An exemplary embodiment of the invention is explained below with reference to accompanying drawings, in which:
The exemplary embodiment shows a rotationally symmetrical reactor, in which the gases are introduced at the center and in which the gases are carried away in the region of the periphery. However, the invention also relates to those reactors which have the form of a tube, in which the gas is introduced at one end and the gas is discharged at the other end.
A significant component is a gas inlet member 5. This is located where the gas is introduced into the process chamber, that is to say at the center in the case of a process chamber 1 of a circular-symmetrical shape. The gas inlet member 5 has three gas inlet zones 6, 7, 8, disposed vertically one above the other. The three gas inlet zones are located between the ceiling 2 and the floor 3 of the process chamber 1.
In the exemplary embodiment, the floor 3 is actively heated by suitable means. The ceiling 2 is indirectly heated by the heated floor 3 by means of radiation and heat conduction. The heat for heating the floor 3 may be generated as infrared heat. However, it is also envisaged to generate the heat in the manner described by DE 100 43 601 A1, that is by high frequency.
In the case of the exemplary embodiment, the process gas flows through the process chamber 1 from the center to the periphery. For depositing III-V semiconductors, the V components are fed in as hydrides through the gas inlet zones 6, 8, which are directly neighboring the ceiling 2 and the floor 3, respectively. In particular, PH3, AsH3 or NH3 is introduced through the gas inlet zones 6 and 8.
The metalorganic III component is introduced through the middle gas inlet zone 7, disposed between the outer gas inlet zones 6 and 8; in particular, TMG or TMI or an Al compound is introduced here.
An annular pressure barrier of a porous, gas-permeable material is designated by the reference numeral 11. The III component flows through this together with the carrier gas. The gas which passes through the outer gas inlet zones 6 and 8 is of a greater density and mass flow than the gas which flows into the process chamber 1 through the middle gas inlet zone 7. The gas inflows in the gas inlet zones 6, 8 can be set independently of the gas flow in the gas inlet zone 7.
Cross-pieces or separating elements by which the gases entering the process chamber through the gas inlet zones 6, 7, 8 are separated are designated by the reference numerals 12 and 13. Here, the representation is only schematic. It goes without saying that such gas conducting means as pipes or ducts that are capable of conducting the gases flowing through the gas inlet zones 6, 7, 8 separately from one another from a gas supply device to the reactor are provided.
In
The solid curve in
As can be gathered from
The curve represented by a dashed-dotted line in
It is provided that the vertical heights of the gas inlet zones 6 and 8 are each of the same size. The same amounts of gas per unit of time are also preferably intended to flow through these gas inlet zones 6 and 8. The heights of the gas inlet zones 6, 8 are less than the height of the middle gas inlet zone 7. In particular, the sum of the heights of the gas inlet zones 6 and 8 is less than the height of the middle inlet zone 7.
Model calculations in the case of a device of the prior art (DE 100 43 601 A1) have shown that the different densities and the great differences in the flow velocities of the gases entering the process chamber through the gas inlet zones produce an annular vortex underneath the ceiling in the region of the inlet zone EZ. It has been observed that a stream of gas with a gas which flows through an additional gas inlet zone 8 adjacent the ceiling 2 prevents this vortex. A flow profile that is symmetrical with respect to the horizontal center plane of the process chamber 1 is created in the region of the inlet zone EZ, homogenized into a parabolic flow profile up to the limit represented by the dashed line.
The ratios of the heights of gas inlet zone 6, gas inlet zone 7 and gas inlet zone 8 in relation to one another is preferably 4:15:4.
All disclosed features are (in themselves) pertinent to the invention. The disclosure content of the associated/accompanying priority documents (copy of the prior application) is also hereby incorporated in full in the disclosure of the application, including for the purpose of incorporating features of these documents in claims of the present application.
Number | Date | Country | Kind |
---|---|---|---|
10 2004 009 130.7 | Feb 2004 | DE | national |
The present application is a continuation of pending International patent application PCT/EP2005/050765 filed on Feb. 23, 2005 which designates the United States and claims priority from German patent application 10 2004 009 130.7 filed on Feb. 25, 2004, the content of which is incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
Parent | PCT/EP05/50765 | Feb 2005 | US |
Child | 10591906 | US |