Inhibition of cell adhesion protein-carbohydrate interactions

Abstract
Disclosed is a method of inhibiting the binding of a cell bearing a cell adhesion protein to a molecule or cell bearing a carbohydrate determinant specific for the cell adhesion molecule. The method involves contacting the cell adhesion protein-bearing cell with an inhibitor molecule bearing the carbohydrate determinant. Also disclosed is a method of inhibiting the binding of the first member of a specific binding pair to the second member of the specific binding pair, involving contacting the first member with an antibody which is specific for the first member and which is covalently bonded to a carbohydrate moiety which interferes with the antibody's ability to fix complement and bind an F.sub.c receptor. The methods of the invention may be used, for example, to reduce inflammation.
Description

BACKGROUND OF THE INVENTION
This invention relates to therapeutic interference with interactions between cell adhesion proteins and their carbohydrate ligands.
ELAM-1 is an integral membrane adhesion protein. It possesses an extracellular domain including an N-terminal lectin-related segment, an epidermal growth factor related repeat, and multiple complement regulatory protein motifs (Bevilacqua et al., Science 243:1160, 1989; Stoolman et al., Cell 56:907, 1989). ELAM-1 is specifically expressed on the surface of endothelial cells activated by the cytokines IL-1 and tumor necrosis factor (TNF) (Bevilacqua et al., Proc. Natl. Acad. Sci. USA 84:9238, 1987), or the peptide hormone Substance P (Matis et al., J. Invest. Dermatol. 94:492, 1990). It mediates adhesion of myeloid cells (e.g., neutrophilic granulocytes) to cytokine-activated endothelial cells (Bevilacqua et al., Proc. Natl. Acad. Sci USA 84:9238, 1987). It has been suggested that ELAM-1 is involved in the regulation of inflammatory and immunological events at the interface of the blood and the blood vessel wall (Bevilacqua et al., Science 243:1160, 1989).
SUMMARY OF THE INVENTION
In general, the invention features a method of inhibiting the binding of a cell bearing a cell adhesion protein to a molecule or cell bearing a carbohydrate determinant specific for the cell adhesion molecule. The method involves contacting the cell adhesion protein-bearing cell with an inhibitor molecule bearing the carbohydrate determinant.
In preferred embodiments, the cell adhesion protein is a selectin, such as ELAM-1; the carbohydrate determinant is sialyl-Le.sup.X ; the sialyl-Le.sup.X determinant may be either N-linked or O-linked; the inhibitor molecule contains multiple sialyl-Le.sup.X determinants; the inhibitor molecule is a protein, preferably, .alpha..sub.1 -acid glycoprotein or an antibody, preferably, IgG1; the inhibitor molecule includes one or more of the N-linked glycan addition sites of .alpha..sub.1 -acid glycoprotein; and the inhibitor molecule is soluble.
In a related aspect, the invention features a method of reducing inflammation in a human patient involving administering to the patient a therapeutically-effective amount of an organic molecule bearing a sialyl-Le.sup.X determinant.
In preferred embodiments, the organic molecule contains multiple sialyl-Le.sup.X determinants; the sialyl-Le.sup.X determinant is either N-linked or O-linked; the organic molecule is a protein, preferably, .alpha..sub.1 -acid glycoprotein or an antibody, preferably, IgG1; and the organic molecule is soluble.
In another related aspect, the invention features a method of identifying an inhibitor molecule which blocks an interaction between an ELAM-1-bearing cell and a second cell or protein. The method involves contacting the ELAM-1-bearing cell with a candidate inhibitor molecule and with the second cell or protein, allowing an affinity complex between the ELAM-1-bearing cell and the second cell or protein to form, and identifying the inhibitor molecule as one which decreases formation of the affinity complex. Preferably, the second cell or protein bears a sialyl-Le.sup.X determinant.
In yet another related aspect, the invention features a method of inhibiting the binding of the first member of a specific binding pair to the second member of the specific binding pair, involving contacting the first member with an antibody which is specific for the first member and which is covalently bonded to a carbohydrate moiety which interferes with the antibody's ability to fix complement and bind an F.sub.c receptor.
In preferred embodiments, the first member is a protein and the second member is also a protein; the antibody is covalently bonded to multiple carbohydrate moieties; and the carbohydrate moiety is a sialyl-Le.sup.X determinant; the sialyl-Le.sup.X determinant is either N-linked or O-linked; and the antibody includes one or more of the N-linked glycan addition sites of .alpha..sub.1 -acid glycoprotein.
In another aspect, the invention features a cell-free organic molecule to which there is covalently bonded a carbohydrate determinant specific for a cell adhesion protein.
In preferred embodiments, the cell adhesion protein is a selectin, preferably, ELAM-1; the carbohydrate determinant is sialyl-Le.sup.X ; the sialyl-Le.sup.X is either N-linked or O-linked; the organic molecule is a protein, preferably, .alpha..sub.1 -acid glycoprotein or an antibody, preferably, IgG1; the presence of the carbohydrate determinant on the antibody interferes with the antibody's ability to fix complement and bind an F.sub.c receptor; the organic molecule includes one or more of the N-linked glycan addition sites of .alpha..sub.1 -acid glycoprotein; and the organic molecule bears multiple carbohydrate determinants.
The invention further features purified nucleic acid encoding an antibody containing sites for the attachment of a carbohydrate determinant which is specific for a cell adhesion protein; a vector including such nucleic acid; and a recombinant cell including such a vector.
Finally, the invention features a method of making a carrier molecule to which a carbohydrate specific for a cell adhesion protein is covalently bonded involving contacting the carrier molecule with an enzyme capable of attaching to the protein the carbohydrate determinant.
In preferred embodiments, the contacting occurs in a living cell; the cell is a eukaryotic, and preferably, a mammalian cell; the cell is a recombinant cell containing DNA encoding the enzyme; and the enzyme is an .alpha.(1,3)fucosyltransferase.
By "cell adhesion protein" is meant a protein, present at some point in its in vivo existence on the cell surface, which mediates a specific interaction with a protein (e.g., a protein bearing a carbohydrate ligand) on the surface of a second cell. By "carbohydrate determinant" is meant a moiety containing one or more carbohydrate groups which is present on a cell surface (at some point in its in vivo existence) and which interacts in a specific manner with a protein, e.g., a cell adhesion protein, e.g., on the surface of a second cell. By "selectin" is meant a member of a family of cellular adhesion molecules that are characterized structurally by the presence of a lectin-like domain, an epidermal growth factor-like domain, a series of cysteine-rich repeats, a transmembrane domain and a short cytoplasmic tail. By "inflammation" is meant a pathologic process consisting of cytologic and histologic reactions that occur in the affected blood vessels and adjacent tissues in response to an injury or abnormal stimulation caused by a physical, chemical, or biologic agent. By "specific binding pair" is meant any pair of molecules, including a first and second member, which have a specific affinity for each other. Examples of specific binding pairs include receptors and ligands, e.g., cell adhesion molecules and their carbohydrate ligands. By "purified nucleic acid" is meant nucleic acid which is separated from other sequences with which it is naturally associated. By "N-linked" is meant bonded to the amide nitrogen of an asparagine residue of a protein. By "O-linked" is meant bonded to the hydroxyl-group oxygen of a serine, threonine, or hydroxylysine residue of a protein.





DESCRIPTION OF THE PREFERRED EMBODIMENTS
The drawings will first briefly be described.
Drawings
FIG. 1 shows the nucleic acid sequence (SEQ ID NO:1) and amino acid sequence (SEQ ID NO:5) of IgG1 and amino acid mutations (SEQ ID NO:2) designed to create N-linked glycan addition sites.
FIG. 2 is a graph showing the binding capability of .alpha.-ELAM-1 antibodies to a series of ELAM-1 sub-fragments and ELAM-1 fusion proteins;
FIG. 3 is a representation of the domain structure of an ELAM-1-IgG1 fusion protein;
FIG. 4 is a graph showing the degree of binding of a series of mammalian cell lines to an ELAM-1-IgG1 fusion protein;
FIG. 5 is a graph showing the degree of binding of a series of mammalian cell lines to antibodies directed against the cell surface molecules, CD15, CD63, or sialyl-Le.sup.X ;
FIG. 6 is a graph showing binding of neuraminidase-treated myeloid cells to ELAM-1 or to .alpha.-CD15 antibody;
FIG. 7 is a graph showing inhibition of ELAM-1-bearing cell adhesion by .alpha.-sialyl-Le.sup.X antibody;
FIG. 8 is a graph showing the effect of amniotic fluid-derived sialyl-Le.sup.X determinant on binding of myeloid cells to ELAM-1;
FIG. 9 is a graph showing the ability of in vitro-fucosylated .alpha..sub.1 -acid glycoprotein to bind ELAM-1;
FIG. 10 is a graph showing the effect of IL-1 and IL-8 on cell surface expression of sialyl-Le.sup.X ; and
FIG. 11 is a graph showing the effect of IL-1 and IL-8 on the adhesion of myeloid cells to ELAM-1.





ANTIBODY BEARING MULTIPLE SIALYL-LE.sup.X DETERMINANTS
In one embodiment, the invention features an antibody bearing one or more carbohydrate side chains which mask the CH2 portion of the immunoglobulin molecule and thus inhibit complement fixation and F.sub.c receptor binding. Such antibodies are useful for disrupting undesirable interactions between cells or proteins, or, generally, for disrupting an interaction between any two molecules, one of which bears a determinant specifically recognized by an antibody. Because the carbohydrate moieties block the immunoglobulin domain which triggers complement fixation and F.sub.c receptor binding, such antibodies do not elicit the undesirable side effects (i.e., those resulting from complement fixation and F.sub.c receptor binding) frequently associated with antibody-based therapies. Preferably, the carbohydrate groups serve not only to inhibit undesirable complement fixation and F.sub.c receptor binding, but also perform the function of competitively inhibiting a carbohydrate ligand-cell adhesion protein interaction. Where the carbohydrate groups perform this function, the antibody generally does not serve any function arising from its specificity, but serves only as a carrier for the carbohydrate groups. There is described below such a molecule, in which the carbohydrate side chain includes the sialyl-Le.sup.X determinant. Sialyl-Le.sup.X normally acts to facilitate interaction between cells which bear it (e.g., neutrophils) and cells which bear the protein, ELAM-1 (e.g., endothelial cells, e.g., those lining the blood vessel walls). Disrupting this interaction has therapeutic applications, for example, in minimizing inflammation, such as that which occurs following tissue injury, e.g., myocardial infarction, or which is characteristic of diseases such as psoriasis or rheumatoid arthritis.
The IgG1 molecule, in its nascent form, bears no sialyl-Le.sup.X side chains. Because N-linked glycan addition sites are well known to be: N X S/T (where N is asparagine, S is serine, T is threonine, and X is any amino acid except proline), we designed a molecule including several such sites for attachment of sialyl-Le.sup.X side chains. Inspection of the IgG1 sequence (FIG. 1) reveals at least five sites at which N-linked glycan addition sites may be introduced into the molecule in advantageous locations, where complement fixing and F.sub.c receptor binding ability will be impaired by the process. These sites (i.e., beginning at amino acid residues 274, 287, 295, 322, and 335), although they are preferred sites of N-linked glycan addition are not the only candidates; other useful sites may be identified and incorporated into the IgG1 sequence using, as guidance, the following criteria: (1) The sites are, preferably, located in the CH2 region of the immunoglobulin molecule, i.e., in the portion of the molecule responsible for complement fixation and F.sub.c receptor binding; (2) the sites are located in regions of the sequence, predicted by their hydrophilic nature, to be present on the outside of the immunoglobulin molecule and therefore accessible to the enzymes responsible for attachment of carbohydrate side chains; (3) the sites are located in a region which is minimally disruptive to the primary amino acid sequence and, thus, the predicted secondary amino acid structure. For example, a naturally-occurring site which differs from an N-linked glycan addition site by a single amino acid would be preferable to a site requiring two alterations in the amino acid sequence. Moreover, it is preferable to create an N-linked glycan addition site by subsituting amino acids of similar charge or polarity (e.g., substitution of one uncharged amino acid for another). One or more N-linked glycan addition site substitutions may be engineered into the IgG1-encoding sequence; such sequences (i.e., those which encode an antibody molecule to which sialyl-Le.sup.X moieties are attached) are termed IgG1-sialyl-Le.sup.X or IgG1-Le.sup.X.
A particular IgG1 molecule bearing sialyl-Le.sup.X moieties is produced as follows. The IgG1 gene is publically available, and its sequence is shown in FIG. 1 (SEQ.ID NO:1, SEQ.ID NO.:5). The gene is mutagenized by standard methods of in vitro site-directed mutagenesis in order to introduce one or more N-linked glycan addition sites (e.g., those described above and shown above the naturally-occurring sequence in FIG. 1; SEQ ID NO.:2). The gene is then inserted into a vector designed to express the protein in a eukaryotic cell (see, e.g., those vectors described in Gillies et al., U.S. Pat. No. 4,663,281, hereby incorporated by reference). The eukaryotic host cell is preferably a mammalian cell (e.g., a CHO or lec11 cell), and the expression vector containing the mutated IgG1-Le.sup.X -encoding sequence is introduced into the host cell by transient or stable transfection using standard techniques. Such host cells are also transfected (transiently or stably) with a vector capable of expressing an .alpha.(1,3)fucosyltransferase capable of attaching the sialyl-Le.sup.X groups to the antibody molecule at the glycosylation sites. The .alpha.(1,3)fucosyltransferase gene may be expressed from a vector distinct from that encoding IgG1-Le.sup.X, or both genes may be carried on, and expressed from, a common vector. Mammalian cells are particularly useful hosts for the synthesis of IgG1-Le.sup.X because they provide all required precursors for sialyl-Le.sup.X production.
An .alpha.(1,3)fucosyltransferase cDNA is described in Lowe et al. (Cell 63:475, 1990). The .alpha.(1,3)fucosyltransferase enzyme, encoded by this cDNA, recognizes a sialylated precursor molecule and adds either an .alpha.(1,3)- or an .alpha.(1,4)-linked fucose moiety to N-acetylglucosamine side chains. The sialyl-Le.sup.X determinant is characterized by an .alpha.(1,3)-linkage, and, as such, the .alpha.(1,3)fucosyltransferase enzyme of Lowe (supra) produces both the desired sialyl-Le.sup.X -modified molecules and products bearing .alpha.(1,4)-linked fucose which, although not active in binding to ELAM-1, do not interfere with the action of the sialyl-Le.sup.X -modified molecules nor produce other undesirable side effects. Production of IgG1-sialyl-Le.sup.X would be more efficient, however, if an .alpha.(1,3)fucosyltransferase was utilized which exclusively catalyzed .alpha.(1,3) fucose linkages. Such a mammalian enzyme exists, and the cDNA therefor can be isolated as follows. A cDNA library, prepared from mRNA which is isolated from a myeloid cell line (e.g., HL-60), is inserted into a mammalian cell expression vector such as .pi.H3M (see, Simmons et al., Nature 331:624, 1988; Aruffo and Seed, Proc. Natl. Acad. Sci. USA 84:8573, 1987) and transfected into a mammalian cell line, preferably, COS7 cells (as described in Seed and Arruffo, Proc. Natl. Acad. Sci. USA 84:3365, 1987). The proper cDNA clone is isolated by the immunoselection procedure described in Aruffo and Seed, supra; Seed and Aruffo, supra; and U.S. Pat. application Ser. No. 379,076, hereby incorporated by reference. Transfected cells are harvested and incubated with monoclonal antibodies PM-81 (anti-CD15; Medarex, West Lebanon, N.H.), FMC13 (anti-CD15; Sera-Lab/Accurate Chemical and Scientific, Westbury, N.Y.), MC-1 (anti-CD15; Sera-Lab. Westbury, N.Y.) and VIM8 (anti-CD65). Following incubation (e.g., for 1 hour), cells are separated from free antibody by centrifugation through a cushion of 2% Ficoll in PBS and allowed to settle on plastic dishes coated with affinity-purified goat antibodies to mouse IgM (as described below). Adherent cells are collected and a Hirt supernatant containing episomal DNA is prepared. The purified Hirt supernantant DNA is transformed (e.g., by electroporation) into E. coli (preferably, E. coli MC1061/p3) by standard techniques and ampicillin- and tetracycline-resistant colonies selected by standard methods. Antibiotic resistant colonies are then pooled and the plasmids amplified (e.g., following addition of spectinomycin hydrochloride overnight). The resulting culture is converted to spheroplasts and the spheroplasts fused to COS7 cells by standard procedures (see, for example, Seed and Aruffo, supra). Cells are allowed to incubate (preferably, 2 to 3 days) and are exposed to antibodies as described above. Preferably, two rounds of spheroplast fusion and "panning" (i.e., the procedure described above) are performed, and the bacterial cells resulting from the last round of panning are collected, and their plasmid DNA prepared. This cDNA encodes an enzyme, i.e., an .alpha.(1,3)fucosyltransferase, which directs the appearance of the desired CD15 and CD65 determinants, i.e., the sialyl-Le.sup.X determinant.
Host cells expressing .alpha.(1,3)fucosyltransferase and IgG1-Le.sup.X (and thus producing an IgG1 molecule bearing sialyl-Le.sup.X determinants) are grown by standard methods and the IgG1-Le.sup.X protein is purified from a cell lysate based on its affinity for a Protein A column or any other standard technique of antibody isolation and purification.
Use
For administering such a compound to a patient, the pharmaceutically-pure IgG1-Le.sup.X is suspended in an acceptable carrier, e.g., physiological saline, and is delivered to patients intravenously in a single or in multiple doses. Optimally, a sufficient quantity of IgG1-Le.sup.X is provided to saturate all ELAM-1-binding sites on an endothelial cell. Typically, this may be achieved with doses of 0.1 mg/kg or greater. The preferred dosage is in the range of 0.1-2.0 mg/kg.
Other carrier molecules, for example sialyl-Le.sup.X -modified .alpha..sub.1 -acid glycoprotein (.alpha..sub.1 -AGP-Le.sup.X, described below) would be produced generally as described herein and would be administered intravenously to patients as described above (i.e., preferably, at a dose sufficient to saturate all cellular ELAM-1 binding sites, e.g., at 0.1 mg/kg or greater).
IgG1-sialyl-Le.sup.X or .alpha..sub.1 -AGP-sialyl-Le.sup.X may be used, in one example, for the treatment of a pateint suffering from a heart attack. Following such a trauma, the endothelial cells lining the blood vessels express ELAM-1 on their surfaces and, without treatment, neutrophils, bearing sialyl-Le.sup.X on their surfaces, bind such ELAM-1-bearing endothelial cells, contributing to inflammation. Treatment with a sialyl-Le.sup.X -bearing molecule would attenuate the inflammation by competitively inhibiting the interaction between the invading neutrophils and the blood vessel endothelial cells in the vicinity of the heart. Compounds such as IgG1-sialyl-Le.sup.X or .alpha..sub.1 -AGP-sialyl-Le.sup.X may also be used, as described above, for the treatment of diseases characterized by chronic inflammatory conditions, e.g., rheumatoid arthritis, psoriasis, or pemphigus vulgaris.
Experimental Information
Sialyl-Lewis X (sialyl-Le.sup.X) determinants were shown to interact with ELAM-1 and facilitate binding to ELAM-1-bearing endothelial cells by the following experiments. These examples are presented to illustrate, not limit, the invention.
Recognition by ELAM-1 of the Sialyl-Le.sup.X Determinant
The ELAM-1 domains necessary for granulocyte-binding activity were localized using two monoclonal anti-ELAM-1 antibodies: H18/7, which effectively blocks leukocyte adhesion to activated endothelium, and H4/18, which does not (Pober et al., J. Immunol. 136:1680, 1986; Bevilacqua et al., Proc. Natl. Acad. Sci. USA 84:9238, 1987). Full length ELAM-1 was expressed from the cDNA carried on plasmid, pELAM-1 (Bevilacqua et al., Science 243:1160, 1989). Carboxyl terminal deletions of the ELAM-1 cDNA were created by polymerase chain reaction to produce the proteins shown in FIG. 2. Primer sequences for the PCR deletions were designed based on the full-length ELAM-1 sequence of Bevilacqua et al. (Science 243:1160, 1989). Once generated, ELAM-1 cDNA fragments were then fused, by standard techniques, to the transmembrane and intracellular coding portions of a CD7 cDNA (i.e., nucleotides 501 to 1236 of the CD7 cDNA described in Aruffo and Seed, EMBO. J. 6:3313, 1987). Plasmids bearing the resulting fusions were transfected into COS cells. Reactivity to monoclonal antibodies was determined by indirect immunofluorescence microscopy of fixed, permeabilized cells by the method of Aruffo et al., Cell 61:1303, 1990. The results of this analysis are shown in FIG. 2 and are representative of transfections of three to six independent isolates of the constructs shown. FIG. 2 indicates that H18/7 binding required the lectin-related segment plus the EGF-repeat domains, while H4/18 reactivity required, in addition, the first three complement regulatory protein repeat elements. L indicates the lectin-related segment; EGF indicates the EGF-related repeat segment; and CR1-CR6 indicate complement regulatory protein elements.
To further define the binding site for H18/7, a fragment was exchanged between the ELAM-1 cDNA and the equivalent fragment of the related Leu8 (LECCAM-1) cDNA (described in Camerini et al., Nature 342:78, 1989). Leu8 (LECCAM-1)/ELAM-1 chimeras were created by restriction fragment interchange from a conserved BglII site within the lectin domain (i.e., at nucleotide 454 and 475 of the ELAM-1 and Leu8 cDNA sequences, respectively). As shown in FIG. 2, H18/7 bound to an antigenic determinant located principally in the first 75% of the ELAM-1 lectin domain. Together with the above result (i.e., that both the lectin-like and EGF-repeat-like domains were required for H18/7 binding to truncated ELAM-1) suggests that the EGF-related repeat element may play a role in shaping the structure of the lectin domain.
To study the possible lectin-carbohydrate interactions suggested by the epitope mapping, a soluble ELAM-1 protein chimera was prepared by the fusion of a cDNA fragment encoding the ELAM-1 extracellular domain to a genomic fragment encoding the hinge, i.e., the CH2 and CH3 domains, of human IgG1 (Aruffo et al., Cell 61:1303, 1990; FIG. 3). The ELAM-1-IgG1 chimera was prepared as follows. Synthetic oligonucleotides having the sequence: CGGAATTCCAGTACTACTCACCTGGTCCGCCGATGGTCTCCGGGC (SEQ. ID NO.: 3) and CCAGATATACGCGTTGACATTGATTATTGACTAGTTATT (SEQ. ID NO.:4), and corresponding to the splice donor/carboxyl terminus of ELAM-1 and to a location in the vector upstream of the inserted cDNA, respectively, were prepared by standard techniques. Polymerase chain reaction with these oligonucleotides and the ELAM-1 cDNA expression plasmid, pELAM-1, as template, yielded an 1800 bp fragment which was digested with XhoI and EcoRI and subcloned into XhoI/EcoRI-digested expression vector .pi.H3M (Aruffo and Seed, Proc. Natl. Acad. Sci. USA 84:8573, 1987). The subcloned fragment was released by digestion with XhoI and ScaI and ligated to the XhoI/ScaI-digested IgG1 expression plasmid described in Aruffo et al. Cell 61:1303, 1990. The resulting construct was transfected into COS cells (as described in Seed and Aruffo, Proc. Natl. Acad. Sci 84:3365, 1987), and the desired fusion protein, termed ELAM-Rg, was recovered from the supernatant by adsorption to and elution from protein A-agarose as described in Aruffo et al. (Cell 61:1303, 1990). The initial construct, and a subsequent version in which the majority of the PCR-amplified segment (i.e., nucleotides 1 to 1464 of the ELAM-1 sequence) was replaced by a homologous restriction fragment interchange (to avoid potential mutations introduced during amplification) showed identical, binding activity. The soluble protein appeared in the form of disulfide-linked dimers, presumably mediated by the hinge region cysteine residues responsible for the inter-heavy chain linkage of active immunoglobulins.
To determine whether myeloid cells bound soluble ELAM-1, plastic dishes precoated with goat-anti-human IgG antibodies, were incubated with supernatants expressing ELAM-Rg. These experiments were carried out as follows. Human granulocytes were isolated from freshly drawn, heparinized whole blood by centrifugation through Ficoll/sodium diatrizoate (Mono-Poly Resolving Medium, Flow Laboratories, McLean, Va.) for 20 min. at 800.times.g. Cell lines were obtained from the American Type Culture Collection (ATCC) and were maintained in IMDM with 10% fetal bovine serum as described in Aruffo and Seed (Proc. Natl. Acad. Sci. USA 84:8573, 1987). Adhesion to ELAM-Rg was carried out in bacterial culture dishes (Falcon 1008, Becton-Dickinson Labware, Lincoln Park, N.J.) to which affinity-purified goat anti-human IgG antibody (Organon Teknika/Cappel, Malverne Pa.) had been allowed to adsorb at 10 .mu.g/ml in 50 mM Tris--HCl, pH 9.5 for at least one hour. Remaining protein binding sites were then blocked by overnight incubation with 1 mg/ml bovine serum albumin in Phosphate Buffered Saline (PBS; 137 mM NaCl, 2.7 mM KCl, 4.3 mM Na.sub.2 HPO.sub.4 .multidot.7H.sub.2 O, 1.4 mM KH.sub.2 PO.sub.4, pH 7.3). Dishes were incubated with ELAM-Rg (.apprxeq.1 .mu.g/ml) for 30 min. at 22.degree., washed with PBS, overlaid with cells (10.sup.6 cells) for 10 min. at 22.degree., and washed three times with PBS. The adherent cells per unit area of dish were enumerated with the aid of an ocular reticle and scored as follows: >100 cells, +++++; 100-75 cells, ++++; 75-50 cells, +++; 50-25 cells, ++; and 25-10 cells, +. All values represented the average of triplicate determinations.
The treated plastic acquired the ability to specifically bind granulocytes as well as the myeloid cell lines HL60 and THP1 (FIG. 4). Other cell lines of both hematopoietic origin (i.e., U937 and HSB-2) and nonhematopoietic origin (i.e., WIDR) were found to bind to the ELAM-1 coated plastic as well (FIG. 4). Dishes coated with CD8 fusion protein (Aruffo et al., Cell 61:1303, 1990) showed negligible affinity (for granulocytes or any of the cell lines tested (Bevilacqua et al., Proc. Natl. Acad. Sci. USA 84:9238, 1987).
To correlate the binding activity with surface phenotype, various monoclonal antibodies recognizing known granulocyte carbohydrate antigens were screened for reactivity with the above cell types. 5.times.10.sup.5 cells were incubated with the following antibodies (as ascites at 1:250 dilution, or as purified antibody at 4 .mu.g/ml): PM-81 (anti-CD15; Medarex, W. Lebanon, N.H.; Ball et al., J. Immunol. 130:2937, 1983), CSLEX-1 (anti-sialyl-Le.sup.X ; Fukushima et al., Cancer Res. 44:5279, 1984); or VIM2 (anti-CD65; Macher et al., J. Biol. Chem. 263:10186, 1988), followed by a fluorescein-conjugated goat anti-mouse IgG+IgA+IgM antibody (Organon Teknika/Cappel, Malverne, Pa.).
Results are shown in FIG. 5. Sparse dots represent the negative control (no primary antibody); dense dots, anti-CD15 mAb; solid line, anti-CD63 mAb; and broken line, anti-sialyl-Le.sup.X mAb. The U937 line used herein lacked sialyl-Le.sup.X determinants, unlike the related U937 cell line tested by Terasaki and coworkers (Fukushima et al., Cancer Res. 44:5279, 1984). An initial survey showed that ELAM-1 adhesion potential correlated with the presence of the CD15 determinant (i.e., Le.sup.X, or lacto-N-fucopentaose III; Gooi et al., Nature 292:156, 1981; Huang et al., Blood 61:1020, 1983; Magnan et al., Arch. Biochem. Biophys. 233;501, 1984; Gooi et al., Eur. J. Immunol. 13:306, 1983; Tetteroo et al., Eur. J. Immunol. 14:1089, 1984), but not with the determinants associated with CD17 (lactosyl ceramide; Symington et al., J. Biol. Chem. 259:6008, 1984), CD65 (VI.sup.3 NeuAcIII.sup.3 FucnorLcnOse.sub.6 Cer; Macher et al., J. Biol. Chem. 263:10186, 1988) or sulfatides (Fredman et al., Biochem. J. 251:17, 1988).
To further test the correlation between ELAM-1 adhesion potential and the presence of CD15, cells bearing CD15 were treated with neuraminidase, an enzyme known to cleave terminal sialyl groups. HL60 cells (10.sup.6 /plate) were incubated in 50 .mu.l of 0.15M NaCl, 4mM CaCl.sub.2, pH 5.5, for 1 hr. at 37.degree. in the presence or absence of 41.5 mU of neuraminidase (from Vibrio cholerae, type II, Sigma, St. Louis, Mo.). Cells were washed three times with PBS and adherence to either ELAM-Rg- or PM-81-coated dishes was scored as described above. Dishes were coated with ELAM-Rg as described above, and with purified PM-81 antibody at 10 .mu.g/ml in 50 mM Tris-HCl pH 9.5. Adherence assays were carried out as described above. Results shown in FIG. 6 are expressed as percent of control and were calculated from the mean .+-. standard deviation for the average of triplicate determinations in three independent experiments.
FIG. 6 indicates that the correlation of ELAM-1 adhesion potential with the presence of CD15 was imperfect because digestion of the cells with neuraminidase abolished binding to ELAM-1 but increased binding to immobilized anti-CD15 antibodies.
Association with CD15 and sensitivity to neuraminidase suggested that the sialylated form of the CD15 carbohydrate antigen might represent the physiological ELAM-1 ligand. To test this idea, CSLEX1 monoclonal antibody was assayed for its ability to inhibit adhesion of HL60 cells to ELAM-Rg. 10.sup.6 HL60 cells were incubated with CSLEX1 (1:50 in PBS) for 30 min. on ice, then crosslinked with affinity purified goat anti-mouse IgM antibody (Organon Teknika/Cappel, Malverne, Pa.) at 20 .mu.g/ml in PBS for 30 min., and fixed with 2% formaldehyde in PBS for 20 min. at 22.degree.. Cells were washed three times in PBS/1% glycine and incubated with ELAM-1-Rg-coated dishes as described above. The data (presented as percent of control) in FIG. 7 represents the mean .+-. standard deviation of triplicate determinations in three independent experiments.
FIG. 7 indicates that there exists a very good correspondence between the surface density of sialyl-Le.sup.X and the rank order of the number of cells bound per unit area of ELAM-Rg coated plastic. In addition, anti-sialyl-Le.sup.X antibody completely inhibited adhesion of myeloid cells to ELAM-1, whereas anti-CD65 and anti-CD15 antibodies had no activity under identical conditions.
The carbohydrate epitope recognized by the CSLEX1 antibody has been reported to be NeuNAc.alpha.2-3Gal.beta.1-4(Fuc.alpha.1-3)GlcNAc.beta.1-3Gal, based on motifs common to structurally characterized glycolipids with which the antibody reacts (Fukushima et al., Cancer Res. 44:5279, 1984). Chemical analysis of the fucosylated lactosaminoglycans of neutrophilic granulocytes has shown that both the Le.sup.X (CD15) and sialyl-Le.sup.X determinants are predominantly represented on tetraantennary asparagine-linked glycans whose individual strands are built up from poly(N-acetyllactosamine) chains bearing variable .alpha.(1,3)-linked fucose substitutions (Fukuda et al., J. Biol. Chem. 259:10925, 1984; Spooncer et al., J. Biol. Chem. 259:4792, 1984). Serological evidence supports the existence of the sialyl dimeric Le.sup.X determinant on granulocytes as well (Fukushi et al., J. Biol. Chem. 259:10511, 1984; Fukushi et al., Cancer Res. 45:3711, 1985). As such, the residue on the reducing side of the sialyl-Le.sup.X group is galactose in all of the granulocyte structures thus far identified. Although antibody CSLEX1 blocks binding, the structure recognized by ELAM-1 might be more complex than the structure recognized by CSLEX1. To establish the minimum glycan structure for ELAM-1 binding, chemically-characterized glycans bearing sialyl-Le.sup.X determinants were evaluated for ELAM-1 recognition.
Amniotic fluid is one source of well defined sialyl-Le.sup.X determinant which is found in a very different context than the granulocyte cell surface. The sialyl-Le.sup.X -bearing carbohydrate of amniotic mucins is joined .beta.1-6 to a 3-substituted N-acetylgalactosamine, which in turn is attached directly to the polypeptide backbone through O-linkage to serine or threonine (Hanisch et al., Carbohydr. Res. 178:29, 1988). Amniotic fluid-derived sialyl-Le.sup.X determinants were tested for their ability to block binding of myeloid cells to immobilized ELAM-1. Human amniotic fluid (HAF) was either used without purification, fractionated by centrifugal ultrafiltration (100 kDal nominal cutoff; Centricon 100, Amicon, Danvers Mass.), or fractionated, following phenol extraction, by size exclusion chromatography (Sephacryl S-300 HR) in 4M guanidinium chloride (by the method of Hanisch et al., Carbohydr. Res. 178:29, 1988) to yield purified mucins. Such mucins were used at a protein concentration of approximately 150 .mu.g/ml. Binding to ELAM-Rg coated plastic was performed as described above. Results (expressed as percent of control) shown in FIG. 8 are the average of triplicate determinations in two independent experiments.
FIG. 8 indicates that, despite the dissimilarity between the granulocyte glycans and the amniotic fluid mucins, purified amniotic fluid mucins, as well as unfractionated amniotic fluid (which appears to contain all of its activity in the mucin-rich high molecular weight fraction), efficiently blocked binding of myeloid cells to immobilized ELAM-1.
Another source of sialyl-Le.sup.X determinants is fucosylated .alpha..sub.1 -acid glycoprotein (.alpha..sub.1 -AGP) (Biou et al., Biochim. Biophys. Acta. 913:308, 1987; Wieruszeski et al., FEBS Lett. 238:390, 1988). Chemical analysis of human .alpha..sub.1 -AGP has shown that fucose is present on a minor fraction of N-linked glycans (Schmid et al., Biochim. Biophys. Acta. 492:291, 1977; Fournet et al., Biochemistry 17:5206, 1978), but that the asialo protein at least partially blocks the binding of anti-CD15 antibodies (Gooi et al., Eur. J. Immunol. 13:306, 1983; Tetteroo et al., Eur. J. Immunol. 14:1089, 1984). A modest (35.+-.9%) reduction in binding of HL60 cells to ELAM-1 (adsorbed to plastic) was achieved with 200 .mu.g/ml of the protein.
In vitro production of a sialyl-Le.sup.X molecule
To extend these results, enzymatically-fucosylated .alpha..sub.1 -AGP was prepared in vitro. The biosynthesis of the sialyl-Le.sup.X determinant is controlled by a specific .alpha.(1,3)fucosyltransferase (Campbell et al., Cell 35:303, 1983; Campbell et al., J. Biol. Chem. 259:11208, 1984), which adds fucose to the N-acetylglucosamine moiety of terminal N-acetyllactosamine or its 3-sialyl adduct; a genetically and biochemically distinct specific .alpha.(1,3)fucosyltransferase is known to only add fucose to the asialyl precursor (Prieels et al., Eur. J. Biochem. 130:347, 1983; Muramatsu et al., Eur. J. Biochem. 157:71, 1986). A third fucosyltransferase is known to form both .alpha.(1,3) and a .alpha.(1,4) linkages, apparently to unsialylated substrates (Prieels et al., J. Biol. Chem. 256:10456, 1981; Lowe et al., infra). Biosynthesis of the sialyl-Le.sup.X determinant proceeds by sequential sialylation followed by fucosylation because .alpha.(2,3) sialytransferase cannot recognize the fucosylated terminal N-acetyllactosamine that is CD15 (Holmes et al., J. Biol. Chem. 261:3737, 1986). .alpha..sub.1 -acid glycoprotein is a good substrate for the .alpha.(1,3)fucosyltransferase of amniotic fluid (e.g., Hanisch et al., Carbohydr. Res. 178:23, 1988), an enzyme which forms sialyl-Le.sup.X from sialylated and nonsialylated precursors, respectively.
Amniotic fluid fucosyltransferase was isolated by affinity chromatography and evaluated for its ability to convert .alpha..sub.1 -AGP into an ELAM-1 ligand as follows. .alpha.(1,3)fucosyltransferase was isolated from concentrated amniotic fluid by fetuin-agarose chromatography as previously described in Hanisch et al. (Carbohydr. Res. 178:23, 1988) and Mitsakos et al. (Biol. Chem. Hoppe-Seyler 369:661, 1988). 0.8 .mu.Ci GDP.sup.14 C-fucose (225 Ci/mole) and 100 .mu.g of bovine .alpha..sub.1 -AGP (Sigma, St. Louis, Mo.) were added to a reaction mix containing 25 mM Tris-HCl pH 7.0, 35 mM MgCl.sub.2 and 1 mM ATP in a final volume of 120 .mu.l . The reaction was allowed to proceed for 24 h. at 37.degree., at which time approximately 10% of the .sup.14 C-labeled fucose had been incorporated into TCA-insoluble material. Unincorporated label was removed by centrifugal ultrafiltration (Centricon 10, Amicon, Danvers, Mass.). 20 .mu.l of a 1:5 dilution of the labelled material, or 10 .mu.l of a 1:5 dilution of a similarly constituted reaction mixture lacking labelled GDP-fucose, was adsorbed to plastic dishes (as described above) or to 96 well microtiter plates (Falcon 3911, Becton Dickinson, Oxnard, Calif.). Wells were incubated at 22.degree. with ELAM-Rg or CD8-Rg at 1 .mu.g/ml for 1 hr., washed with PBS, and incubated with a radioiodinated goat anti-human IgG antibody (DuPont/NEN, Boston, Mass.) for an additional hr. Following washing, labelled antibody binding was measured in a gamma counter. Results shown in FIG. 9 are expressed as the mean .+-. standard deviation of quadruplicate determinations and are representative of two independent experiments.
FIG. 9 shows that .alpha..sub.1 -AGP incubated with fucosyltransferase in the presence of GDP-fucose bound significantly more ELAM-Rg than did .alpha..sub.1 -AGP alone, or .alpha..sub.1 -AGP incubated with enzyme in the absence of GDP-fucose.
The fucosylated glycans of asialo-.alpha.-AGP bear the terminal structure Gal.beta.(1-4)-(Fuc.alpha.(1-3))GlcNAc.beta.(1-4)Man, while the nonfucosylated termini of the asialoprotein consist of the N-acetyllactosamine group joined either .beta.(1-4), .beta.(1-2), or .alpha.(1-6) to mannose (Fournet et al., Biochemistry 17:5206, 1978). Hence neither any pre-existing sialyl-Le.sup.X determinants of .alpha..sub.1 -AGP nor any of the potential fucosyl adducts to N-acetylglucosamine can be joined to galactose. These results, together with the inhibition of ELAM-1 binding by mucin O-linked glycans, indicate that the sialyl-Le.sup.X grouping by itself has appreciable affinity for ELAM-1. It remains to be determined, though, whether quantitatively stronger ELAM-1 binding might be promoted by residues neighboring the sialyl-Le.sup.X determinants on granulocytes or by steric factors affecting their accessibility.
IL-8 blocks myeloid cell adhesion to ELAM-1
It has been reported that the release of IL-8 from IL-1-treated endothelial cells causes granulocytes to lose the ability to bind to IL-1 induced endothelium (Gimbrone et al., Science 246:1601, 1989). The effect of IL-1 and IL-8 on sialyl-Le.sup.X surface antigen expression was determined as follows. Granulocytes were incubated with IL-1.beta.(10 ng/ml; Pepro Tech, Rock Hill, N.J.) or IL-8 (25 ng/ml; Pepro Tech, Rock Hill, N.J.) for 20 min. at 37.degree., washed three times, and incubated with a monoclonal antibody to either CD15 (PM-81), CD65 (VIM2) or sialyl-Le.sup.X (CSLEX1) (described above) on ice. Results in FIG. 10 are given as the relative mean fluorescence intensity (MFI) determined by flow cytometry, as a percent of the MFI of granulocytes incubated in parallel without cytokines, and are representative of four experiments.
FIG. 10 shows that neither IL-1 nor IL-8 caused a substantial reduction in the expression of cell surface sialyl-Le.sup.X.
To test the ability of supernatants harvested from granulocytes exposed to IL-8 to block binding to ELAM-1, granulocytes (5.times.10.sup.7 /ml) were incubated with IL-1 or IL-8 (at the concentrations above) for 1 hr. at 37.degree.. Supernatants were collected after centrifugation and incubated with ELAM-Rg-coated dishes. Cells were added after 30 min. and binding was determined as described above. Immunoadsorption was performed with 40 .mu.l of Protein-A agarose beads (Sigma, St. Louis, Mo.) to which 10 .mu.g of affinity purified rabbit anti-mouse IgM were adsorbed, followed by 5 .mu.l of CSLEX1 ascites. Control beads were similarly prepared but were not incubated with CSLEX1. The beads were washed with PBS and incubated with the supernatants for 1 hr. at 4.degree.. Results are shown in FIG. 11 and are expressed as the percent of cells bound, relative to the number bound in the presence of supernatants of granulocytes incubated without cytokine under the same conditions. Data shown are mean .+-. standard deviation of triplicate determinations in three independent experiments.
FIG. 11 shows that supernatants harvested from cultures of granulocytes treated with IL-8, but not IL-1, blocked the adhesion of HL60 cells to immobilized ELAM-1, and the binding inhibition could be specifically reversed by adsorption of the supernatants with solid-phase CSLEX1, but not with the immunoadsorption matrix alone.
Other Embodiments
Other embodiments are within the claims. For example, the invention encompasses any antibody with decreased ability to fix complement and bind an F.sub.c receptor as a result of attached carbohydrate side chains; as described above, these include antibodies useful for their immunologic specificity (e.g., antibodies, e.g., MY904, Todd et al., U.S. Pat. No. 4,840,793) which competitively inhibit cell-cell interactions as well as antibodies which are used only as carriers for therapeutic carbohydrate groups. Because N-linked glycan addition sites are well known to be: Asparagine (N), X, Serine (S) or Threonine (T), where X stands for any residue except proline, one skilled in the art may design a molecule having any number of such sites and thus any number of carbohydrate side chains. Glycosylation sites are incorporated into the antibody sequence, for example, by in vitro site-directed mutagenesis.
Non-complement fixing and non-F.sub.c receptor binding antibodies would be used for purposes other than treating inflammation. For example, such an antibody directed against GPII.sub.b III.sub.a may be used to inhibit platelet aggregation and therefore would be useful for the treatment of myocardial infarction. Antibodies to proteins, such as fibrin or one of the clotting cascade proteins, would be useful for inhibiting thrombotic formation. In general, any antibody (including, without limitation, anti-Mo-1 and anti-CD14) proposed or demonstrated to have a therapeutic use may be improved by the addition of carbohydrate moieties which mask the antibody's ability to fix complement and bind an F.sub.c receptor. This characteristic would be particularly important, for example, for immunoglobulin fusion proteins (for example, an .alpha..sub.1 -AGP-IgG1 fusion protein). In this case, a protein of interest is fused (for example, genetically) to an immunoglobulin molecule to increase the protein's serum half life. Because these fusion proteins have an extended life in the patient, they are more likely to be recognized as foreign antigens, and it is therefore particularly useful for such proteins to evade the patient's F.sub.c receptor binding and complement fixation systems.
For the purpose of blocking interactions between cells or proteins, any other appropriate carrier molecule may be utilized. Generally, proteins are preferred because of their relatively long half-lives in serum. One class of carrier proteins are serum proteins such as albumin (e.g., bovine serum albumin or human serum albumin), transferrin, or .alpha.-2 macroglobulin. The carrier proteins can contain endogenous glycan addition sites or sites may be introduced into the DNA sequence of the carrier protein (as described above) by, for example, site-directed mutagenesis. The carrier molecule, less preferably, may be a lipid. In one example, the lipid, with one or more attached carbohydrate moieties (e.g., sialyl-Le.sup.X determinants), is delivered as a liposome to a target cell wall (e.g., an endothelial cell wall). The liposome may block a cell or protein interaction or may be used to deliver a drug to its appropriate site of action.
Cell adhesion molecules in addition to ELAM-1 may be inhibited by attachment of appropriate carbohydrate recognition moieties to a carrier molecule as described above. Such cell adhesion molecules may include, without limitation, LFA-1, LFA-3, ICAM-1, PADGEM, Mel-14, LAM-1, a cadherin, cell-CAM, or an N-CAM. Other glycans may be attached including, without limitation, any N-linked glycan, O-linked glycan, GMP-140, Leu8, and phosphatidyl inositol phosphate glycans. In cases where the glycan addition signal is known, it may be introduced into the DNA sequence of an organic carrier molecule as described above. Alternatively, if the precise site is not known, but the general region of such an addition site in some naturally-occurring molecule has been defined, a DNA fragment (from the sequence encoding the naturally-occurring molecule) which includes that region may be cloned into the DNA sequence of the desired carrier molecule (e.g., an IgG1- or .alpha..sub.1 -AGP-encoding sequence).
Production of carrier molecules bearing carbohydrate moieties may be carried out in a cell, preferably, a eukaryotic cell other than yeast. Mammalian cells, e.g., mammalian cell lines, provide particularly suitable hosts. These cells generally synthesize the necessary precursor molecules and produce or can be engineered to produce the enzymes responsible for carbohydrate attachment. For the attachment of sialyl-Le.sup.X determinants, mammalian cell lines such as CHO and lec11 are particularly suitable. Alternatively, carbohydrate moieties may be attached to a carrier molecule in vitro, i.e., extracellularly. In one example, .alpha.-(1,3)fucosyltransferase would be bound to a solid support (e.g., a column) and the desired carrier molecule passed over the bound fucosyltransferase enzyme, under conditions which facilitate attachment of sialyl-Le.sup.X groups to their appropriate site or the carrier molecule.
__________________________________________________________________________SEQUENCE LISTING(1) GENERAL INFORMATION:(iii) NUMBER OF SEQUENCES: 5(2) INFORMATION FOR SEQ ID NO:1:(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 2287(B) TYPE: nucleic acid(C) STRANDEDNESS: single(D) TOPOLOGY: linear(xi) SEQUENCE DESCRIPTION: SEQUENCE ID NO: 1:AAGCTTACCACCATGGACTGGACCTGGAGGTTCCTCTTCTTTGTGGTGGCAGCAGCTACA60GGTGTCCAGTCCCAGGTGCAGCTGGTGCAGTCTGGGGCTGAGGTGAAGAAGCCTGGGTCC120TCGGTGAAGGTCTCCTGCAAGGCTTCTGGAGGCACCTTCAGCAGCTATGCTATCAGCTGG180GTGCGACAGGCCCCTGGACAAGGGCTTGAGTGGATGGGAGGGATCATCCCTATCTTTGGT240ACAGCAAACTACGCACAGAAGTTCCAGGGCAGAGTCACGATTACCGCGGACGAATCCACG300AGCACAGCCTACATGGAGCTGAGCAGCCTGAGATCTGAGGACACGGCCGTGTATTACTGT360GCGAGAGATAATGGAGCGTATTGTAGTGGTGGTAGCTGCTACTCGGGCTGGTTCGACCCC420TGGGGCCAGGGAACCCTGGTCACCGTCTCTTCAGGTGAGTACTGAATTCTAGCTTTCTGG480GGCAGGCCAGGCCTGACCTTGGCTTTGGGGCAGGGAGGGGGCTAAGGTGAGGCAGGTGGC540GCCAGCAGGTGCACACCCAATGCCCATGAGCCCAGACACTGGACGCTGAACCTCGCGGAC600AGTTAAGAACCCAGGGGCCTCTGCGCCTGGGCCCAGCTCTGTCCCACACCGCGGTCACAT660GGCACCACCTCTCTTGCAGCCTCCACCAAGGGCCCATCGGTCTTCCCCCTGGCACCCTCC720TCCAAGAGCACCTCTGGGGGCACAGCGGCCCTGGGCTGCCTGGTCAAGGACTACTTCCCC780GAACCGGTGACGGTGTCGTGGAACTCAGGCGCCCTGACCAGCGGCGTGCACACCTTCCCG840GCTGTCCTACAGTCCTCAGGACTCTACTCCCTCAGCAGCGTGGTGACCGTGCCCTCCAGC900AGCTTGGGCACCCAGACCTACATCTGCAACGTGAATCACAAGCCCAGCAACACCAAGGTG960GACAAGAAAGTTGGTGAGAGGCCAGCACAGGGAGGGAGGGTGTCTGCTGGAAGCAGGCTC1020AGCGCTCCTGCCTGGACGCATCCCGGCTATGCAGCCCCAGTCCAGGGCAGCAAGGCAGGC1080CCCGTCTGCCTCTTCACCCGGAGCCTCTGCCCGCCCCACTCATGCTCAGGGAGAGGGTCT1140TCTGGCTTTTTCCCAGGCTCTGGGCAGGCACAGGCTAGGTGCCCCTAACCCAGGCCCTGC1200ACACAAAGGGGCAGGTGCTGGGCTCAGACCTGCCAAGAGCCATATCCGGGAGGACCCTGC1260CCCTGACCTAAGCCCACCCCAAAGGCCAAACTCTCCACTCCCTCAGCTCGGACACCTTCT1320CTCCTCCCAGATTCCAGTAACTCCCAATCTTCTCTCTGCAGAGCCCAAATCTTGTGACAA1380AACTCACACATGCCCACCGTGCCCAGGTAAGCCAGCCCAGGCCTCGCCCTCCAGCTCAAG1440GCGGGACAGGTGCCCTAGAGTAGCCTGCATCCAGGGACAGGCCCCAGCCGGGTGCTGACA1500CGTCCACCTCCATCTCTTCCTCAGCACCTGAACTCCTGGGGGGACCGTCAGTCTTCCTCT1560AGGGGGGTTTTGGGTTCCTGTGGGAGTACTAGAGGGCCTGGGGACTCCAGTGTACGCACC1620TGGTGGACGTGAGCCACGAAGACCCTGAGGTCAAGTTCAACTGGTACGTGGACGGCGTGG1680AGGTGCATAATGCCAAGACAAAGCCGCGGGAGGAGCAGTACAACAGCACGTACCGGGTGG1740TCAGCGTCCTCACCGTCCTGCACCAGGACTGGCTGAATGGCAAGGAGTACAAGTGCAAGG1800TCTCCAACAAAGCCCTCCCAGCCCCCATCGAGAAAACCATCTCCAAAGCCAAAGGTGGGA1860CCCGTGGGGTGCGAGGGCCACATGGACAGAGGCCGGCTCGGCCCACCCTCTGCCCTGAGA1920GTGACCGCTGTACCAACCTCTGTCCTACAGGGCAGCCCCGAGAACCACAGGTGTACACCC1980TGCCCCCATCCCGGGATGAGCTGACCAAGAACCAGGTCAGCCTGACCTGCCTGGTCAAAG2040GCTTCTATCCCAGCGACATCGCCGTGGAGTGGGAGAGCAATGGGCAGCCGGAGAACAACT2100ACAAGACCACGCCTCCCGTGCTGGACTCCGACGGCTCCTTCTTCCTCTACAGCAAGCTCA2160CCGTGGACAAGAGCAGGTGGCAGCAGGGGAACGTCTTCTCATGCTCCGTGATGCATGAGG2220CTCTGCACAACCACTACACGCAGAAGAGCCTCTCCCTGTCTCCGGGTAAATGAGTGCGAC2280GGCCGGC2287(2) INFORMATION FOR SEQ ID NO:2:(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 442(B) TYPE: amino acid(C) STRANDEDNESS:(D) TOPOLOGY: linear(xi) SEQUENCE DESCRIPTION: SEQUENCE ID NO: 2:LysLeuThrThrMetAspTrpThrTrpArgPheLeuPhePheValVal151015AlaAlaAlaThrGlyValGlnSerGlnValGlnLeuValGlnSerGly202530AlaGluValLysLysProGlySerSerValLysValSerCysLysAla354045SerGlyGlyThrPheSerSerTyrAlaIleSerTrpValArgGlnAla505560ProGlyGlnGlyLeuGluTrpMetGlyGlyIleIleProIlePheGly65707580ThrAlaAsnTyrAlaGlnLysPheGlnGlyArgValThrIleThrAla859095AspGluSerThrAlaArgAspAsnGlyAlaTyrCysSerGlyGlySer100105110CysTyrSerGlyTrpPheAspProTrpGlyGlnGlyThrLeuValThr115120125ValSerSerAlaSerThrLysGlyProSerValPheProLeuAlaPro130135140SerSerLysSerThrSerGlyGlyThrAlaAlaLeuGlyCysLeuVal145150155160LysAspTyrPheProGluProValThrValSerTrpAsnSerGlyAla165170175LeuThrSerGlyValHisThrPheProAlaValLeuGlnSerSerGly180185190LeuTyrSerLeuSerSerValValThrValProSerSerSerAspLys195200205LysValGluProLysSerCysAspLysThrHisThrCysProProCys210215220ProAlaProGluLeuLeuGlyGlyProSerValPheLeuPheProPro225230235240LysProLysAspThrLeuMetIleSerArgThrProGluValThrCys245250255ValValValAspValSerHisGluAspProGluValAsnPheSerTrp260265270TyrValAspGlyValGluValHisAsnAsnLysThrLysProArgGlu275280285GluAsnTyrSerSerThrTyrArgValValSerValLeuThrValLeu290295300HisGlnAspTrpLeuAsnGlyLysGluTyrLysCysAsnValSerAsn305310315320LysAlaLeuProAlaProIleGluLysAsnIleSerLysAlaLysGly325330335GlnProArgGluProGlnValTyrThrLeuProProSerArgAspGlu340345350LeuThrLysAsnGlnValSerLeuThrCysLeuValLysGlyPheTyr355360365ProSerAspIleAlaValGluTrpGluSerAsnGlyGlnProGluAsn370375380AsnTyrLysThrThrProProValLeuAspSerAspGlySerPhePhe385390395400LeuTyrSerLysLeuThrValAspLysSerArgTrpGlnGlnGlyAsn405410415ValPheSerCysSerValMetHisGluAlaLeuHisAsnHisTyrThr420425430GlnLysSerLeuSerLeuSerProGlyLys435440(2) INFORMATION FOR SEQ ID NO:3:(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 45(B) TYPE: nucleic acid(C) STRANDEDNESS: single(D) TOPOLOGY: linear(xi) SEQUENCE DESCRIPTION: SEQUENCE ID NO: 3:CGGAATTCCAGTACTACTCACCTGGTCCGCCGATGGTCTCCGGGC45(2) INFORMATION FOR SEQ ID NO:4:(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 39(B) TYPE: nucleic acid(C) STRANDEDNESS: single(D) TOPOLOGY: linear(xi) SEQUENCE DESCRIPTION: SEQUENCE ID NO: 4:CCAGATATACGCGTTGACATTGATTATTGACTAGTTATT39(2) INFORMATION FOR SEQ ID NO:5:(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 442 amino acids(B) TYPE: amino acid(C) STRANDEDNESS: Not Relevant(D) TOPOLOGY: linear(ii) MOLECULE TYPE: protein(xi) SEQUENCE DESCRIPTION: SEQ ID NO:5:LysLeuThrThrMetAspTrpThrTrpArgPheLeuPhePheValVal151015AlaAlaAlaThrGlyValGlnSerGlnValGlnLeuValGlnSerGly202530AlaGluValLysLysProGlySerSerValLysValSerCysLysAla354045SerGlyGlyThrPheSerSerTyrAlaIleSerTrpValArgGlnAla505560ProGlyGlnGlyLeuGluTrpMetGlyGlyIleIleProIlePheGly65707580ThrAlaAsnTyrAlaGlnLysPheGlnGlyArgValThrIleThrAla859095AspGluSerThrAlaArgAspAsnGlyAlaTyrCysSerGlyGlySer100105110CysTyrSerGlyTrpPheAspProTrpGlyGlnGlyThrLeuValThr115120125ValSerSerAlaSerThrLysGlyProSerValPheProLeuAlaPro130135140SerSerLysSerThrSerGlyGlyThrAlaAlaLeuGlyCysLeuVal145150155160LysAspTyrPheProGluProValThrValSerTrpAsnSerGlyAla165170175LeuThrSerGlyValHisThrPheProAlaValLeuGlnSerSerGly180185190LeuTyrSerLeuSerSerValValThrValProSerSerSerAspLys195200205LysValGluProLysSerCysAspLysThrHisThrCysProProCys210215220ProAlaProGluLeuLeuGlyGlyProSerValPheLeuPheProPro225230235240LysProLysAspThrLeuMetIleSerArgThrProGluValThrCys245250255ValValValAspValSerHisGluAspProGluValLysPheAsnTrp260265270TyrValAspGlyValGluValHisArgAsnLysThrLysProArgGlu275280285GluGlnTyrAsnSerThrTyrArgValValSerValLeuThrValLeu290295300HisGlnAspTrpLeuAsnGlyLysGluTyrLysCysLysValSerAsn305310315320LysAlaLeuProAlaProIleGluLysThrIleSerLysAlaLysGly325330335GlnProArgGluProGlnValTyrThrLeuProProSerArgAspGlu340345350LeuThrLysAsnGlnValSerLeuThrCysLeuValLysGlyPheTyr355360365ProSerAspIleAlaValGluTrpGluSerAsnGlyGlnProGluAsn370375380AsnTyrLysThrThrProProValLeuAspSerAspGlySerPhePhe385390395400LeuTyrSerLysLeuThrValAspLysSerArgTrpGlnGlnGlyAsn405410415ValPheSerCysSerValMetHisGluAlaLeuHisAsnHisTyrThr420425430GlnLysSerLeuSerLeuSerProGlyLys435440__________________________________________________________________________
Claims
  • 1. A method of inhibiting the binding of a cell bearing an ELAM-1 protein to a molecule or cell bearing a sialyl-Le.sup.X determinant, comprising contacting said ELAM-1-bearing cell with an inhibitor molecule bearing said sialyl-Le.sup.X determinant, wherein said inhibitor molecule is an antibody.
  • 2. The method of claim 1, wherein said antibody is IgG1.
  • 3. A method of inhibiting the binding of a cell bearing an ELAM-1 protein to a molecule or cell bearing a sialyl-Le.sup.X determinant, comprising contacting said ELAM-1-bearing cell with an inhibitor molecule bearing said sialyl-Le.sup.X determinant, wherein said inhibitor molecule is an antibody fusion protein.
  • 4. The method of claim 3, wherein said antibody fusion protein comprises .alpha..sub.1 -acid glycoprotein.
  • 5. The method of claim 1 or 3, wherein the presence of said sialyl-Le.sup.X determinant interferes with said antibody's ability to fix complement and bind an F.sub.c receptor.
Parent Case Info

This is a divisional of application Ser. No. 07/618,314, filed Nov. 23, 1990, now abandoned.

US Referenced Citations (10)
Number Name Date Kind
4184917 Dorner et al. Jan 1980
4344938 Sedlacek et al. Aug 1982
4752569 Terasaki et al. Jun 1988
4816567 Cabilly et al. Mar 1989
4840793 Todd, III et al. Jun 1989
4851511 Hakomori et al. Jul 1989
4923980 Blomberg May 1990
5079353 Ratcliffe et al. Jan 1992
5143712 Brandley et al. Sep 1992
5211936 Brandley et al. May 1993
Foreign Referenced Citations (14)
Number Date Country
0 146 090 Jun 1985 EPX
0 218 257 Apr 1987 EPX
0 251 304 Jan 1988 EPX
0 314 863 May 1989 EPX
0 319 253 Jun 1989 EPX
0 323 802 Jul 1989 EPX
1 550 914 Aug 1979 GBX
WO 8908711 Sep 1989 WOX
WO 9005786 May 1990 WOX
WO 9005539 May 1990 WOX
WO 9013300 Nov 1990 WOX
WO 9116900 Nov 1991 WOX
9108605 Jan 1992 WOX
WO 9202527 Feb 1992 WOX
Non-Patent Literature Citations (49)
Entry
Phillips et al., Science 250:1130-1132, 1990.
Walz et al., Science 250:1132-1135, 1990.
Fujiwara et al., J. Immunological Methods 112:77-83, 1988.
Stanley et al., J. of Biological Chemistry 263 (23):11374-11382, 1988.
Fukushima et al., Cancer Research 44:5279-5285 1984.
Lowe et al., Cell 63:475-484 1990.
Ghetie et al., Molecular Immunology 23 (4):377-384, 1986.
Fukuda et al., J. Biological Chemistry 259 (17):10925-10935, 1984.
Johnson et al., Biochemical Society Transactions 15:396, 1987.
Aruffo et al., The EMBO Journal 6(11):;3313-3316, 1987.
Seed et al., Proc. Natl. Acad. Sci. USA 84:3365-3369, 1987.
Aruffo et al., Proc. Natl. Acad. Sci USA 84:8573-8577, 1987.
Aruffo et al., Cell 61:1303-1313, 1990.
Bevilacqua et al., Science 243:1160, 1989.
Seed, Nature 329:840, 1987.
Okada et al., Clinica Chimica Acta 86:159-167 (1978).
Kijima-Suda et al., Cancer Research 46:858-862, 1986.
Bowen et al., The J. of Cell Biology 109:421-427, 1989.
Rice et al., Science 246:1303, 1989.
Stoolman, Cell 56:907-910, 1989.
Dobrina et al., Immunology 67:502-508, 1989.
Streeter et al., The J. of Cell Biology 107:1853-1862, 1988.
Streeter et al., Nature 331:41, 1988.
Messadi et al., J. of Immunology 139(5):1557-1562, 1987.
Munro et al., Cytokine Interactions in Pathological Processes (8858-8863) p. A1821, No. 8862.
Pober et al., J. of Immunology 136(5):1680-1686, 1986.
Klein et al., Proc. Natl. Acad. Sci. USA 86:8972-8976, 1989.
Cotran et al., J. Exp. Med. 164:661-666, 1986.
Vedder et al., J. Clin. Invest. 81:939-944, 1988.
Jutila et al., Transplantation 48:727-731, 1989.
Simpson et al., J. Clin. Invest. 82:624-629, 1988.
Luscinskas et al., J. of Immunology 142:2257-2263, 1989.
Paclic et al., Carbohydrate Research 190:1-11, 1989.
Masson et al., Clinica Chemica Acta 187:199-206, 1990.
Herrero-Zabaleta et al., Bull. Cancer 74:387-396, 1987.
LePendu et al., Biochimie 70:1613-1617, 1988.
Mollicone et al., Blood 71(4):1113-1119, 1988.
Kuriyama et al., Biochimica et Biophysica Acta 662:220-225, 1981.
Baker et al., Cancer Research 47:2763-2766, 1987.
Arnaout et al., Journal of Cellular Physiology 137:305-309, 1988.
Hession et al., Proc. Natl. Acad. Sci. USA 87:1673-1677, 1990.
Ball et al., J. of Immunology 130(6):2937, 1983.
Hansson et al., J. of Biological Chemistry 260(16):9388-9392, 1985.
Macher et al., J. of Biological Chemistry 263(21):10186-10191, 1986.
Benlacqua et al. Cell, 67, 233, 1990.
Brandley et al. Cell, 63, 861-863, 1990.
Biou et al. Biochim. Biophys. Acta 913, 308-312, 1987.
Larsen et al. Cell 63, 467-474, 1990.
Goochee et al. Frontiers in Bioprocessing II. Todd et al, eds., pp. 199-240, 1991.
Divisions (1)
Number Date Country
Parent 618314 Nov 1990