1. Field of the Invention
The present invention relates to test sockets for optically interactive devices such as image sensor devices in general and, more particularly, to test sockets having a built-in diffuser. Test sockets having an at least partially optically clear support for the image sensor device and methods of testing the image sensor device are also included.
2. Background of Related Art
Semiconductor devices are routinely subjected to testing for compliance with certain performance requirements, particularly image sensor devices. Optically interactive electronic devices, for example, charge coupled device (CCD) image sensors or complementary metal-oxide semiconductor (CMOS) image sensors, are typically packaged within a housing for subsequent connection to higher-level packaging such as a larger circuit assembly in the form of a carrier substrate. The housing provides electrical interconnection to the larger circuit assembly, provides protection from the surrounding environment and allows light or other forms of radiation to pass through to sensing circuitry located on the image sensor device. A window or transparent lid of the housing typically allows the light to pass through. The image sensor device may include an array of pixels for capturing a light pattern, or image, to be converted into an electric charge pattern. The image sensor device may be tested for the performance of the individual pixels.
Test sockets may be used to facilitate the testing of image sensor devices.
Light from a light source 155 may be directed through the printed circuit board 120 and the opening 105 of the contactor 100 at the image sensor device 110 during a test of the image sensor device 110. The printed circuit board 120 may include a passageway 126 for the light, in the form of either an opening therethrough or a window. The light source typically either produces collimated light, or the light is passed through a condenser (not shown) to collimate the light. Collimating the light ensures that most of the light is directed toward the image sensor device, and is not scattered. However, during a test, because all of the light is incident on the image sensor device at the same angle, dirt or imperfections on the window of the housing may result in an incorrect determination of a bad pixel within the image sensor device.
A close-up view of the image sensor device 110 mounted on the contactor 100 is shown in
Accordingly, the inventor has recognized the need for a test socket which will reduce the incidence of false failures during testing of image sensor devices. A test socket providing uniform support for an image sensor device would also be useful.
The present invention, in a number of exemplary embodiments, includes a test socket, methods of testing an image sensor device, and a system for testing an image sensor device. While the following exemplary test sockets are depicted in terms of testing image sensor devices, it should be understood that the test sockets and testing methods presented herein would work equally well for testing other types of optically interactive electronic devices. The term “optically interactive” as used herein is meant to encompass devices sensitive to various wavelengths of light or other forms of radiation, including, but not limited to, CCD and CMOS image sensors, EPROMs, and photodiodes. The term image sensor device and optically interactive electronic device are used interchangeably herein.
In a first embodiment according to the present invention, a socket for testing an image sensor device includes a device area for removably mounting the image sensor device, an optic port therethrough enabling light to reach the device area, and a diffuser positioned proximate to the device area. A contactor configured for mounting a plurality of image sensor devices is within the scope of the present invention. Separate diffusers associated with each of the plurality of image sensor devices may be provided, or a single diffuser configured to diffuse the light incident on the plurality of image sensor devices may be provided. The contactor may include a seat for supporting the image sensor device. The seat may comprise an opaque material and include optical access to an array of pixels of the image sensor device, or may comprise an at least partially optically clear material. A contactor including a diffuser configured to provide support for the image sensor device is within the scope of the present invention.
In accordance with one aspect of the present invention, a method of testing an image sensor device includes emitting light toward the image sensor device, diffusing the light, receiving the light with the image sensor device, registering an electrical image of the light, and communicating the electrical image to a processing device for evaluation of the image sensor device. The evaluation of the image sensor device may be conveyed externally. A plurality of image sensor devices may be tested simultaneously. The light emitted toward the plurality of image sensor devices may be diffused by a single, contiguous diffuser, or by a like plurality of discrete diffusers. Support may be provided for the image sensor device during testing, by a seat comprising an opaque material including optical access to an array of pixels of the image sensor device, or by a seat comprising an at least partially optically clear material. Support for the image sensor device may be provided by the diffuser.
In accordance with another aspect of the present invention, a system for testing an image sensor device includes a carrier substrate, a test socket operatively connected to the carrier substrate and configured to removably receive the image sensor device, and a diffuser for diffusing light incident on the image sensor device. The diffuser may be located proximate to the carrier substrate or located within the test socket. The test socket may include a seat for supporting the image sensor device. The seat may comprise an opaque material and include optical access to an array of pixels of the image sensor device, or may comprise an at least partially optically clear material. A system with a test socket including a diffuser configured to provide support for the image sensor device is within the scope of the present invention.
Another embodiment of a method of testing an image sensor device includes providing a seat comprising an at least partially optically clear material and having a support surface and a back surface, supporting an image sensor device on the seat, the image sensor device including a window having a surface contiguous with the support surface of the seat, emitting light toward the seat and the image sensor device, receiving the emitted light with the image sensor device, recording an electrical image of the emitted light with the image sensor device, and communicating the electrical image to a processing device for evaluation of the image sensor device.
Another embodiment of a socket for testing an image sensor device includes a device area for removably mounting the image sensor device, an optic port therethrough enabling light to reach the device area, and a seat positioned in the optic port comprising an at least partially optically clear material and having a support surface configured to abut an image sensor device.
Other and further features and advantages of the present invention will be apparent from the following descriptions of the various embodiments when read in conjunction with the accompanying drawings. It will be understood by one of ordinary skill in the art that the following embodiments are provided for illustrative and exemplary purposes only, and that numerous combinations of the elements of the various embodiments of the present invention are possible.
Referring in general to the accompanying drawings, various aspects of the present invention are illustrated to show exemplary test sockets, or contactors as well as methods of testing image sensor devices. Common elements of the illustrated embodiments are designated with like reference numerals for clarity. It should be understood that the figures presented are not meant to be illustrative of actual views of any particular portion of a particular test socket, but are merely idealized schematic representations which are employed to more clearly and fully depict the invention. It should further be understood that while depicted in terms of test sockets for image sensors, the test sockets and methods of testing presented herein would work equally well for other types of optically interactive electronic devices as described above.
Light from a light source 155 may be directed through the PCB 120 and the opening 105 of the contactor 100 at the image sensor device 110 during a test of the image sensor device 110. The PCB 120 may include a passageway 126 for the light, in the form of either an opening therethrough or a window. The light source 155 typically either produces collimated light, or the light is passed through a condenser (not shown) to collimate the light. Collimating, the light ensures that most of the light is directed toward the image sensor device 110, and is not scattered.
A diffuser 130 may be affixed to a second, opposing side 128 of the printed circuit board 120, for example with an adhesive disposed about or proximate a periphery of the diffuser 130. The diffuser may comprise, for example, finely etched glass or silica substrate. Ground glass, opal glass, and holographic diffusers formed of polycarbonate are additionally within the scope of the present invention. A suitable diffuser material is available from Edmund Optics of Barrington, N.J. The diffuser 130 may scatter the light, causing the light to strike the image sensor device from various angles. The light will pass through a window, or transparent lid 410 (see
During one exemplary method of testing the image sensor device 110, a light source 155 may be provided. The light from the light source 155 may pass through a diffuser 130, and the diffused light may be selectively impinged upon an array of pixels 400 (see
Another exemplary embodiment of a test socket, or contactor 200 according to the present invention is depicted in
The image sensor device 210 may be supported by the floor 208 of the device cavity 220. A seat 206 may provide additional support, covering an opening 225 through the contactor 200. The opening 225 may provide an optical port through the contactor 200, and may be configured to house a diffuser 230. The diff-user 230 may thus be positioned proximate to the image sensor device 210, and scatter light incident thereupon, such that the light strikes the image sensor device from a variety of angles. The distance D between the diffuser and the window of the image device 210 is the thickness of the seat 206. The distance D may be in the range from about 0.1 to about 1.0 millimeters, preferably about 0.4 millimeters. A seat 206 having a thickness of 0.4 millimeters may provide the needed support for the image sensor device 210 while enabling a majority of the scattered light from the diffuser 230 to reach the image sensor device 210. The farther the diffuser 230 is positioned from the image sensor device 210, the more of the scattered light will fail to reach the image sensor device 210.
The second surface 204 of the contactor body 205 may include a centrally located hollow 250. A retaining component 240 may attach to the contactor body 205, holding the diffuser 230 in place against the seat 206. The retaining component 240 may include an aperture 245 therethrough, enabling light to pass through the retaining component 240 to the diffuser 230 and the image sensor device 210. The retaining component 240 may be attached to the contactor body 205 with a retaining element, for example a pin or a screw, or with a suitable adhesive material, for example an epoxy, a silicone, an acrylic or other liquid-type adhesive, or a double-sided adhesive-coated tape segment or film, such as a polyimide.
The contactor 200 may be used to test the image sensor device 210. The image sensor device 210 may be placed within the device cavity 220 of the contactor, and removably electrically coupled to the contactor 200, for example, using a cover 217 (see
Optionally, a conventional socket may be modified to include a diffuser. Referring back to
The seat 305 includes a device cavity 280, configured to house an image sensor device in the desired position during testing. The device cavity 280 may include rounded cutouts comprising extended corners 285 to prevent the corners of the image sensor device from being chipped as the image sensor device is inserted and removed from the contactor 300. Cushioning, for example foam, may be provided within the device cavity 280. Optionally, a positioning part (not shown) may be placed over the seat 305 to aid in retaining the image sensor device in the desired position. The diffuser 290 has a lateral boundary 305′ larger than a lateral boundary 280′ of the device cavity 280. Referring back to
The seat 305 may be molded from a polyamide-imide, or other suitable material. Optionally, the seat 305 may comprise an at least partially optically transparent material such as borosilicate glass (BSG), other types of glass, quartz or even a polymer of suitable material characteristics and which allow the passage of a desired range of wavelengths of light or other forms of electromagnetic radiation.
In a third embodiment of the present invention, depicted in
In a fourth embodiment of the present invention, depicted in
In a fifth embodiment of the present invention illustrated in
The image sensor device 210 may be positioned within the socket, or contactor 450 on the seat 420. The seat 420 may be formed of an at least partially optically transparent material, enabling light 460 to pass therethrough. The at least partially optically clear material may be borosilicate glass (BSG), other types of glass, quartz or even a polymer of suitable material characteristics and which allow the passage of a desired range of wavelengths of light or other forms of electromagnetic radiation. The polymer allyl diglycol carbonate, sold under the trade name CR-39 by PPG industries of Pittsburg, Pa. may be suitable. A polymer may be machined to a specific desired size and shape, and may be more resistant than glass to particular types of damage, for example, damage from certain chemicals.
The light 460 is depicted as diffused light, incident upon the seat 420 at an angle. The light 460 strikes a first surface 423 of the seat 420 at a point 422 closer to the periphery 427 of the seat 420 than the point 424 on a second surface 425 at which the light exits the seat 420, striking the image sensor device 210. Thus it may be desirable to have a seat 420 having a lateral periphery 427 greater than the lateral periphery of the transparent lid 410, particularly when diffused light is used to test the image sensor device 210.
The seat 420, formed of at least partially optically clear material, enables light 460 to pass therethrough without requiring an aperture therethrough, for example the central aperture 306 of the seat 305 depicted in
Optionally, the seat 420 may comprise a diffuser. A polymer seat may have a matte finish, or be sandblasted to form a diffuser. Any suitable diffuser material, for example, ground glass, opal glass, or a holographic diffuser may be used to form the seat 420. The seat 420 is contiguous with the transparent lid 410 of the image sensor device 210, therefore most of the light scattered by the diffuser will reach the array of pixels 400.
Although the foregoing description contains many specifics, these should not be construed as limiting the scope of the present invention, but merely as providing illustrations of some exemplary embodiments. Similarly, other embodiments of the invention may be devised that do not depart from the spirit or scope of the present invention. Features from different embodiments may be employed in combination. The scope of the invention is, therefore, indicated and limited only by the appended claims and their legal equivalents, rather than by the foregoing description. All additions, deletions, and modifications to the invention, as disclosed herein, which fall within the meaning and scope of the claims, are to be embraced thereby.