Image capture and identification system and process

Information

  • Patent Grant
  • 9613284
  • Patent Number
    9,613,284
  • Date Filed
    Tuesday, December 2, 2014
    10 years ago
  • Date Issued
    Tuesday, April 4, 2017
    7 years ago
Abstract
A digital image of the object is captured and the object is recognized from plurality of objects in a database. An information address corresponding to the object is then used to access information and initiate communication pertinent to the object.
Description
TECHNICAL FIELD

The invention relates an identification method and process for objects from digitally captured images thereof that uses image characteristics to identify an object from a plurality of objects in a database.


BACKGROUND ART

There is a need to provide hyperlink functionality in known objects without modification to the objects, through reliably detecting and identifying the objects based only on the appearance of the object, and then locating and supplying information pertinent to the object or initiating communications pertinent to the object by supplying an information address, such as a Uniform Resource Locator (URL), pertinent to the object.


There is a need to determine the position and orientation of known objects based only on imagery of the objects.


The detection, identification, determination of position and orientation, and subsequent information provision and communication must occur without modification or disfigurement of the object, without the need for any marks, symbols, codes, barcodes, or characters on the object, without the need to touch or disturb the object, without the need for special lighting other than that required for normal human vision, without the need for any communication device (radio frequency, infrared, etc.) to be attached to or nearby the object, and without human assistance in the identification process. The objects to be detected and identified may be 3-dimensional objects, 2-dimensional images (e.g., on paper), or 2-dimensional images of 3-dimensional objects, or human beings.


There is a need to provide such identification and hyperlink services to persons using mobile computing devices, such as Personal Digital Assistants (PDAs) and cellular telephones.


There is a need to provide such identification and hyperlink services to machines, such as factory robots and spacecraft.


Examples include:


identifying pictures or other art in a museum, where it is desired to provide additional information about such art objects to museum visitors via mobile wireless devices;


provision of content (information, text, graphics, music, video, etc.), communications, and transaction mechanisms between companies and individuals, via networks (wireless or otherwise) initiated by the individuals “pointing and clicking” with camera-equipped mobile devices on magazine advertisements, posters, billboards, consumer products, music or video disks or tapes, buildings, vehicles, etc.;


establishment of a communications link with a machine, such a vending machine or information kiosk, by “pointing and clicking” on the machine with a camera-equipped mobile wireless device and then execution of communications or transactions between the mobile wireless device and the machine;


identification of objects or parts in a factory, such as on an assembly line, by capturing an image of the objects or parts, and then providing information pertinent to the identified objects or parts;


identification of a part of a machine, such as an aircraft part, by a technician “pointing and clicking” on the part with a camera-equipped mobile wireless device, and then supplying pertinent content to the technician, such maintenance instructions or history for the identified part;


identification or screening of individual(s) by a security officer “pointing and clicking” a camera-equipped mobile wireless device at the individual(s) and then receiving identification information pertinent to the individuals after the individuals have been identified by face recognition software;


identification, screening, or validation of documents, such as passports, by a security officer “pointing and clicking” a camera-equipped device at the document and receiving a response from a remote computer;


determination of the position and orientation of an object in space by a spacecraft nearby the object, based on imagery of the object, so that the spacecraft can maneuver relative to the object or execute a rendezvous with the object;


identification of objects from aircraft or spacecraft by capturing imagery of the objects and then identifying the objects via image recognition performed on a local or remote computer;


watching movie previews streamed to a camera-equipped wireless device by “pointing and clicking” with such a device on a movie theatre sign or poster, or on a digital video disc box or videotape box;


listening to audio recording samples streamed to a camera-equipped wireless device by “pointing and clicking” with such a device on a compact disk (CD) box, videotape box, or print media advertisement;


purchasing movie, concert, or sporting event tickets by “pointing and clicking” on a theater, advertisement, or other object with a camera-equipped wireless device;


purchasing an item by “pointing and clicking” on the object with a camera-equipped wireless device and thus initiating a transaction;


interacting with television programming by “pointing and clicking” at the television screen with a camera-equipped device, thus capturing an image of the screen content and having that image sent to a remote computer and identified, thus initiating interaction based on the screen content received (an example is purchasing an item on the television screen by “pointing and clicking” at the screen when the item is on the screen);


interacting with a computer-system based game and with other players of the game by “pointing and clicking” on objects in the physical environment that are considered to be part of the game;


paying a bus fare by “pointing and clicking” with a mobile wireless camera-equipped device, on a fare machine in a bus, and thus establishing a communications link between the device and the fare machine and enabling the fare payment transaction;


establishment of a communication between a mobile wireless camera-equipped device and a computer with an Internet connection by “pointing and clicking” with the device on the computer and thus providing to the mobile device an Internet address at which it can communicate with the computer, thus establishing communications with the computer despite the absence of a local network or any direct communication between the device and the computer;


use of a mobile wireless camera-equipped device as a point-of-sale terminal by, for example, “pointing and clicking” on an item to be purchased, thus identifying the item and initiating a transaction.


DISCLOSURE OF INVENTION

The present invention solves the above stated needs. Once an image is captured digitally, a search of the image determines whether symbolic content is included in the image. If so the symbol is decoded and communication is opened with the proper database, usually using the Internet, wherein the best match for the symbol is returned. In some instances, a symbol may be detected, but non-ambiguous identification is not possible. In that case and when a symbolic image can not be detected, the image is decomposed through identification algorithms where unique characteristics of the image are determined. These characteristics are then used to provide the best match or matches in the data base, the “best” determination being assisted by the partial symbolic information, if that is available.


Therefore the present invention provides technology and processes that can accommodate linking objects and images to information via a network such as the Internet, which requires no modification to the linked object. Traditional methods for linking objects to digital information, including applying a barcode, radio or optical transceiver or transmitter, or some other means of identification to the object, or modifying the image or object so as to encode detectable information in it, are not required because the image or object can be identified solely by its visual appearance. The users or devices may even interact with objects by “linking” to them. For example, a user may link to a vending machine by “pointing and clicking” on it. His device would be connected over the Internet to the company that owns the vending machine. The company would in turn establish a connection to the vending machine, and thus the user would have a communication channel established with the vending machine and could interact with it.


The decomposition algorithms of the present invention allow fast and reliable detection and recognition of images and/or objects based on their visual appearance in an image, no matter whether shadows, reflections, partial obscuration, and variations in viewing geometry are present. As stated above, the present invention also can detect, decode, and identify images and objects based on traditional symbols which may appear on the object, such as alphanumeric characters, barcodes, or 2-dimensional matrix codes.


When a particular object is identified, the position and orientation of an object with respect to the user at the time the image was captured can be determined based on the appearance of the object in an image. This can be the location and/or identity of people scanned by multiple cameras in a security system, a passive locator system more accurate than GPS or usable in areas where GPS signals cannot be received, the location of specific vehicles without requiring a transmission from the vehicle, and many other uses.


When the present invention is incorporated into a mobile device, such as a portable telephone, the user of the device can link to images and objects in his or her environment by pointing the device at the object of interest, then “pointing and clicking” to capture an image. Thereafter, the device transmits the image to another computer (“Server”), wherein the image is analyzed and the object or image of interest is detected and recognized. Then the network address of information corresponding to that object is transmitted from the (“Server”) back to the mobile device, allowing the mobile device to access information using the network address so that only a portion of the information concerning the object need be stored in the systems database.


Some or all of the image processing, including image/object detection and/or decoding of symbols detected in the image may be distributed arbitrarily between the mobile (Client) device and the Server. In other words, some processing may be performed in the Client device and some in the Server, without specification of which particular processing is performed in each, or all processing may be performed on one platform or the other, or the platforms may be combined so that there is only one platform. The image processing can be implemented in a parallel computing manner, thus facilitating scaling of the system with respect to database size and input traffic loading.


Therefore, it is an object of the present invention to provide a system and process for identifying digitally captured images without requiring modification to the object.


Another object is to use digital capture devices in ways never contemplated by their manufacturer.


Another object is to allow identification of objects from partial views of the object.


Another object is to provide communication means with operative devices without requiring a public connection therewith.


These and other objects and advantages of the present invention will become apparent to those skilled in the art after considering the following detailed specification, together with the accompanying drawings wherein:





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a schematic block diagram top-level algorithm flowchart;



FIG. 2 is an idealized view of image capture;



FIGS. 3A and 3B are a schematic block diagram of process details of the present invention;



FIG. 4 is a schematic block diagram of a different explanation of invention;



FIG. 5 is a schematic block diagram similar to FIG. 4 for cellular telephone and personal data assistant (PDA) applications; and



FIG. 6 is a schematic block diagram for spacecraft applications.





BEST MODES FOR CARRYING OUT THE INVENTION

The present invention includes a novel process whereby information such as Internet content is presented to a user, based solely on a remotely acquired image of a physical object. Although coded information can be included in the remotely acquired image, it is not required since no additional information about a physical object, other than its image, needs to be encoded in the linked object. There is no need for any additional code or device, radio, optical or otherwise, to be embedded in or affixed to the object. Image-linked objects can be located and identified within user-acquired imagery solely by means of digital image processing, with the address of pertinent information being returned to the device used to acquire the image and perform the link. This process is robust against digital image noise and corruption (as can result from lossy image compression/decompression), perspective error, rotation, translation, scale differences, illumination variations caused by different lighting sources, and partial obscuration of the target that results from shadowing, reflection or blockage.


Many different variations on machine vision “target location and identification” exist in the current art. However, they all tend to provide optimal solutions for an arbitrarily restricted search space. At the heart of the present invention is a high-speed image matching engine that returns unambiguous matches to target objects contained in a wide variety of potential input images. This unique approach to image matching takes advantage of the fact that at least some portion of the target object will be found in the user-acquired image. The parallel image comparison processes embodied in the present search technique are, when taken together, unique to the process. Further, additional refinement of the process, with the inclusion of more and/or different decomposition-parameterization functions, utilized within the overall structure of the search loops is not restricted. The detailed process is described in the following. FIG. 1 shows the overall processing flow and steps. These steps are described in further detail in the following sections.


For image capture 10, the User 12 (FIG. 2) utilizes a computer, mobile telephone, personal digital assistant, or other similar device 14 equipped with an image sensor (such as a CCD or CMOS digital camera). The User 12 aligns the sensor of the image capture device 14 with the object 16 of interest. The linking process is then initiated by suitable means including: the User 12 pressing a button on the device 14 or sensor; by the software in the device 14 automatically recognizing that an image is to be acquired; by User voice command; or by any other appropriate means. The device 14 captures a digital image 18 of the scene at which it is pointed. This image 18 is represented as three separate 2-D matrices of pixels, corresponding to the raw RGB (Red, Green, Blue) representation of the input image. For the purposes of standardizing the analytical processes in this embodiment, if the device 14 supplies an image in other than RGB format, a transformation to RGB is accomplished. These analyses could be carried out in any standard color format, should the need arise.


If the server 20 is physically separate from the device 14, then user acquired images are transmitted from the device 14 to the Image Processor/Server 20 using a conventional digital network or wireless network means. If the image 18 has been compressed (e.g. via lossy JPEG DCT) in a manner that introduces compression artifacts into the reconstructed image 18, these artifacts may be partially removed by, for example, applying a conventional despeckle filter to the reconstructed image prior to additional processing.


The Image Type Determination 26 is accomplished with a discriminator algorithm which operates on the input image 18 and determines whether the input image contains recognizable symbols, such as barcodes, matrix codes, or alphanumeric characters. If such symbols are found, the image 18 is sent to the Decode Symbol 28 process. Depending on the confidence level with which the discriminator algorithm finds the symbols, the image 18 also may or alternatively contain an object of interest and may therefore also or alternatively be sent to the Object Image branch of the process flow. For example, if an input image 18 contains both a barcode and an object, depending on the clarity with which the barcode is detected, the image may be analyzed by both the Object Image and Symbolic Image branches, and that branch which has the highest success in identification will be used to identify and link from the object.


The image is analyzed to determine the location, size, and nature of the symbols in the Decode Symbol 28. The symbols are analyzed according to their type, and their content information is extracted. For example, barcodes and alphanumeric characters will result in numerical and/or text information.


For object images, the present invention performs a “decomposition”, in the Input Image Decomposition 34, of a high-resolution input image into several different types of quantifiable salient parameters. This allows for multiple independent convergent search processes of the database to occur in parallel, which greatly improves image match speed and match robustness in the Database Matching 36. The Best Match 38 from either the Decode Symbol 28, or the image Database Matching 36, or both, is then determined. If a specific URL (or other online address) is associated with the image, then an URL Lookup 40 is performed and the Internet address is returned by the URL Return 42.


The overall flow of the Input Image Decomposition process is as follows:

















Radiometric Correction



Segmentation



Segment Group Generation



FOR each segment group



  Bounding Box Generation



  Geometric Normalization



  Wavelet Decomposition



  Color Cube Decomposition



  Shape Decomposition



  Low-Resolution Grayscale Image Generation



FOR END










Each of the above steps is explained in further detail below. For Radiometric Correction, the input image typically is transformed to an 8-bit per color plane, RGB representation. The RGB image is radiometrically normalized in all three channels. This normalization is accomplished by linear gain and offset transformations that result in the pixel values within each color channel spanning a full 8-bit dynamic range (256 possible discrete values). An 8-bit dynamic range is adequate but, of course, as optical capture devices produce higher resolution images and computers get faster and memory gets cheaper, higher bit dynamic ranges, such as 16-bit, 32-bit or more may be used.


For Segmentation, the radiometrically normalized RGB image is analyzed for “segments,” or regions of similar color, i.e. near equal pixel values for red, green, and blue. These segments are defined by their boundaries, which consist of sets of (x, y) point pairs. A map of segment boundaries is produced, which is maintained separately from the RGB input image and is formatted as an x, y binary image map of the same aspect ratio as the RGB image.


For Segment Group Generation, the segments are grouped into all possible combinations. These groups are known as “segment groups” and represent all possible potential images or objects of interest in the input image. The segment groups are sorted based on the order in which they will be evaluated. Various evaluation order schemes are possible. The particular embodiment explained herein utilizes the following “center-out” scheme: The first segment group comprises only the segment that includes the center of the image. The next segment group comprises the previous segment plus the segment which is the largest (in number of pixels) and which is adjacent to (touching) the previous segment group. Additional segments are added using the segment criteria above until no segments remain. Each step, in which a new segment is added, creates a new and unique segment group.


For Bounding Box Generation, the elliptical major axis of the segment group under consideration (the major axis of an ellipse just large enough to contain the entire segment group) is computed. Then a rectangle is constructed within the image coordinate system, with long sides parallel to the elliptical major axis, of a size just large enough to completely contain every pixel in the segment group.


For Geometric Normalization, a copy of the input image is modified such that all pixels not included in the segment group under consideration are set to mid-level gray. The result is then resampled and mapped into a “standard aspect” output test image space such that the corners of the bounding box are mapped into the corners of the output test image. The standard aspect is the same size and aspect ratio as the Reference images used to create the database.


For Wavelet Decomposition, a grayscale representation of the full-color image is produced from the geometrically normalized image that resulted from the Geometric Normalization step. The following procedure is used to derive the grayscale representation. Reduce the three color planes into one grayscale image by proportionately adding each R, G, and B pixel of the standard corrected color image using the following formula:

Lx,y=0.34*Rx,y+0.55*Gx,y+0.44*Bx,y


then round to nearest integer value. Truncate at 0 and 255, if necessary. The resulting matrix L is a standard grayscale image. This grayscale representation is at the same spatial resolution as the full color image, with an 8-bit dynamic range. A multi-resolution Wavelet Decomposition of the grayscale image is performed, yielding wavelet coefficients for several scale factors. The Wavelet coefficients at various scales are ranked according to their weight within the image.


For Color Cube Decomposition, an image segmentation is performed (see “Segmentation” above), on the RGB image that results from Geometric Normalization. Then the RGB image is transformed to a normalized Intensity, In-phase and Quadrature-phase color image (YIQ). The segment map is used to identify the principal color regions of the image, since each segment boundary encloses pixels of similar color. The average Y, I, and Q values of each segment, and their individual component standard deviations, are computed. The following set of parameters result, representing the colors, color variation, and size for each segment:


Yavg=Average Intensity


Iavg=Average In-phase


Qavg=Average Quadrature


Ysigma=Intensity standard deviation


Isigma=In-phase standard deviation


Qsigma=Quadrature standard deviation


Npixels=number of pixels in the segment


The parameters comprise a representation of the color intensity and variation in each segment. When taken together for all segments in a segment group, these parameters comprise points (or more accurately, regions, if the standard deviations are taken into account) in a three-dimensional color space and describe the intensity and variation of color in the segment group.


For Shape Decomposition, the map resulting from the segmentation performed in the Color Cube Generation step is used and the segment group is evaluated to extract the group outer edge boundary, the total area enclosed by the boundary, and its area centroid. Additionally, the net ellipticity (semi-major axis divided by semi-minor axis of the closest fit ellipse to the group) is determined.


For Low-Resolution Grayscale Image Generation, the full-resolution grayscale representation of the image that was derived in the Wavelet Generation step is now subsampled by a factor in both x and y directions. For the example of this embodiment, a 3:1 subsampling is assumed. The subsampled image is produced by weighted averaging of pixels within each 3×3 cell. The result is contrast binned, by reducing the number of discrete values assignable to each pixel based upon substituting a “binned average” value for all pixels that fall within a discrete (TBD) number of brightness bins.


The above discussion of the particular decomposition methods incorporated into this embodiment are not intended to indicate that more, or alternate, decomposition methods may not also be employed within the context of this invention.


In other words:














FOR each input image segment group


  FOR each database object


    FOR each view of this object


      FOR each segment group in this view of this database


      object


        Shape Comparison


        Grayscale Comparison


        Wavelet Comparison


        Color Cube Comparison


        Calculate Combined Match Score


      END FOR


    END FOR


  END FOR


END FOR









Each of the above steps is explained in further detail below.


FOR Each Input Image Segment Group


This loop considers each combination of segment groups in the input image, in the order in which they were sorted in the “Segment Group Generation” step. Each segment group, as it is considered, is a candidate for the object of interest in the image, and it is compared against database objects using various tests.


One favored implementation, of many possible, for the order in which the segment groups are considered within this loop is the “center-out” approach mentioned previously in the “Segment Group Generation” section. This scheme considers segment groups in a sequence that represents the addition of adjacent segments to the group, starting at the center of the image. In this scheme, each new group that is considered comprises the previous group plus one additional adjacent image segment. The new group is compared against the database. If the new group results in a higher database matching score than the previous group, then new group is retained. If the new group has a lower matching score then the previous group, then it is discarded and the loop starts again. If a particular segment group results in a match score which is extremely high, then this is considered to be an exact match and no further searching is warranted; in this case the current group and matching database group are selected as the match and this loop is exited.


FOR Each Database Object


This loop considers each object in the database for comparison against the current input segment group.


FOR Each View of this Object


This loop considers each view of the current database object, for comparison against the current input segment group. The database contains, for each object, multiple views from different viewing angles.


FOR Each Segment Group in this View of this Database Object


This loop considers each combination of segment groups in the current view of the database object. These segment groups were created in the same manner as the input image segment groups.


Shape Comparison


Inputs:


For the input image and all database images:


I. Segment group outline


II. Segment group area


III. Segment group centroid location


IV. Segment group bounding ellipse ellipticity


Algorithm:


V. Identify those database segment groups with an area approximately equal to that of the input segment group, within TBD limits, and calculate an area matching score for each of these “matches.”


VI. Within the set of matches identified in the previous step, identify those database segment groups with an ellipticity approximately equal to that of the input segment group, within TBD limits, and calculate an ellipticity position matching score for each of these “matches.”


Within the set of matches identified in the previous step, identify those database segment groups with a centroid position approximately equal to that of the input segment group, within TBD limits, and calculate a centroid position matching score for each of these “matches.”


VIII. Within the set of matches identified in the previous step, identify those database segment groups with an outline shape approximately equal to that of the input segment group, within TBD limits, and calculate an outline matching score for each of these “matches.” This is done by comparing the two outlines and analytically determining the extent to which they match.


Note: this algorithm need not necessarily be performed in the order of Steps 1 to 4. It could alternatively proceed as follows:

















FOR each database segment group



  IF the group passes Step 1



    IF the group passes Step 2



      IF the group passes Step 3



        IF the group passes Step 4



          Successful comparison, save result



        END IF



      END IF



    END IF



  END IF



END FOR










Grayscale Comparison


Inputs:


For the Input Image and all Database Images:


IX. Low-resolution, normalized, contrast-binned, grayscale image of pixels within segment group bounding box, with pixels outside of the segment group set to a standard background color.


Algorithm:


Given a series of concentric rectangular “tiers” of pixels within the low-resolution images, compare the input image pixel values to those of all database images. Calculate a matching score for each comparison and identify those database images with matching scores within TBD limits, as follows:














FOR each database image


  FOR each tier, starting with the innermost and progressing


  to the outermost


    Compare the pixel values between the input and database image


    Calculate an aggregate matching score


    IF matching score is greater than some TBD limit


    (i.e., close match)


      Successful comparison, save result


    END IF


  END FOR


END FOR









Wavelet Comparison


Inputs:


For the input image and all database images:


X. Wavelet coefficients from high-resolution grayscale image within segment group bounding box.


Algorithm:


Successively compare the wavelet coefficients of the input segment group image and each database segment group image, starting with the lowest-order coefficients and progressing to the highest order coefficients. For each comparison, compute a matching score. For each new coefficient, only consider those database groups that had matching scores, at the previous (next lower order) coefficient within TBD limits.














FOR each database image


  IF input image C0 equals database image C0 within TBD limit


    IF input image C1 equals database image C1 within TBD limit


      IF input image CN equals database image CN within TBD


      limit


        Close match, save result and match score


      END IF


    END IF


  END IF


END FOR





Notes:


I. “Ci” are the wavelet coefficients, with C0 being the lowest order coefficient and CN being the highest.


II. When the coefficients are compared, they are actually compared on a statistical (e.g. Gaussian) basis, rather than an arithmetic difference.


III. Data indexing techniques are used to allow direct fast access to database images according to their Ci values. This allows the algorithm to successively narrow the portions of the database of interest as it proceeds from the lowest order terms to the highest.






Color Cube Comparison


Inputs:


[Yavg, Iavg, Qavg, YSigma, Isigma, Qsigma, Npixels] data sets (“Color Cube Points”) for each segment in:


I. The input segment group image


II. Each database segment group image


Algorithum:














FOR each database image


  FOR each segment group in the database image


    FOR each Color Cube Point in database segment group,


    in order of descending Npixels value


      IF Gaussian match between input (Y,I,Q) and database


      (Y,I,Q)


      I. Calculate match score for this segment


      II. Accumulate segment match score into aggregate match


      score for segment group


      III. IF aggregate matching score is greater than some TBD


      limit (i.e., close match)


        Successful comparison, save result


      END IF


    END FOR


  END FOR


END FOR





Notes:


1. The size of the Gaussian envelope about any Y, I, Q point is determined by RSS of standard deviations of Y, I, and Q for that point.






Calculate Combined Match Score


The four Object Image comparisons (Shape Comparison, Grayscale Comparison, Wavelet Comparison, Color Cube Comparison) each return a normalized matching score. These are independent assessments of the match of salient features of the input image to database images. To minimize the effect of uncertainties in any single comparison process, and to thus minimize the likelihood of returning a false match, the following root sum of squares relationship is used to combine the results of the individual comparisons into a combined match score for an image:

CurrentMatch=SQRT(WOCMOC2+WCCCMCCC2+WWCMWC2+WSGCMSGC2)

where Ws are TBD parameter weighting coefficients and Ms are the individual match scores of the four different comparisons.


The unique database search methodology and subsequent object match scoring criteria are novel aspects of the present invention that deserve special attention. Each decomposition of the Reference image and Input image regions represent an independent characterization of salient characteristics of the image. The Wavelet Decomposition, Color Cube Decomposition, Shape Decomposition, and evaluation of a sub-sampled low-resolution Grayscale representation of an input image all produce sets of parameters that describe the image in independent ways. Once all four of these processes are completed on the image to be tested, the parameters provided by each characterization are compared to the results of identical characterizations of the Reference images, which have been previously calculated and stored in the database. These comparisons, or searches, are carried out in parallel. The result of each search is a numerical score that is a weighted measure of the number of salient characteristics that “match” (i.e. that are statistically equivalent). Near equivalencies are also noted, and are counted in the cumulative score, but at a significantly reduced weighting.


One novel aspect of the database search methodology in the present invention is that not only are these independent searches carried out in parallel, but also, all but the low-resolution grayscale compares are “convergent.” By convergent, it is meant that input image parameters are searched sequentially over increasingly smaller subsets of the entire database. The parameter carrying greatest weight from the input image is compared first to find statistical matches and near-matches in all database records. A normalized interim score (e.g., scaled value from zero to one, where one is perfect match and zero is no match) is computed, based on the results of this comparison. The next heaviest weighted parameter from the input image characterization is then searched on only those database records having initial interim scores above a minimum acceptable threshold value. This results in an incremental score that is incorporated into the interim score in a cumulative fashion. Then, subsequent compares of increasingly lesser-weighted parameters are assessed only on those database records that have cumulative interim scores above the same minimum acceptable threshold value in the previous accumulated set of tests.


This search technique results in quick completion of robust matches, and establishes limits on the domain of database elements that will be compared in a subsequent combined match calculation and therefore speeds up the process. The convergent nature of the search in these comparisons yields a ranked subset of the entire database.


The result of each of these database comparisons is a ranking of the match quality of each image, as a function of decomposition search technique. Only those images with final cumulative scores above the acceptable match threshold will be assessed in the next step, a Combined Match Score evaluation.


Four database comparison processes, Shape Comparison, Grayscale Comparison, Wavelet Comparison, and Color Cube Comparison, are performed. These processes may occur sequentially, but generally are preferably performed in parallel on a parallel computing platform. Each comparison technique searches the entire image database and returns those images that provide the best matches, for the particular algorithm, along with the matching scores for these images. These comparison algorithms are performed on segment groups, with each input image segment group being compared to each segment group for each database image.



FIGS. 3A and 3B show the process flow within the Database Matching operation. The algorithm is presented here as containing four nested loops with four parallel processes inside the innermost loop. This structure is for presentation and explanation only. The actual implementation, although performing the same operations at the innermost layer, can have a different structure in order to achieve the maximum benefit from processing speed enhancement techniques such as parallel computing and data indexing techniques. It is also important to note that the loop structures can be implemented independently for each inner comparison, rather than the shared approach shown in the FIGS. 3A and 3B.


Preferably, parallel processing is used to divide tasks between multiple CPUs (Central Processing Units) and/or computers. The overall algorithm may be divided in several ways, such as:















Sharing the Outer
In this technique, all CPUs run the entire algorithm,


Loop:
including the outer loop, but one CPU runs the loop



for the first N cycles, another CPU for the second N



cycles, all simultaneously.


Sharing the
In this technique, one CPU performs the loop


Comparisons:
functions. When the comparisons are performed, they



are each passed to a separate CPU to be performed



in parallel.


Sharing the
This technique entails splitting database searches


Database:
between CPUs, so that each CPU is responsible for



searching one section of the database, and the sec-



tions are searched in parallel by multiple CPUs. This



is, in essence, a form of the “Sharing the Outer Loop”



technique described above.









Actual implementations can be some combination of the above techniques that optimizes the process on the available hardware.


Another technique employed to maximize speed is data indexing. This technique involves using a priori knowledge of where data resides to only search in those parts of the database that contain potential matches. Various forms of indexing may be used, such as hash tables, data compartmentalization (i.e., data within certain value ranges are stored in certain locations), data sorting, and database table indexing. An example of such techniques is, in the Shape Comparison algorithm (see below), if a database is to be searched for an entry with an Area with a value of A, the algorithm would know which database entries or data areas have this approximate value and would not need to search the entire database.


Another technique employed is as follows. FIG. 4 shows a simplified configuration of the invention. Boxes with solid lines represent processes, software, physical objects, or devices. Boxes with dashed lines represent information. The process begins with an object of interest: the target object 100. In the case of consumer applications, the target object 100 could be, for example, beverage can, a music CD box, a DVD video box, a magazine advertisement, a poster, a theatre, a store, a building, a car, or any other object that user is interested in or wishes to interact with. In security applications the target object 100 could be, for example, a person, passport, or driver's license, etc. In industrial applications the target object 100 could be, for example, a part in a machine, a part on an assembly line, a box in a warehouse, or a spacecraft in orbit, etc.


The terminal 102 is a computing device that has an “image” capture device such as digital camera 103, a video camera, or any other device that an convert a physical object into a digital representation of the object. The imagery can be a single image, a series of images, or a continuous video stream. For simplicity of explanation this document describes the digital imagery generally in terms of a single image, however the invention and this system can use all of the imagery types described above.


After the camera 103 captures the digital imagery of the target object 100, image preprocessing 104 software converts the digital imagery into image data 105 for transmission to and analysis by an identification server 106. Typically a network connection is provided capable of providing communications with the identification server 106. Image data 105 is data extracted or converted from the original imagery of the target object 100 and has information content appropriate for identification of the target object 100 by the object recognition 107, which may be software or hardware. Image data 105 can take many forms, depending on the particular embodiment of the invention. Examples of image data 105 are:


Compressed (e.g., JPEG2000) form of the raw imagery from camera 103;


Key image information, such as spectral and/or spatial frequency components (e.g. wavelet components) of the raw imagery from camera 103; and


MPEG video stream created from the raw imagery from camera 103.


The particular form of the image data 105 and the particular operations performed in image preprocessing 104 depend on:


Algorithm and software used in object recognition 107 Processing power of terminal 102;


Network connection speed between terminal 102 and identification server 106;


Application of the System; and


Required system response time.


In general, there is a tradeoff between the network connection speed (between terminal 102 and identification server 106) and the processing power of terminal 102. The results all of the above tradeoffs will define the nature of image preprocessing 104 and image data 105 for a specific embodiment. For example, image preprocessing 104 could be image compression and image data 105 compressed imagery, or image preprocessing 104 could be wavelet analysis and image data 105 could be wavelet coefficients.


The image data 105 is sent from the terminal 102 to the identification server 106. The identification server 106 receives the image data 105 and passes it to the object recognition 107.


The identification server 106 is a set of functions that usually will exist on computing platform separate from the terminal 102, but could exist on the same computing platform. If the identification server 106 exists on a separate computing device, such as a computer in a data center, then the transmission of the image components 105 to the identification server 106 is accomplished via a network or combination of networks, such a cellular telephone network, wireless Internet, Internet, and wire line network. If the identification server 106 exists on the same computing device as the terminal 102 then the transmission consists simply of a transfer of data from one software component or process to another.


Placing the identification server 106 on a computing platform separate from the terminal 102 enables the use of powerful computing resources for the object recognition 107 and database 108 functions, thus providing the power of these computing resources to the terminal 102 via network connection. For example, an embodiment that identifies objects out of a database of millions of known objects would be facilitated by the large storage, memory capacity, and processing power available in a data center; it may not be feasible to have such computing power and storage in a mobile device. Whether the terminal 102 and the identification server 106 are on the same computing platform or separate ones is an architectural decision that depends on system response time, number of database records, image recognition algorithm computing power and storage available in terminal 102, etc., and this decision must be made for each embodiment of the invention. Based on current technology, in most embodiments these functions will be on separate computing platforms.


The overall function of the identification server 106 is to determine and provide the target object information 109 corresponding to the target object 100, based on the image data 105.


The object recognition 107 and the database 108 function together to:


1. Detect, recognize, and decode symbols, such as barcodes or text, in the image.


2. Recognize the object (the target object 100) in the image.


3. Provide the target object information 109 that corresponds to the target object 100. The target object information 109 usually (depending on the embodiment) includes an information address corresponding to the target object 100.


The object recognition 107 detects and decodes symbols, such as barcodes or text, in the input image. This is accomplished via algorithms, software, and/or hardware components suited for this task. Such components are commercially available (The HALCON software package from MVTec is an example). The object recognition 107 also detects and recognizes images of the target object 100 or portions thereof. This is accomplished by analyzing the image data 105 and comparing the results to other data, representing images of a plurality of known objects, stored in the database 108, and recognizing the target object 100 if a representation of target object 100 is stored in the database 108.


In some embodiments the terminal 102 includes software, such as a web browser (the browser 110), that receives an information address, connects to that information address via a network or networks, such as the Internet, and exchanges information with another computing device at that information address. In consumer applications the terminal 102 may be a portable cellular telephone or Personal Digital Assistant equipped with a camera 103 and wireless Internet connection. In security and industrial applications the terminal 102 may be a similar portable hand-held device or may be fixed in location and/or orientation, and may have either a wireless or wire line network connection.


Other object recognition techniques also exist and include methods that store 3-dimensional models (rather than 2-dimensional images) of objects in a database and correlate input images with these models of the target object is performed by an object recognition technique of which many are available commercially and in the prior art. Such object recognition techniques usually consist of comparing a new input image to a plurality of known images and detecting correspondences between the new input image and one of more of the known images. The known images are views of known objects from a plurality of viewing angles and thus allow recognition of 2-dimensional and 3-dimensional objects in arbitrary orientations relative to the camera 103.



FIG. 4 shows the object recognition 107 and the database 108 as separate functions for simplicity. However, in many embodiments the object recognition 107 and the database 108 are so closely interdependent that they may be considered a single process.


There are various options for the object recognition technique and the particular processes performed within the object recognition 107 and the database 108 depend on this choice. The choice depends on the nature, requirements, and architecture of the particular embodiment of the invention. However, most embodiments will usually share most of the following desired attributes of the image recognition technique:


Capable of recognizing both 2-dimensional (i.e., flat) and 3-dimensional objects;


Capable of discriminating the target object 100 from any foreground or background objects or image information, i.e., be robust with respect to changes in background;


Fast;


Autonomous (no human assistance required in the recognition process);


Scalable; able to identify objects from a large database of known objects with short response time; and


Robust with respect to:


Affine transformations (rotation, translation, scaling);


Non-affine transformations (stretching, bending, breaking);


Occlusions (of the target object 100);


Shadows (on the target object 100);


Reflections (on the target object 100);


Variations in light color temperature;


Image noise;


Capable of determining position and orientation of the target object 100 in the original imagery; and


Capable of recognizing individual human faces from a database containing data representing a large plurality of human faces.


All of these attributes do not apply to all embodiments. For example, consumer linking embodiments generally do not require determination of position and orientation of the target object 100, while a spacecraft target position and orientation determination system generally would not be required to identify human faces or a large number of different objects.


It is usually desirable that the database 108 be scalable to enable identification of the target object 100 from a very large plurality (for example, millions) of known objects in the database 108. The algorithms, software, and computing hardware must be designed to function together to quickly perform such a search. An example software technique for performing such searching quickly is to use a metric distance comparison technique for comparing the image data 105 to data stored in the database 108, along with database clustering and multiresolution distance comparisons. This technique is described in “Fast Exhaustive Multi-Resolution Search Algorithm Based on Clustering for Efficient Image Retrieval,” by Song, Kim, and Ra, 2000.


In addition to such software techniques, a parallel processing computing architecture may be employed to achieve fast searching of large databases. Parallel processing is particularly important in cases where a non-metric distance is used in object recognition 107, because techniques such database clustering and multiresolution search may not be possible and thus the complete database must be searched by partitioning the database across multiple CPUs.


As described above, the object recognition 107 can also detect identifying marks on the target object 100. For example, the target object 100 may include an identifying number or a barcode. This information can be decoded and used to identify or help identify the target object 100 in the database 108. This information also can be passed on as part of the target object information 109. If the information is included as part of the target object information 109 then it can be used by the terminal 102 or content server 111 to identify the specific target object 100, out of many such objects that have similar appearance and differ only in the identifying marks. This technique is useful, for example, in cases where the target object 100 is an active device with a network connection (such as a vending machine) and the content server establishes communication with the target object 100. A combination with a Global Positioning System can also be used to identify like objects by their location.


The object recognition 107 may be implemented in hardware, software, or a combination of both. Examples of each category are presented below.


Hardware object recognition implementations include optical correlators, optimized computing platforms, and custom hardware.


Optical correlators detect objects in images very rapidly by, in effect, performing image correlation calculations with light. Examples of optical correlators are:


Litton Miniaturized Ruggedized Optical Correlator, from Northrop Grumman Corp;


Hybrid Digital/Optical Correlator, from the School of Engineering and Information Technology, University of Sussex, UK; and


OC-VGA3000 and OC-VGA6000 Optical Correlators from INO, Quebec, Canada.


Optimized computing platforms are hardware computing systems, usually on a single board, that are optimized to perform image processing and recognition algorithms very quickly. These platforms must be programmed with the object recognition algorithm of choice. Examples of optimized computing platforms are:


VIP/Balboa™ Image Processing Board, from Irvine Sensors Corp.; and


3DANN™-R Processing System, from Irvine Sensors Corp.


Image recognition calculations can also be implemented directly in custom hardware in forms such as Application Specific Integrated Circuits (ASICs), Field Programmable Gate Arrays (FPGAs), and Digital Signal Processors (DSPs).


There are many object and image recognition software applications available commercially and many algorithms published in the literature. Examples of commercially available image/object recognition software packages include:


Object recognition system, from Sandia National Laboratories;


Object recognition perception modules, from Evolution Robotics;


ImageFinder, from Attrasoft;


ImageWare, from Roz Software Systems; and


ID-2000, from Imagis Technologies.


Some of the above recognition systems include 3-dimensional object recognition capability while others perform 2-dimensional image recognition. The latter type are used to perform 3-dimensional object recognition by comparing input images to a plurality of 2-dimensional views of objects from a plurality of viewing angles.


Examples of object recognition algorithms in the literature and intended for implementation in software are:


Distortion Invariant Object Recognition in the Dynamic Link Architecture, Lades et al, 1993;


SEEMORE: Combining Color, Shape, and Texture Histogramming in a Neurally Inspired Approach to Visual Object Recognition, Mel, 1996;


Probabilistic Affine Invariants for Recognition, Leung et al, 1998;


Software Library for Appearance Matching (SLAM), Nene at al, 1994;


Probabilistic Models of Appearance for 3-D Object Recognition, Pope & Lowe, 2000;


Matching 3D Models with Shape Distributions, Osada et al, 2001;


Finding Pictures of Objects in Large Collections of Images, Forsyth et al, 1996;


The Earth Mover's Distance under Transformation Sets, Cohen & Guibas, 1999;


Object Recognition from Local Scale-Invariant Features, Lowe, 1999; and


Fast Object Recognition in Noisy Images Using Simulated Annealing, Betke & Makris, 1994.


Part of the current invention is the following object recognition algorithm specifically designed to be used as the object recognition 107 and, to some extent, the database 108. This algorithm is robust with respect to occlusions, reflections, shadows, background/foreground clutter, object deformation and breaking, and is scalable to large databases. The task of the algorithm is to find an object or portion thereof in an input image, given a database of multiple objects with multiple views (from different angles) of each object.


This algorithm uses the concept of a Local Image Descriptor (LID) to summarize the information in a local region of an image. A LID is a circular subset, or “cutout,” of a portion of an image. There are various formulations for LIDs; two examples are:


LID Formulation 1


The area within the LID is divided into range and angle bins. The average color in each [range,angle] bin is calculated from the pixel values therein.


LID Formulation 2


The area within the LID is divided into range bins. The color histogram values within each range bin are calculated from the pixel values therein. For each range bin, a measure of the variation of color with angle is calculated as, for example, the sum of the changes in average color between adjacent small angular slices of a range bin.


A LID in the input image is compared to a LID in a database image by a comparison technique such the L1 Distance, L2 Distance, Unfolded Distance, Earth Mover Distance, or cross-correlation. Small distances indicate a good match between the portions of the images underlying the LIDS. By iteratively changing the position and size of the LIDs in the input and database images the algorithm converges on the best match between circular regions in the 2 images.


Limiting the comparisons to subsets (circular LIDs) of the images enables the algorithm to discriminate an object from the background. Only LIDs that fall on the object, as opposed to the background, yield good matches with database images. This technique also enable matching of partially occluded objects; a LID that falls on the visible part of an occluded object will match to a LID in the corresponding location in the database image of the object.


The iteration technique used to find the best match is simulated annealing, although genetic search, steepest descent, or other similar techniques appropriate for multivariable optimization can also be used individually or in combination with simulated annealing. Simulated annealing is modeled after the concept of a molten substance cooling and solidifying into a solid. The algorithm starts at a given temperature and then the temperature is gradually reduced with time. At each time step, the values of the search variables are perturbed from the their previous values to a create a new “child” generation of LIDs. The perturbations are calculated statistically and their magnitudes are functions of the temperature. As the temperature decreases the perturbations decrease in size. The child LIDs, in the input and database images, are then compared. If the match is better than that obtained with the previous “parent” generation, then a statistical decision is made regarding to whether to accept or reject the child LIDs as the current best match. This is a statistical decision that is a function of both the match distance and the temperature. The probability of child acceptance increases with temperature and decreases with match distance. Thus, good matches (small match distance) are more likely to be accepted but poor matches can also be accepted occasionally. The latter case is more likely to occur early in the process when the temperature is high. Statistical acceptance of poor matches is included to allow the algorithm to “jump” out of local minima.


When LID Formulation 1 is used, the rotation angle of the LID need not necessarily be a simulated annealing search parameter. Faster convergence can be obtained by performing a simple step-wise search on rotation to find the best orientation (within the tolerance of the step size) within each simulated annealing time step.


The search variables, in both the input and database images, are:


LID x-position;


LID y-position;


LID radius;


LID x-stretch;


LID y-stretch; and


LID orientation angle (only for LID Formulation 1).


LID x-stretch and LID y-stretch are measures of “stretch” distortion applied to the LID circle, and measure the distortion of the circle into an oval. This is included to provide robustness to differences in orientation and curvature between the input and database images.


The use of multiple simultaneous LIDs provides additional robustness to occlusions, shadows, reflections, rotations, deformations, and object breaking. The best matches for multiple input image LIDS are sought throughout the database images. The input image LIDS are restricted to remain at certain minimum separation distances from each other. The minimum distance between any 2 LIDs centers is a function of the LID radii. The input image LIDS converge and settle on the regions of the input image having the best correspondence to any regions of any database images. Thus the LIDs behave in the manner of marbles rolling towards the lowest spot on a surface, e.g., the bottom of a bowl, but being held apart by their radius (although LIDS generally have minimum separation distances that are less than their radii).


In cases where the object in the input image appears deformed or curved relative to the known configuration in which it appears in the database, multiple input image LIDS will match to different database images. Each input image LID will match to that database image which shows the underlying portion of the object as it most closely resembles the input image. If the input image object is bent, e.g., a curved poster, then one part will match to one database orientation and another part will match to a different orientation.


In the case where the input image object appears to be broken into multiple pieces, either due to occlusion or to physical breakage, use of multiple LIDs again provides robust matching: individual LIDs “settle” on portions of the input image object as they match to corresponding portions of the object in various views in the database.


Robustness with respect to shadows and reflections is provided by LIDs simply not detecting good matches on these input image regions. They are in effect accommodated in the same manner as occlusions.


Robustness with respect to curvature and bending is accommodated by multiple techniques. First, use of multiple LIDs provides such robustness as described above. Secondly, curvature and bending robustness is inherently provided to some extent within each LID by use of LID range bin sizes that increase with distance from the LID center (e.g., logarithmic spacing). Given matching points in an input image and database image, deformation of the input image object away from the plane tangent at the matching point increases with distance from the matching point. The larger bin sizes of the outer bins (in both range and angle) reduce this sensitivity because they are less sensitive to image shifts.


Robustness with respect to lighting color temperature variations is provided by normalization of each color channel within each LID.


Fast performance, particular with large databases, can be obtained through several techniques, as follows:


1. Use of LID Formulation 2 can reduce the amount of search by virtue of being rotationally invariant, although this comes at the cost of some robustness due to loss of image information.


2. If a metric distance (e.g., L1, L2, or Unfolded) is used for LID comparison, then database clustering, based on the triangle inequality, can be used to rule out large portions of the database from searching. Since database LIDs are created during the execution of the algorithm, the run-time database LIDs are not clustered. Rather, during preparation of the database, sample LIDs are created from the database images by sampling the search parameters throughout their valid ranges. From this data, bounding clusters can be created for each image and for portions of images. With this information the search algorithm can rule out portions of the search parameter space.


3. If a metric distance is used, then progressive multiresolution search can be used. This technique saves time by comparing data first at low resolution and only proceeds with successive higher-resolution comparison on candidates with correlations better than the current best match. A discussion of this technique, along with database clustering, can be found in “Fast Exhaustive Multi-Resolution Search Algorithm Based on Clustering for Efficient Image Retrieval,” by Song et al, 2000.


4. The parameter search space and number of LIDs can be limited. Bounds can be placed, for example, on the sizes of LIDs depending on the expected sizes of input image objects relative to those in the database. A small number of LIDs, even 1, can be used, at the expense of some robustness.


5. LID s can be fixed in the database images. This eliminates iterative searching on database LID parameters, at the expense of some robustness.


6. The “x-stretch” and “y-stretch” search parameters can be eliminated, although there is a trade-off between these search parameters and the number of database images. These parameters increase the ability to match between images of the same object in different orientations. Elimination of these parameters may require more database images with closer angular spacing, depending on the particular embodiment.


7. Parallel processing can be utilized to increase computing power.


This technique is similar to that described by Betke & Makris in “Fast Object Recognition in Noisy Images Using Simulated Annealing”, 1994, with the following important distinctions:


The current algorithm is robust with respect to occlusion. This is made possible by varying size and position of LIDs in database images, during the search process, in order to match non-occluded portions of database images.


The current algorithm can identify 3-dimensional objects by containing views of objects from many orientations in the database.


The current algorithm uses database clustering to enable rapid searching of large databases.


The current algorithm uses circular LIDs.


In addition to containing image information, the database 108 also contains address information. After the target object 100 has been identified, the database 108 is searched to find information corresponding to the target object 100. This information can be an information address, such as an Internet URL. The identification server 106 then sends this information, in the form of the target object information 109, to the terminal 102. Depending on the particular embodiment of the invention, the target object information 109 may include, but not be limited to, one or more of the following items of information pertaining to the target object 100:


Information address (e.g., Internet URL);


Identity (e.g., object name, number, classification, etc.);


Position;


Orientation;


Size;


Color;


Status;


Information decoded from and/or referenced by symbols (e.g. information coded in a barcode or a URL referenced by such a barcode); and


Other data (e.g. alphanumerical text).


Thus, the identification server determines the identity and/or various attributes of the target object 100 from the image data 105.


The target object information 109 is sent to the terminal 102. This information usually flows via the same communication path used to send the image data 105 from the terminal 102 to the identification server 106, but this is not necessarily the case. This method of this flow information depends on the particular embodiment of the invention.


The terminal 102 receives the target object information 109. The terminal 102 then performs some action or actions based on the target object information 109. This action or actions may include, but not be limited to:


Accessing a web site.


Accessing or initiating a software process on the terminal 102.


Accessing or initiating a software process on another computer via a network or networks such as the Internet.


Accessing a web service (a software service accessed via the Internet).


Initiating a telephone call (if the terminal 102 includes such capability) to a telephone number that may be included in or determined by the target object Information, may be stored in the terminal 102, or may be entered by the user.


Initiating a radio communication (if the terminal 102 includes such capability) using a radio frequency that may be included in or determined by the target object Information, may be stored in the terminal 102, or may be entered by the user.


Sending information that is included in the target object information 109 to a web site, a software process (on another computer or on the terminal 102), or a hardware component.


Displaying information, via the screen or other visual indication, such as text, graphics, animations, video, or indicator lights.


Producing an audio signal or sound, including playing music.


In many embodiments, the terminal 102 sends the target object information 109 to the browser 110. The browser 110 may or may not exist in the terminal 102, depending on the particular embodiment of the invention. The browser 110 is a software component, hardware component, or both, that is capable of communicating with and accessing information from a computer at an information address contained in target object information 109.


In most embodiments the browser 110 will be a web browser, embedded in the terminal 102, capable of accessing and communicating with web sites via a network or networks such as the Internet. In some embodiments, however, such as those that only involve displaying the identity, position, orientation, or status of the target object 100, the browser 110 may be a software component or application that displays or provides the target object information 109 to a human user or to another software component or application.


In embodiments wherein the browser 110 is a web browser, the browser 110 connects to the content server 111 located at the information address (typically an Internet URL) included in the target object information 109. This connection is effected by the terminal 102 and the browser 110 acting in concert. The content server 111 is an information server and computing system. The connection and information exchanged between the terminal 102 and the content server 111 generally is accomplished via standard Internet and wireless network software, protocols (e.g. HTTP, WAP, etc.), and networks, although any information exchange technique can be used. The physical network connection depends on the system architecture of the particular embodiment but in most embodiments will involve a wireless network and the Internet. This physical network will most likely be the same network used to connect the terminal 102 and the identification server 106.


The content server 111 sends content information to the terminal 102 and browser 110. This content information usually is pertinent to the target object 100 and can be text, audio, video, graphics, or information in any form that is usable by the browser 110 and terminal 102. The terminal 102 and browser 110 send, in some embodiments, additional information to the content server 111. This additional information can be information such as the identity of the user of the terminal 102 or the location of the user of the terminal 102 (as determined from a GPS system or a radio-frequency ranging system). In some embodiments such information is provided to the content server by the wireless network carrier.


The user can perform ongoing interactions with the content server 111. For example, depending on the embodiment of the invention and the applications, the user can:


Listen to streaming audio samples if the target object 100 is an audio recording (e.g., compact audio disc).


Purchase the target object 100 via on-line transaction, with the purchase amount billed to an account linked to the terminal 102, to the individual user, to a bank account, or to a credit card.


In some embodiments the content server 111 may reside within the terminal 102. In such embodiments, the communication between the terminal 102 and the content server 111 does not occur via a network but rather occurs within the terminal 102.


In embodiments wherein the target object 100 includes or is a device capable of communicating with other devices or computers via a network or networks such as the Internet, and wherein the target object information 109 includes adequate identification (such as a sign, number, or barcode) of the specific target object 100, the content server 111 connects to and exchanges information with the target object 100 via a network or networks such as the Internet. In this type of embodiment, the terminal 102 is connected to the content server 111 and the content server 111 is connected to the target object 100. Thus, the terminal 102 and target object 100 can communicate via the content server 111. This enables the user to interact with the target object 100 despite the lack of a direct connection between the target object 100 and the terminal 102.


The following are examples of embodiments of the invention.



FIG. 5 shows a preferred embodiment of the invention that uses a cellular telephone, PDA, or such mobile device equipped with computational capability, a digital camera, and a wireless network connection, as the terminal 202 corresponding to the terminal 102 in FIG. 4. In this embodiment, the terminal 202 communicates with the identification server 206 and the content server 211 via networks such as a cellular telephone network and the Internet.


This embodiment can be used for applications such as the following (“User” refers to the person operating the terminal 202, and the terminal 202 is a cellular telephone, PDA, or similar device, and “point and click” refers to the operation of the User capturing imagery of the target object 200 and initiating the transfer of the image data 205 to the identification server 206).


The User “points and clicks” the terminal 202 at a compact disc (CD) containing recorded music or a digital video disc (DVD) containing recorded video. The terminal 202 browser connects to the URL corresponding to the CD or DVD and displays a menu of options from which the user can select. From this menu, the user can listen to streaming audio samples of the CD or streaming video samples of the DVD, or can purchase the CD or DVD.


The User “points and clicks” the terminal 202 at a print media advertisement, poster, or billboard advertising a movie, music recording, video, or other entertainment. The browser 210 connects to the URL corresponding to the advertised item and the user can listen to streaming audio samples, purchase streaming video samples, obtain show times, or purchase the item or tickets.


The User “points and clicks” the terminal 202 at a television screen to interact with television programming in real-time. For example, the programming could consist of a product promotion involving a reduced price during a limited time. Users that “point and click” on this television programming during the promotion are linked to a web site at which they can purchase the product at the promotional price. Another example is a interactive television programming in which users “point and click” on the television screen at specific times, based on the on-screen content, to register votes, indicate actions, or connect to a web site through which they perform real time interactions with the on-screen program.


The User “points and clicks” on an object such as a consumer product, an advertisement for a product, a poster, etc., the terminal 202 makes a telephone call to the company selling the product, and the consumer has a direct discussion with a company representative regarding the company's product or service. In this case the company telephone number is included in the target object information 209. If the target object information 209 also includes the company URL then the User can interact with the company via both voice and Internet (via browser 210) simultaneously.


The User “points and clicks” on a vending machine (target object 200) that is equipped with a connection to a network such as the Internet and that has a unique identifying mark, such as a number. The terminal 202 connects to the content server 211 of the company that operates the vending machine. The identification server identifies the particular vending machine by identifying and decoding the unique identifying mark. The identity of the particular machine is included in the target object information 209 and is sent from the terminal 202 to the content server 211. The content server 211, having the identification of the particular vending machine (target object 200), initiates communication with the vending machine. The User performs a transaction with the vending machine, such as purchasing a product, using his terminal 202 that communicates with the vending machine via the content server 211.


The User “points and clicks” on part of a machine, such as an aircraft part. The terminal 202 then displays information pertinent to the part, such as maintenance instructions or repair history.


The User “points and clicks” on a magazine or newspaper article and link to streaming audio or video content, further information, etc.


The User “points and clicks” on an automobile. The location of the terminal 206 is determined by a Global Position System receiver in the terminal 206, by cellular network radio ranging, or by another technique. The position of the terminal 202 is sent to the content server 211. The content server provides the User with information regarding the automobile, such as price and features, and furthermore, based on the position information, provides the User with the location of a nearby automobile dealer that sells the car. This same technique can be used to direct Users to nearby retail stores selling items appearing in magazine advertisements that Users “point and click” on.


For visually impaired people:


Click on any item in a store and the device speaks the name of the item and price to you (the items must be in the database).


Click on a newspaper or magazine article and the device reads the article to you.


Click on a sign (building, streetsign, etc.) and the device reads the sign to you and provides any addition pertinent information (the signs must be in the database).



FIG. 6 shows an embodiment of the invention for spacecraft applications. In this embodiment, all components of the system (except the target object 300) are onboard a Spacecraft. The target object 300 is another spacecraft or object. This embodiment is used to determine the position and orientation of the target object 300 relative to the Spacecraft so that this information can be used in navigating, guiding, and maneuvering the spacecraft relative to the target object 300. An example use of this embodiment would be in autonomous spacecraft rendezvous and docking.


This embodiment determines the position and orientation of the target object 300, relative to the Spacecraft, as determined by the position, orientation, and size of the target object 300 in the imagery captured by the camera 303, by comparing the imagery with views of the target object 300 from different orientations that are stored in the database 308. The relative position and orientation of the target object 300 are output in the target object information, so that the spacecraft data system 310 can use this information in planning trajectories and maneuvers.


INDUSTRIAL APPLICABILITY

The industrial applicability is anywhere that objects are to be identified by a digital optical representation of the object.

Claims
  • 1. A mobile point-of-sales terminal device comprising: a mobile device sensor configured to acquire digital image information associated with a product object; anda transaction platform coupled with the mobile device sensor and configured to: obtain the digital image information from the mobile device sensor;recognize the product object as a target purchasable item from the digital image information;derive attributes of the target purchasable item from the digital image information; andinitiate a transaction via an address and over a network, the transaction being related to the target purchasable item and based at least in part on recognizing the product object and deriving the attributes.
  • 2. The device of claim 1, further comprising a cellular telephone that includes the transaction platform and couples with the mobile device sensor.
  • 3. The device of claim 2, wherein the cellular telephone further comprises the mobile device sensor.
  • 4. The device of claim 1, wherein the mobile device sensor comprises an optical capture device.
  • 5. The device of claim 1, wherein the mobile device sensor comprises a camera.
  • 6. The device of claim 5, wherein the digital image information comprises image data.
  • 7. The device of claim 6, wherein the image data comprises at least one of the following: a single image, a series of images, and video data.
  • 8. The device of claim 1, wherein the target purchasable item represents a ticket.
  • 9. The device of claim 8, wherein the target purchasable item represents at least one of the following: a sporting event ticket and a movie ticket.
  • 10. The device of claim 1, wherein the target purchasable item comprises an item in a store.
  • 11. The device of claim 1, wherein the target purchasable item comprises an automobile.
  • 12. The device of claim 1, wherein the attributes include at least one of the following: a name, a number, a classification, a position, an identity, an orientation, a size, a color, a status, decoded information from a symbol, a product feature, and a price.
  • 13. The device of claim 12, wherein the attributes include at least the decoded information from the symbol, and wherein the decoded information from the symbol includes information from at least one of the following: a bar code, a matrix code, a 2D code, and an alphanumeric.
  • 14. The device of claim 1, wherein the attributes include a location.
  • 15. The device of claim 14, wherein the location comprises at least one of the following: a user location, a store location, a device location, a GPS location, and a location of the product object.
  • 16. The device of claim 1, wherein the attributes include a time.
  • 17. The device of claim 16, wherein the time is a time when the digital image information was obtained.
  • 18. The device of claim 1, wherein the product object lacks a tag represented in the digital image information.
  • 19. The device of claim 1, wherein the transaction platform is further configured to recognize the product object as the target purchasable item via a database of known target objects.
  • 20. The device of claim 19, wherein the transaction platform is further configured to query the database of known target objects based on salient parameters derived from the digital image information.
  • 21. The device of claim 1, wherein the transaction comprises an on-line purchase.
  • 22. The device of claim 1, wherein the transaction comprises an interaction with a bank account.
  • 23. The device of claim 1, wherein the transaction comprises an interaction with a user account.
  • 24. The device of claim 1, wherein the transaction comprises an interaction with an account linked to the terminal device.
  • 25. The device of claim 1, wherein the transaction comprises an interaction with a credit card account.
  • 26. The device of claim 1, wherein the address comprises at least one of the following: a phone number, an Internet address, a URL, and a URI.
  • 27. The device of claim 1, wherein the network comprises at least one of the following: a wireless network, a cellular network, and the Internet.
Parent Case Info

This application is a divisional of Ser. No. 13/907,780, filed May 31, 2013, which is a divisional of Ser. No. 13/693,983, filed Dec. 4, 2012 and issued Apr. 29, 2014 as U.S. Pat. No. 8,712,193, which is a continuation of Ser. No. 13/069,112, filed Mar. 22, 2011 and issued Dec. 4, 2012 as U.S. Pat. No. 8,326,031, which is a divisional of Ser. No. 13/037,317 filed Feb. 28, 2011 and issued Jul. 17, 2012 as U.S. Pat. No. 8,224,078, which is a divisional of Ser. No. 12/333,630 filed Dec. 12, 2008 and issued Mar. 1, 2011 as U.S. Pat. No. 7,899,243, which is a divisional of Ser. No. 10/492,243 filed May 20, 2004 and issued Jan. 13, 2009 as U.S. Pat. No. 7,477,780, which is a National Phase of PCT/US02/35407 filed Nov. 5, 2002, which is an International Patent application and a continuation-in-part of Ser. No. 09/992,942 filed Nov. 5, 2001 and issued Mar. 21, 2006 as U.S. Pat. No. 7,016,532, which claims priority to provisional application No. 60/317,521 filed Sep. 5, 2001 and provisional application number 60/246,295 filed Nov. 6, 2000. These and all other referenced patents and applications are incorporated herein by reference in their entirety. Where a definition or use of a term in a reference that is incorporated by reference is inconsistent or contrary to the definition of that term provided herein, the definition of that term provided herein is deemed to be controlling.

US Referenced Citations (346)
Number Name Date Kind
3800082 Fish Mar 1974 A
4947321 Spence et al. Aug 1990 A
4991008 Nama Feb 1991 A
5034812 Rawlings Jul 1991 A
5241671 Reed et al. Aug 1993 A
5259037 Plunk Nov 1993 A
5497314 Novak Mar 1996 A
5576950 Tonomura et al. Nov 1996 A
5579471 Barber et al. Nov 1996 A
5594806 Colbert Jan 1997 A
5615324 Kuboyama Mar 1997 A
5625765 Ellenby et al. Apr 1997 A
5682332 Ellenby et al. Oct 1997 A
5724579 Suzuki Mar 1998 A
5742521 Ellenby et al. Apr 1998 A
5742815 Stern Apr 1998 A
5751286 Barber et al. May 1998 A
5768633 Allen et al. Jun 1998 A
5768663 Lin Jun 1998 A
5771307 Lu et al. Jun 1998 A
5787186 Schroeder Jul 1998 A
5815411 Ellenby et al. Sep 1998 A
5832464 Houvener et al. Nov 1998 A
5893095 Jain et al. Apr 1999 A
5894323 Kain et al. Apr 1999 A
5897625 Gustin et al. Apr 1999 A
5911827 Heller Jun 1999 A
5915038 Abdel-Mottaleb et al. Jun 1999 A
5917930 Kayani et al. Jun 1999 A
5926116 Kitano et al. Jul 1999 A
5933823 Cullen et al. Aug 1999 A
5933829 Durst et al. Aug 1999 A
5933923 Catlos et al. Aug 1999 A
5937079 Franke Aug 1999 A
5945982 Higashio et al. Aug 1999 A
5970473 Gerszberg et al. Oct 1999 A
5971277 Cragun et al. Oct 1999 A
5978773 Hudetz et al. Nov 1999 A
5982912 Fukui et al. Nov 1999 A
5991827 Ellenby et al. Nov 1999 A
5992752 Wilz, Sr. et al. Nov 1999 A
6009204 Ahmad Dec 1999 A
6031545 Ellenby et al. Feb 2000 A
6037936 Ellenby et al. Mar 2000 A
6037963 Denton et al. Mar 2000 A
6038295 Mattes Mar 2000 A
6038333 Wang Mar 2000 A
6045039 Stinson et al. Apr 2000 A
6055536 Shimakawa et al. Apr 2000 A
6061478 Kanoh et al. May 2000 A
6064398 Ellenby et al. May 2000 A
6064979 Perkowski May 2000 A
6072904 Desai et al. Jun 2000 A
6081612 Gutkowicz-Krusin et al. Jun 2000 A
6098118 Ellenby et al. Aug 2000 A
6108656 Durst et al. Aug 2000 A
6134548 Gottsman et al. Oct 2000 A
6144848 Walsh et al. Nov 2000 A
6173239 Ellenby Jan 2001 B1
6181817 Zabih et al. Jan 2001 B1
6182090 Peairs Jan 2001 B1
6199048 Hudetz et al. Mar 2001 B1
6202055 Houvener et al. Mar 2001 B1
6208353 Ayer et al. Mar 2001 B1
6208749 Gutkowicz-Krusin et al. Mar 2001 B1
6208933 Lazar Mar 2001 B1
6256409 Wang Jul 2001 B1
6278461 Ellenby et al. Aug 2001 B1
6286036 Rhoads Sep 2001 B1
6307556 Ellenby et al. Oct 2001 B1
6307957 Gutkowicz-Krusin et al. Oct 2001 B1
6317718 Fano Nov 2001 B1
6393147 Danneels et al. May 2002 B2
6396475 Ellenby et al. May 2002 B1
6396537 Squilla et al. May 2002 B1
6396963 Shaffer et al. May 2002 B2
6404975 Bopardikar et al. Jun 2002 B1
6405975 Sankrithi et al. Jun 2002 B1
6411725 Rhoads Jun 2002 B1
6411953 Ganapathy et al. Jun 2002 B1
6414696 Ellenby et al. Jul 2002 B1
6430554 Rothschild Aug 2002 B1
6434561 Durst, Jr. et al. Aug 2002 B1
6445834 Rising, III Sep 2002 B1
6446076 Burkey et al. Sep 2002 B1
6453361 Morris Sep 2002 B1
6490443 Freeny, Jr. Dec 2002 B1
6501854 Konishi et al. Dec 2002 B1
6502756 Faahraeus Jan 2003 B1
6510238 Haycock Jan 2003 B2
6522292 Ellenby et al. Feb 2003 B1
6522772 Morrison et al. Feb 2003 B1
6522889 Aarnio Feb 2003 B1
6526158 Goldberg Feb 2003 B1
6532298 Cambier et al. Mar 2003 B1
6533392 Koitabashi Mar 2003 B1
6535210 Ellenby et al. Mar 2003 B1
6542933 Durst, Jr. et al. Apr 2003 B1
6563959 Troyanker May 2003 B1
6567122 Anderson et al. May 2003 B1
6578017 Ebersole et al. Jun 2003 B1
6580385 Winner et al. Jun 2003 B1
6597818 Kumar et al. Jul 2003 B2
6601026 Appelt et al. Jul 2003 B2
6609103 Kolls Aug 2003 B1
6650794 Aoki Nov 2003 B1
6651053 Rothschild Nov 2003 B1
6658389 Alpdemir Dec 2003 B1
6674923 Shih et al. Jan 2004 B1
6674993 Tarbouriech Jan 2004 B1
6675165 Rothschild Jan 2004 B1
6689966 Wiebe Feb 2004 B2
6690370 Ellenby et al. Feb 2004 B2
6691914 Isherwood et al. Feb 2004 B2
6711278 Gu et al. Mar 2004 B1
6714969 Klein et al. Mar 2004 B1
6724914 Brundage et al. Apr 2004 B2
6738630 Ashmore May 2004 B2
6744935 Choi et al. Jun 2004 B2
6748122 Ihara et al. Jun 2004 B1
6754636 Walker Jun 2004 B1
6765569 Neumann et al. Jul 2004 B2
6766363 Rothschild Jul 2004 B1
6771294 Pulli et al. Aug 2004 B1
6788800 Carr et al. Sep 2004 B1
6801657 Cieplinski Oct 2004 B1
6804726 Ellenby et al. Oct 2004 B1
6842181 Acharya Jan 2005 B2
6853750 Aoki Feb 2005 B2
6856965 Stinson et al. Feb 2005 B1
6865608 Hunter Mar 2005 B2
6866196 Rathus et al. Mar 2005 B1
6868415 Kageyama et al. Mar 2005 B2
6882756 Bober Apr 2005 B1
6885771 Takahashi Apr 2005 B2
6912464 Parker Jun 2005 B1
6925196 Kass et al. Aug 2005 B2
6950800 McIntyre et al. Sep 2005 B1
6956593 Gupta et al. Oct 2005 B1
6963656 Persaud et al. Nov 2005 B1
6968453 Doyle et al. Nov 2005 B2
6974078 Simon Dec 2005 B1
6985240 Benke et al. Jan 2006 B2
6990235 Katsuyama et al. Jan 2006 B2
6993573 Hunter Jan 2006 B2
6996251 Malone et al. Feb 2006 B2
7002551 Azuma et al. Feb 2006 B2
7016532 Boncyk Mar 2006 B2
7016889 Bazoon Mar 2006 B2
7016899 Stern et al. Mar 2006 B1
7027652 I'Anson Apr 2006 B1
7031496 Shimano et al. Apr 2006 B2
7031536 Kajiwara Apr 2006 B2
7031875 Ellenby et al. Apr 2006 B2
7050653 Edso et al. May 2006 B2
7053916 Kobayashi et al. May 2006 B2
7062454 Giannini et al. Jun 2006 B1
7072669 Duckworth Jul 2006 B1
7103772 Jorgensen et al. Sep 2006 B2
7104444 Suzuki Sep 2006 B2
7113867 Stein Sep 2006 B1
7119831 Ohto et al. Oct 2006 B2
7121469 Dorai et al. Oct 2006 B2
7127094 Elbaum et al. Oct 2006 B1
7143949 Hannigan Dec 2006 B1
7167164 Ericson et al. Jan 2007 B2
7175095 Pettersson et al. Feb 2007 B2
7190833 Kagehiro et al. Mar 2007 B2
7224995 Rhoads May 2007 B2
7245273 Eberl et al. Jul 2007 B2
7254548 Tannenbaum Aug 2007 B1
7266545 Bergman et al. Sep 2007 B2
7295718 Park et al. Nov 2007 B2
7296747 Rohs Nov 2007 B2
7301536 Ellenby et al. Nov 2007 B2
7305354 Rodriguez et al. Dec 2007 B2
7309015 Frantz et al. Dec 2007 B2
7310605 Janakiraman et al. Dec 2007 B2
7333947 Wiebe et al. Feb 2008 B2
7334728 Williams Feb 2008 B2
7345673 Ericson et al. Mar 2008 B2
7353182 Missinhoun et al. Apr 2008 B1
7353184 Kirshenbaum et al. Apr 2008 B2
7353990 Elliot et al. Apr 2008 B2
7356705 Ting Apr 2008 B2
7362922 Nishiyama et al. Apr 2008 B2
7376645 Bernard May 2008 B2
7383209 Hudetz et al. Jun 2008 B2
7410099 Fukasawa et al. Aug 2008 B2
7427980 Partridge et al. Sep 2008 B1
7430588 Hunter Sep 2008 B2
7477909 Roth Jan 2009 B2
7526440 Walker et al. Apr 2009 B2
7548915 Ramer et al. Jun 2009 B2
7558595 Angelhag Jul 2009 B2
7564469 Cohen Jul 2009 B2
7580061 Toyoda Aug 2009 B2
7595816 Enright et al. Sep 2009 B1
7599847 Block et al. Oct 2009 B2
7631336 Perez et al. Dec 2009 B2
7641342 Eberl et al. Jan 2010 B2
7680324 Boncyk et al. Mar 2010 B2
7696905 Ellenby et al. Apr 2010 B2
7707218 Gocht et al. Apr 2010 B2
7711598 Perkowski May 2010 B2
7720436 Hamynen et al. May 2010 B2
7734507 Ritter Jun 2010 B2
7737965 Alter et al. Jun 2010 B2
7751805 Neven et al. Jul 2010 B2
7756755 Ghosh et al. Jul 2010 B2
7764808 Zhu et al. Jul 2010 B2
7765126 Hudetz et al. Jul 2010 B2
7768534 Pentenrieder et al. Aug 2010 B2
7769228 Bahlmann et al. Aug 2010 B2
7774283 Das et al. Aug 2010 B2
7775437 Cohen Aug 2010 B2
7797204 Balent Sep 2010 B2
7830417 Liu et al. Nov 2010 B2
7843488 Stapleton Nov 2010 B2
7845558 Beemer et al. Dec 2010 B2
7853875 Cohen Dec 2010 B2
7872669 Darrell et al. Jan 2011 B2
7889193 Platonov et al. Feb 2011 B2
7896235 Ramachandran Mar 2011 B2
7916138 John et al. Mar 2011 B2
8090616 Proctor, Jr. et al. Jan 2012 B2
8090657 Mitchell et al. Jan 2012 B2
8099332 Lemay et al. Jan 2012 B2
8121944 Norman et al. Feb 2012 B2
8130242 Cohen Mar 2012 B2
8131118 Jing et al. Mar 2012 B1
8131595 Lee et al. Mar 2012 B2
8187045 Thibodaux May 2012 B2
8189964 Flynn et al. May 2012 B2
8190645 Bashaw May 2012 B1
8218874 Boncyk et al. Jul 2012 B2
8219146 Connors et al. Jul 2012 B2
8219558 Trandal Jul 2012 B1
8255291 Nair Aug 2012 B1
8312168 Rhoads et al. Nov 2012 B2
8320615 Hamza et al. Nov 2012 B2
8326031 Boncyk et al. Dec 2012 B2
8335351 Boncyk et al. Dec 2012 B2
8386918 Do et al. Feb 2013 B2
8442500 Gupta et al. May 2013 B2
8447066 King et al. May 2013 B2
8477202 Asano Jul 2013 B2
8483715 Chen Jul 2013 B2
8494274 Badharudeen et al. Jul 2013 B2
8497939 Cuttner Jul 2013 B2
8523075 van der Merwe Sep 2013 B2
8542906 Persson et al. Sep 2013 B1
8550903 Lyons et al. Oct 2013 B2
8559671 Milanfar et al. Oct 2013 B2
8577810 Dalit et al. Nov 2013 B1
8588527 Boncyk et al. Nov 2013 B2
8605141 Dialameh et al. Dec 2013 B2
8626602 George Jan 2014 B2
8751316 Fletchall et al. Jun 2014 B1
8756659 Ruckart Jun 2014 B2
8824738 Boncyk et al. Sep 2014 B2
8831279 Rodriguez et al. Sep 2014 B2
8831677 Villa-Real Sep 2014 B2
8838477 Moshfeghi Sep 2014 B2
8863183 Kutaragi et al. Oct 2014 B2
8903430 Sands et al. Dec 2014 B2
8990235 King Mar 2015 B2
20010011276 Durst, Jr. et al. Aug 2001 A1
20010032252 Durst et al. Oct 2001 A1
20010044824 Hunter et al. Nov 2001 A1
20010047426 Hunter Nov 2001 A1
20010053252 Creque Dec 2001 A1
20020001398 Shimano et al. Jan 2002 A1
20020006602 Masters Jan 2002 A1
20020019819 Sekiguchi et al. Feb 2002 A1
20020048403 Guerreri Apr 2002 A1
20020055957 Ohsawa May 2002 A1
20020084328 Kim Jul 2002 A1
20020089524 Ikeda Jul 2002 A1
20020090132 Boncyk et al. Jul 2002 A1
20020102966 Lev et al. Aug 2002 A1
20020103813 Frigon Aug 2002 A1
20020124188 Sherman et al. Sep 2002 A1
20020140988 Cheatle et al. Oct 2002 A1
20020150298 Rajagopal et al. Oct 2002 A1
20020156866 Schneider Oct 2002 A1
20020163521 Ellenby et al. Nov 2002 A1
20020167536 Valdes et al. Nov 2002 A1
20030064705 Desiderio Apr 2003 A1
20030095681 Burg et al. May 2003 A1
20030116478 Laskowski Jun 2003 A1
20030132974 Bodin Jul 2003 A1
20030164819 Waibel Sep 2003 A1
20040208372 Boncyk et al. Oct 2004 A1
20050015370 Stavely et al. Jan 2005 A1
20050024501 Ellenby et al. Feb 2005 A1
20050055281 Williams Mar 2005 A1
20050102233 Park et al. May 2005 A1
20050162523 Darrell et al. Jul 2005 A1
20050162532 Toyoda Jul 2005 A1
20050185060 Neven et al. Aug 2005 A1
20050206654 Vaha-Sipila Sep 2005 A1
20050252966 Kulas Nov 2005 A1
20060008124 Ewe et al. Jan 2006 A1
20060038833 Mallinson et al. Feb 2006 A1
20060161379 Ellenby et al. Jul 2006 A1
20060190812 Ellenby et al. Aug 2006 A1
20060223635 Rosenberg Oct 2006 A1
20070109619 Eberl et al. May 2007 A1
20070146391 Pentenrieder et al. Jun 2007 A1
20070182739 Platonov et al. Aug 2007 A1
20080021953 Gil Jan 2008 A1
20080133555 Rhoads et al. Jun 2008 A1
20080157946 Eberl et al. Jul 2008 A1
20080189185 Matsuo et al. Aug 2008 A1
20080207296 Lutnick et al. Aug 2008 A1
20080243721 Joao Oct 2008 A1
20080279481 Ando Nov 2008 A1
20090027337 Hildreth Jan 2009 A1
20090030900 Iwasaki Jan 2009 A1
20100045933 Eberl et al. Feb 2010 A1
20100106720 Chao et al. Apr 2010 A1
20100188638 Eberl et al. Jul 2010 A1
20110131241 Petrou et al. Jun 2011 A1
20110173100 Boncyk et al. Jul 2011 A1
20110191211 Lin Aug 2011 A1
20110282785 Chin Nov 2011 A1
20120002872 Boncyk et al. Jan 2012 A1
20120011119 Baheti et al. Jan 2012 A1
20120011142 Baheti et al. Jan 2012 A1
20120027290 Baheti et al. Feb 2012 A1
20120072353 Boone et al. Mar 2012 A1
20120095857 Mckelvey et al. Apr 2012 A1
20120231887 Lee et al. Sep 2012 A1
20120263388 Vaddadi et al. Oct 2012 A1
20130013414 Haff Jan 2013 A1
20130046602 Grigg et al. Feb 2013 A1
20130265450 Barnes, Jr. Oct 2013 A1
20130304609 Keonorasak Nov 2013 A1
20140006165 Grigg et al. Jan 2014 A1
20140007012 Govande et al. Jan 2014 A1
20140101048 Gardiner et al. Apr 2014 A1
20140129942 Rathod May 2014 A1
20140162598 Villa-Real Jun 2014 A1
20150026785 Soon-Shiong Jan 2015 A1
20150339324 Westmoreland Nov 2015 A1
Foreign Referenced Citations (53)
Number Date Country
10050486 Apr 2002 DE
0614559 Jan 1999 EP
0920179 Jun 1999 EP
0967574 Dec 1999 EP
1012725 Jun 2000 EP
0920179 Sep 2000 EP
1354260 Oct 2003 EP
1355258 Oct 2003 EP
2264669 Dec 2010 EP
2407230 Apr 2005 GB
S6314297 Jan 1988 JP
H09231244 Sep 1997 JP
H1091634 Apr 1998 JP
H10289243 Oct 1998 JP
H11265391 Sep 1999 JP
2001101191 Apr 2001 JP
2001160057 Jun 2001 JP
2001256500 Sep 2001 JP
2001265970 Sep 2001 JP
2001282825 Oct 2001 JP
2002197103 Jul 2002 JP
2002297648 Oct 2002 JP
2003178067 Jun 2003 JP
2003323440 Nov 2003 JP
2004005314 Jan 2004 JP
2004030377 Jan 2004 JP
2004118384 Apr 2004 JP
2005011180 Jan 2005 JP
2005038421 Feb 2005 JP
2005049920 Feb 2005 JP
2005509219 Apr 2005 JP
2007509392 Apr 2007 JP
9744737 Nov 1997 WO
9749060 Dec 1997 WO
9837811 Sep 1998 WO
9846323 Oct 1998 WO
9916024 Apr 1999 WO
9942946 Aug 1999 WO
9942947 Aug 1999 WO
9944010 Sep 1999 WO
9942946 Oct 1999 WO
9942947 Dec 1999 WO
9967695 Dec 1999 WO
0124050 Apr 2001 WO
0149056 Jul 2001 WO
0163487 Aug 2001 WO
0171282 Sep 2001 WO
0173603 Oct 2001 WO
0201143 Jan 2002 WO
02059716 Aug 2002 WO
02073818 Sep 2002 WO
02082799 Oct 2002 WO
03041000 May 2003 WO
Non-Patent Literature Citations (40)
Entry
Arai T., et al., “PaperLink: A Technique for Hyperlinking from Real Paper to Electronic Content,” CHI 97 Electronic Publications: Papers, Conference on Human Factors in Computer Systems, Atlanta, Georgia, Mar. 22-27, 1997, pp. 327-334.
Bulman J., et al., “Mixed Reality Applications in Urban Environments,” BT Technology Journal, 2004, vol. 22 (3), pp. 84-94.
Carswell J.D., et al., “An Environment for Mobile Context-Based Hypermedia Retrieval,” IEEE: Proceedings of the 13th International Workshop on Database and Expert Systems Applications, 1529-4188/02, 2002, 5 pages.
Chang S.F., et al., “Visual Information Retrieval from Large Distributed Online Respositories,” Communication of Association for Computing Machinery, ISSN:0001-0782, 1997, vol. 40 (12), pp. 64-71.
Chang W., et al., “Efficient Resource Selection in Distributed Visual Information Systems,” ACM Multimedia, 1997, pp. 203-213.
Diverdi S., et al., “ARWin—A Desktop Augmented Reality Window Manager,” UCSB Tech Report 2003-12, University of California Santa Barbara, May 2003, 7 pages.
Diverdi S., et al., “Level of Detail Interfaces,” Proc. ISMAR 2004, IEEE/ACM IHyf Symp on Mixed and Augmented Reality, Arlington, Virginia, 2004, 2 pages.
European Search Report for Application No. EP06018047, mailed on Oct. 30, 2008, 2 pages.
Feiner S., et al., “A Touring Machine: Prototyping 3D Mobile Augmented Reality Systems for Exploring the Urban Environment,” Personal Technologies, 1997, vol. 1 (4), pp. 208-217.
Fernandez F., “Responsive Environments: Digital Objects in the Landscape,” Thesis submitted to Department of Landscape Architecture, University of Manitoba, Winnipeg, Manitoba, Mar. 2004, 124 pages.
Geiger C., et al., “Mobile AR4ALL,” Proceedings of the IEEE and ACM Intl Symposium on Augmented Reality (ISAR'01), Oct. 29-30, 2001, Columbia University, New York, 2 pages.
Gevers T., et al., “PicToSeek: Combining Color and Shape Invariant Features for Image Retrieval,” IEEE Transactions on Image Processing, 2000, vol. 9 (1), pp. 102-119.
Haritaoglu I., “InfoScope: Link from Real World to Digital Information Space,” IBM Almaden Research, UbiComp, Lecture Notes in Computer Science, 2001, vol. 2201, pp. 247-255.
Hollerer T., et al., “Chapter Nine: Mobile Augmented Reality,” in: Telegeoinformatics: Location Based Computing and Services, Karimi H., eds., Taylor & Francis Books, Ltd., 2004, Chapter 9, 39 pages.
International Search Report and Written Opinion for Application No. PCT/US2007/02010, mailed on Nov. 16, 2007, 5 pages.
Iwamoto T., et al., “Digital Safari Guidebook With Image Retrieval,” International Conference on Advances in Mathematical Computations and Statistical Computing, 1999, vol. 2, pp. 1011-1012.
Iwamoto T., et al., “u-Photo: A Design and Implementation of a Snapshot Based Method for Capturing Contextual Information,” the Second International Conference on Pervasive Computing Pervasive, 2004, Advances in Pervasive Computing, LinzNienna, Austria, 6 pages.
Jebara T., et al., “Stochasticks: Augmenting the Billiards Experience With Probabilistic Vision and Wearable Computers,” International Symposium on Wearable Computers, 1997, IEEE Computer Society, pp. 138-145.
Kangas K., et al., “Using Code Mobility to Create Ubiquitous and Active Augmented Reality in Mobile Computing,” Mobicom, 1999, Seattle, Washington, pp. 48-58.
Kato H., et al., “Marker Tracking and HMD Calibration for a Video-Based Augmented Reality Conferencing System,” Proceedings of the 2nd IEEE and ACM Intl Workshop on Augmented Reality, San Francisco, California, 1999, pp. 85-94.
Klinker G., “Augmented Maintenance of Powerplants: A Prototyping Case Study of a Mobile AR System,” International Symposium on Augmented Reality, 2001, IEEE Computer Society, pp. 124-136.
Levine J.M., “Real-Time Target and Pose Recognition for 3-D Graphical Overlay,” Master's thesis, 1997, 48 pages.
Ljungstrand P., et al., “WebStickers: Using Physical Tokens to Access, Manage and Share Bookmarks on the Web,” Proceedings of the 2000 ACM Conference on Designing Augmented Reality Environments (DARE 2000), 2000, pp. 23-31.
Rekimoto J., et al., “Augment-able Reality: Situated Communication Through Physical and Digital Spaces,” Wearable Computers, Second International Symposium, 1998, pp. 68-75.
Rekimoto J., et al., “CyberCode: Designing Augmented Reality Environments With Visual Tags,” Proceedings of the 2000 ACM Conference on Designing Augmented Reality Environments, 2000, pp. 1-10.
Rekimoto J., et al., “The World Through the Computer: Computer Augmented Interaction With Real World Environments,” ACM Symposium on User Interface Software and Technology, 1995, pp. 29-36.
Rekimoto J., “NaviCam: A Palmtop Device Approach to Augmented Reality,” Fundamentals of Wearable Computers and Augmented Reality, 2001, Barfield and Caudell, Eds., pp. 353-377.
Rohs M., et al., “A Conceptual Framework for Camera Phone-Based Interaction Techniques,” Pervasive Computing. Lecture Notes in Computer Science, 2005, vol. 3468, pp. 171-189.
Siltanen S., et al., “Implementing a Natural User Interface for Camera Phones Using Visual Tags,” Proceedings of the 7th Australasian User interface conference, 2006, vol. 50, pp. 113-116.
Smailagic A, et al., “Metronaut: A Wearable Computer With Sensing and Global Communication Capabilities,” First International Symposium on Wearable Computers, Oct. 13-14, 1997, Cambridge, Massachusetts; Digest of Papers, pp. 116-122.
Smith J.R., et al., “VisualSEEk: A Fully Automated Content-Based Image Query System,” Proceedings of the fourth ACM international conference on Multimedia, ACM New York, 1996, pp. 87-98.
Starner T., et al., “Augmented Reality Through Wearable Computing,” Presence: Teleoper. Virtual Environ. 6, 4, Massachusetts Institute of Technology, 1997, 24 pages.
Supplementary European Search Report for Application No. EP02778730, mailed on May 14, 2007, 3 pages.
Supplementary European Search Report for Application No. EP06801326, mailed on Aug. 12, 2008, 8 pages.
Suzuki G., et al., “u-Photo: Interacting with Pervasive Services Using Digital Still Images,” Pervasive Computing. Lecture Notes in Computer Science, vol. 3468, 2005, pp. 190-207.
Toye E., et al., “Interacting with Mobile Services: An Evaluation of Camera-Phones and Visual Tags,” in: Personal and Ubiquitous Computing, vol. 11 (2), Springer-Verlag, London Limited, 2007, pp. 97-106.
Wagner D., et al., “First Steps Towards Handheld Augmented Reality,” Vienna University of Technology, Proceedings of Seventh IEEE International Symposium on Wearable Computers, Oct. 18-21, 2003, 9 pages.
Yang J., et al., “Smart Sight: A Tourist Assistant System,” Digest of Papers, Third International Symposium on Wearable Computers, Oct. 18-19, 1999, San Francisco, California, pp. 73-78.
Yeh T., et al., “Searching the Web with Mobile Images for location Recognition,” IEEE: Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'04), 1063-6919/04, 2004, 6 pages.
Zhang X., et al., “Taking AR Into Large Scale Industrial Environments: Navigation and Information Access With Mobile Computers,” Proceedings of the IEEE and ACM Intl Symposium on Augmented Reality, 2001, pp. 179-180.
Related Publications (1)
Number Date Country
20150302385 A1 Oct 2015 US
Provisional Applications (2)
Number Date Country
60317521 Sep 2001 US
60246295 Nov 2000 US
Divisions (5)
Number Date Country
Parent 13907780 May 2013 US
Child 14558643 US
Parent 13693983 Dec 2012 US
Child 13907780 US
Parent 13037317 Feb 2011 US
Child 13069112 US
Parent 12333630 Dec 2008 US
Child 13037317 US
Parent 10492243 US
Child 12333630 US
Continuations (1)
Number Date Country
Parent 13069112 Mar 2011 US
Child 13693983 US
Continuation in Parts (1)
Number Date Country
Parent 09992942 Nov 2001 US
Child 10492243 US