48
112.12
11.33


AD-953956.1
52.28
1.18
53.04
4.66
84.55
6.04
103.05
13.02


AD-953957.1
27.47
4.33
32.42
1.80
60.62
14.19
82.35
11.15


AD-953958.1
42.36
8.94
52.33
5.08
101.09
14.02
74.85
14.06


AD-953959.1
75.40
11.80
89.04
9.94
94.52
26.23
91.62
23.89


AD-953960.1
49.59
6.40
47.82
6.33
75.30
5.89
101.99
14.34


AD-953961.1
43.00
5.18
47.78
8.88
70.77
3.43
80.17
9.16


AD-953962.1
41.41
6.11
46.17
2.48
70.52
9.03
87.06
47.29


AD-953963.1
61.88
13.44
69.79
8.45
126.67
29.69
119.20
18.58


AD-953964.1
49.04
4.98
43.29
2.06
73.17
16.11
95.22
10.94


AD-953965.1
79.15
12.41
79.79
6.49
112.95
26.48
106.87
9.13


AD-953966.1
39.29
4.71
46.51
3.06
93.79
10.89
78.31
9.71


AD-953967.1
102.74
15.60
102.27
8.94
113.11
28.49
123.76
9.66


AD-953968.1
56.27
5.92
58.12
6.20
88.92
11.11
104.25
16.19


AD-953969.1
49.05
7.61
48.14
4.34
78.67
13.96
100.12
9.43


AD-953970.1
73.15
6.87
77.89
3.81
114.55
15.98
122.14
27.56


AD-953971.1
92.44
12.13
108.14
6.62
141.31
17.87
125.68
17.13


AD-953972.1
43.95
9.17
46.62
3.59
75.63
8.78
79.19
9.91


AD-953973.1
58.39
7.73
62.98
3.93
110.01
14.70
117.11
19.26


AD-953974.1
47.46
5.57
52.59
3.19
110.79
8.08
89.64
14.12


AD-953975.1
53.14
11.39
51.38
5.50
87.70
16.68
99.11
21.62


AD-953976.1
49.95
4.47
52.61
3.52
83.42
12.10
98.52
19.53


AD-953977.1
87.78
13.24
89.20
5.02
135.24
13.49
127.28
19.87


AD-953978.1
126.71
11.93
145.34
6.50
166.62
14.28
114.56
18.35


AD-953979.1
48.28
4.97
51.36
1.50
68.12
7.23
102.36
19.14


AD-953980.1
57.96
6.20
74.25
4.62
110.83
20.10
131.34
20.04


AD-953981.1
49.45
8.32
53.06
3.50
78.64
6.37
101.33
17.60


AD-953982.1
33.37
2.16
42.62
3.56
64.77
7.97
73.11
11.94


AD-953983.1
39.40
10.93
35.92
2.28
57.13
6.68
78.16
14.03


AD-953984.1
57.27
7.41
54.74
3.56
77.90
18.18
99.74
14.21


AD-953985.1
130.23
15.12
137.00
5.31
137.26
18.25
128.33
32.12


AD-953986.1
50.95
10.45
54.33
4.64
105.85
9.70
103.85
21.90


AD-953987.1
69.56
6.28
77.39
4.68
81.55
10.03
126.82
37.96


AD-953988.1
66.19
16.21
91.07
11.88
112.42
22.54
142.20
17.51


AD-953989.1
65.71
14.37
80.99
7.71
122.89
11.49
136.06
13.06


AD-953990.1
83.61
12.96
64.84
5.57
88.44
12.20
104.08
14.59


AD-953991.1
94.27
13.29
80.81
9.00
101.66
8.48
113.51
9.05


AD-953992.1
44.46
5.75
39.33
3.94
58.24
10.81
87.29
5.55


AD-953993.1
114.46
11.88
119.55
18.54
138.88
4.29
139.56
15.56


AD-953994.1
109.68
16.66
113.20
13.74
85.48
22.04
132.49
25.95


AD-953995.1
44.47
8.00
43.63
3.03
60.41
1.70
85.58
8.98


AD-953996.1
55.33
4.94
65.39
5.34
90.87
10.20
128.94
17.18


AD-953997.1
54.33
4.23
54.39
5.44
91.96
7.82
107.48
13.93


AD-953998.1
89.94
12.50
77.20
9.55
83.97
14.41
99.62
24.71


AD-953999.1
85.41
13.43
77.50
8.43
77.70
8.48
110.99
13.64


AD-954000.1
120.60
19.15
112.70
6.22
85.64
27.09
120.51
15.78


AD-954001.1
94.88
10.89
96.63
6.17
118.17
11.83
127.17
24.97


AD-954002.1
51.53
4.49
49.17
3.34
66.31
8.86
112.46
28.45


AD-954003.1
123.28
14.54
118.10
13.16
157.56
23.31
135.59
15.72


AD-954004.1
75.28
8.21
98.59
21.80
125.64
7.09
140.25
21.72


AD-954005.1
102.97
31.98
113.10
12.44
159.34
23.27
129.47
16.72


AD-954006.1
97.35
19.09
94.31
15.52
71.85
14.67
92.08
15.42


AD-954007.1
49.86
4.43
47.55
2.82
70.97
11.19
94.69
14.77


AD-954008.1
51.41
7.18
41.24
1.97
57.95
4.19
89.30
14.74


AD-954009.1
89.01
12.41
84.78
3.63
107.09
5.23
97.41
9.85


AD-954010.1
49.84
6.28
41.44
1.50
54.91
3.86
103.82
11.64


AD-954011.1
105.29
12.79
90.10
11.94
153.30
16.20
120.57
21.63


AD-954012.1
90.03
8.01
87.39
8.23
140.07
15.18
132.56
20.06


AD-954013.1
34.92
5.03
36.29
5.46
62.17
6.83
77.52
8.18


AD-954014.1
81.22
23.88
86.33
11.49
67.65
13.37
90.11
8.95


AD-954015.1
70.36
13.12
60.63
5.52
66.58
5.12
90.80
13.51


AD-954016.1
44.53
7.30
38.81
1.70
56.12
6.21
98.73
12.81


AD-954017.1
97.19
12.84
81.90
6.70
106.75
9.38
88.14
13.94


AD-954018.1
72.64
8.33
65.38
3.02
84.16
6.84
72.28
35.23


AD-954019.1
67.29
8.93
61.61
1.61
97.42
23.69
110.48
16.04


AD-954020.1
63.68
8.73
63.56
6.39
110.81
15.91
125.91
24.47


AD-954021.1
100.05
21.36
92.98
5.12
127.14
10.83
116.82
15.90


AD-954022.1
28.29
9.46
29.23
2.71
34.21
9.00
68.48
7.86


AD-954023.1
30.29
6.42
35.88
4.22
40.46
3.69
68.43
11.76


AD-954024.1
50.98
9.28
46.06
4.64
52.39
4.98
87.55
10.91


AD-954025.1
75.43
8.49
64.94
11.65
64.26
3.84
100.45
17.56


AD-954026.1
46.65
11.78
44.30
2.74
43.02
4.24
74.87
12.89


AD-954027.1
57.79
8.79
54.28
8.40
67.25
12.15
100.97
18.05


AD-954028.1
45.79
6.10
44.14
3.91
55.59
5.40
97.37
12.76


AD-954029.1
40.81
3.90
58.93
15.43
73.62
7.62
94.19
5.76


AD-954030.1
43.55
12.13
52.94
11.13
73.85
21.70
99.17
16.74


AD-954031.1
49.31
6.60
52.96
11.91
83.10
14.06
102.31
16.01


AD-954032.1
127.12
23.82
128.56
12.32
133.30
14.88
128.31
14.51


AD-954033.1
73.92
10.70
80.98
18.52
113.54
30.70
130.72
14.26


AD-954034.1
49.31
6.67
52.15
10.90
84.31
20.73
110.44
23.97


AD-954035.1
114.40
15.11
119.60
14.69
134.36
19.21
129.08
17.91


AD-954036.1
43.48
8.39
47.72
10.68
67.08
8.75
106.73
21.10


AD-954037.1
39.27
4.77
44.74
6.11
72.17
11.91
69.59
13.73


AD-954038.1
30.64
4.65
28.78
2.96
43.66
8.99
56.53
12.31


AD-954039.1
36.40
11.20
30.20
5.20
39.81
8.41
53.83
9.89


AD-954040.1
50.62
10.89
40.11
7.49
55.41
10.77
81.88
12.15


AD-954041.1
35.66
3.12
24.01
4.69
32.00
3.54
44.11
6.53


AD-954042.1
41.12
8.18
24.88
4.04
44.89
6.14
61.21
11.11


AD-954043.1
24.89
5.72
15.90
2.81
22.25
4.24
32.58
5.77


AD-954044.1
65.02
12.76
24.80
3.20
36.34
3.58
43.61
4.19


AD-954045.1
29.56
5.27
33.04
8.55
45.38
9.97
61.31
9.41


AD-954046.1
50.62
13.97
43.21
5.02
53.53
2.70
82.32
9.29


AD-954047.1
112.14
11.02
85.80
11.37
84.42
14.84
92.74
14.20


AD-954048.1
45.07
4.29
39.26
5.31
61.14
4.62
76.48
11.06


AD-954049.1
74.41
7.46
54.16
4.25
73.62
7.71
86.63
15.31


AD-954050.1
43.19
7.71
34.41
3.69
54.34
6.87
64.75
6.48


AD-954051.1
40.81
4.58
27.32
4.69
35.97
4.35
48.62
5.79


AD-954052.1
57.53
7.53
34.95
2.91
45.72
15.91
55.47
8.35


AD-954053.1
91.59
24.57
86.71
28.24
112.72
17.38
95.41
11.00


AD-954054.1
97.79
27.39
72.68
9.74
92.74
9.94
97.46
7.00


AD-954055.1
97.83
2.74
87.42
9.52
101.94
20.54
98.18
20.94


AD-954056.1
37.01
8.47
36.02
5.25
59.20
5.18
67.31
5.75


AD-954057.1
72.64
27.91
60.87
7.90
92.38
4.23
97.42
11.31


AD-954058.1
40.42
5.48
31.51
4.21
50.10
5.34
64.00
5.40


AD-954059.1
110.34
24.77
79.75
10.33
90.93
11.33
93.25
8.24


AD-954060.1
105.41
10.82
68.12
9.92
67.92
19.45
77.29
9.57


AD-954061.1
48.19
12.83
45.41
7.18
82.81
16.32
89.79
11.76


AD-954062.1
112.79
28.14
117.81
19.59
130.07
14.97
114.35
9.21


AD-954063.1
69.36
6.09
65.94
8.67
103.63
13.94
103.38
7.59


AD-954065.1
55.37
13.42
43.03
5.34
73.02
12.77
86.97
3.99


AD-954066.1
49.73
13.11
39.91
5.94
75.64
13.85
91.95
7.81


AD-954067.1
87.82
13.15
64.69
7.46
98.59
18.86
93.71
14.09


AD-954068.1
40.19
6.13
33.47
4.27
53.53
6.72
63.74
6.42


AD-954069.1
48.15
13.31
52.79
11.46
73.81
8.41
91.06
10.26


AD-954070.1
65.48
11.48
75.23
15.82
115.87
3.64
102.39
5.57


AD-954071.1
123.38
32.06
81.03
11.89
110.37
8.08
103.39
10.42


AD-954072.1
35.49
5.00
36.19
5.15
61.74
7.13
61.94
5.11


AD-954073.1
85.49
23.02
67.03
5.33
111.70
10.83
105.50
19.88


AD-954074.1
124.78
23.26
90.09
14.54
129.47
9.93
111.03
8.56


AD-954075.1
52.62
12.43
39.80
11.15
71.55
4.83
81.99
12.05


AD-954076.1
73.79
11.02
45.41
7.32
74.27
6.14
89.39
6.76


AD-954077.1
36.90
4.73
49.38
9.45
61.64
8.52
80.49
15.53


AD-954078.1
42.82
8.28
56.34
12.92
81.78
2.08
82.10
6.11


AD-954079.1
146.69
40.61
152.79
32.89
150.99
10.06
109.19
12.69


AD-954080.1
80.97
14.87
77.63
13.06
116.41
7.28
93.41
25.93


AD-954081.1
132.71
24.87
111.25
18.32
144.22
6.86
106.52
13.53


AD-954082.1
53.58
11.30
49.94
8.38
90.95
15.32
102.40
14.73


AD-954083.1
52.38
9.89
49.44
7.90
84.24
2.72
84.39
13.42


AD-954084.1
61.73
14.66
79.26
14.19
93.30
14.70
93.82
9.65


AD-954085.1
36.35
5.49
44.12
5.16
54.76
3.22
55.64
7.08


AD-954086.1
45.60
11.57
50.65
6.54
64.43
12.90
68.12
7.00


AD-954087.1
137.98
20.04
124.29
18.80
118.93
16.69
92.84
19.91


AD-954088.1
41.87
8.36
52.21
6.46
78.64
3.87
62.24
2.62


AD-954089.1
70.86
15.32
62.56
15.26
107.73
3.13
100.55
22.65


AD-954090.1
70.40
19.51
61.35
6.11
87.91
8.25
105.18
2.75


AD-954091.1
37.74
5.94
45.78
7.62
63.97
11.22
98.88
15.71


AD-954092.1
49.19
12.83
59.59
17.25
71.13
7.86
80.52
7.44


AD-954093.1
79.76
26.13
125.17
23.01
113.91
8.99
101.46
8.08


AD-954094.1
61.37
8.05
78.73
5.77
91.71
19.60
84.72
14.75


AD-954095.1
90.36
16.00
96.13
13.68
101.60
4.03
76.09
16.53


AD-954096.1
69.55
22.01
80.82
24.89
83.29
14.39
77.15
10.78


AD-954097.1
50.60
5.74
60.89
7.04
81.66
15.06
93.85
17.16


AD-954098.1
50.89
7.69
54.42
6.61
79.36
4.81
91.22
8.67


AD-954099.1
44.06
10.32
40.54
3.88
51.58
11.04
66.69
8.02


AD-954100.1
68.73
15.47
80.94
24.34
85.21
11.36
82.63
10.62


AD-954101.1
96.29
18.69
82.73
18.38
102.29
7.72
77.19
23.29


AD-954102.1
97.04
16.96
107.63
40.67
106.07
24.77
94.95
9.34


AD-954103.1
53.12
19.06
61.48
8.80
96.56
9.11
81.60
4.45


AD-954104.1
39.24
14.17
43.90
6.64
63.80
21.66
74.13
17.46


AD-954105.1
92.22
40.50
92.14
6.14
121.87
12.99
117.35
4.61


AD-954106.1
94.69
22.86
81.66
34.22
109.92
14.27
120.28
6.00


AD-954107.1
52.54
5.70
54.68
6.50
58.71
8.77
86.39
7.37


AD-954108.1
32.60
9.35
36.30
8.08
52.25
9.42
65.38
12.97


AD-954109.1
49.22
14.42
49.54
15.31
65.91
5.75
80.95
9.56


AD-954110.1
68.41
9.31
76.51
10.13
76.09
19.11
99.23
8.36


AD-954111.1
92.65
22.73
101.91
26.67
98.02
8.77
94.90
10.57


AD-954112.1
64.00
17.39
59.14
9.11
83.34
9.57
83.36
12.35


AD-954113.1
58.25
12.41
57.75
13.56
81.37
7.99
93.07
7.70


AD-954114.1
71.05
16.06
77.64
9.56
87.97
8.84
109.33
15.36


AD-954115.1
60.65
15.19
56.61
8.62
76.60
6.08
101.81
10.73


AD-954116.1
26.64
11.15
26.49
3.81
36.33
5.62
45.17
7.32


AD-954117.1
52.54
12.72
40.89
8.82
55.89
4.54
67.65
7.51


AD-954118.1
40.93
7.86
43.47
15.03
62.96
4.72
53.36
8.79


AD-954119.1
89.09
13.93
93.53
23.25
85.36
8.16
79.38
9.09


AD-954120.1
108.81
24.28
103.12
24.39
96.43
3.32
95.36
8.32


AD-954121.1
109.72
19.61
106.73
17.99
113.83
23.58
105.34
7.28


AD-954122.1
124.06
25.59
104.70
14.12
98.12
9.91
91.42
2.87
















TABLE 16







HTT Single Dose Screens in BE(2)C Cells












50 nM dose
10 nM dose
1 nM dose
0.1 nM dose
















Avg %

Avg %


Avg %

Avg %



HTT

HTT


HTT

HTT



mRNA

mRNA


mRNA

mRNA


Duplex
Remaining
SD
Remaining
SD
Duplex
Remaining
SD
Remaining


















AD-954123.1
52.02
12.80
46.66
11.06
51.72
10.80
70.22
6.18


AD-954131.1
37.98
5.90
34.57
5.77
56.27
5.95
74.72
6.16


AD-954139.1
31.28
1.26
30.33
5.65
43.37
8.28
61.47
3.88


AD-954147.1
33.48
1.73
36.49
5.47
49.67
12.95
74.93
16.31


AD-954155.1
55.01
1.15
66.47
0.62
91.29
8.22
78.41
9.98


AD-954163.1
62.90
5.16
50.49
7.01
66.53
6.52
90.24
7.19


AD-954170.1
29.27
2.86
34.63
5.08
46.01
6.99
66.85
2.30


AD-954178.1
43.47
4.36
41.39
2.26
79.85
16.32
87.04
14.48


AD-954186.1
54.17
5.38
61.30
6.21
83.63
16.19
89.18
4.75


AD-954194.1
47.87
5.42
39.24
2.46
50.47
7.85
77.94
7.02


AD-954202.1
70.30
6.02
59.62
8.57
62.98
11.40
81.62
14.21


AD-954210.1
32.28
5.26
36.94
6.00
64.76
9.98
93.72
4.84


AD-954124.1
46.70
4.05
41.03
1.99
66.79
12.84
57.90
2.15


AD-954132.1
81.87
6.77
63.41
9.43
84.80
13.63
84.67
7.53


AD-954140.1
30.47
2.31
30.26
3.39
48.06
11.20
55.00
9.66


AD-954148.1
34.16
3.45
39.06
6.94
54.16
2.59
75.41
4.55


AD-954156.1
42.59
5.18
43.79
9.06
70.61
10.32
74.37
10.49


AD-954164.1
29.49
1.14
34.96
6.24
50.44
2.05
64.40
5.75


AD-954171.1
39.79
1.38
42.98
6.89
61.44
18.83
78.26
2.31


AD-954179.1
78.67
4.09
90.13
10.14
116.94
15.14
96.51
6.99


AD-954187.1
92.74
4.59
100.39
6.46
109.57
10.84
95.69
9.79


AD-954195.1
62.30
7.07
68.94
6.67
87.94
2.35
93.65
11.99


AD-954203.1
40.27
2.78
39.36
4.99
59.62
12.43
69.24
3.49


AD-954211.1
27.50
2.70
35.44
1.43
57.60
7.45
84.16
6.91


AD-954125.1
44.62
3.51
37.71
2.42
53.96
5.73
72.84
9.76


AD-954133.1
44.69
1.50
45.67
5.60
72.15
4.87
91.31
13.88


AD-954141.1
30.90
4.83
39.50
3.44
58.12
15.89
80.61
3.02


AD-954149.1
26.66
1.89
37.09
5.81
47.06
6.03
54.88
8.32


AD-954157.1
76.68
6.90
86.87
14.20
123.87
14.44
96.35
2.83


AD-954165.1
46.70
2.49
57.71
7.06
94.90
6.91
81.55
14.03


AD-954172.1
36.92
2.44
41.21
4.86
53.31
11.00
75.26
6.57


AD-954180.1
58.96
1.62
61.78
3.73
83.87
13.62
95.17
6.80


AD-954188.1
73.92
6.24
65.52
8.60
75.12
7.69
77.77
4.08


AD-954196.1
99.61
6.03
106.63
13.54
117.44
16.32
93.30
8.20


AD-954204.1
26.94
2.60
27.10
1.95
33.35
1.88
44.67
2.25


AD-954212.1
42.77
2.77
53.14
1.61
76.16
7.15
101.27
15.46


AD-954126.1
31.15
4.59
28.37
7.55
41.47
8.71
64.69
6.72


AD-954134.1
34.95
4.43
37.04
3.07
64.75
10.62
81.41
5.61


AD-954142.1
85.11
5.64
76.57
8.62
103.15
15.39
104.54
3.92


AD-954150.1
34.95
5.56
43.60
5.54
61.62
3.99
76.87
4.98


AD-954158.1
36.70
7.95
44.96
9.26
62.06
18.09
98.72
23.25


AD-954166.1
51.85
3.54
71.74
8.49
99.76
6.78
101.54
8.54


AD-954173.1
30.73
2.97
37.17
3.06
41.53
3.10
61.63
2.52


AD-954181.1
65.36
3.45
70.56
8.63
72.93
2.04
96.04
3.73


AD-954189.1
38.01
3.43
47.12
5.07
62.93
1.22
76.77
7.56


AD-954197.1
52.15
4.15
61.12
5.20
82.73
7.76
95.55
7.69


AD-954205.1
31.38
2.29
33.79
2.85
52.38
10.33
81.33
3.38


AD-954213.1
24.59
2.15
30.30
2.83
40.86
3.44
66.86
6.00


AD-954127.1
51.38
5.89
39.04
7.84
55.31
11.49
64.90
4.83


AD-954135.1
95.14
9.88
102.58
8.08
104.48
5.54
94.95
12.83


AD-954143.1
41.30
4.61
43.90
3.89
71.08
2.83
93.56
2.98


AD-954151.1
49.96
2.57
58.67
3.77
87.43
9.85
94.12
8.27


AD-954159.1
37.64
2.71
42.68
7.34
86.42
13.02
92.18
15.52


AD-954167.1
64.60
10.08
62.25
24.93
104.37
19.93
79.75
5.74


AD-954174.1
26.34
2.62
33.31
8.11
53.96
9.59
67.80
7.33


AD-954182.1
39.88
1.79
44.29
2.43
74.11
10.67
87.71
8.66


AD-954190.1
31.54
2.31
34.55
2.79
52.19
6.47
71.74
4.87


AD-954198.1
80.34
4.43
87.33
9.35
101.06
10.72
99.18
6.53


AD-954206.1
33.58
1.34
33.90
3.58
50.24
4.96
82.01
8.04


AD-954214.1
23.40
2.25
31.57
2.68
38.95
2.46
63.16
9.52


AD-954128.1
27.26
1.75
25.22
3.34
29.83
4.96
47.17
0.54


AD-954136.1
87.99
6.49
91.17
9.71
83.92
2.27
82.07
8.82


AD-954144.1
29.88
2.85
33.73
4.85
43.14
7.17
69.14
6.09


AD-954152.1
35.17
2.44
36.61
4.59
53.44
4.84
77.50
3.94


AD-954160.1
33.26
1.92
28.97
5.90
50.16
5.97
74.36
8.41


AD-954168.1
42.69
3.89
49.18
4.95
68.36
12.19
71.75
5.10


AD-954175.1
43.24
1.41
51.66
2.51
84.47
5.48
97.60
14.78


AD-954183.1
75.62
6.73
84.16
18.23
99.04
8.72
98.12
5.76


AD-954191.1
38.92
1.79
46.32
7.58
71.86
10.90
103.08
3.01


AD-954199.1
42.26
2.80
45.98
3.56
73.52
6.66
81.46
8.27


AD-954207.1
28.21
1.56
30.80
3.11
45.83
7.89
73.61
10.14


AD-954215.1
21.72
1.42
27.71
2.94
43.81
4.05
75.95
9.32


AD-954129.1
24.27
1.44
21.17
3.24
19.07
6.69
60.49
6.62


AD-954137.1
43.53
3.12
48.64
7.04
59.95
19.21
88.81
6.41


AD-954145.1
32.85
2.77
33.76
10.34
56.45
10.32
88.01
10.24


AD-954153.1
48.99
6.02
49.20
3.77
78.83
10.81
64.73
7.14


AD-954161.1
32.14
3.02
34.48
2.60
46.36
4.16
54.76
8.47


AD-954169.1
34.74
2.18
35.81
3.43
61.71
5.68
75.21
5.66


AD-954176.1
38.53
2.13
44.69
5.07
61.75
4.66
77.80
6.95


AD-954184.1
55.56
3.60
56.59
1.49
93.42
1.56
99.69
6.36


AD-954192.1
100.12
11.38
98.85
0.79
101.06
14.32
110.37
16.13


AD-954200.1
35.93
1.36
34.58
2.13
56.52
5.39
76.79
2.50


AD-954208.1
32.18
2.82
31.64
2.62
41.68
1.38
60.48
6.31


AD-954216.1
23.72
2.06
30.51
2.01
49.35
4.19
81.27
3.16


AD-954130.1
19.85
7.94
23.85
3.60
24.29
7.01
61.79
3.84


AD-954138.1
34.61
3.77
29.28
2.86
37.50
6.25
73.17
3.15


AD-954146.1
30.29
4.48
28.72
4.62
46.06
8.29
71.77
2.25


AD-954154.1
47.57
5.76
45.17
4.28
72.44
11.48
95.85
11.77


AD-954162.1
33.21
2.19
32.86
2.61
40.48
1.74
71.90
2.58


AD-954177.1
44.09
4.74
41.57
7.32
64.87
6.95
84.18
6.50


AD-954185.1
40.16
6.27
39.88
6.12
70.92
9.62
91.41
5.71


AD-954193.1
40.67
3.75
47.36
1.96
83.44
7.54
90.57
7.54


AD-954201.1
88.90
6.15
86.29
11.24
93.95
13.19
75.31
5.30


AD-954209.1
26.15
1.78
26.42
3.92
37.25
8.70
57.03
2.95


AD-954217.1
22.08
3.65
26.35
0.46
40.24
8.85
69.89
18.22


AD-954225.1
32.81
0.74
45.33
7.32
67.38
4.84
104.66
12.11


AD-954233.1
85.46
11.15
91.24
8.51
88.64
9.42
114.91
10.27


AD-954241.1
106.86
9.14
133.05
11.27
124.00
18.20
134.56
31.54


AD-954249.1
33.83
3.03
45.04
2.16
54.32
8.90
81.13
9.45


AD-954257.1
49.77
2.63
61.84
7.61
88.87
28.12
120.76
4.78


AD-954264.1
30.81
1.88
45.45
4.97
58.79
10.96
101.10
11.20


AD-954272.1
32.73
1.95
45.08
6.85
62.03
12.19
93.98
8.23


AD-954280.1
106.62
3.67
133.82
8.30
110.97
16.89
132.84
13.83


AD-954288.1
73.24
7.83
76.91
15.22
90.96
13.48
129.55
12.49


AD-954296.1
30.93
3.59
35.55
5.19
51.27
11.72
78.93
5.41


AD-954218.1
26.56
3.53
28.97
3.37
38.53
8.13
64.10
5.89


AD-954226.1
50.34
3.59
44.04
3.70
51.26
4.10
91.30
6.11


AD-954234.1
90.21
10.40
88.98
6.99
76.60
10.14
100.15
8.01


AD-954242.1
82.30
7.82
103.00
6.33
101.96
16.94
130.97
9.81


AD-954250.1
44.08
4.85
54.36
3.62
66.86
18.27
105.59
6.63


AD-954258.1
64.12
7.04
69.51
4.38
71.00
14.41
107.71
8.55


AD-954265.1
44.56
2.69
69.05
0.84
77.32
15.12
119.63
11.20


AD-954273.1
39.40
2.40
59.31
2.24
71.10
15.25
115.15
7.40


AD-954281.1
43.61
1.85
62.18
5.17
77.33
10.83
119.66
11.64


AD-954289.1
120.87
10.51
152.02
7.08
119.60
23.43
135.41
10.87


AD-954297.1
30.95
3.35
35.55
3.32
49.47
8.36
85.22
10.09


AD-954219.1
47.42
7.81
43.53
4.97
46.70
4.05
84.71
15.02


AD-954227.1
31.72
1.76
36.01
1.47
50.93
2.68
97.43
10.60


AD-954235.1
61.17
5.15
68.18
6.27
77.19
8.53
108.81
3.40


AD-954243.1
30.31
5.06
40.81
5.97
36.38
3.93
56.86
6.40


AD-954251.1
50.50
4.90
60.15
2.62
65.56
11.90
110.36
11.58


AD-954259.1
29.29
1.64
42.87
2.90
48.94
2.60
86.86
2.56


AD-954266.1
58.75
2.34
79.79
6.51
85.54
17.99
119.76
12.98


AD-954274.1
103.48
10.00
136.04
14.71
107.73
18.89
119.37
6.52


AD-954282.1
63.93
4.55
72.13
2.20
82.83
16.10
115.03
9.20


AD-954290.1
73.27
4.25
76.95
3.77
73.76
8.96
116.13
15.67


AD-954298.1
95.40
16.15
116.77
3.72
95.35
16.29
116.44
4.43


AD-954220.1
30.05
3.04
32.41
2.71
47.25
3.70
92.34
7.65


AD-954228.1
28.75
1.80
39.35
4.39
48.16
4.85
95.79
8.46


AD-954236.1
51.97
2.64
61.61
12.31
74.92
7.84
112.83
3.27


AD-954244.1
25.23
3.09
32.22
0.67
36.54
4.41
59.50
5.69


AD-954252.1
41.80
4.89
52.60
11.56
58.19
12.54
104.28
27.43


AD-954260.1
32.19
0.53
47.42
3.44
50.72
6.34
93.22
6.32


AD-954267.1
74.62
8.93
77.43
1.94
65.23
6.95
105.17
5.36


AD-954275.1
54.18
2.72
65.06
5.80
66.73
11.88
102.06
3.54


AD-954283.1
38.12
2.23
49.23
2.88
49.95
10.25
94.58
3.70


AD-954291.1
101.23
7.90
123.82
1.81
92.72
16.12
123.82
14.21


AD-954299.1
100.34
14.27
115.52
7.80
94.48
11.11
117.27
9.31


AD-954221.1
29.81
2.74
28.20
3.92
35.63
5.34
61.00
7.73


AD-954229.1
61.95
4.21
61.45
3.69
57.20
5.13
97.46
5.45


AD-954237.1
51.14
5.39
66.14
6.61
68.62
6.00
105.63
7.44


AD-954245.1
54.15
6.59
59.92
7.17
73.80
4.02
108.37
7.01


AD-954253.1
39.91
4.15
45.61
5.11
46.87
2.60
80.73
7.62


AD-954261.1
37.65
3.22
46.65
2.61
47.75
2.08
79.75
7.69


AD-954268.1
73.28
4.56
76.13
6.04
69.79
10.57
103.51
12.89


AD-954276.1
34.99
2.68
42.88
4.07
47.04
6.06
72.15
5.12


AD-954284.1
23.70
2.57
35.98
4.80
41.75
2.69
58.05
6.27


AD-954292.1
36.70
2.32
49.24
3.20
70.75
7.06
109.52
10.64


AD-954300.1
95.58
13.44
116.85
15.24
98.47
15.60
109.57
8.11


AD-954222.1
34.43
4.82
31.52
4.46
46.36
3.69
83.27
9.62


AD-954230.1
24.15
0.70
28.87
2.68
35.78
9.17
61.15
3.50


AD-954238.1
52.45
3.33
52.94
7.85
52.93
8.19
96.17
6.44


AD-954246.1
37.41
4.41
48.17
3.67
61.41
5.39
113.20
7.83


AD-954254.1
54.05
4.03
59.72
10.49
58.06
5.78
93.76
3.73


AD-954262.1
45.38
4.69
46.22
3.64
50.32
4.42
76.36
8.74


AD-954269.1
47.10
2.89
66.30
3.54
81.45
12.33
114.12
6.38


AD-954277.1
48.62
4.99
66.89
3.79
79.00
10.51
104.56
14.40


AD-954285.1
66.27
6.04
98.18
9.60
90.64
17.39
111.14
9.29


AD-954293.1
40.39
6.73
53.53
1.35
66.11
4.95
87.61
6.50


AD-954301.1
104.24
15.65
129.65
11.46
95.00
13.31
115.12
10.56


AD-954223.1
48.53
3.41
47.89
9.69
63.25
5.62
97.14
11.15


AD-954231.1
60.66
5.40
71.72
4.73
77.55
2.90
103.25
6.93


AD-954239.1
34.51
1.10
39.17
2.39
52.21
8.96
91.15
6.20


AD-954247.1
22.02
2.03
28.16
1.36
36.99
6.62
59.18
8.13


AD-954255.1
25.12
2.48
30.60
1.38
42.70
4.95
57.04
5.98


AD-954263.1
41.04
6.36
50.36
4.59
61.31
3.42
100.72
5.62


AD-954270.1
79.14
6.00
74.55
10.12
80.65
13.01
100.52
4.78


AD-954278.1
55.56
5.50
57.02
2.83
62.72
9.15
93.46
7.86


AD-954286.1
73.12
6.19
92.01
5.10
87.34
10.06
105.80
7.29


AD-954294.1
72.37
6.17
78.67
6.17
78.62
18.09
97.60
4.71


AD-954302.1
96.95
14.38
109.14
8.35
98.40
19.02
109.36
7.78


AD-954224.1
46.96
10.54
45.56
7.22
64.07
6.38
88.53
29.17


AD-954232.1
58.45
18.51
60.74
11.61
72.28
3.88
103.49
3.84


AD-954240.1
33.07
1.88
37.40
6.08
57.76
20.62
94.18
5.99


AD-954248.1
30.79
4.54
32.41
4.32
47.75
9.88
84.11
7.18


AD-954256.1
46.98
6.73
51.72
6.39
82.38
5.87
107.79
6.63


AD-954271.1
57.61
6.76
69.95
3.43
83.90
4.71
115.57
17.75


AD-954279.1
107.65
17.29
104.96
9.00
86.16
9.88
112.41
7.65


AD-954287.1
68.75
4.71
66.42
11.11
77.12
10.56
106.01
2.85


AD-954295.1
39.45
1.79
40.12
3.52
61.80
8.89
102.42
7.93
















TABLE 19







HTT Single Dose Screens in BE(2)C Cells












50 nM Dose
10 nM Dose
1 nM Dose
0.1 nM Dose
















Avg %

Avg %

Avg %

Avg %




HTT

HTT

HTT

HTT



mRNA

mRNA

mRNA

mRNA


Duplex
remaining
SD
remaining
SD
remaining
SD
remaining
SD


















AD-1019439.1
26.33
2.98
33.43
1.95
44.24
3.94
69.16
16.03


AD-1019442.1
26.68
3.71
38.86
6.48
42.42
6.68
55.50
5.70


AD-1019438.1
26.88
5.41
33.28
10.09
38.25
3.40
64.16
11.54


AD-1019408.1
27.81
2.88
38.50
5.30
63.17
11.67
89.78
38.20


AD-1019426.1
28.13
3.88
39.70
14.47
53.66
23.30
64.65
30.16


AD-1019440.1
30.30
4.22
33.05
6.61
37.88
7.04
60.38
10.12


AD-1019410.1
31.80
4.96
32.53
10.80
50.70
8.85
89.25
55.87


AD-1019405.1
32.12
5.75
40.14
8.14
54.55
11.42
82.13
14.98


AD-1019422.1
32.13
2.02
42.46
5.75
51.78
2.68
67.56
3.76


AD-1019407.1
33.66
6.11
58.75
11.88
80.18
12.89
125.80
26.45


AD-1019418.1
36.00
10.12
51.87
18.91
97.46
22.32
72.77
13.55


AD-1019436.1
36.32
3.03
43.89
2.64
60.54
5.29
72.72
8.47


AD-1019406.1
36.67
7.79
40.03
5.18
54.98
16.17
72.36
12.32


AD-1019417.1
37.43
9.80
34.14
9.23
47.79
12.90
60.93
25.48


AD-1019372.1
37.50
8.16
34.12
3.72
60.81
10.31
103.20
13.72


AD-1019375.1
37.69
9.79
34.46
6.10
49.56
5.83
66.26
5.42


AD-1019444.1
38.95
4.50
43.40
1.91
37.44
18.40
52.46
14.08


AD-1019448.1
39.20
2.03
42.53
9.51
54.64
8.72
66.41
8.54


AD-1019365.1
40.07
3.04
45.42
6.80
59.29
8.64
68.99
4.11


AD-1019374.1
40.28
3.07
33.44
4.95
52.85
8.36
66.91
6.58


AD-1019402.1
41.01
6.72
58.59
9.68
75.67
6.36
80.45
48.52


AD-1019441.1
43.13
4.88
42.11
20.87
49.84
11.29
83.77
30.02


AD-1019399.1
44.66
6.75
51.34
3.94
83.68
16.14
85.67
7.63


AD-1019378.1
45.39
6.11
41.34
1.35
64.43
5.63
87.98
16.23


AD-1019419.1
45.70
15.44
47.87
15.97
64.58
24.64
61.93
9.06


AD-1019423.1
46.12
3.60
50.83
12.67
59.80
7.57
78.49
12.61


AD-1019437.1
46.79
2.68
67.22
9.08
64.41
5.28
91.99
18.73


AD-1019376.1
47.24
5.85
45.27
11.35
48.36
7.08
66.50
11.13


AD-1019373.1
48.15
6.89
41.62
12.43
58.13
8.10
68.76
4.30


AD-1019435.1
52.61
4.27
52.59
14.30
71.50
18.95
83.12
30.00


AD-1019411.1
52.82
14.69
58.28
29.31
89.10
24.14
92.75
40.76


AD-1019434.1
53.94
4.86
57.33
16.85
69.25
9.85
73.47
12.55


AD-1019377.1
57.15
11.34
52.68
7.70
77.91
11.93
81.77
11.31


AD-1019412.1
62.07
14.20
88.99
17.66
102.97
21.58
84.96
13.92


AD-1019403.1
64.17
7.55
65.79
13.52
91.61
8.33
78.69
11.47


AD-1019368.1
64.78
8.20
58.57
2.18
65.86
2.46
64.57
20.59


AD-1019404.1
64.98
13.39
89.42
25.45
92.10
13.45
84.96
32.65


AD-1019415.1
67.27
9.53
78.07
17.87
82.38
19.31
77.82
2.74


AD-1019421.1
69.68
26.22
66.48
16.26
88.04
26.99
80.85
17.61


AD-1019400.1
69.82
32.75
98.86
18.21
87.73
31.20
90.88
24.31


AD-1019450.1
70.95
8.42
66.87
9.62
60.36
4.15
74.24
7.35


AD-1019420.1
71.07
8.19
72.14
21.72
75.76
10.39
75.64
7.13


AD-1019429.1
77.16
3.18
90.72
8.30
85.69
8.68
76.60
9.44


AD-1019431.1
77.28
13.02
84.76
20.09
100.34
25.59
105.70
37.13


AD-1019428.1
77.77
17.48
97.53
47.95
103.57
36.26
80.54
9.56


AD-1019364.1
80.17
3.62
81.84
3.20
83.89
5.46
81.75
8.87


AD-1019413.1
80.67
7.77
80.97
20.54
88.80
7.99
119.10
30.63


AD-1019394.1
82.14
16.56
92.68
2.28
90.83
19.90
111.52
47.91


AD-1019398.1
82.85
6.81
97.08
13.06
91.52
2.80
71.62
2.97


AD-1019366.1
82.97
11.84
66.97
7.23
68.08
7.16
80.92
4.98


AD-1019432.1
83.34
10.98
64.39
6.32
64.34
3.93
69.63
8.62


AD-1019380.1
85.03
3.70
63.09
1.84
81.38
13.03
62.93
3.56


AD-1019382.1
85.70
14.67
75.64
7.28
78.99
5.79
87.44
19.58


AD-1019433.1
85.75
8.79
74.83
26.05
75.50
7.52
77.17
6.31


AD-1019424.1
86.03
27.07
111.91
28.13
114.99
40.63
94.47
25.23


AD-1019445.1
87.45
4.61
62.08
7.20
67.40
9.96
83.68
8.22


AD-1019369.1
88.75
2.36
81.44
4.07
80.67
3.48
84.85
6.30


AD-1019416.1
88.97
26.98
108.80
23.13
98.81
15.56
103.92
50.76


AD-1019414.1
89.03
31.13
88.38
23.35
102.76
22.08
76.13
4.19


AD-1019447.1
89.66
8.74
92.05
6.89
89.43
5.66
101.69
11.25


AD-1019430.1
90.85
13.22
90.65
18.57
80.62
5.48
80.44
3.57


AD-1019395.1
91.51
12.21
111.33
32.95
113.73
28.10
127.67
17.84


AD-1019396.1
94.92
23.01
131.79
38.35
115.27
26.56
88.98
30.90


AD-1019425.1
95.56
39.01
125.04
41.22
107.52
38.03
73.18
10.07


AD-1019363.1
95.63
3.09
98.66
7.36
84.59
9.55
83.52
8.42


AD-1019367.1
96.44
1.76
78.39
11.85
79.42
8.52
74.82
4.01


AD-1019362.1
96.52
7.99
88.17
3.46
87.20
3.05
94.83
3.84


AD-1019379.1
96.93
11.61
73.07
12.46
98.79
10.34
104.71
43.49


AD-1019397.1
97.03
16.47
99.20
7.94
103.74
15.25
99.16
16.51


AD-1019392.1
97.50
22.45
111.56
11.32
138.55
20.34
162.41
22.14


AD-1019409.1
98.27
12.80
99.07
45.47
110.14
36.07
134.23
68.21


AD-1019361.1
101.31
14.87
88.47
3.31
83.03
9.78
86.55
9.54


AD-1019449.1
101.70
20.46
78.57
11.74
78.12
4.92
77.69
6.15


AD-1019385.1
101.87
13.51
98.46
12.91
131.69
33.41
115.89
43.86


AD-1019427.1
102.55
21.14
161.66
45.26
103.28
32.72
106.18
5.53


AD-1019390.1
105.47
9.42
92.76
10.07
90.93
13.19
86.69
17.46


AD-1019383.1
105.74
7.88
73.94
4.49
76.20
3.46
73.73
1.51


AD-1019401.1
105.91
15.85
122.03
11.39
137.21
26.94
109.80
41.71


AD-1019393.1
106.21
29.14
105.07
19.55
126.94
46.57
101.66
32.44


AD-1019370.1
106.28
18.22
82.52
11.42
84.49
11.58
76.24
3.39


AD-1019391.1
107.20
42.41
92.50
15.30
110.58
15.64
94.73
13.97


AD-1019446.1
107.77
12.57
91.32
14.53
78.41
9.44
83.59
12.05


AD-1019371.1
109.09
39.35
77.55
9.57
88.12
10.89
94.98
22.84


AD-1019386.1
109.52
12.16
106.26
21.94
124.32
16.83
147.23
17.76


AD-1019389.1
120.92
6.39
89.68
12.49
94.77
10.01
90.44
19.57


AD-1019387.1
135.14
7.97
102.51
12.39
108.16
17.75
95.03
42.80


AD-1019381.1
142.40
16.59
86.79
21.01
106.55
17.10
86.46
17.57
















TABLE 22







HTT Single Dose Screens in Hep3B Cells












50 nM Dose
10 nM Dose
1 nM Dose
0.1 nM Dose
















Avg %

Avg %

Avg %

Avg %




HTT

HTT

HTT

HTT



mRNA

mRNA

mRNA

mRNA


Duplex
remaining
SD
remaining
SD
remaining
SD
remaining
SD


















AD-1019427
138.10
1.80
106.69
9.66
110.69
6.95
82.33
1.04


AD-1019428
122.96
8.54
123.38
18.73
143.60
19.65
85.92
4.79


AD-1019429
159.97
25.69
127.20
20.43
169.69
7.54
102.37
11.52


AD-1019430
183.50
24.67
141.83
30.68
165.83
16.88
90.68
5.39


AD-1019431
122.49
13.91
99.24
19.93
134.14
12.03
82.93
2.70


AD-1019432
94.78
5.80
81.95
16.55
106.91
10.11
78.58
2.06


AD-1019433
85.34
8.81
70.69
7.49
99.44
9.50
78.06
6.13


AD-1019434
66.47
0.79
49.38
3.88
76.15
9.24
77.24
2.61


AD-1019435
106.08
23.50
77.75
10.92
88.27
2.79
104.29
24.58


AD-1019436
112.04
11.84
119.35
16.71
115.61
11.36
110.74
26.21


AD-1019437
139.88
16.93
130.38
10.92
134.78
14.02
117.90
19.13


AD-1019438
68.19
8.66
71.56
12.22
74.56
10.01
80.95
23.59


AD-1019439
62.16
6.48
50.77
5.23
81.31
7.53
84.51
12.58


AD-1019440
56.89
5.93
46.04
4.27
70.32
11.39
79.98
8.10


AD-1019441
70.06
5.54
42.12
4.50
89.04
2.93
82.56
7.31


AD-1019442
48.73
5.66
34.56
5.17
60.32
6.46
77.28
3.85


AD-1019444
103.32
16.53
71.56
8.89
90.43
14.68
110.64
14.14


AD-1019445
201.07
51.82
144.95
19.20
144.50
22.60
100.27
11.62


AD-1019446
191.30
81.87
137.09
38.39
191.26
8.82
158.08
19.82


AD-1019447
184.26
22.26
167.74
43.07
148.71
32.03
113.94
14.67


AD-1019448
99.85
6.52
75.18
11.48
128.40
10.49
121.88
27.56


AD-1019449
156.40
22.70
114.59
8.29
132.89
16.45
100.24
17.33


AD-1019450
161.29
65.73
92.49
15.35
119.28
11.41
93.35
4.75
















TABLE 23







HTT Single Dose Screens in PCH Cells












50 nM Dose
10 nM Dose
1 nM Dose
0.1 nM Dose
















Avg %

Avg %

Avg %

Avg %




HTT

HTT

HTT

HTT



mRNA

mRNA

mRNA

mRNA


Duplex
remaining
SD
remaining
SD
remaining
SD
remaining
SD


















AD-1019427
101.37
9.26
156.06
40.24
138.20
35.12
140.07
40.07


AD-1019428
92.49
6.19
135.48
22.38
118.19
5.27
119.47
16.68


AD-1019429
98.97
6.65
131.39
12.98
130.93
6.30
128.81
26.81


AD-1019430
100.45
5.26
129.08
14.59
125.01
11.13
126.55
16.02


AD-1019431
98.21
8.32
145.07
10.68
127.63
7.57
141.36
10.73


AD-1019432
106.29
3.11
168.38
37.13
136.01
22.40
131.93
16.42


AD-1019433
102.70
8.23
161.01
12.53
139.06
5.13
145.64
6.63


AD-1019434
129.67
17.06
154.19
12.23
158.96
23.34
188.71
33.63


AD-1019435
104.54
9.16
131.00
4.95
106.67
10.72
107.91
15.44


AD-1019436
93.90
5.21
119.23
11.41
118.13
13.87
97.48
5.83


AD-1019437
100.62
5.20
119.08
14.80
134.47
18.41
109.63
9.43


AD-1019438
84.11
2.20
117.95
22.08
117.34
12.05
103.38
9.16


AD-1019439
98.67
3.66
135.71
12.20
124.13
7.31
135.45
7.08


AD-1019440
83.61
4.58
99.43
3.05
116.11
3.48
127.08
7.79


AD-1019441
82.45
4.43
137.14
12.07
119.26
6.58
130.27
3.07


AD-1019442
120.65
12.47
153.01
14.74
135.81
15.03
176.38
33.63


AD-1019444
97.66
4.03
120.60
17.75
103.85
6.35
103.97
10.02


AD-1019445
94.35
7.61
120.88
24.22
102.70
4.30
94.75
4.03


AD-1019446
92.74
4.59
107.26
12.05
114.16
5.03
95.74
4.00


AD-1019447
88.37
11.45
108.43
8.25
111.92
15.15
93.29
14.63


AD-1019448
45.33
4.67
62.29
8.67
101.08
7.47
94.82
8.72


AD-1019449
98.22
15.96
112.71
12.36
131.04
8.72
105.94
11.80


AD-1019450
85.07
15.81
97.62
10.72
107.02
2.92
127.99
8.39
















TABLE 26







HTT Single Dose Screens in BE(2)C Cells












50 nM Dose
10 nM Dose
1 nM Dose
0.1 nM Dose
















Avg %

Avg %

Avg %

Avg %




HTT

HTT

HTT

HTT



mRNA

mRNA

mRNA

mRNA


Duplex
remaining
SD
remaining
SD
remaining
SD
remaining
SD


















AD-1019451
93.29
16.82
79.48
6.60
117.48
21.67
86.30
7.18


AD-1019452
99.01
13.04
95.58
11.01
108.44
12.82
96.63
5.59


AD-1019453
87.05
7.20
113.35
13.73
94.72
2.78
98.74
13.68


AD-1019454
119.73
25.89
106.85
10.68
98.62
4.77
103.14
10.90


AD-1019455
82.82
7.22
103.85
19.64
118.66
29.10
97.17
11.43


AD-1019456
130.50
23.39
97.94
18.86
98.21
6.84
105.81
7.47


AD-1019457
113.79
27.33
98.22
13.18
94.59
15.31
104.74
12.62


AD-1019458
105.55
18.22
81.42
3.46
95.90
9.68
97.59
10.26


AD-1019459
86.39
6.10
82.18
7.18
86.45
7.09
86.03
7.52


AD-1019460
86.54
26.91
73.97
4.97
89.26
22.30
87.31
2.77


AD-1019461
101.49
23.41
102.71
17.25
128.66
12.07
95.42
4.26


AD-1019462
91.96
6.71
107.73
16.29
112.32
21.80
88.42
4.11


AD-1019463
90.33
25.45
88.82
11.53
97.45
10.80
105.73
11.70


AD-1019464
96.47
8.69
105.84
6.30
107.74
8.91
92.45
2.58


AD-1019465
39.56
9.26
44.15
1.46
54.35
15.13
81.22
10.35


AD-1019466
73.77
16.43
58.74
8.97
71.43
15.68
82.76
3.09


AD-1019467
86.04
21.44
63.29
4.25
73.17
11.29
89.01
3.28


AD-1019468
37.14
2.38
40.49
8.69
46.65
3.92
76.47
6.65


AD-1019469
55.50
7.49
58.16
7.02
71.59
3.80
92.31
9.48


AD-1019470
30.87
5.33
42.49
5.00
49.71
8.12
84.22
9.04


AD-1019471
39.47
5.81
38.61
4.32
49.39
4.07
76.09
6.89


AD-1019472
36.94
6.56
38.58
5.74
59.19
9.03
92.89
15.63


AD-1019473
44.28
4.57
41.08
5.92
58.70
14.41
96.29
18.47


AD-1019474
23.10
2.15
26.69
3.41
47.74
11.81
58.58
8.93


AD-1019475
79.15
38.02
75.33
20.13
78.21
15.30
96.03
6.92


AD-1019476
29.76
0.61
34.60
6.18
36.90
9.22
61.84
4.44


AD-1019477
32.07
3.21
37.52
1.42
50.16
16.87
88.20
6.09


AD-1019478
35.78
6.14
46.00
8.07
56.02
5.51
93.58
9.49


AD-1019479
82.43
14.10
79.61
12.60
79.91
1.40
90.84
6.32


AD-1019480
73.10
10.82
64.04
5.81
76.54
2.46
88.44
4.59


AD-1019481
61.17
5.75
50.82
2.01
61.45
4.92
83.66
18.29


AD-1019482
37.37
4.04
46.32
5.39
65.74
8.11
86.94
5.01


AD-1019483
38.58
7.74
36.51
3.09
52.26
5.18
77.39
6.67


AD-1019484
24.49
2.05
30.55
2.75
35.81
8.29
66.74
4.82


AD-1019485
28.44
1.78
32.61
4.65
37.42
6.84
60.91
7.85


AD-1019486
46.24
9.01
45.45
5.18
53.16
7.81
76.82
2.97


AD-1019487
39.72
7.09
41.07
5.67
53.60
9.86
79.86
4.54


AD-1019488
49.71
3.57
45.89
6.61
52.78
5.90
82.82
17.59


AD-1019489
39.41
10.74
30.19
5.45
46.89
3.86
66.60
15.82


AD-1019491
37.54
2.60
38.78
4.86
61.14
10.96
84.32
10.33
















TABLE 31







HTT Single Dose Screens in BE(2)C Cells












50 nM Dose
10 nM Dose
1 nM Dose
0.1 nM Dose
















Avg %

Avg %

Avg %

Avg %




HTT

HTT

HTT

HTT



mRNA

mRNA

mRNA

mRNA


Duplex
remaining
SD
remaining
SD
remaining
SD
remaining
SD


















AD-1255829.1
42.96
5.68
43.85
2.29
66.98
1.37
87.40
4.66


AD-1289804.1
51.24
11.22
49.88
3.32
74.10
3.11
112.44
7.55


AD-1255847.1
56.33
5.48
53.42
4.55
73.16
9.69
86.04
11.02


AD-1255846.1
60.91
8.58
54.43
5.62
76.71
5.58
88.90
9.21


AD-1255842.1
71.67
8.66
57.02
6.91
82.51
3.37
88.66
8.57


AD-1255826.1
63.03
13.87
61.10
6.07
81.42
7.45
106.67
5.54


AD-1255828.1
58.25
8.33
61.99
2.58
62.19
9.96
95.71
14.52


AD-1255844.1
77.81
19.83
62.45
3.32
93.71
5.93
94.62
11.51


AD-1289792.1
63.07
19.66
62.71
7.40
70.83
2.95
97.30
8.23


AD-1255825.1
61.98
11.14
62.99
5.30
82.22
8.57
113.33
9.73


AD-1255822.1
54.95
8.25
63.21
7.99
73.10
6.20
94.27
7.33


AD-1255839.1
79.41
19.00
63.82
10.25
78.93
6.77
92.85
7.99


AD-1255827.1
66.37
7.51
66.77
10.38
76.46
6.28
93.56
8.78


AD-1255824.1
70.91
12.73
67.84
12.01
79.52
3.88
104.18
6.96


AD-1255845.1
71.58
5.96
68.53
5.24
99.80
7.33
102.28
15.66


AD-1255830.1
55.81
5.08
72.00
4.27
85.56
3.31
107.28
6.84


AD-1289806.1
73.43
5.18
76.80
10.37
92.52
7.68
102.29
4.29


AD-1255836.1
124.80
23.77
81.79
12.98
107.34
3.39
93.98
7.73


AD-1289807.1
77.24
10.72
87.68
14.15
82.46
0.99
99.67
4.22


AD-1289805.1
88.02
4.90
90.31
4.52
97.27
3.91
121.40
4.20


AD-1255840.1
105.83
14.38
90.46
4.13
80.88
15.34
82.60
12.65


AD-1289808.1
122.86
14.70
92.14
2.12
102.50
3.56
96.30
8.50


AD-1289800.1
76.52
4.81
93.52
5.12
90.00
4.51
95.56
2.21


AD-1255838.1
89.17
8.94
93.90
18.11
108.49
11.18
94.09
9.61


AD-1255843.1
107.35
9.98
93.92
6.81
109.57
7.77
93.99
4.85


AD-1255837.1
117.27
34.77
93.96
7.45
98.71
18.19
100.51
7.76


AD-1255833.1
99.27
6.98
94.69
17.28
101.75
10.49
88.41
2.89


AD-1289797.1
80.55
6.78
98.81
6.21
74.29
18.16
104.59
7.71


AD-1255823.1
105.66
24.48
98.93
13.66
86.06
9.79
100.05
8.60


AD-1289810.1
92.87
20.76
100.62
6.60
97.46
4.56
122.30
16.77


AD-1289811.1
93.41
6.43
102.94
1.79
96.52
6.13
98.20
6.21


AD-1289812.1
90.48
4.72
104.24
15.15
83.21
3.00
96.73
22.75


AD-1255841.1
101.07
13.00
104.75
7.36
100.13
18.24
96.25
9.73


AD-1289799.1
91.60
17.43
104.76
10.87
85.06
17.47
85.10
10.35


AD-1255834.1
125.74
10.44
106.54
6.84
94.34
21.58
97.11
4.22


AD-1289809.1
124.27
17.95
108.22
12.24
99.43
0.97
103.04
5.39


AD-1289801.1
98.11
7.63
109.29
5.74
98.62
7.63
111.41
15.08


AD-1289793.1
98.72
9.25
110.46
9.91
116.62
26.19
103.92
5.03


AD-1289798.1
94.79
16.26
110.50
7.33
88.92
11.12
104.76
15.05


AD-1289796.1
81.94
6.56
110.65
15.00
87.24
7.53
121.12
19.77


AD-1289803.1
109.67
9.57
115.61
26.44
88.09
26.87
110.34
2.77


AD-1255835.1
97.25
6.52
116.18
25.86
102.10
12.39
101.26
5.04


AD-1289802.1
99.88
5.45
122.93
13.24
98.52
8.59
115.30
12.06


AD-1289794.1
86.59
6.59
130.53
22.85
95.85
8.83
118.93
12.22


AD-1289795.1
92.81
12.98
132.84
25.18
101.37
16.37
108.22
9.88
















TABLE 34







HTT Single Dose Screens in BE(2)C Cells












50 nM
10 nM
1 nM
0.1 nM















Duplex
Avg
SD
Avg
SD
Avg
SD
Avg
SD


















AD-1289928.1
26.86
1.60
19.55
4.52
22.39
2.15
24.14
1.37


AD-1289833.1
23.91
3.07
17.68
4.58
23.55
2.74
27.27
2.74


AD-1289929.1
23.77
2.47
15.37
2.70
24.10
4.62
24.65
2.18


AD-1289927.1
27.09
5.65
18.06
2.62
24.84
1.66
28.64
2.32


AD-1289826.1
25.34
2.46
16.35
1.53
25.52
5.56
25.98
2.57


AD-1289831.1
30.21
1.67
36.35
7.86
26.09
3.74
30.90
2.30


AD-1289925.1
25.68
4.12
20.60
4.16
27.36
3.07
39.34
7.40


AD-1289824.1
32.57
4.27
38.34
6.20
29.00
2.92
34.38
5.30


AD-1289832.1
32.44
3.57
35.65
5.85
29.89
2.64
37.93
10.68


AD-1289825.1
39.83
17.90
26.65
9.54
30.69
2.01
34.00
4.25


AD-1289852.1
29.07
4.82
35.54
5.97
30.92
7.56
49.11
2.59


AD-1289867.1
28.36
2.80
31.88
7.37
31.98
12.26
56.00
5.83


AD-1289924.1
26.70
1.03
24.41
1.78
32.66
3.15
39.48
5.92


AD-1289853.1
34.66
4.96
28.99
3.10
35.62
5.35
47.55
8.03


AD-1289860.1
30.85
1.81
33.63
6.59
36.85
9.35
47.87
13.74


AD-1289931.1
27.24
1.71
29.84
4.12
36.93
5.95
52.53
23.19


AD-1289926.1
20.74
1.73
21.36
3.76
37.21
10.19
33.30
5.90


AD-1289851.1
29.04
4.65
46.37
10.68
37.41
7.70
59.15
8.97


AD-1289930.1
28.14
3.09
27.85
5.73
37.82
7.73
51.47
21.21


AD-1289859.1
32.10
2.80
36.95
3.88
39.64
2.26
51.16
3.87


AD-1289932.1
38.64
15.28
32.51
2.70
40.87
5.61
57.50
9.85


AD-1019405.3
32.37
3.41
27.02
4.04
40.92
2.74
27.48
2.39


AD-1289861.1
28.13
4.06
21.27
3.46
41.31
5.09
49.50
12.59


AD-1107447.5
37.70
10.79
43.44
9.88
41.46
7.19
49.31
3.36


AD-1289948.1
30.97
2.76
40.28
4.17
41.80
7.23
66.69
15.51


AD-1289864.1
29.78
3.77
39.21
7.89
42.69
5.07
89.93
14.78


AD-1289913.1
31.72
5.80
34.84
8.88
42.95
10.68
73.21
7.08


AD-1289923.1
59.24
10.74
39.10
6.46
45.24
7.48
32.36
10.02


AD-1289921.1
53.68
1.92
58.15
6.99
45.73
4.52
65.30
17.40


AD-1289865.1
31.87
5.72
40.91
4.15
45.75
10.10
79.13
17.89


AD-1107442.5
32.33
6.49
43.54
11.06
46.70
8.32
64.81
14.58


AD-1289830.1
42.03
13.79
33.46
8.03
46.86
4.86
59.66
10.81


AD-1289866.1
36.51
6.26
41.19
8.95
46.89
11.53
71.88
7.53


AD-1289947.1
38.31
1.99
49.21
5.64
48.00
8.18
83.10
17.67


AD-1289933.1
32.81
4.00
35.67
2.53
48.04
7.15
69.06
9.73


AD-1289950.1
27.26
3.33
34.49
6.62
48.53
8.09
69.57
3.80


AD-1289868.1
30.84
5.79
42.94
4.23
52.80
8.22
61.31
3.51


AD-1289946.1
46.68
5.83
46.28
8.49
54.50
7.35
68.13
7.41


AD-1289960.1
35.30
1.65
35.68
3.55
54.94
9.28
65.79
5.26


AD-1289956.1
27.84
2.18
36.44
6.74
55.13
12.30
71.89
7.68


AD-1289827.1
28.82
5.84
29.88
4.99
55.28
10.84
52.68
11.79


AD-1289829.1
40.71
2.43
53.32
13.95
56.16
7.42
85.09
20.29


AD-1289850.1
68.59
4.01
72.52
15.97
58.55
10.21
83.76
7.50


AD-1289945.1
59.40
11.93
40.74
8.64
59.54
12.43
76.72
22.59


AD-1289835.1
37.25
4.53
52.77
8.52
60.32
12.83
112.64
25.83


AD-1289828.1
39.08
9.24
50.27
6.14
60.38
8.94
85.28
13.09


AD-1289949.1
48.48
15.67
46.75
6.41
60.71
7.90
74.31
4.00


AD-1289871.1
31.65
7.54
50.42
4.81
60.78
10.75
76.82
20.33


AD-1289914.1
31.82
1.51
36.43
2.73
60.93
9.49
76.70
18.34


AD-1289911.1
36.55
3.76
52.21
4.79
61.12
6.82
96.29
13.51


AD-1289857.1
37.65
1.30
54.22
7.43
62.08
12.37
112.67
7.11


AD-1289944.1
41.93
6.76
38.97
6.75
62.30
6.63
103.47
5.76


AD-1289957.1
28.01
4.91
33.18
4.70
63.87
9.58
81.23
11.07


AD-1289955.1
35.33
2.36
39.61
7.12
64.57
6.39
83.55
12.05


AD-1289834.1
38.03
15.96
41.29
5.72
66.11
14.38
70.25
14.42


AD-1289855.1
47.03
10.61
45.38
6.17
66.56
9.83
113.47
25.72


AD-1019402.3
51.50
11.45
78.69
14.18
67.31
12.68
108.20
11.66


AD-1289954.1
53.07
5.81
56.54
15.91
69.08
10.97
81.29
11.70


AD-1289920.1
59.99
6.29
76.06
5.44
72.04
7.85
83.88
18.77


AD-1019426.3
35.72
4.46
39.52
5.34
72.10
11.86
105.24
4.97


AD-1289862.1
35.67
5.88
38.24
6.53
72.61
22.46
94.79
2.43


AD-1289854.1
49.03
11.42
48.86
5.36
73.01
13.83
88.95
28.52


AD-1289914.2
30.03
5.23
33.37
2.93
73.79
12.67
88.84
7.72


AD-1289915.1
51.74
11.74
41.21
11.76
74.00
18.84
103.91
17.51


AD-1107449.5
41.89
7.53
42.32
2.51
74.27
4.96
117.23
13.14


AD-1289870.1
48.95
10.27
49.15
12.60
74.52
14.88
105.14
20.17


AD-1289953.1
35.31
3.01
45.74
4.87
74.71
7.89
107.34
16.59


AD-1107451.5
48.67
4.47
55.46
6.57
76.65
14.88
114.80
16.96


AD-1289961.1
52.85
13.96
49.17
9.57
77.13
6.98
84.90
17.73


AD-1289951.1
31.47
8.60
45.99
5.14
77.78
9.98
102.83
16.18


AD-1289915.2
37.75
9.20
40.82
2.69
79.15
10.39
99.07
23.10


AD-1289912.1
82.10
12.60
95.77
23.45
79.51
11.95
88.10
11.79


AD-1289958.1
49.85
10.86
43.74
4.02
79.96
21.58
106.79
13.72


AD-1289869.1
41.54
14.67
48.99
10.01
81.83
10.93
95.34
11.88


AD-1289916.2
38.11
12.11
30.92
6.77
83.06
27.70
89.95
11.93


AD-1289858.1
77.51
8.31
98.31
11.66
83.94
4.52
88.77
13.74


AD-1289789.1
57.63
5.94
59.15
10.78
86.59
17.72
91.84
14.11


AD-1255821.1
69.16
8.85
82.13
11.58
89.11
12.53
97.77
12.97


AD-1289959.1
42.26
5.22
40.42
4.96
90.44
16.55
71.09
18.49


AD-1289790.1
73.58
9.37
78.35
21.25
90.71
28.57
82.85
26.71


AD-1289952.1
52.77
12.63
56.28
12.30
94.30
5.79
131.73
12.58


AD-1289791.1
74.62
17.99
119.43
34.26
99.39
20.30
98.65
23.07


AD-1289922.1
83.30
14.91
69.35
9.41
100.96
15.26
98.87
18.45


AD-1289919.1
84.61
7.92
93.30
16.27
100.99
12.77
98.84
16.16


AD-1289916.1
51.67
8.05
54.39
2.65
102.21
17.34
146.47
25.74


AD-1289863.1
96.63
15.42
129.19
8.00
146.62
21.26
154.53
20.81









Example 2. HTT In Vivo Screen Using RNAi Agents Targeting HTT Exon1—AAV

Duplexes of interest targeting HTT exon 1, identified from the above in vitro studies, were evaluated in vivo.


In particular, at pre-dose day −14 wild-type mice (C57BL/6) were transduced by retororbital administration of 2×1010 viral particles of an adeno-associated virus 8 (AAV8) vector encoding a portion of wild type human HTT. Exemplary AAV vectors are provided in the Table below.

















Construct
Region
Start
End
Insert (bp)
Length (bp)




















AAV1
5′ UTR + ORF
1
2655
200
2855


AAV2
ORF
2656
5310
200
2855


AAV3
ORF
5311
7965
200
2855


AAV4
ORF + 3′UTR
7966
10820

2855


AAV5
3′UTR
10821
13475
200
2855









In this experiment, mice were administered an AAV8 encoding a portion of wild-type HTT (AAV1).


At day 0, groups of three mice were subcutaneously administered a single 3 mg/kg dose of the agents of interest or PBS control. At day 14 post-dose animals were sacrificed, liver samples were collected and snap-frozen in liquid nitrogen. Tissue mRNA was extracted and analyzed by the RT-QPCR method. Human HTT mRNA levels were compared to housekeeping gene GAPDH. The values were then normalized to the average of AAV control group. The data were expressed as percent of baseline value, and presented as mean±standard deviation. The results, shown in FIGS. 1 and 2, demonstrate that the exemplary duplex agents tested effectively reduce the level of the human HTT messenger RNA in vivo.


Example 3. HTT In Vivo Screen with RNAi Agents Targeting HTT Exon1

Duplexes of interest targeting exon 1 of human HTT were evaluated in an art-recognized mouse model of Huntington disease (HD), the YAC128 mouse model of HD. YAC128 mice harbor a yeast artificial chromosome (YAC) containing the entire human HD gene containing 128 CAG repeats in their genomes. YAC128 mice develop motor abnormalities and age-dependent brain atrophy including cortical and striatal atrophy associated with striatalneuronal loss. YAC128 mice exhibit initial hyperactivity, followed by the onset of a motor deficit and finally hypokinesis (see, e.g., Slow, et al. (2003) Human Molecular Genetics 12(13):1555; Van Raamsdonk, et al. (2005), 2 Human Molecular Genetics 14(24):3823; and Carroll, et al. (2011) Neurobiology of Disease 43:257-265).


At Day 0, YAC128 mice (7-13 weeks of age, 27.7±3.4 grams, n=36) were subcutaneously administered a single 10 mg/kg dose of the agents of interest or PBS control. At day 7 post-dose, animals were sacrificed, liver samples were collected and snap-frozen in liquid nitrogen. Liver mRNA was extracted and analyzed by the RT-QPCR method.


The effect of these agent on full-length wild-type human HTT mRNA is shown in FIG. 3A. These data demonstrate that the exemplary duplex agents tested effectively reduce the level of the human HTT messenger RNA in vivo.


Human mutant HTT protein levels were determined using Western Blot analysis.


Briefly, livers were homogenized in RIPA buffer along with protease inhibitors. Total protein was quantified using Pierce BCA kit following manufacturer's instructions. Eighty μg of total cell lysates were denatured by boiling in 4×LDS buffer and were subjected to SDS-PAGE in a 3-8% tris acetate gradient gel and transferred to PVDF membranes. The blots were blocked with Odyssey blocking buffer for 1 hour at room temperature and hybridized to specific antibodies overnight at 4° C. The following antibodies were used: HTT (Millipore, Catalog #MAB2166), Calnexin (Millipore-Sigma, catalog #C4731, Fluorescence conjugated secondary antibodies (Licor, Goat anti-rabbit, Catalog #926-32211 and Donkey anti-mouse, Catalog #926-680721:5000). Detection of protein bands was carried out using the Biorad Chemidoc MP Imaging system. The density of each HTT band was normalized to Calnexin loading control and the normalized intensities were used to quantify HTT knockdown in siRNA treated samples relative to vehicle (1×PBS) treated controls.


The effect of these agents on mutant human HTT protein levels is shown in FIGS. 3B-3C. These data demonstrate that the exemplary duplex agents tested effectively reduce the level of the full-length wild-type human HTT messenger RNA (FIG. 3A) as well as mutant human HTT protein in vivo.


In another set of experiments, YAC128 mice (7-13 weeks of age, 27.7±3.4 grams, n=36) were subcutaneously administered a single 10 mg/kg dose of the agents of interest or PBS control at Day 0. At day 7 post-dose, animals were sacrificed, liver samples were collected and snap-frozen in liquid nitrogen. Liver mRNA was extracted and analyzed by the RT-QPCR method. Full-length mutant HTT mRNA levels and full-length mutant HTT protein levels were analyzed as described above. The results are shown in FIGS. 4A-4B and demonstrate that the exemplary duplex agents tested effectively reduce the level of the mutant human HTT protein in vivo.


Additional duplexes of interest targeting exon 1 of human HTT were also assessed for the ability to inhibit human full-length wild-type HTT expression in vivo in mice of varying ages and weights. Specifically, at Day 0, mice (10-16 week of age, 28.2±3.7 grams, n=84) were subcutaneously administered a single 10 mg/kg dose of the agents of interest or PBS control. At day 7 post-dose, animals were sacrificed, liver samples were collected and snap-frozen in liquid nitrogen. Liver mRNA was extracted and analyzed by the RT-QPCR method.


Full-length wild-type human HTT mRNA levels were measured as described herein, and the results are shown in FIG. 5 and demonstrate that the exemplary duplex agents tested effectively reduce the level of the full-length wild-type human HTT mRNA in vivo.


Example 4. Structural Activity Relationship Analysis

Duplexes of interest targeting exon 1 of human HTT were selected for further structural activity relationship (SAR) analysis and assessed for the ability to inhibit mutant HTT expression in vivo.


Specifically, at Day 0, YAC128 mice (6-9 weeks of age, n=4 per group) were subcutaneously administered a single 10 mg/kg dose of the agents of interest or PBS control. At day 7 post-dose, animals were sacrificed, liver samples were collected and snap-frozen in liquid nitrogen. Liver mRNA was extracted and analyzed by the RT-QPCR method.



FIG. 6 shows the effect of these agents on full-length mutant human HTT mRNA levels and full-length mutant human protein levels. The data demonstrate that the agents inhibit expression of mutant exon 1 of human HTT and full-length mutant human HTT mRNA and full-length human protein in vivo.


Additional duplexes of interest were also assessed in YAC128 mice (6 weeks of age, n=4 per group). At Day 0, mice were subcutaneously administered a single 10 mg/kg dose of the agents of interest or PBS control. At day 7 post-dose, animals were sacrificed, liver samples were collected and snap-frozen in liquid nitrogen. Liver mRNA was extracted and analyzed by the RT-QPCR method.



FIG. 7 shows the effect of these agents on full-length mutant human HTT mRNA levels.


Example 5. In Vitro Screen in Human HD Patient Fibroblasts

The effect of duplexes of interest on the expression of full-length wild type human HTT and full-length mutant HTT was also assessed in human fibroblasts. Fibroblasts were obtained from Coriell, adult healthy control patient (“Control”, GM02153), an HD patient with adult disease onset (“Adult”, GM04478″) and an HD patient with juvenile disease onset (“Juvenile”, GM09197″). Fibroblasts were transfected with either 10 nM or 50 nM of duplexes targeting exon 1 of the HTT gene or the full length HTT gene.


The results are shown in FIGS. 8A-8B, FIGS. 9A-9B, FIGS. 10A-10D and FIGS. 11A-11D and demonstrate that the agents targeting exon 1 of the HTT gene or the full length HTT gene inhibit expression of the full-length mutant human HTT mRNA in patient samples in vitro.


Example 6. HTT In Vivo Screen with RNAi Agents Targeting Full Length Human HTT

Duplexes of interest targeting full length human HTT, identified from the above in vitro studies, were evaluated in vivo using both the YAC128 mouse model and the AAV approaches, as described herein.


At pre-dose day −14 wild-type mice (C57BL/6, 7-13 weeks of age, 27.7±3.4 grams, n=36) were transduced by retro-orbital administration of 2×1010 viral particles of an adeno-associated virus 8 (AAV8) vector encoding a portion of human HTT, including AAV1, AAV2, AAV3, or AAV4, as described in Example 2 above.


At Day 0, the transduced mice and YAC128 mice were subcutaneously administered a single 3 mg/kg or a 10 mg/kg dose of the agents of interest or PBS control. At Day 7 or Day 14 post-dose, animals were sacrificed, liver samples were collected and snap-frozen in liquid nitrogen. Liver mRNA was extracted and analyzed by the RT-QPCR method.


As shown in FIG. 12, the agents inhibit expression of full-length human HTT or full-length mutant human HTT mRNA in vivo using both experimental models.


Additional duplexes of interest targeting full-length human HTT were also assessed for their ability to inhibit wild-type human HTT in vivo.


At pre-dose day −14 wild-type mice (C57BL/6, 7-13 weeks of age, 27.7±3.4 grams, n=36) were transduced by intravenous administration of 2×1010 viral particles of AAV1, AAV2, AAV3, or AAV4 (see Table above in Example 2).


At Day 0, the transduced mice were subcutaneously administered a single 3 mg/kg dose of the agents of interest or PBS control. At Day 14 post-dose, animals were sacrificed, liver samples were collected and snap-frozen in liquid nitrogen. Liver mRNA was extracted and analyzed by the RT-QPCR method.


As shown in FIGS. 13A-13D, the agents inhibit expression of full-length wild-type human HTT mRNA in vivo and numerous duplexes targeting full-length human HTT transcript were determined to have an efficacy of greater than 90%.

Claims
  • 1. A double stranded ribonucleic acid (dsRNA) agent for inhibiting expression of Huntingtin (HTT), wherein the dsRNA agent comprises a sense strand and an antisense strand forming a double stranded region, wherein the antisense strand comprises at least 15 contiguous nucleotides differing by no more than 3 nucleotides from the nucleotide sequence of SEQ ID NO: 6, andwherein one or more lipophilic moieties are conjugated to one or more internal positions on at least one of the sense strand or the antisense strand.
  • 2. The dsRNA agent of claim 1, wherein the nucleotide sequence of the sense strand comprises any one of the sense strand nucleotide sequences in any one of Tables 2, 3, 5, 6, 8, 9, 11, 12, 14, 15, 17, 18, 20, 21, 24, 25, 27-30, 32 or 33.
  • 3.-19. (canceled)
  • 20. The dsRNA agent of claim 1, wherein the one or more lipophilic moieties are conjugated to one or more of the internal positions selected from the group consisting of positions 4-8 and 13-18 on the sense strand, and positions 6-10 and 15-18 on the antisense strand, counting from the 5′-end of each strand.
  • 21. The dsRNA agent of claim 20, wherein the one or more lipophilic moieties are conjugated to one or more of the internal positions selected from the group consisting of positions 5, 6, 7, 15, and 17 on the sense strand, and positions 15 and 17 on the antisense strand, counting from the 5′-end of each strand.
  • 22.-24. (canceled)
  • 25. The dsRNA agent of claim 1, wherein the lipophilic moiety is an aliphatic, alicyclic, or polyalicyclic compound.
  • 26. (canceled)
  • 27. The dsRNA agent of claim 25, wherein the lipophilic moiety contains a saturated or unsaturated C4-C30 hydrocarbon chain, and an optional functional group selected from the group consisting of hydroxyl, amine, carboxylic acid, sulfonate, phosphate, thiol, azide, and alkyne.
  • 28. The dsRNA agent of claim 27, wherein the lipophilic moiety contains a saturated or unsaturated C6-C18 hydrocarbon chain.
  • 29.-34. (canceled)
  • 35. The dsRNA agent of claim 1, wherein the dsRNA agent comprises at least one modified nucleotide.
  • 36.-44. (canceled)
  • 45. The dsRNA agent of claim 1, further comprising at least one phosphorothioate internucleotide linkage.
  • 46. (canceled)
  • 47. (canceled)
  • 48. The dsRNA agent of claim 1, wherein at least one strand comprises a 3′ overhang of at least 1 nucleotide.
  • 49. (canceled)
  • 50. The dsRNA agent of claim 1, wherein the double stranded region is 15-30 nucleotide pairs in length.
  • 51.-55. (canceled)
  • 56. The dsRNA agent of claim 1, wherein each strand is independently 19-30 nucleotides in length; 19-23 nucleotides in length; or 21-23 nucleotides in length.
  • 57.-67. (canceled)
  • 68. The dsRNA agent of claim 1, further comprising a phosphate or phosphate mimic at the 5′-end of the antisense strand.
  • 69.-71. (canceled)
  • 72. An isolated cell containing the dsRNA agent of claim 1.
  • 73. A pharmaceutical composition for inhibiting expression of a gene encoding HTT, comprising the dsRNA agent of claim 1.
  • 74. (canceled)
  • 75. A method of inhibiting expression of a huntingtin (HTT) gene in a cell, the method comprising: (a) contacting the cell with the dsRNA agent of claim 1; and(b) maintaining the cell produced in step (a) for a time sufficient to obtain degradation of the mRNA transcript of the HTT gene, thereby inhibiting expression of the HTT gene in the cell.
  • 76.-80. (canceled)
  • 81. A method of treating a subject diagnosed with an HTT-associated disease, the method comprising administering to the subject a therapeutically effective amount of the dsRNA agent of claim 1, thereby treating the subject.
  • 82. (canceled)
  • 83. (canceled)
  • 84. The method of claim 81, wherein the HTT-associated disease is Huntington's disease.
  • 85. (canceled)
  • 86. The method of claim 81, wherein the dsRNA agent is administered to the subject intrathecally.
  • 87. (canceled)
  • 88. (canceled)
  • 89. The dsRNA agent of claim 1, wherein the antisense strand comprises at least 15 contiguous nucleotides differing by no more than 3 nucleotides from the complement of nucleotides 142-195 of SEQ ID NO:1.
RELATED APPLICATIONS

This application is a 35 § U.S.C. 111(a) continuation application which claims the benefit of priority to PCT/US2020/057849, filed on Oct. 29, 2020, which, in turn, claims the benefit of priority to U.S. Provisional Application No. 62/929,174, filed on Nov. 1, 2019. The entire contents of each of the foregoing applications are incorporated herein by reference.

Provisional Applications (1)
Number Date Country
62929174 Nov 2019 US
Continuations (1)
Number Date Country
Parent PCT/US2020/057849 Oct 2020 US
Child 17731317 US