1. Field of the Invention
Embodiments of the present invention generally relate to a test system for substrates. More particularly, the invention relates to an integrated testing system for large area substrates in the production of flat panel displays.
2. Description of the Related Art
Flat panel displays, sometimes referred to as active matrix liquid crystal displays (LCD's), have recently become commonplace in the world as a replacement for the cathode ray tubes of the past. The LCD has several advantages over the CRT, including higher picture quality, lighter weight, lower voltage requirements, and low power consumption. The displays have many applications in computer monitors, cell phones and televisions to name but a few.
One type of active matrix LCD includes a liquid crystal material sandwiched between a thin film transistor (TFT) array substrate and a color filter substrate to form a flat panel substrate. The TFT substrate includes an array of thin film transistors, each coupled to a pixel electrode and the color filter substrate includes different color filter portions and a common electrode. When a certain voltage is applied to a pixel electrode, an electric field is created between the pixel electrode and the common electrode, orienting the liquid crystal material to allow light to pass therethrough for that particular pixel.
A part of the manufacturing process requires testing of the flat panel substrate to determine the operability of pixels. Voltage imaging, charge sensing, and electron beam testing are some processes used to monitor and troubleshoot defects during the manufacturing process. In a typical electron beam testing process, TFT response within the pixels is monitored to provide defect information. In one example of electron beam testing, certain voltages are applied to the TFT's, and an electron beam may be directed to the individual pixel electrodes under investigation. Secondary electrons emitted from the pixel electrode area are sensed to determine the TFT voltages.
The size of the processing equipment as well as the process throughput time is a great concern to flat panel display manufacturers, both from a financial standpoint and a design standpoint. Current flat panel display processing equipment generally accommodates large area substrates up to about 2200 mm by 2500 mm and larger. The demand for larger displays, increased production and lower manufacturing costs has created a need for new testing systems that can accommodate larger substrate sizes and minimize clean room space.
Therefore, there is a need for a test system to perform testing on large area substrates that minimizes clean room space and reduces testing time.
The present invention generally provides a method and apparatus for testing electronic devices on a substrate that performs a testing sequence by moving the substrate under a beam of electrons from a plurality of electron beam columns. The plurality of electron beam columns form a collective test area adapted to test the entire width or length of the substrate. The substrate is moved relative the test area in one direction until the entire substrate has been subjected to the beam of electrons. A testing chamber is disclosed that may be coupled to one or more load lock chambers, or the testing chamber may also function as a load lock chamber.
In one embodiment, an apparatus for testing electronic devices on a large area substrate is described. The apparatus includes a testing platform having a substrate support disposed thereon, an end effector movably disposed in the substrate support, and one or more testing columns coupled to the testing platform, each testing column having an optical axis and a test area, wherein the substrate is movable in a single axis and the single axis is orthogonal to the optical axis of the one or more testing columns, and wherein a collective test area of the testing columns is configured to cover an entire width or an entire length of the substrate such that the testing columns are capable of testing the entire substrate as the substrate is moved through the apparatus along the single axis.
In another embodiment, an apparatus for testing electronic devices located on a large area substrate is described. The apparatus includes a testing platform having a support surface for supporting a large area substrate, a prober coupled to the testing platform, and a plurality of testing columns coupled to the testing platform in a first linear direction, each of the plurality of testing columns having an optical axis within a test area, wherein the substrate is movable in a second linear direction that is orthogonal to the optical axis and the plurality of testing columns have a collective test area sufficient to test an entire width or an entire length of the substrate such that the testing columns are capable of testing the entire substrate as the substrate is moved in the linear direction through the apparatus.
In another embodiment, a system for testing electronic devices located on a large area substrate is described. The system includes a testing platform, a substrate support disposed on the testing platform, the substrate support sized to receive a large area substrate, an end effector disposed within the substrate support adapted to move the substrate relative to the substrate support, a prober support coupled to the substrate support, and a plurality of testing devices coupled to an upper surface of the testing platform, each of the plurality of testing devices having a test area, wherein the plurality of testing devices are spaced to form a collective test area sufficient to test an entire length or an entire width of the substrate such that the testing devices are capable of testing the entire substrate as the substrate is moved in a single direction through the system.
So that the manner in which the above recited features of the present invention can be understood in detail, a more particular description of the invention, briefly summarized above, may be had by reference to embodiments, some of which are illustrated in the appended drawings. It is to be noted, however, that the appended drawings illustrate only typical embodiments of this invention and are therefore not to be considered limiting of its scope, for the invention may admit to other equally effective embodiments.
To facilitate understanding, identical reference numerals have been used, where possible, to designate identical elements that are common to the figures. It is contemplated that elements disclosed in one embodiment may be beneficially utilized on other embodiments without specific recitation.
The term substrate as used herein refers generally to large area substrates made of glass, a polymeric material, or other substrate materials suitable for having an electronic device formed thereon. Embodiments depicted in this application will refer to various drives, motors and actuators that may be one or a combination of the following: a pneumatic cylinder, a hydraulic cylinder, a magnetic drive, a stepper or servo motor, a screw type actuator, or other type of motion device that provides vertical movement, horizontal movement, combinations thereof, or other device suitable for providing at least a portion of the described motion.
Various components described herein may be capable of independent movement in horizontal and vertical planes. Vertical is defined as movement orthogonal to a horizontal plane and will be referred to as the Z direction. Horizontal is defined as movement orthogonal to a vertical plane and will be referred to as the X or Y direction, the X direction being movement orthogonal to the Y direction, and vice-versa. The X, Y, and Z directions will be further defined with directional insets included as needed in the Figures to aid the reader.
The one or more load lock chambers 120A may be disposed adjacent and connected to the testing chamber 110 on one side, or on both sides of the testing chamber 110 by a valve 135A disposed between load lock chamber 120A and the testing chamber 110, and a valve 135B disposed between load lock chamber 120B and the testing chamber 110. The load lock chambers 120A, 120B facilitate transfer of large area substrates to and from the testing chamber 110 and ambient environment from a transfer robot and/or a conveyor system typically located in the clean room environment. In one embodiment, the one or more load lock chambers 120A, 120B may be a dual slot load lock chamber configured to facilitate transfer of at least two large area substrates. Examples of a dual slot load lock chamber is described in U.S. Pat. No. 6,833,717, which issued Dec. 21, 2004, and U.S. patent application Ser. No. 11/298,648, filed Jun. 6, 2005, and published as United States Patent Publication No. 2006/0273815 on Dec. 7, 2006, both of which are incorporated herein by reference to the extent the applications are not inconsistent with this disclosure.
In one embodiment, the load lock chamber 120A is adapted to receive the substrate from the clean room environment through an entry port 130A, while the load lock chamber 120B has an exit port 130B that selectively opens to return the large area substrate to the clean room environment. The load lock chambers 120A, 120B are sealable from ambient environment and are typically coupled to one or more vacuum pumps 122, and the testing chamber 110 may be coupled to one or more vacuum pumps 122 that are separate from the vacuum pumps of the load lock chambers 120A, 120B. An example of various components of an electron beam test system for testing large area substrates are described in U.S. Pat. No. 6,833,717 which issued Dec. 21, 2004, and was previously incorporated by reference.
In one embodiment, the test system 100 includes a microscope 158 coupled to the test system to view any areas of interest encountered on the large area substrate. The microscope 158 is shown attached to a microscope assembly 160 that, in one embodiment, is coupled to the load lock 120A, while alternative embodiments (not shown) may couple the microscope 158 and microscope assembly 160 to one or both of the testing chamber 110 and the load lock chamber 120B. The microscope assembly 160 includes a gantry 164 which facilitates movement of the microscope assembly 160 above a transparent portion 162 on the upper surface of the load lock chamber 120. The transparent portion 162 may be fabricated from a transparent material such as glass, quartz, or other transparent material designed to withstand heat, negative pressure, and other process parameters.
The gantry 164 is configured to provide at least X and Y movement to the microscope assembly 160 to view the areas of interest on the large area substrate disposed in the load lock chamber 120 through the transparent portion 162. For example, the microscope 158 can move in the X and Y directions to a particular coordinate on the large area substrate, and may also move in the Z direction above the large area substrate disposed in the load lock chamber 120. A controller (not shown) may be coupled to the testing system 100 and the microscope assembly 160 to receive input of areas of interest located by the testing columns 115 on the large area substrate and provide coordinates to the microscope assembly 160. In one embodiment (not shown), the microscope assembly may be coupled to the testing chamber 110 adjacent the testing columns 115 and configured to move in at least the X direction parallel to the plurality of testing columns 115. In this embodiment, the testing chamber 110 includes a transparent portion on at least a portion of the upper surface of the testing chamber 110, and the gantry 164 and microscope assembly 160 may be coupled to the upper surface of the testing chamber 110 to view areas of interest on the large area substrate when disposed in the testing chamber 110.
In one embodiment, the test system 100 is configured to transport a large area substrate 105 having electronic devices located thereon through a testing sequence along a single directional axis, shown in the Figure as the Y axis. In other embodiments, the testing sequence may include a combination of movement along the X and Y axis. In other embodiments, the testing sequence may include Z directional movement provided by one or both of the testing columns 115 and a movable substrate support within the testing chamber 110. The substrate 105 may be introduced into the test system 100 along either the substrate width or substrate length. The Y directional movement of the substrate 105 in the test system allows the system dimensions to be slightly larger than the width or length dimensions of the substrate 105.
The test system 100 may also include a movable substrate support table configured to move in at least a Y direction through the test system 100. Alternatively, the substrate 105, with or without a support table, may be transferred through the test system by a conveyor, a belt system, a shuttle system, or other suitable conveyance adapted to transport the substrate 105 through the test system 100. In one embodiment, any of these support and/or transfer mechanisms are configured to only move along one horizontal directional axis. The chamber height of the load locks 120A, 120B, and the testing chamber 110 can be minimized as a result of the unidirectional transport system. The reduced height combined with the minimal width of the testing system provides a smaller volume in the load locks 120A, 120B, and the testing chamber 110. This reduced volume decreases pump-down and vent time in the load lock chambers 120, 125, and the testing chamber 110, thereby enhancing throughput of the test system 100. The movement of the support table along a single directional axis may also eliminate or minimize the drives required to move the support table in the X direction.
When the one or more probers 205 are not in use, the one or more probers 205 may be housed in a prober storage area 200 below the testing chamber 210. The prober exchanger 300 includes one or more movable shelves 310A, 310B that facilitate transfer of the one or more probers 205 into and out of the testing chamber 210. In other embodiments, the one or more probers 205 may be stored in other areas adjacent or coupled to the testing chamber 210.
In one embodiment, the movable sidewall 150 is of a length that spans substantially a length of the testing chamber 210. In other embodiments, the movable sidewall 150 is shorter than the length of the testing chamber 210 and is configured to allow sufficient space for one or more load lock chambers coupled to a side or length of the testing chamber 210. In yet another embodiment, the movable sidewall 150 is not used, at least for prober transfer, and the prober transfer is employed through an upper surface of the testing chamber 210.
A detailed description of a prober exchanger and movable sidewall can be found in the description of the Figures in United States Patent Publication No. 2006/0273815, which was previously incorporated by reference. An example of a prober suitable for use in the test system 100 is described in U.S. patent application Ser. Nos. 10/889,695, filed Jul. 12, 2004 and issued as U.S. Pat. No. 7,319,335 on Jan. 15, 2008, and 10/903,216, filed Jul. 30, 2004, which issued as U.S. Pat. No. 7,355,418 on Apr. 8, 2008, which applications are both incorporated herein by reference to the extent the applications are consistent with the disclosure.
The substrate support 360 may further include an end effector 370. In one embodiment, the end effector 370 includes a plurality of fingers that rests on an upper surface of the upper stage 362 having a planar or substantially planar upper surface on which the substrate 105 may be supported. In one embodiment, the end effector 370 has two or more fingers connected at least on one end by a support connection 369. The support connection 369 is adapted to couple each of the fingers to allow all of the fingers to move simultaneously. Each finger of the end effector 370 may be separated by a slot or space within the Z stage 365. The actual number of fingers is a matter of design and is well within the skill of one in the art to determine the appropriate number of fingers needed for the size of substrate to be manipulated.
For example, the end effector 370 can have four fingers 371A, 371B, 371C, and 371D that are evenly spaced, which contact and support the substrate 105 when placed thereon. The end effector 370 is configured to extend out of the testing chamber to retrieve or deposit the substrate to and from a load lock chamber (
One side of the prober positioning assembly 425 is shown in
In operation, a large area substrate may be supported by the fingers 371C, 371D of the end effector and the Z stage is actuated in a Z direction to place the substrate on an upper surface thereof. The prober 205 is transferred into the testing chamber 110, 210 from the prober exchanger 300 (
In an exemplary testing operation in reference to
A prober 205, configured to provide or sense a signal to or from the devices located on the large area substrate, may be introduced through a movable sidewall 150 from the prober exchanger 300 adjacent the test system 100. Alternatively, the prober 205 may be transferred to the load lock chamber 120A and coupled to the substrate 105 in the load lock chamber 120A, or coupled to the substrate prior to transfer into the load lock chamber 120A. As another alternative, the testing system 100 may comprise a movable table that includes an integrated prober that is coupled to the substrate throughout the travel path through the test system 100.
In another embodiment, the test area 500 is between about 240 mm to about 260 mm in the Y direction, for example about 250 mm, and about 350 mm to about 370 mm in the X direction, for example about 360 mm. In this embodiment, adjacent testing columns 115 may have an overlap in test area between about 0.001 mm to about 2 mm, for example about 1 mm, or may have no overlap, wherein the test areas of adjacent beams are adapted to touch with no overlap. In another embodiment, the test area 500 of each testing column is between about 325 mm to about 375 mm in the Y direction and about 240 mm to about 290 mm in the X direction. For example, the test area 500 is about 345 mm in the Y direction, and about 270 mm in the X direction.
In another embodiment, the collective test area is between about 1950 mm to about 2250 mm in the X direction and about 240 mm to about 290 mm in the Y direction. In another embodiment, the collective test area is between about 1920 mm to about 2320 mm in the X direction and about 325 mm to about 375 mm in the Y direction. In one embodiment, adjacent testing columns 115 may have an overlap in test area ranging between about 0.001 mm to about 2 mm, for example about 1 mm. In another embodiment, the test areas of adjacent testing columns 115 may not overlap.
Once the substrate 105 has been introduced into the testing chamber 110 with a prober connected thereto, the testing chamber 110 may be sealed and pumped down. Each of the testing columns 115 are configured to emit a beam of electrons directed toward the substrate. In this configuration, the plurality of testing columns 115 provide a collective test area that is adapted to test the entire width or length of the substrate as the substrate is moved under the testing columns. In one embodiment, a substrate 105 is provided to the test system 100 lengthwise and six testing columns 115 may be used to test the entire width of the substrate as the substrate is moved through the system. In another embodiment, the substrate 105 is provided to the test system 100 widthwise and eight testing columns 115 may be used to test the entire length of the substrate as the substrate is moved through the system. The invention is not limited to the number of testing columns disclosed and the actual number may be more or less depending on substrate size and test area formed on the substrate by the electron beam or beams. The staggered configuration of testing columns 115 shown in
The substrate 105 may be in continuous motion during testing, or the substrate may be moved incrementally during the test sequence. In either case, the entire substrate 105 may be tested in one travel path in the testing chamber 110. Once the testing sequence is complete, the testing chamber 110 may be vented, the prober transferred out of the testing chamber, and the substrate 105 may be transferred to the load lock chamber 120A, 120B, for subsequent return to ambient environment. In the embodiments depicted in
In one embodiment, the one or more load lock chambers 120A-120D may define a “T” configuration wherein a large area substrate is transferred into and out of the testing chamber 710 through the one or more load lock chambers 120A-120D. For example, the large area substrate may be transferred from the ambient environment of the clean room into the load lock chamber 120A and then transferred back to ambient environment out of the load lock chamber 120B after a testing sequence.
In another embodiment, the one or more load lock chambers 120A-120D may define a “U” configuration wherein a large area substrate is transferred into and out of the one or more load lock chambers 120A-120D. For example, the large area substrate may be transferred from the ambient environment in the clean room into the load lock chamber 120A and then transferred back to ambient environment from the load lock chamber 120C after a testing sequence.
In another embodiment, the one or more load lock chambers 120A-120D may define a “Z” configuration wherein a large area substrate is transferred into and out of the one or more load lock chambers 120A-120D. For example, the large area substrate may be transferred from the ambient environment in the clean room into the load lock chamber 120A and then transferred back to ambient environment from the load lock chamber 120D after a testing sequence.
In the embodiments showing the T, U, and Z configurations of the one or more load lock chambers 120A-120D, the one or more load lock chambers 120A-120D may be a single slot load lock, or a dual slot load lock chamber as described above. The dual slot configuration facilitates transfer of an untested large area substrate to the testing chamber and transfer of a tested large area substrate to ambient environment. The movable sidewall may be adapted to allow space for the one or more load lock chambers coupled to one or more of the side portions 705, 706, 707, and 708. The side portions 705, 706, 707, and 708 may have valves (not shown) between the one or more load lock chambers 120A-120D to facilitate transfer of the large area substrate therebetween. In one embodiment, a prober exchange sequence may be provided by the prober exchanger as described above. In other embodiments, the prober exchange may be provided through an upper portion of the testing chamber, or one or more probers may be coupled to the large area substrate in one or more of the one or more load lock chambers.
While the foregoing is directed to embodiments of the present invention, other and further embodiments of the invention may be devised without departing from the basic scope thereof, and the scope thereof is determined by the claims that follow.
This application is a continuation of U.S. patent application Ser. No. 11/375,625, filed Mar. 14, 2006, now U.S. Pat. No. 7,535,238, which claims benefit of U.S. Provisional Patent Application No. 60/676,558, filed Apr. 29, 2005, both of which are incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
3983401 | Livesay | Sep 1976 | A |
4090056 | Lockwood et al. | May 1978 | A |
4362945 | Riecke et al. | Dec 1982 | A |
4437044 | Veith et al. | Mar 1984 | A |
4471298 | Frohlich | Sep 1984 | A |
4495966 | Longamore | Jan 1985 | A |
4528452 | Livesay | Jul 1985 | A |
4532423 | Tojo et al. | Jul 1985 | A |
4684808 | Plies et al. | Aug 1987 | A |
4725736 | Crewe | Feb 1988 | A |
4740705 | Crewe | Apr 1988 | A |
4760567 | Crewe | Jul 1988 | A |
4761607 | Shiragasawa et al. | Aug 1988 | A |
4764818 | Crew | Aug 1988 | A |
4795912 | Maschke | Jan 1989 | A |
4818933 | Kerschner et al. | Apr 1989 | A |
4819038 | Alt | Apr 1989 | A |
4843312 | Hartman et al. | Jun 1989 | A |
4862075 | Choi et al. | Aug 1989 | A |
4870357 | Young et al. | Sep 1989 | A |
4899105 | Akiyama et al. | Feb 1990 | A |
4965515 | Karasawa et al. | Oct 1990 | A |
4983833 | Brunner et al. | Jan 1991 | A |
4985676 | Karasawa et al. | Jan 1991 | A |
4985681 | Brunner et al. | Jan 1991 | A |
5081687 | Henley et al. | Jan 1992 | A |
5124635 | Henley | Jun 1992 | A |
5170127 | Henley | Dec 1992 | A |
5175495 | Brahme et al. | Dec 1992 | A |
5177437 | Henley | Jan 1993 | A |
5258706 | Brunner et al. | Nov 1993 | A |
5268638 | Brunner et al. | Dec 1993 | A |
5278494 | Obigane et al. | Jan 1994 | A |
5285150 | Henley et al. | Feb 1994 | A |
5313156 | Klug et al. | May 1994 | A |
5368676 | Nagaseki et al. | Nov 1994 | A |
5369359 | Schmitt et al. | Nov 1994 | A |
5371459 | Brunner et al. | Dec 1994 | A |
5414374 | Brunner et al. | May 1995 | A |
5430292 | Honjo et al. | Jul 1995 | A |
5432461 | Henley | Jul 1995 | A |
5504438 | Henley | Apr 1996 | A |
5528158 | Sinsheimer et al. | Jun 1996 | A |
5530370 | Langhof et al. | Jun 1996 | A |
5558717 | Zhao et al. | Sep 1996 | A |
5621333 | Long et al. | Apr 1997 | A |
5644245 | Saitoh et al. | Jul 1997 | A |
5657139 | Hayashi et al. | Aug 1997 | A |
5691764 | Takekoshi et al. | Nov 1997 | A |
5742173 | Nakagomi et al. | Apr 1998 | A |
5774100 | Aoki et al. | Jun 1998 | A |
5801545 | Takekoshi et al. | Sep 1998 | A |
5801764 | Koizumi et al. | Sep 1998 | A |
5834007 | Kubota et al. | Nov 1998 | A |
5834773 | Brunner et al. | Nov 1998 | A |
5892224 | Nakasuji et al. | Apr 1999 | A |
5923180 | Botka et al. | Jul 1999 | A |
5930607 | Satou et al. | Jul 1999 | A |
5936687 | Lee et al. | Aug 1999 | A |
5973323 | Adler et al. | Oct 1999 | A |
5982190 | Toro-Lira | Nov 1999 | A |
6033281 | Toro-Lira | Mar 2000 | A |
6046599 | Long et al. | Apr 2000 | A |
6075245 | Toro-Lira | Jun 2000 | A |
6086362 | White et al. | Jul 2000 | A |
6137303 | Deckert et al. | Oct 2000 | A |
6145648 | Teichman et al. | Nov 2000 | A |
6198299 | Hollman | Mar 2001 | B1 |
6265889 | Tomita et al. | Jul 2001 | B1 |
6281701 | Yang et al. | Aug 2001 | B1 |
6288561 | Leedy | Sep 2001 | B1 |
6297656 | Kobayashi et al. | Oct 2001 | B1 |
6320568 | Zavracky | Nov 2001 | B1 |
6337722 | Ha et al. | Jan 2002 | B1 |
6337772 | Uehara et al. | Jan 2002 | B2 |
6340963 | Anno et al. | Jan 2002 | B1 |
6343369 | Saunders et al. | Jan 2002 | B1 |
6362013 | Yoshimura et al. | Mar 2002 | B1 |
6380729 | Smith | Apr 2002 | B1 |
6435868 | White et al. | Aug 2002 | B2 |
6450469 | Okuno et al. | Sep 2002 | B1 |
6501289 | Takekoshi et al. | Dec 2002 | B1 |
6528767 | Bagley et al. | Mar 2003 | B2 |
6559454 | Murrell et al. | May 2003 | B1 |
6566897 | Lo et al. | May 2003 | B2 |
6570553 | Hashimoto et al. | May 2003 | B2 |
6730906 | Brunner et al. | May 2004 | B2 |
6750455 | Lo et al. | Jun 2004 | B2 |
6765203 | Abel | Jul 2004 | B1 |
6777675 | Parker et al. | Aug 2004 | B2 |
6828587 | Yamazaki et al. | Dec 2004 | B2 |
6833717 | Kurita et al. | Dec 2004 | B1 |
6873175 | Toro-Lira et al. | Mar 2005 | B2 |
6992290 | Watanabe et al. | Jan 2006 | B2 |
6995576 | Imai et al. | Feb 2006 | B2 |
7005641 | Nakasuji et al. | Feb 2006 | B2 |
7075323 | Brunner et al. | Jul 2006 | B2 |
7077019 | Weiss et al. | Jul 2006 | B2 |
7084970 | Weiss et al. | Aug 2006 | B2 |
7088117 | Uher et al. | Aug 2006 | B2 |
7137309 | Weiss et al. | Nov 2006 | B2 |
7157921 | Shonohara | Jan 2007 | B2 |
7180084 | Weiss et al. | Feb 2007 | B2 |
7535238 | Abboud et al. | May 2009 | B2 |
7569818 | Schmid et al. | Aug 2009 | B2 |
20020024023 | Brunner et al. | Feb 2002 | A1 |
20020034886 | Kurita et al. | Mar 2002 | A1 |
20020047838 | Aoki et al. | Apr 2002 | A1 |
20030218456 | Brunner et al. | Nov 2003 | A1 |
20040145383 | Brunner | Jul 2004 | A1 |
20040222385 | Hatajima | Nov 2004 | A1 |
20050040338 | Weiss et al. | Feb 2005 | A1 |
20050179451 | Brunner et al. | Aug 2005 | A1 |
20050179452 | Brunner et al. | Aug 2005 | A1 |
20060038554 | Kurita et al. | Feb 2006 | A1 |
Number | Date | Country |
---|---|---|
3636316 | Apr 1987 | DE |
19832297 | Jan 1999 | DE |
0204855 | Dec 1986 | EP |
0370276 | May 1990 | EP |
0402499 | Dec 1990 | EP |
0523584 | Jan 1993 | EP |
0523594 | Jan 1993 | EP |
0537505 | Apr 1993 | EP |
0542094 | May 1993 | EP |
0614090 | Sep 1994 | EP |
0762137 | Mar 1997 | EP |
0806700 | Nov 1997 | EP |
0932182 | Jul 1999 | EP |
0999573 | May 2000 | EP |
1045425 | Oct 2000 | EP |
1045426 | Oct 2000 | EP |
1233274 | Aug 2002 | EP |
60039748 | Mar 1985 | JP |
6388741 | Apr 1988 | JP |
6388742 | Apr 1988 | JP |
63166132 | Jul 1988 | JP |
63318054 | Dec 1988 | JP |
1213944 | Aug 1989 | JP |
1307148 | Dec 1989 | JP |
6167538 | Jun 1994 | JP |
7302563 | Nov 1995 | JP |
8173418 | Jul 1996 | JP |
8289231 | Nov 1996 | JP |
11264940 | Sep 1999 | JP |
2000180392 | Jun 2000 | JP |
2000223057 | Aug 2000 | JP |
2000268764 | Sep 2000 | JP |
2001033408 | Feb 2001 | JP |
2001318116 | Nov 2001 | JP |
2001358189 | Dec 2001 | JP |
2002039976 | Feb 2002 | JP |
2002048740 | Feb 2002 | JP |
2002257997 | Sep 2002 | JP |
2002310959 | Oct 2002 | JP |
2002343294 | Nov 2002 | JP |
2004014402 | Jan 2004 | JP |
344876 | Nov 1998 | TW |
427551 | Mar 2001 | TW |
459140 | Oct 2001 | TW |
473772 | Jan 2002 | TW |
512428 | Jan 2002 | TW |
511207 | Nov 2002 | TW |
536630 | Jun 2003 | TW |
541430 | Jul 2003 | TW |
200301535 | Jul 2003 | TW |
WO-9960614 | Jan 1977 | WO |
WO-9209900 | Jun 1992 | WO |
WO-9831050 | Jul 1998 | WO |
WO-9923684 | May 1999 | WO |
WO-0233745 | Apr 2002 | WO |
WO-0245137 | Jun 2002 | WO |
Number | Date | Country | |
---|---|---|---|
20090195262 A1 | Aug 2009 | US |
Number | Date | Country | |
---|---|---|---|
60676558 | Apr 2005 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11375625 | Mar 2006 | US |
Child | 12422164 | US |