The disclosure relates to information carrying cards such as smart cards. More particularly, the disclosed subject matter relates to a polymer composition, an information carrying card comprising such composition, and a method of making the same.
Information carrying cards provide identification, authentication, data storage and application processing. Such cards or parts include key cards, identification cards, telephone cards, credit cards, bankcards, tags, bar code strips, other smart cards and the like. Counterfeiting and information fraud associated with traditional plastic cards causes tens of billions of dollars in the losses each year. As a response, information carrying cards are getting “smarter” to enhance security. Smart card technologies provide solutions to prevent fraud and decrease resulting losses.
Information carrying cards often include an integrated circuit (IC) embedded in a thermoplastic material, such as polyvinyl chloride (PVC). Information has been input and stored in the integrated circuit before a transaction. In use, information carrying cards work in either a “contact” or “contactless” mode. In contact mode, an electronic component on the card is caused to directly contact a card reader or other information receiving device to establish an electromagnetic coupling. In contactless mode, the electromagnetic coupling between the card and the card reading device is established through electromagnetic action at a distance, without the need for physical contact. The process of inputting information into the IC of the information carrying card also works in either of these two modes.
When information carrying cards become “smarter,” the amount of information stored in each card often increases, and the complexity of the embedded IC's also increases. The cards also need to withstand flexing to protect sensitive electronic components from damage as well as offer good durability during use. A relatively easy and full-scale commercial process having improved productivity at low cost is also desired.
The invention provides a cross-linkable polymer composition, a core layer for an information carrying card comprising such cross-linked composition, an information carrying card formed from the core layer for an information carrying card comprising such cross-linked composition, and methods for making the same.
In some embodiments, a cross-linkable polymer composition comprises a curable base polymer resin in a liquid or paste form, and a particulate thermoplastic filler. Such base polymer resin is selected from the group consisting of urethane acrylate, silicone acrylate, epoxy acrylate, acrylate, and urethane. Examples of acrylate include but are not limited to methacrylate. The particulate thermoplastic filler may be polyolefin, polyvinyl chloride (PVC), a compound or blend comprising PVC or a vinyl chloride copolymer, a copolymer of vinyl chloride and at least another monomer, or a polyester such as polyethylene terephthalate (PET). The at least another monomer in the vinyl chloride co-polymer may be vinyl ester, vinyl acetate or vinyl ether in some embodiments. The cross-linkable polymer composition may further comprise at least one curative.
In other embodiments, a cross-linkable polymer composition comprises a curable base polymer resin in a liquid or paste form, and a particulate thermoplastic filler comprising a copolymer of vinyl chloride and at least another monomer. The at least another monomer may be vinyl ester, vinyl acetate or vinyl ether. The curable base polymer is selected from the group consisting of urethane acrylate, ester acrylate, silicone acrylate, epoxy acrylate, acrylate, silicone, urethane and epoxy. Examples of acrylate include but are not limited to methacrylate. Such cross-linkable polymer composition may further comprise at least one curative. Such a composition is transformed into a cross-linked polymer composition after a curing reaction.
In yet other embodiments, a core layer for an information carrying card comprises a cross-linked polymer composition, which comprises a base polymer resin and a particulate thermoplastic filler. Such base polymer resin is selected from the group consisting of urethane acrylate, ester acrylate, silicone acrylate, epoxy acrylate, acrylate, silicone, urethane and epoxy. The particulate thermoplastic filler may be polyolefin, polyvinyl chloride (PVC), a compound or blend comprising PVC or a vinyl chloride copolymer, a copolymer of vinyl chloride and at least another monomer, or a polyester such as polyethylene terephthalate (PET). A core layer for an information carrying card may further comprise an inlay layer having at least one active or passive electronic component, e.g., an integrated circuit (IC). In some embodiments, the cross-linked polymer composition directly contacts the at least one IC on the inlay layer. In additional embodiments, an information carrying card comprises a core layer and a cross-linked polymer composition as described above.
A method for forming a core layer of an information carrying card is provided by the invention. In one embodiment, the method comprises steps of forming a first thermoplastic layer having at least one cavity, disposing an inlay layer of printed circuit board (PCB) partially or fully into the at least one cavity, and dispensing a cross-linkable polymer composition over the inlay layer in the at least one cavity. In some embodiments, the cross-linkable polymer composition used in such a method comprises a curable base polymer resin in a liquid or paste form and a particulate thermoplastic filler. In other embodiments, a method of making a core layer further comprises fixing an inlay layer to a first thermoplastic layer using an instant adhesive. In further embodiments, a method of making a core layer further includes the step of heating the layer structure at a predetermined temperature under pressure.
The invention also provides a method for fabricating an information carrying card comprising forming a core layer of the information carrying card of the invention. The method may further comprise heat laminating a printable thermoplastic film and a transparent thermoplastic film on each side of the core layer of the card.
The present disclosure is best understood from the following detailed description when read in conjunction with the accompanying drawings. It is emphasized that, according to common practice, the various features of the drawings are not necessarily to scale. In some instances, the dimensions of the various features are arbitrarily expanded or reduced for clarity. Like numerals denote like features throughout the specification and the figures.
This description of the exemplary embodiments is intended to be read in connection with the accompanying drawings, which are to be considered part of the entire written description. In the description, relative terms such as “lower,” “upper,” “horizontal,” “vertical,”, “above,” “below,” “up,” “down,” “top” and “bottom” as well as derivative thereof (e.g., “horizontally,” “downwardly,” “upwardly,” etc.) should be construed to refer to the orientation as then described or as shown in the drawing under discussion. These relative terms are for convenience of description and do not require that any apparatus to be constructed or operated in a particular orientation. Terms concerning attachments, coupling and the like, such as “connected” and “interconnected,” refer to a relationship wherein structures are secured or attached to one another either directly or indirectly through intervening structures, as well as both movable or rigid attachments or relationships, unless expressly described otherwise.
For brevity, unless expressly stated otherwise, references to “information carrying card” or “smart card” made throughout this description are intended to encompass at least key cards, identification cards, telephone cards, credit cards, bankcard, power cards, tags, bar code strips, any part comprising an integrated circuit (IC), and the like. “Information carrying card” or “smart card” also includes a wide variety of shapes, which include but are not limited to rectangular sheets, circular sheets, strips, rods and rings. “Information carrying card” or “smart card” also includes any information carrying parts of both “contact” and “contactless” modes. “Information carrying card” or “smart card” also encompasses any information carrying cards with or without an on-board power supply. An information carrying card comprising a power supply is also referred as a “power card.”
1. Cross-Linkable Polymer Composition:
A cross-linkable polymer composition formed in accordance with the invention often comprises a curable base polymer resin, in a liquid or paste form, and a particulate thermoplastic filler. The base polymer resin may be selected from the group consisting of urethane acrylate, ester acrylate, silicone acrylate, epoxy acrylate, acrylate and urethane. The acrylate may be a methacrylate. The particulate thermoplastic filler may be polyolefin, polyvinyl chloride (PVC), a copolymer of vinyl chloride and at least another monomer, or a polyester such as polyethylene terephthalate (PET). The particulate thermoplastic filler may be a compound or a blend comprising a thermoplastic resin, for example, a compound or a blend comprising PVC or a vinyl chloride copolymer. The at least another monomer in the vinyl chloride co-polymer may be vinyl ester, vinyl acetate or vinyl ether.
The base polymer resin may be an oligomer or pre-polymer having functional groups. The base polymer may be cross-linkable under a regular curing conditions including but not limited to heating, radiation such as ultraviolet (UV) light, moisture and other suitable conditions. The base polymer may be in liquid or paste form. Its viscosity may be in the range of 1-100,000 cps. In some embodiments, the base polymer resin is urethane acrylate. These polymer resins are readily available from specialty chemical suppliers. Examples of these suppliers include but are not limited to Dymax Corporation of Torrington, Conn. and Sartomer USA, LLC of Exton, Pa.
A particulate thermoplastic filler suitable for the invention may be any polymer which, when heated, will melt. Examples of a thermoplastic filler include, but are not limited to polyolefin, PVC, polyester, copolymer, terpolymer and the like. A powdered polymer that provides adequate results may be a compound or a blend comprising PVC, or a modified PVC. One suitable example of the particulate thermoplastic filler comprises a copolymer of vinyl chloride and at least another monomer, which may be vinyl ester, vinyl acetate or vinyl ether. The ratio of vinyl chloride and the least another monomer can be in any ratio. Examples of such a copolymer are available from Dow Chemical Company under trade name of UCAR™, and from BASF of Ludwigshafen, Germany under trade name of Laroflex™. UCAR™ is a copolymer of vinyl chloride and vinyl acetate. The grades include YYNS-3, VYHH and VYHD. Laroflex™ is a copolymer of vinyl chloride and vinyl isobutyl ether. The grades include MP25, MP 35, MP45 and MP60. All of these polymer resins are often supplied in the form of fine powder. One example of a thermoplastic filler is a PVC modified with a copolymer of vinyl chloride and at least another monomer such as vinyl ester, vinyl acetate or vinyl ether. In such an example, the ratio of PVC and the copolymer can be in the range of 99:1 to 1:99, and in the range of 95:5 to 80:20 in some embodiments.
Particulate thermoplastic filler might be obtained through suspension or emulsion polymerization of one or more corresponding monomers or, through pulverization of solid plastics. Pulverization of the solid polymers may be achieved through a mechanical method, a freezing grinding method, a solution method, or any other suitable method. The particulate form can be of any size, by way of example and no limitation; the particles may be in the range of 0.5-200 microns. In some embodiments, the particles are in the range of 1-1000 nm.
The cross-linkable polymer composition may further comprise at least one curative based on general principles of polymer chemistry. In some embodiments, the composition comprises a dual curing mechanism. For example, the cross-linkable composition comprises a first curative for thermal curing and a second curative for radiation curing. During the curing or cross-linking reaction, such a cross-linkable composition transforms into a solid cross-linked polymer composition. Such a cross-linked polymer composition is also known in the art as a “thermosetting” polymer or “thermoset” to distinguish it from a thermoplastic polymer. In some embodiments, the cross-linkable polymer composition comprises a range of from about 20 wt. % to about 99.5 wt. %, and preferably in the range of about 50 wt. % to about 95 wt. %, of the base polymer. The cross-linkable polymer composition often comprises a range of about 0.5 wt. % to about 80 wt. %, and preferably in the range of about 5 wt. % to about 50 wt. %, of the particulate thermoplastic filler. In some embodiments, the cross-linkable polymer composition comprises a range of from about 65 wt. % to about 99.5 wt. %, and preferably in the range of about 80 wt. % to about 95 wt. %, of the base polymer. The cross-linkable polymer composition often comprises a range of about 0.5 wt. % to about 35 wt. %, and preferably in the range of about 5 wt. % to about 20 wt. %, of the particulate thermoplastic filler.
In some embodiments, a cross-linkable polymer composition comprises a curable base polymer resin in a liquid or paste form, and a particulate thermoplastic filler comprising a copolymer of vinyl chloride and at least another monomer. The at least another monomer can be vinyl ester, vinyl acetate or vinyl ether. One example of a thermoplastic filler is a PVC modified with a copolymer of vinyl chloride and at least another monomer such as vinyl ester, vinyl acetate or vinyl ether. The ratio of PVC and the copolymer can be in the range of 99:1 to 1:99, and in the range of 95:5 to 80:20 in some embodiments. The curable base polymer is selected from the group consisting of urethane acrylate, ester acrylate, silicone acrylate, epoxy acrylate, silicone, acrylate, urethane and epoxy. The base polymer resin may be an oligomer or prepolymer having functional groups. The base polymer may be cross-linkable under regular curing conditions including, but not limited to heating, radiation such as ultraviolet (UV) light, moisture and other suitable conditions. The base polymer may be in liquid or paste form. Its viscosity may be in the range of 1-100,000 cps. In some embodiments, functional acrylate such as urethane acrylate is preferred. In other embodiments, the base polymer resin might be epoxy, silicone and urethane. In some embodiments, a formulation for flexibilized or flexible epoxy is preferred over a rigid epoxy. Such polymer resins are readily available from the specialty chemical suppliers.
The following examples are only intended to illustrate embodiments in accordance with the invention, and as such should not be construed as limiting the scope of the claims.
The following examples include a thermoplastic filler (Powder 1) and a formulation comprising a base polymer resin. Powder 1 is a fine powder mechanically pulverized from a 14 mil thick poly(vinyl chloride) (PVC) film. One example of a PVC film that provides an adequate Powder 1 is obtained from KlÖckner Pentaplast GmbH & Co. KG of Germany under the trade name Pentacard PVC (Vinyl) films, which is a PVC modified with a copolymer of vinyl chloride and vinyl acetate. The powder was sieved with a 1.0-0.05 mm sieve before use. A formulation comprising a base polymer resin is from Dymax Corporation of Torrington, Conn. Examples of such a formulation comprising a base polymer include Multi-Cure® 9-20676, 9-20557 and 6-625-SV01. Multi-Cure® 9-20676 is visible light or UV-curable urethane acrylate formulation comprising isobornyl acrylate, urethane methacrylate oligomer, acrylate oligomer, 2-(2-ethoxyethoxy) ethyl acrylate, 2-hydroxyethyl methacrylate, acrylic acid, t-butyl perbenzoate and a photoinitiator. Its viscosity is 400 cP, and its boiling point is 205° C.
Multi-Cure® 9-20557 is a urethane acrylate or acrylated urethane formulation comprising isobornyl acrylate, urethane methacrylate oligomer, 2-(2-ethoxyethoxy) ethyl acrylate, 2-hydroxyethyl methacrylate, acrylic acid, t-butyl perbenzoate and a photoinitiator. Its viscosity is 2300 cP, and its boiling point is 120° C. It is UV/visible light curable with secondary heat curing feature.
Multi-Cure® 6-625-SV01 is a urethane acrylate or acrylated urethane formulation comprising isobornyl acrylate, urethane methacrylate oligomer, 2-hydroxyethyl methacrylate, acrylic acid, maleic acid, t-butyl perbenzoate, a photoinitiator and epoxy resin (<1%). Its viscosity is 10,000 cP. It is UV/visible light curable with secondary heat curing feature.
Exemplary formulations Ex. 1-4 are shown in TABLE 1.
The formulations were made by mixing Powder 1 with the corresponding base polymer at the ratio specified in Table 1. The formulation was degassed and then placed into a syringe for easy dispensing before use. These formulations (Ex. 1-4) were used in making a core layer for an information carrying card, and the trials were successful. The structure of the core layer of an information carrying card, and the method of making the same are described in detail hereinafter. An inlay layer of a printed circuit board (PCB) is partially or fully disposed into the at least one cavity of a first thermoplastic layer, which was PVC or PVC modified with a vinyl chloride (VC) copolymer in these experiments. One of these cross-linkable polymer compositions (Ext. 1-4) was dispensed over the inlay layer, and then cured at a raised temperature of less than 150° C. under a pressure of less than 2 MPa. The resulting core layer was used in fabricating an information carrying card. In some of these experiments, the information carrying card is a powered smart card.
As comparison, the base polymer Multi-Cure® 9-20676 or 9-20557 without any fillers was used in the same way, but the trials were not successful in making an information carrying card.
Exemplary formulations Ex. 5-6 are shown in TABLE 1. Formulations Ex. 5-6 were made using the same method as described. These formulations (Ex. 5-6) were used in making a core layer for an information carrying card, and the trials were successful.
2. Core Layer for Information Carrying Card
In some embodiments, a core layer for an information carrying card comprises a cross-linked polymer composition. The cross-linked composition is made through curing the cross-linkable polymer composition described above. Such a cross-linked polymer composition comprises a base polymer resin and a particulate thermoplastic filler. The base polymer resin is urethane acrylate, ester acrylate, silicone acrylate, epoxy acrylate, acrylate, silicone, urethane, epoxy or the like. The particulate thermoplastic filler may be polyolefin, polyvinyl chloride (PVC), a compound or a blend comprising PVC or a vinyl chloride copolymer, a copolymer of vinyl chloride and at least another monomer, or a polyester such as polyethylene terephthalate (PET). The at least another monomer in the vinyl chloride co-polymer may be vinyl ester, vinyl acetate or vinyl ether in some embodiments. One example of the thermoplastic filler is a PVC modified with a copolymer of vinyl chloride and at least another monomer.
The core layer for an information carrying card further comprises an inlay layer having at least one active or passive electronic component, e.g., an integrated circuit (IC). In some embodiments, the inlay layer may comprise a piece of metal, ceramic or plastics. In some embodiments, the cross-linked polymer composition directly contacts at least one IC on the inlay layer. The core layer for an information carrying card further comprises at least one thermoplastic layer having at least one cavity. The inlay layer having at least one integrated IC is partially or fully disposed inside the cavity over the at least one thermoplastic layer. The crosslinked polymer composition is disposed into the cavity over the at least one thermoplastic layer, directly contacting the at least one active or passive electronic component, e.g., an integrated circuit (IC) on the inlay layer. This invention also provides a method for forming such a core layer of an information carrying card.
Referring to
Referring to
Referring to
Referring to
Cross-linkable polymer composition 16, which is packed in a syringe, can be dispensed using the standard dispensing apparatus or equipment for adhesives, encapsulants, sealants and potting compounds. The amount to cross-linkable composition 16 to be dispensed can be calculated and controlled based on the volume of the cavity and the inlay layer 8.
Referring to
Referring to
Following step 28, the process optionally comprises step 30 of “fixing” inlay layer 8 on first thermoplastic layer 6 using an instant adhesive. A plurality of holes is formed on the inlay layer by cutting some portions of supporting film 12 without any electronic component 10 and interconnects 14. An instant adhesive is applied to the holes after step 28. Examples of an instant adhesive include but are not limited to cyanoacrylate. In some embodiments, inlay layer 8 is fixed to first thermoplastic layer 6 in a period as short as a few seconds.
At step 32 (
At step 34, third release film and fourth release film 4 are placed on the layered structure to form a sandwich structure (
At step 38, the layered structure is heated under pressure. A suitable temperature would be one that is sufficiently high to partially or fully cure the cross-linkable polymer composition 16, or hot laminating first thermoplastic film 6, or both. After the heat treatment, the cross-linkable polymer composition 16 forms a solid. Such a cross-linked polymer composition has good adhesion with first thermoplastic layer 6 and inlay layer 8 including electronic component 10 and supporting film 12. In some embodiments, such a cross-linked composition is more flexible than first thermoplastic film 6. In some embodiments, the temperature is in the range of 65-232° C. In some embodiments, the temperature is less than 150° C.
Process 70 may further comprise cooling the layer structure and peeling off the first, second, third and fourth release films. Process 70 may further comprise a step of curing the cross-linkable polymer composition 16 using visible light, UV or other radiation curing. It may also comprise a step of curing via the introduction of moisture or the promotion of other chemical reactions. After process 70, the cross-linkable polymer composition 16 is cured so as to yield a solid. After the release films are peeled away, a core layer for an information carrying card is formed. The core layer comprises a first thermoplastic layer 6, an inlay layer 8 and a cross-linked polymer composition 16. The exemplary core layers for an information carrying card from process 70 are shown in
Referring to
Referring to
Referring
Referring to
Referring to
In step 122 (
In step 124, the resulting inlay layer 8 having holes is placed partially or fully inside a cavity of the first thermoplastic layer 6. The exemplary inlay layer 8 may have any dimension relative to size of a cavity in the first thermoplastic layer 6. The exemplary inlay layer 8 may be partially or fully disposed into such a cavity. Referring to
In step 126 of
3. Information Carrying Cards
In some embodiments, an information carrying card comprises a core layer and a crosslinked polymer composition described above. In some embodiments, the information carrying card further comprises at least one printable thermoplastic film laminated onto the surface of the at least one thermoplastic layer and the crosslinked polymer composition. The information carrying card further comprises at least one transparent film laminated onto the surface of the printable thermoplastic film. In some embodiments, the information carrying card comprises at least one battery interconnected with the at least one integrated circuit (IC) on an inlay layer in the core layer. The information carrying card may also comprise a piece of metal, ceramic or plastic materials in the core layer of some information carrying cards.
In some embodiments, the invention also provides a method for fabricating an information carrying card. The method comprises forming a core layer of the information carrying card in this disclosure. The method may further comprise heat laminating a printable thermoplastic film and a transparent thermoplastic film on each side of the core layer of the information.
Referring to
In step 154 of
In step 156 (
In step 158 (
In some embodiments, the exemplary process 150 comprises a process such as surface treatment to improve adhesion between two layers. Examples of surface treatment methods include but are not limited to plasma treatment or corona treatment before hot lamination at step 158.
The exemplary processes 70 and 150 can be used to make a plurality of information carrying cards on one sheet, in accordance with some embodiments. Referring to
An exemplary core layer structure 180 comprising a plurality of inlay layer 8 can be fabricated using process 70 as described above. In some embodiments, each inlay layer 8 is fixed onto the first thermoplastic layer 6 with an instant adhesive 115 using an exemplary process 120 (
Referring again to
In some embodiments, the exemplary core layer structure 180 is further laminated with at least one printable thermoplastic layer and a transparent film. The resulting laminated structure is then cut to form a plurality of information carrying cards. In some embodiments, the pressure is preferably less than 2 MPa. The temperature is in the range of 65-232° C. in some embodiments, and is preferably less than 150° C. in some embodiments in the lamination process.
Rectangular shaped information carrying cards or smart cards in this disclosure are for illustration only. The disclosure structure and process of making also apply to any information carrying card or part of any shapes and any size. Examples of these parts include but are not limited to rectangular sheets, circular sheets, strips, rods and rings. The size includes but is not limited to any size following ISO/IEC 7810 standard.
Although the subject matter has been described in terms of exemplary embodiments, it is not limited thereto. Rather, the appended claims should be construed broadly, to include other variants and embodiments, which may be made by those skilled in the art.
This application is a continuation of U.S. patent application Ser. No. 13/647,982, filed Oct. 9, 2012, which claims the benefit of U.S. Provisional Application No. 61/619,700, filed on Apr. 3, 2012, which applications are expressly incorporated by reference herein in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
2890202 | Parker | Jun 1959 | A |
3024216 | Smitmans et al. | Mar 1962 | A |
4115479 | Daidone | Sep 1978 | A |
4117036 | Honda et al. | Sep 1978 | A |
4310451 | Ernest et al. | Jan 1982 | A |
4322170 | Papenmeier | Mar 1982 | A |
4382201 | Trzaskos | May 1983 | A |
4399061 | Sickert | Aug 1983 | A |
4463128 | Lin | Jul 1984 | A |
4480079 | Orton et al. | Oct 1984 | A |
4627642 | Peronneau et al. | Dec 1986 | A |
4640636 | Hofmann | Feb 1987 | A |
4742085 | Cozens | May 1988 | A |
4743636 | Bersano | May 1988 | A |
4754319 | Saito et al. | Jun 1988 | A |
4769278 | Kamimura et al. | Sep 1988 | A |
4775698 | Cozens | Oct 1988 | A |
4775699 | Cozens | Oct 1988 | A |
4775700 | Cozens | Oct 1988 | A |
4775701 | Cozens | Oct 1988 | A |
4775702 | Cozens | Oct 1988 | A |
4801418 | Bersano | Jan 1989 | A |
4843225 | Hoppe | Jun 1989 | A |
4954195 | Turpin | Sep 1990 | A |
5013900 | Hoppe | May 1991 | A |
5084501 | Drout et al. | Jan 1992 | A |
5126396 | Orton et al. | Jun 1992 | A |
5143723 | Calvo et al. | Sep 1992 | A |
5198170 | Hawrylko | Mar 1993 | A |
5198501 | Bott et al. | Mar 1993 | A |
5233022 | Donatti et al. | Aug 1993 | A |
5255430 | Tallaksen | Oct 1993 | A |
5276106 | Portelli et al. | Jan 1994 | A |
5286437 | Severiens | Feb 1994 | A |
5324506 | Calvo et al. | Jun 1994 | A |
5407617 | Oppermann et al. | Apr 1995 | A |
5407893 | Koshizuka et al. | Apr 1995 | A |
5462996 | Portelli et al. | Oct 1995 | A |
5599765 | Ohshima et al. | Feb 1997 | A |
5626958 | D'Herbecourt et al. | May 1997 | A |
5672646 | Allas et al. | Sep 1997 | A |
5690773 | Fidalgo et al. | Nov 1997 | A |
5767503 | Gloton | Jun 1998 | A |
5822194 | Horiba et al. | Oct 1998 | A |
5955021 | Tiffany, III | Sep 1999 | A |
5972514 | D'Herbecourt et al. | Oct 1999 | A |
5975420 | Gogami | Nov 1999 | A |
6037879 | Tuttle | Mar 2000 | A |
6052062 | Tuttle | Apr 2000 | A |
6100804 | Brady et al. | Aug 2000 | A |
6217685 | Leydier | Apr 2001 | B1 |
6330464 | Colvin, Jr. et al. | Dec 2001 | B1 |
6376769 | Chung | Apr 2002 | B1 |
6380272 | Chen | Apr 2002 | B1 |
6380845 | Tuttle | Apr 2002 | B2 |
6406757 | Blatter et al. | Jun 2002 | B1 |
6423760 | Qiao et al. | Jul 2002 | B1 |
6441085 | Saethre et al. | Aug 2002 | B1 |
6446874 | Elbaz et al. | Sep 2002 | B1 |
6462273 | Corisis et al. | Oct 2002 | B1 |
6468835 | Blanc et al. | Oct 2002 | B1 |
6477926 | Swisher et al. | Nov 2002 | B1 |
6495127 | Wallace et al. | Dec 2002 | B1 |
6521985 | Dossetto | Feb 2003 | B1 |
6534588 | Löcken et al. | Mar 2003 | B1 |
6551537 | Chen | Apr 2003 | B2 |
6611050 | Ference et al. | Aug 2003 | B1 |
6624212 | Weier et al. | Sep 2003 | B2 |
6639309 | Wallace | Oct 2003 | B2 |
6649688 | Mayer et al. | Nov 2003 | B1 |
6653394 | Meisenburg et al. | Nov 2003 | B1 |
6673423 | Kranenburg-Van Dijk et al. | Jan 2004 | B2 |
6689727 | Olsson | Feb 2004 | B1 |
6693513 | Tuttle | Feb 2004 | B2 |
6730734 | Hamilton et al. | May 2004 | B1 |
6765289 | Nakata et al. | Jul 2004 | B2 |
6768415 | Tuttle | Jul 2004 | B1 |
6780897 | Blum et al. | Aug 2004 | B1 |
6784230 | Patterson et al. | Aug 2004 | B1 |
6786415 | Yiu | Sep 2004 | B2 |
6786748 | Masson et al. | Sep 2004 | B2 |
6790893 | Nguyen et al. | Sep 2004 | B2 |
6861475 | Ilenda et al. | Mar 2005 | B2 |
6884837 | Kohlhammer et al. | Apr 2005 | B2 |
6908786 | Halope | Jun 2005 | B2 |
6918984 | Murray et al. | Jul 2005 | B2 |
6943437 | Blanc et al. | Sep 2005 | B2 |
6960620 | Wenning et al. | Nov 2005 | B2 |
6984205 | Gazdzinski | Jan 2006 | B2 |
6989349 | Tatewaki et al. | Jan 2006 | B2 |
7012504 | Tuttle | Mar 2006 | B2 |
7030179 | Patterson et al. | Apr 2006 | B2 |
7137148 | Tao et al. | Nov 2006 | B2 |
7147625 | Sarangapani et al. | Dec 2006 | B2 |
7217747 | Weier et al. | May 2007 | B2 |
7221257 | Tuttle | May 2007 | B1 |
7237724 | Singleton | Jul 2007 | B2 |
7377446 | Ohta et al. | May 2008 | B2 |
7382045 | Osako et al. | Jun 2008 | B2 |
7433655 | Jacobs et al. | Oct 2008 | B2 |
7511371 | Wallace | Mar 2009 | B2 |
7528191 | Metzemacher et al. | May 2009 | B2 |
7545336 | Naito | Jun 2009 | B2 |
7592394 | Yang et al. | Sep 2009 | B2 |
7597266 | Benato | Oct 2009 | B2 |
7601563 | Chen et al. | Oct 2009 | B2 |
7608306 | Hasskerl et al. | Oct 2009 | B2 |
7668588 | Kovacs | Feb 2010 | B2 |
7795077 | Tsai et al. | Sep 2010 | B2 |
7868441 | Eaton et al. | Jan 2011 | B2 |
7877120 | Jacobs et al. | Jan 2011 | B2 |
7917298 | Scher et al. | Mar 2011 | B1 |
7939920 | Wallace | May 2011 | B2 |
7954724 | Poidomani et al. | Jun 2011 | B2 |
7989268 | Chen et al. | Aug 2011 | B2 |
8012809 | Reed | Sep 2011 | B2 |
8017147 | Mazed et al. | Sep 2011 | B2 |
8034153 | Marchiando et al. | Oct 2011 | B2 |
8044508 | Jenson et al. | Oct 2011 | B2 |
8231063 | Poidomani et al. | Jul 2012 | B2 |
8382000 | Mullen et al. | Feb 2013 | B2 |
8424773 | Mullen et al. | Apr 2013 | B2 |
8540165 | Foo et al. | Sep 2013 | B2 |
8608080 | Finn | Dec 2013 | B2 |
8673452 | Petzoldt et al. | Mar 2014 | B2 |
8678276 | Poidomani et al. | Mar 2014 | B2 |
9122968 | Cox | Sep 2015 | B2 |
9183486 | Cox | Nov 2015 | B2 |
9439334 | Cox | Sep 2016 | B2 |
20010012680 | Cobbley et al. | Aug 2001 | A1 |
20010034399 | Kohlhammer et al. | Oct 2001 | A1 |
20010043141 | Tuttle | Nov 2001 | A1 |
20020013387 | Weier et al. | Jan 2002 | A1 |
20020042452 | Chen | Apr 2002 | A1 |
20020055581 | Lorah et al. | May 2002 | A1 |
20020086908 | Chou et al. | Jul 2002 | A1 |
20020091178 | Amin-Javaheri | Jul 2002 | A1 |
20020119294 | Monkarsh et al. | Aug 2002 | A1 |
20020125431 | Hwang | Sep 2002 | A1 |
20020125598 | Chen | Sep 2002 | A1 |
20020131251 | Corisis et al. | Sep 2002 | A1 |
20020132086 | Su-Tuan | Sep 2002 | A1 |
20020140546 | Tuttle | Oct 2002 | A1 |
20020146549 | Kranenburg-Van Dijk et al. | Oct 2002 | A1 |
20030020182 | Blanc et al. | Jan 2003 | A1 |
20030105188 | Nguyen et al. | Jun 2003 | A1 |
20030153120 | Halope | Aug 2003 | A1 |
20030175433 | Wenning et al. | Sep 2003 | A1 |
20030183914 | Wallace | Oct 2003 | A1 |
20030216701 | Sumarta | Nov 2003 | A1 |
20030217517 | Allison et al. | Nov 2003 | A1 |
20040002559 | Troutman et al. | Jan 2004 | A1 |
20040023538 | Masson et al. | Feb 2004 | A1 |
20040036155 | Wallace | Feb 2004 | A1 |
20040077756 | Weier et al. | Apr 2004 | A1 |
20040077784 | Ilenda et al. | Apr 2004 | A1 |
20040083531 | Tao et al. | May 2004 | A1 |
20040145453 | Tuttle | Jul 2004 | A1 |
20040180476 | Kazlas et al. | Sep 2004 | A1 |
20040192794 | Patterson et al. | Sep 2004 | A1 |
20040216658 | Lin | Nov 2004 | A1 |
20040266940 | Issari | Dec 2004 | A1 |
20050004525 | Sarangapani et al. | Jan 2005 | A1 |
20050008604 | Schultz et al. | Jan 2005 | A1 |
20050023665 | Ledwidge | Feb 2005 | A1 |
20050025725 | Schultz et al. | Feb 2005 | A1 |
20050031870 | Liu et al. | Feb 2005 | A1 |
20050051536 | Shirlin et al. | Mar 2005 | A1 |
20050182156 | Liu | Aug 2005 | A1 |
20050203242 | Nakayama et al. | Sep 2005 | A1 |
20050218551 | Halahmi et al. | Oct 2005 | A1 |
20050234154 | Halahmi | Oct 2005 | A1 |
20060042827 | Chou et al. | Mar 2006 | A1 |
20060079612 | Troutman et al. | Apr 2006 | A1 |
20060100378 | Wu | May 2006 | A1 |
20060134705 | Sundrehagen | Jun 2006 | A1 |
20060135705 | Vallance et al. | Jun 2006 | A1 |
20060155035 | Metzemacher et al. | Jul 2006 | A1 |
20060168802 | Tuttle | Aug 2006 | A1 |
20060181478 | Benato | Aug 2006 | A1 |
20070034700 | Poidomani et al. | Feb 2007 | A1 |
20070087230 | Jenson et al. | Apr 2007 | A1 |
20070096265 | Wallace | May 2007 | A1 |
20070103983 | Watanabe et al. | May 2007 | A1 |
20070104938 | Lin | May 2007 | A1 |
20070117276 | Chen et al. | May 2007 | A1 |
20070131144 | Winter et al. | Jun 2007 | A1 |
20070193643 | Jarvenkyla | Aug 2007 | A1 |
20070208233 | Kovacs | Sep 2007 | A1 |
20070208262 | Kovacs | Sep 2007 | A1 |
20070252705 | Halope et al. | Nov 2007 | A1 |
20080001715 | Tuttle | Jan 2008 | A1 |
20080073770 | Yee et al. | Mar 2008 | A1 |
20080096326 | Reed | Apr 2008 | A1 |
20080136160 | Leenders | Jun 2008 | A1 |
20080174438 | Tuttle | Jul 2008 | A1 |
20080194736 | Lu | Aug 2008 | A1 |
20080207837 | Weiss et al. | Aug 2008 | A1 |
20080249209 | Trummer et al. | Oct 2008 | A1 |
20080251906 | Eaton et al. | Oct 2008 | A1 |
20080262154 | Behrens et al. | Oct 2008 | A1 |
20080273299 | Tsai et al. | Nov 2008 | A1 |
20080282540 | Singleton | Nov 2008 | A1 |
20080315382 | Wallace | Dec 2008 | A1 |
20090017195 | Vallance et al. | Jan 2009 | A1 |
20090018248 | Pirri et al. | Jan 2009 | A1 |
20090020615 | Patel | Jan 2009 | A1 |
20090056591 | Schmidt et al. | Mar 2009 | A1 |
20090068556 | Jacobs et al. | Mar 2009 | A1 |
20090104367 | Simon | Apr 2009 | A1 |
20090130355 | Chen et al. | May 2009 | A1 |
20090142981 | Arendt et al. | Jun 2009 | A1 |
20090247369 | Chang | Oct 2009 | A1 |
20090252772 | Henglein et al. | Oct 2009 | A1 |
20090277663 | Valenta et al. | Nov 2009 | A1 |
20090283313 | Chen et al. | Nov 2009 | A1 |
20100015408 | Fong et al. | Jan 2010 | A1 |
20100075104 | Dehennau et al. | Mar 2010 | A1 |
20100096166 | Fjelstad | Apr 2010 | A1 |
20100105273 | Motomura et al. | Apr 2010 | A1 |
20100144931 | Balduf | Jun 2010 | A1 |
20100179273 | Spyrou et al. | Jul 2010 | A1 |
20100249325 | Bothe et al. | Sep 2010 | A1 |
20100298469 | Kaupp et al. | Nov 2010 | A1 |
20100304118 | Baidak et al. | Dec 2010 | A1 |
20100321913 | Tsai et al. | Dec 2010 | A1 |
20110011939 | Seah | Jan 2011 | A1 |
20110097609 | Jenson et al. | Apr 2011 | A1 |
20110140744 | Kazlas et al. | Jun 2011 | A1 |
20110140841 | Bona et al. | Jun 2011 | A1 |
20110300413 | Jacobs et al. | Dec 2011 | A1 |
20110317355 | Jow | Dec 2011 | A1 |
20130009347 | Feldman et al. | Jan 2013 | A1 |
20130255078 | Cox | Oct 2013 | A1 |
20130255848 | Cox | Oct 2013 | A1 |
20130258622 | Cox et al. | Oct 2013 | A1 |
20130260065 | Cox | Oct 2013 | A1 |
20130261262 | Cox | Oct 2013 | A1 |
20160031201 | Cox | Feb 2016 | A1 |
20160203399 | Cox | Jul 2016 | A1 |
20160342881 | Cox | Nov 2016 | A1 |
Number | Date | Country |
---|---|---|
1279797 | Jan 2001 | CN |
1305618 | Jul 2001 | CN |
1351733 | May 2002 | CN |
19915765 | Oct 2000 | DE |
0350179 | Jan 1990 | EP |
0754567 | Jan 1997 | EP |
2093704 | Aug 2009 | EP |
2386428 | Nov 2011 | EP |
H7-93817 | Apr 1995 | JP |
2005-004429 | Jan 2005 | JP |
2009-205337 | Sep 2009 | JP |
2010-250467 | Nov 2010 | JP |
10-1990-0001745 | Mar 1990 | KR |
1020110058183 | Jun 2011 | KR |
1020110062486 | Jun 2011 | KR |
8802762 | Apr 1988 | WO |
9947331 | Sep 1999 | WO |
0030031 | May 2000 | WO |
2014039183 | Mar 2014 | WO |
2015026612 | Feb 2015 | WO |
Entry |
---|
First Office Action issued in connection with Chinese patent application No. 201380026495.9, Jul. 13, 2016, 21 pages. |
“Material Safety Data Sheet for Rigid PVC (Vinyl) Films,” Klöckner Pentaplast of America, Inc., Rev. Mar. 2010. |
“Material Safety Data Sheet acc. to ISO/DIS 11014 for Trade Name: 9-20557-LV,” Dymax Corporation, Mar. 10, 2011. |
“Material Safety Data Sheet acc. to ISO/DIS 11014 for Trade Name: 9-20557,” Dymax Corporation, Sep. 21, 2011. |
“Multi-Cure® 6-625-SV01-REV-A Adhesives for Metal, Glass and Plastics Product Data Sheet,” Dymax Corporation, Sep. 24, 2010. |
“Material Safety Data Sheet acc. to ISO/DIS 11014 for Trade Name: 6-625-REV-A,” Dymax Corporation, Dec. 9, 2010. |
“Product Specification Sheet for Vinyl Chloride/Vinyl Acetate Copolymer,” The Dow Chemical Company, 1995, http://www.dow.com/svr/prod/vcvac.htm. |
International Bureau of WIPO, (Officer—Nakamura, Yukari), PCT International Preliminary Report on Patentability for PCT Application No. PCT/US2013/052814 issued Mar. 10, 2015, pp. 1-6. |
International Bureau of WIPO, (Officer—Kang, Sung Chul), PCT International Search Report for PCT Application No. PCT/US2013/052814 issued Nov. 26, 2013, pp. 1-3. |
PCT International Search Report for PCT Application No. PCT/US2013/033784 issued Jul. 2, 2013, 4 pages. |
U.S. International Searching Authority of PCT, PCT International Search Report and Written Opinion for PCT Application No. PCT/US2014/050987 issued Feb. 11, 2015, pp. 1-10. |
PCT International Search Report for PCT Application No. PCT/US2013/034216 issued Jun. 26, 2013, 4 pages. |
PCT International Search Report for PCT Application No. PCT/US2013/033963 issued Aug. 12, 2013, 4 pages. |
International Bureau of WIPO, PCT International Search Report for PCT Application No. PCT/US2013/052815 issued Nov. 26, 2013, pp. 1-3. |
Wakana, Masahiko, “IC Card and its Manufacturing Method”, Feb. 27, 2008, Japanese Patent Office. Detailed Description. |
Database WPI Week 201150 Thomson Scientific. London. GB; AN 2011-J56990 XP002750795. & JP 2011 144213 A (Toray Ind Inc) Jul. 28, 2011 (Jul. 28, 2011) * abstract *. |
Database WPI Week 201023 Thomson Scientific. London. GB; AN 2010-C93048 XP002750796. & JP 2010 059225 A (Toray Ind Inc) Mar. 18, 2010 (Mar. 18, 2010) * abstract *. |
Supplementary European Search Report issued in connection with European Patent Application No. EP13773028, Nov. 13, 2015, 8 pages. |
Supplementary European Search Report issued in connection with European Patent Application No. EP13772855, Nov. 12, 2015, 8 pages. |
Supplementary European Search Report issued in connection with European Patent Application No. EP13772768, Nov. 23, 2015, 6 pages. |
European Supplementary Search Report issued in connection with European patent application No. EP13835586, Jun. 3, 2016, 7 pages. |
First Office Action issued in connection with Chinese patent application No. 201380026486.X, Sep. 12, 2016, 11 pages. |
Number | Date | Country | |
---|---|---|---|
20150327365 A1 | Nov 2015 | US |
Number | Date | Country | |
---|---|---|---|
61619700 | Apr 2012 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13647982 | Oct 2012 | US |
Child | 14806272 | US |