In the drawings:
a represents the general structure of a microlithography exposure apparatus,
b illustrates the definition of the object-side numerical aperture NA,
c illustrates the definition of the angles of incidence on a mirror surface,
d shows a field in the object plane,
e shows a view of a projection exposure apparatus according to the disclosure with the individual optical elements,
a-c represent embodiments in which the illumination and thus the setting in the pupil is changed by varying the distances from the field facet mirror to the pupil facet mirror.
a to 1d support the following detailed description of general concepts which are used in and relate to a multitude of embodiments.
The projection objective 2101 has an optical axis 2105. The individual optical elements of the projection objective are arranged with rotational symmetry about the optical axis 2105. The plane containing the optical axis 2105 is the meridional plane of the projection objective. As shown in
The operating wavelength λ of the microlithography projection exposure apparatus can be in the ultraviolet or extreme ultraviolet (EUV) range of the electromagnetic spectrum. The operating wavelength can in particular be 193 nm or less, and especially 100 nm or less. In the examples of embodiments, it the operating wavelength can be in the EUV range of wavelengths (e.g., around 13 nm).
The use of radiation with an especially short wavelength is particularly desirable because the optical resolution of a projection objective which is used in a projection exposure apparatus is in general roughly in proportion to the operating wavelength being used. Therefore, if shorter wavelengths are used, projection objectives can resolve smaller structures of an image than would be the case with analogous projection objectives that use longer wavelengths.
The illumination system 2120 includes optical components that provide a collimated light beam with a largely homogeneous intensity profile. The illumination system 2120 further includes optical components that serve to direct the ray bundle 2122 onto the mask 2140. In some embodiments, the illumination system 2120 further includes components that provide a specific polarization profile of the ray bundle. Each optical component of the illumination system has a local x-y-z coordinate system assigned which is obtained by a translatory shift and a rotation of an x-y-z coordinate system that is defined in the object plane 2103 at a central field point. The meridional plane of an optical element in the illumination system is the plane of reflection of the principal ray CR. The plane of reflection is formed for example by the local z-axis and the principal ray CR that belongs to the central field point. The local z-axis of each optical element is defined as the surface normal axis at the point of incidence of the principal ray CR.
The image plane 2102 has from the object plane 2103 a distance L which is also referred to as the overall length of the projection objective 2101. This overall length depends in general on the specific design of the projection objective 2101 and on the wavelength at which the microlithography projection exposure apparatus 2100 is being operated. In the examples described herein, the overall length is in the range from one meter to about three meters (e.g., in the range between about 1.5 and 2.5 meters).
b shows the marginal rays 2152 of the light bundle which are reflected at the object in the object plane 2103 and are projected into the image plane 2102. The marginal rays 2152 define a cone of rays.
The angle of the cone of rays is related to the object-side numerical aperture NA of the exit pupil of the illumination system which is also simultaneously the entry pupil of the projection objective. The object-side numerical aperture can be expressed as
NA=n
0·sin ΘNA
wherein n0 stands for the refractive index of the medium that lies adjacent to the object plane 2103. The medium can be for example air, nitrogen, water, or vacuum. The angle 2·ΘNA represents the angle that is defined by the marginal rays. In the particular case of an illumination system with EUV light, the medium is vacuum which has a refractive index of n0=1.
In general, the portion of the radiation that is reflected by a mirror varies as a function of the angle of incidence on the mirror surface. Since the image-forming ray passing through a catoptric system is propagated along a multitude of different paths, the angle of incidence of the radiation on each mirror can vary. This is shown in
For every element of the illumination system 2120 or the projection objective 2100, it is possible to represent the angles of incidence of the image-producing rays along a multitude of paths. One possible form of representation is through the respective maximum angle of the rays that fall on each mirror in the meridional plane of the respective element. This maximum angle is referred to as Θmax. In general, the angle Θmax can vary between different mirrors of the illumination system or of the projection objective 2101. In certain embodiments of the disclosure, the overall maximum value (Θmax)max for all mirrors of the illumination system or the projection objective can be 20° or less (e.g., 15° or less, 13° or less, 10° or less).
Among reflective systems, a general distinction is made between so-called normal-incidence elements and grazing-incidence elements. Normal-incidence elements are elements in which all incident rays meet the surface of the element at an angle of <30° relative to the surface-normal direction at the point of incidence (e.g., at an angle of <20°, at an angle <10°, at an angle <5°). Grazing-incidence elements are elements in which all incident rays meet the surface of the element at an angle of ≧70° relative to the surface-normal direction at the point of incidence.
In general, the shape of the field that is formed in the object plane 2103 of the illumination system can vary. In some embodiments, the field can have an arcuate shape, for example the shape of a ring segment, a so-called ring field.
Generally speaking, for arbitrary field shapes a field in the image plane 2102 can have a maximum field dimension or field measurement, for example Dx for a ring field, of more than 1 mm (e.g., more than 3 mm, more than 4 mm, more than 5 mm, more than 6 mm, more than 7 mm, more than 8 mm, more than 9 mm, more than 10 mm, more than 11 mm, more than 12 mm, more than 13 mm, more than 14 mm, more than 15 mm, more than 18 mm, more than 20 mm, up to more than 25 mm). The other field dimension, for example Dy, for a ring field can be in the range between 0.5 mm and 10 mm. The illumination system according to the disclosure can be used to illuminate areas F in the image plane with F>4 mm2 (e.g., F>10 mm2, F>20 mm2, F>25 mm2). For a rectangular field, the area equals F=Dx×Dy.
For a ring field, the ring field radius Dr can be larger than 15 mm or even more in the image plane 2102.
If the projection objective is a reducing projection objective, for example with a reduction ratio of 4×, the object field will have dimensions of 4 mm×100 mm if the image field has dimensions of 1 mm×25 mm. With a known reduction ratio of the projection objective, (e.g., 4×, 5×) an individual skilled in the pertinent art can deduce the dimensions of the object field from the dimensions of the image field.
In the ring field segment 2700, the y-direction of the coordinate system indicates the so-called scanning direction if the illumination system is used in a scanning microlithography projection system of the kind shown in
SE(x)=∫E(x,y)dy,
wherein E stands for the intensity distribution in the x-y field plane, which is dependent on x and y. For a uniform, i.e. evenly distributed illumination and other characteristic quantities of the illumination systems such as the ellipticity and the telecentricity which likewise depend on the field height x, it can be of advantage if these quantities have substantially the same value along the entire field height x with only small deviations.
e shows a view of a projection exposure apparatus, for example for the manufacture of microelectronic components, where the disclosure can find application, wherein the individual elements of the illumination system and of the projection objective are illustrated. The system that is represented here is a catoptric system with a catoptric illumination system 306 and a catoptric projection objective 128. Since the illustrated system is a catoptric system, all of the optical components or elements are reflective, configured for example as mirrors or mirror elements.
The projection exposure apparatus in this example includes a light source or an intermediate image Z of a light source 1. The light emitted from the light source 1 is gathered by a collector 3 which comprises a multitude of mirror shells. In the projection exposure apparatus as shown here, the collector is followed by a further optical element which is in this case constituted by a planar mirror 300. The rays coming from the collector and falling on the planar mirror 300 are given a change in direction in particular for the purpose of providing space for the mechanical and optical components in an object plane 114 where the wafer stage is arranged. Also shown is the x-y-z coordinate system in the object plane. A mask, also referred to as reticle (not shown), can be arranged in the object plane 114, an image of which is projected into an image plane 124 via the projection objective 128. The planar mirror 300 can also be configured as a diffractive spectral filter element. A diffractive spectral filter element of this kind is for example a diffraction grating as disclosed in US 2002/0186811 A1. Together with an aperture stop 302 close to the intermediate image Z of the light source 1, a grating elements of the kind allows unwanted radiation, for example with wavelengths longer the desired wavelength, to be kept from entering the part of the illumination system 300 that lies behind the aperture stop 302.
The aperture stop 302 can also perform the function of separating the space 304 that contains the light source as well as the collector 3 and the planar mirror 300 that is configured as a grating from the part of the illumination system 306 that follows in the downstream direction. If the two spaces are separated by arranging a valve near the intermediate focus, one can also achieve a pressure differential. With a spatial separation or a pressure differential, one can prevent that contaminations originating from the light source could penetrate the illumination system 1 in the area behind the aperture stop 302.
The light collected by the collector 3 and redirected by the planar mirror 300 is directed to a first optical component 70 of the illumination system. The first optical component 70 includes a first facetted optical element 102 and a second facetted optical element 104. The first facetted optical element 102 is in this case a facetted catoptric element, specifically a mirror with a multitude of first catoptric raster elements, so-called field facet mirrors. The design of a first facetted optical element of this type is illustrated in
The raster elements in the present case are substantially of rectangular shape and configured as individual mirror facets. To achieve that secondary images of the light source are formed in or near the pupil facets of the second optical element 104, the first raster element as shown in
Besides the first facetted optical element 102, the first optical component 70 of the illumination system 306 includes a second facetted optical element 104 with second raster elements, so-called pupil facets.
The first facetted optical element 102 with field facets subdivides the incident light coming from the light source into several light bundles (not shown). Each of the individual light bundles belonging to a respective field facet falls on one of the pupil facets. Thus, there is a one-to-one correlation between each field facet of the first facetted optical element and a specific facet of the second facetted optical element. As shown in US 2002/0136351 A1 or U.S. Pat. No. 6,658,084, this correlation can determine the shape of the illumination, i.e., the illumination setting in the exit pupil of the illumination system. The illumination or the illumination setting in the exit pupil can be of conventional shape (i.e. a filled-out circle), annular (i.e. a closed circular ring), dipole-shaped (two spots opposite e each other), or quadrupole-shaped (four spots offset from each other by 90°).
Normally, the exit pupil of the illumination system is given by the point of intersection S where the principal ray CR that belongs to the central field point in the field to be illuminated in the field plane 114 intersects the optical axis OA of a projection objective which in a projection exposure apparatus follows downstream in the light path after the illumination system. For a system of this type, the exit pupil of the illumination system coincides with the entry pupil of the projection objective. In the present example, this exit pupil is identified by the reference numeral 140.
In the illustrated illumination system, the distance A between the first facetted optical element 102 and the second facetted optical element 104 can be varied. The distance A is determined by the length of the light path from the first facetted optical element 102 to the second facetted optical element 104 along the principal ray Cr that belongs to the central field point in the field plane. In the present example, the distance A is obtained by moving the second facetted optical element 104 by a distance dz1, for example via a first adjusting device 80. The first facetted optical element 201 remains stationary in this process. This can be advantageous, but not an absolute requirement. The first facetted optical element 102 can be arranged in a convergent, divergent, or parallel light bundle. The first facetted optical element 102 is in the present case arranged in a divergent light bundle. Following the first facetted optical element 102, the ray pattern between the first facetted optical element 102 and the second facetted optical element 104 has the property that all median rays of the ray bundles that originate from the individual field facets of the first facetted optical element 102 run parallel to each other, so that even when the second facetted optical element 104 is moved from a first position 104.1 into a second position 104.2, the light bundles are received by the pupil facets of the second facetted optical element 104 that correlate to respective field facets of the first facetted optical element. Changing the distance between the first facetted optical element 102 and the second facetted optical element 104 influences only the field image, while the pupil image is not affected, meaning that the pupil image cannot be changed by the change in position.
The second optical component in the present example has three optical elements, i.e. a first optical element 106, a second optical element 108 and a third optical element 110. The third optical element 110 in the illustrated illumination serves substantially the purpose of forming the field in the object plane 114. The field in the object plane 114 is normally a segment of a circle as shown in
Arranged in the object plane 114 is a mask, specifically a reticle, which is illuminated via the illumination device and projected via the projection objective 128 into an image plane 124. If the apparatus is a scanning system, the reticle is arranged in the object plane 114 so that it can be moved in the scanning direction 116 which coincides with the y-direction. The exit pupil of the illumination system coincides with the entry pupil of the projection objective 128.
The projection objective 128 in the illustrated embodiment has six mirrors 128.1, 128.2, 128.3, 128.4, 128.5, and 128.6 and has, for example, the configuration described in U.S. Pat. No. 6,600,552 B2.
The projection objective 128 projects an image of the reticle (not shown) in the object plane 114 into the image plane 124.
The illumination of the field facet plane in the illustrated embodiment is annular, due to the collector 3. It is further possible to recognize the reflective field facets 2005 of the first facetted optical element 102 of
A can be seen in
As shown in
The illumination shown in
If exactly two illuminations are to be realized with the system of the foregoing description, i.e. two illumination settings with different filling ratios σ as shown for example in
As in the system shown in
The field facets in the system of
An example of the disclosure is presented in
The individual components are in
The radius of the field facets of the first facetted component 8102 is R=904.25 mm.
The radius of the pupil facets of the second facetted optical element which is brought into the three positions 8104.1, 8104.2, 8104.3 is R=1090.3 mm. The radius of the first optical element of the second optical component, which can be set to the positions 8106.1, 8106.2 and 8106.3 is R=250.6 mm.
The radius of the second optical element of the second optical component, which is set into the positions 8108.1, 8108.2 and 8108.3 is R=−829.4 mm. The field-shaped mirror 8110 is an aspherical mirror with a radius in the x-direction of Rx=305.3 mm and a radius Ry in the y-direction of 4716.5 mm. The data relate to the respective local coordinate systems of the optical elements which are obtained by a translatory displacement and a rotation of the coordinate system that has its origin in the central field point in the object plane 8114.
a, 9b and 9c further show the local coordinate system in the object plane 8114. Indicated are in this case the y-direction as well as the z-direction and the x-direction. In the presentation of
Further indicated in
Listed in Table 1 are the filling ratio σ of the illumination setting and the distances as defined above of the individual components of the embodiments that are shown in
The illumination setting can be adjusted continuously by making changes in the distances as described above. Listed in Table 1 and given as examples are the exact values for three settings with a filling ratio of σ=0.3, σ=0.5, and σ=0.8, respectively. As can be seen in particular, a setting variation of more than 40% is possible in relation to an intermediate filling ratio of σ=0.5. Individuals who are well versed in this field can generate any other values for σ with the help of the foregoing explanation.
With the present disclosure, a catoptric system is presented for the first time, in which the illuminated pupil area, in particular the adjustment of the setting, is achieved by a simple displacement and change of the distance between optical elements of the illumination system.
In particular, the disclosure makes it possible for the first time in catoptric illumination systems, i.e. in reflective illumination systems, for example of the type used for EUV lithography, to adjust an illumination setting in a continuous manner. In contrast to conventional systems, a continuous adjustment of this kind avoids on the one hand a loss of intensity that can be caused for example by aperture stops, and as a second advantage allows a continuous setting. Furthermore, the continuous adjustment of the setting as described here is straightforward in its realization.
As a further advantage, the number of sub-pupils remains substantially with the change in the setting, which ensures that the strength of the illumination in the field plane of the illumination system remains substantially unchanged.
Number | Date | Country | Kind |
---|---|---|---|
10 2006 017 336.8 | Apr 2006 | DE | national |
07006340 | Mar 2007 | EP | regional |
This application claims benefit under U.S.C. §119 to U.S. provisional application 60/793,995, filed Apr. 11, 2006. This application also claims priority under U.S.C. §119 to German Patent Application No. 10 2006 017 336, filed on Apr. 11, 2006, and European Patent Application No. 07006340, filed Mar. 28, 2007. The full disclosure of these earlier applications is incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
60793995 | Apr 2006 | US |