Embodiments of the disclosure are in the field of lithography and, in particular, lithography involving inline circuit edits using e-beam lithography.
For the past several decades, the scaling of features in integrated circuits has been a driving force behind an ever-growing semiconductor industry. Scaling to smaller and smaller features enables increased densities of functional units on the limited real estate of semiconductor chips.
However, improvements are needed in the area of lithographic processing technologies and capabilities.
Lithographic methodologies involving, and apparatuses suitable for, inline circuit edits are described. In the following description, numerous specific details are set forth, such as specific integration, tooling, and material regimes, in order to provide a thorough understanding of embodiments of the present disclosure. It will be apparent to one skilled in the art that embodiments of the present disclosure may be practiced without these specific details. In other instances, well-known features, such as integrated circuit design layouts, are not described in detail in order to not unnecessarily obscure embodiments of the present disclosure. Furthermore, it is to be appreciated that the various embodiments shown in the Figures are illustrative representations and are not necessarily drawn to scale. In some cases, various operations will be described as multiple discrete operations, in turn, in a manner that is most helpful in understanding the present disclosure, however, the order of description should not be construed to imply that these operations are necessarily order dependent. In particular, these operations need not be performed in the order of presentation.
Certain terminology may also be used in the following description for the purpose of reference only, and thus are not intended to be limiting. For example, terms such as “upper”, “lower”, “above”, and “below” refer to directions in the drawings to which reference is made. Terms such as “front”, “back”, “rear”, and “side” describe the orientation and/or location of portions of the component within a consistent but arbitrary frame of reference which is made clear by reference to the text and the associated drawings describing the component under discussion. Such terminology may include the words specifically mentioned above, derivatives thereof, and words of similar import.
Embodiments described herein may be directed to front-end-of-line (FEOL) semiconductor processing and structures. FEOL is the first portion of integrated circuit (IC) fabrication where the individual devices (e.g., transistors, capacitors, resistors, etc.) are patterned in the semiconductor substrate or layer. FEOL generally covers everything up to (but not including) the deposition of metal interconnect layers. Following the last FEOL operation, the result is typically a wafer with isolated transistors (e.g., without any wires).
Embodiments described herein may be directed to back-end-of-line (BEOL) semiconductor processing and structures. BEOL is the second portion of IC fabrication where the individual devices (e.g., transistors, capacitors, resistors, etc.) are interconnected with wiring on the wafer, e.g., the metallization layer or layers. BEOL includes contacts, insulating layers (dielectrics), metal levels, and bonding sites for chip-to-package connections. In the BEOL part of the fabrication stage contacts (pads), interconnect wires, vias and dielectric structures are formed. For modern IC processes, more than 10 metal layers may be added in the BEOL.
Embodiments described below may be applicable to FEOL processing and structures, BEOL processing and structures, or both FEOL and BEOL processing and structures. In particular, although an exemplary processing scheme may be illustrated using a FEOL processing scenario, such approaches may also be applicable to BEOL processing. Likewise, although an exemplary processing scheme may be illustrated using a BEOL processing scenario, such approaches may also be applicable to FEOL processing.
One or more embodiments described herein are directed to inline circuit editing using maskless lithography. One or more embodiments described herein are directed to inline circuit editing for subtractive layers.
To provide context, inline circuit editing provides an approach as an alternative to requiring fabrication of a new lithographic mask when an edit in the circuit design is desired or needed. Implementation of an inline circuit edit approach can save several weeks off each cycle of logic/debug loop.
In previous approaches, tape out and fabrication of a new mask had to be implemented for each edit iteration. Such an approach can be slow, extending production time by weeks to months. Also, the same pattern is used on every field, whereas with maskless lithography, changes (e.g., design of experiment (DOE) variations) can be made across the wafer and across the field.
In accordance with one or more embodiments of the present disclosure, inline (in-fab) edit of circuit design with e-beam lithography is described. In one embodiment, 300 mm maskless e-beam lithography is used to edit existing mask-based pattern inline, i.e., without interrupting production flow. Applications can include debug, logic edit, defect metrology, etc. In one embodiment, within a normal wafer processing loop (i.e., inline in the fab), an existing pattern is edited with a maskless lithography tool. In one embodiment, an electron-beam lithography tool is used, but it is to be appreciated that other types of beams could be used as well (e.g., ion, focused photon, etc.) or tools with many multiplexed such beams. In another embodiment, inline circuit edit (ICE) is used for subtractive layers, where edits are used to change subtractive layers on a wafer.
As a general description of concepts described herein,
Referring to
Referring to
Advantages of implementing embodiments described herein can involve reducing time to critical data by weeks versus conventional new mask fabrication. Information turns can be speeded up for logic repair/debug (days versus weeks for new a mask). The turnaround time for prototyping and fixing design errors can be greatly reduced. Furthermore, several solutions can be tried in parallel on one wafer, increasing data turns. Embodiments described herein can be applicable for products for debug and logic edits. Approaches described herein can be applicable to custom and/or low-volume products, such as for foundry based products.
Detectability of implementations of embodiments described herein can involve one or more of (1) via subtraction flow: repeatable unlanded single via on a specific die, bump near edge, (2) e-beam-specific defects in locations used for alignment (frame, drop-in-cells, etc.), (3) clear design rule violations within a given layer (e.g., critical dimensions (CDs) printed much smaller than everything else in the layer, or in different directions, jogs, etc.), and/or (4) inline edit resist plug portions remaining in a hole, (5) subtractive flow: ILD height differences adjacent to removed features and e-beam alignment marks (especially outside frame) are indicators.
As an exemplary subtraction flow where unwanted features are removed,
Referring to
Referring to the left-hand side of
Referring to the left-hand side of
Referring to
With reference again to
In an embodiment, the second conductive via 242B is separated from the second conductive line 234B by a portion of the second dielectric layer 204A, as is depicted. In an embodiment, the second conductive via 242B is separated from the second conductive line 234B by an etch stop layer 202A between the first dielectric layer 236 and the second dielectric layer 204A, and the first conductive via 242A extends through the etch stop layer 202A, as is depicted.
In an embodiment, the first conductive via 242A is in a first via opening 206C and the second conductive via 242B is in a second via opening 206B, and a residual resist material or residual ILD material is in the second via opening 206B but not in the first via opening 206C. In an embodiment, the second conductive via 242B is fabricated to be separated from the second conductive line 234B by an inline circuit edit process.
As an exemplary addition flow where a feature is added,
Referring to
Referring to
Referring to
Referring to
In another aspect, approaches are described to enable circuit edit for a subtractive layer, e.g. subtractive metal, metal gate cut, etc. In an embodiment, an ICE approach is implemented by use of positive tone resist planarizing over features. Detection of the implementation of such embodiments may include the realization of ILD height differences adjacent to removed features, e-beam alignment marks (especially in the frame). Embodiments can be implemented by using a maskless lithography tool to edit subtractively patterned features. Examples of subtractively patterned features may include metal interconnects, transistor fins, and gates.
As an exemplary process flow for subtractive metal patterning with inline circuit edit,
Referring to
Referring to
Referring to
With reference again to
In an embodiment, the one of the plurality of protrusions 403A that does not have a conductive line thereon has an uppermost surface below an uppermost surface of the remaining ones of the plurality of protrusions 403 having the corresponding individual one of the plurality of conductive lines 404A thereon, as is depicted. In an embodiment, the one of the plurality of protrusions 403A is fabricated to not have a conductive line thereon by an inline circuit edit process.
In an embodiment, the individual ones of the plurality of conductive lines 404A each have a hardmask 406A thereon, as is depicted. In an embodiment, the plurality of conductive lines 404A is in a second dielectric layer 416. The second dielectric layer 416 is over and in contact with the one of the plurality of protrusions 403A that does not have a conductive line thereon, as is depicted.
It is to be appreciated that an inline edit approach as described herein can be considered as a complementary lithography approach. Complementary lithography draws on the strengths of two lithography technologies, working hand-in-hand, to lower the cost of patterning critical layers in logic devices at 20 nm half-pitch and below, in high-volume manufacturing (HVM). The most cost-effective way to implement complementary lithography is to combine optical lithography with e-beam lithography (EBL). In an embodiment, the process of transferring integrated circuit (IC) designs to the wafer entails the following: optical lithography to print a predefined circuit pattern, and EBL to edit the pattern by either adding features, removing features, or both. When used to complement optical lithography, EBL can be referred to as CEBL, or complementary EBL. By not attempting to pattern all layers, CEBL plays a complementary but crucial role in meeting the industry's patterning needs at advanced (smaller) technology nodes and/or in reducing turn-around time by avoiding a mask change for a desired pattern change.
In any case, in an embodiment, complementary lithography as described herein involves first fabricating a circuit pattern by conventional or state-of the-art lithography, such as 193 nm immersion lithography (193i) or EUV lithography, which, in some embodiments, can involve pitch division to increase the density of lines in the gridded layout by a factor of n. Gridded layout formation with 193i lithography plus pitch division by a factor of n can be designated as 193i+P/n Pitch Division. Patterning of the pitch divided gridded layout can also be achieved using conventional optical lithography. However, in an embodiment, inline editing of the circuit pattern printed using optical lithography or EUV lithography without the need for fabricating an entirely new mask can be achieved using complementary EBL to add a feature to the pattern, to remove a feature from the pattern, or to both add and remove features from the pattern.
More generally, embodiments described herein are directed to patterning features during the fabrication of an integrated circuit. For example, integrated circuits commonly include electrically conductive microelectronic structures, which are known in the art as vias. Vias can be used to electrically connect metal lines above the vias to metal lines below the vias. In one embodiment, an inline circuit edit approach is used to pattern additional openings for forming vias, or to plug select pattern openings for forming vias. In another embodiment, an inline circuit edit approach is used to form non-conductive spaces or interruptions along the metal lines, or to remove select non-conductive spaces or interruptions along the metal lines. Conventionally, such interruptions have been referred to as “cuts” since the process involved removal or cutting away of portions of the metal lines. However, in a damascene approach, the interruptions may be referred to as “plugs” which are regions along a metal line trajectory that are actually not metal at any stage of the fabrication scheme, but are rather preserved regions where metal cannot be formed. In either case, however, use of the terms cuts or plugs may be done so interchangeably. Via opening and metal line cut or plug formation is commonly referred to as back-end-of-line (BEOL) processing for an integrated circuit. In another embodiment, an inline circuit edit approach is used for front-end-of-line (FEOL) processing or backside metal processing. For example, the scaling of active region dimensions (such as fin dimensions) and/or associated gate structures can be performed using inline circuit edit techniques as described herein.
As described above, electron beam (e-beam) lithography may be implemented to complement standard lithographic techniques in order to achieve desired editing of features for integrated circuit fabrication. An electron beam lithography tool may be used to perform the e-beam lithography. In an exemplary embodiment,
Referring to
Referring again to
In an embodiment, when referring below to openings or apertures in a blanker aperture array (BAA), all or some of the openings or apertures of the BAA can be switched open or “closed” (e.g., by beam deflecting) as the wafer/die moves underneath along a wafer travel or scan direction. In one embodiment, the BAA can be independently controlled as to whether each opening passes the e-beam through to the sample or deflects the e-beam into, e.g., a Faraday cup or blanking aperture. The e-beam column or apparatus including such a BAA may be built to deflect the overall beam coverage to just a portion of the BAA, and then individual openings in the BAA are electrically configured to pass the e-beam (“on”) or not pass (“off”). For example, un-deflected electrons pass through to the wafer and expose a resist layer, while deflected electrons are caught in the Faraday cup or blanking aperture. It is to be appreciated that reference to “openings” or “opening heights” refers to the spot size impinged on the receiving wafer and not to the physical opening in the BAA since the physical openings are substantially larger (e.g., micron scale) than the spot size (e.g., nanometer scale) ultimately generated from the BAA. Thus, when described herein as the pitch of a BAA or column of openings in a BAA being said to “correspond” to the pitch of metal lines, such description actually refers to the relationship between pitch of the impinging spots as generated from the BAA and the pitch of the lines being cut. As an example provided below in
It is also to be appreciated that, in some embodiments, an e-beam column as described above may also include other features in addition to those described in association with
As a general exemplary embodiment to provide context for more detailed embodiments, a staggered beam aperture array is implemented to solve throughput of an e-beam machine while also enabling minimum line pitch. With no stagger, consideration of edge placement error (EPE) means that a minimum pitch that is twice the line width cannot be cut since there is no possibility of stacking vertically in a single stack. For example,
By contrast to
It is to be appreciated that, although a staggered array is shown herein as two vertical columns for simplicity, the openings or apertures of a single “column” need not be columnar in the vertical direction. For example, in an embodiment, so long as a first array collectively has a pitch in the vertical direction, and a second array staggered in the scan direction from the first array collectively has the pitch in the vertical direction, the staggered array is achieved. Thus, reference to or depiction of a vertical column herein can actually be made up of one or more columns unless specified as being a single column of openings or apertures. In one embodiment, in the case that a “column” of openings is not a single column of openings, any offset within the “column” can be compensated with strobe timing. In an embodiment, the critical point is that the openings or apertures of a staggered array of a BAA lie on a specific pitch in the first direction, but are offset in the second direction to allow them to place cuts or vias without any gap between cuts or vias in the first direction.
Thus, one or more embodiments are directed to a staggered beam aperture array where openings are staggered to allow meeting EPE cuts and/or via requirements as opposed to an inline arrangement that cannot accommodate for EPE technology needs. By contrast, with no stagger, the problem of edge placement error (EPE) means that a minimum pitch that is twice the line width cannot be cut since there is no possibility of stacking vertically in single stack. Instead, in an embodiment, use of a staggered BAA enables much greater than 4000 times faster than individually e-beam writing each line location. Furthermore, a staggered array allows a line pitch to be twice the line width. In a particular embodiment, an array has 4096 staggered openings over two columns such that EPE for each of the cut and via locations can be made. It is to be appreciated that a staggered array, as contemplated herein, may include two or more columns of staggered openings.
In an embodiment, use of a staggered array leaves space for including metal around the apertures of the BAA which contain one or two electrodes for passing or steering the e-beam to the wafer or steering to a Faraday cup or blanking aperture. That is, each opening may be separately controlled by electrodes to pass or deflect the e-beam. In one embodiment, the BAA has 4096 openings, and the e-beam apparatus covers the entire array of 4096 openings, with each opening electrically controlled. Throughput improvements are enabled by sweeping the wafer under the opening as shown by the thick black arrows.
More generally, it is to be appreciated that a metallization layer having lines with line cuts (or plugs) and having associated vias may be fabricated above a substrate and, in one embodiment, may be fabricated above a previous metallization layer. As an example,
In an embodiment, fabrication of a metallization layer on the previous metallization structure of
In an embodiment, as used throughout the present description, interlayer dielectric (ILD) material is composed of or includes a layer of a dielectric or insulating material. Examples of suitable dielectric materials include, but are not limited to, oxides of silicon (e.g., silicon dioxide (SiO2)), doped oxides of silicon, fluorinated oxides of silicon, carbon doped oxides of silicon, various low-k dielectric materials known in the arts, and combinations thereof. The interlayer dielectric material may be formed by conventional techniques, such as, for example, chemical vapor deposition (CVD), physical vapor deposition (PVD), or by other deposition methods.
In an embodiment, as is also used throughout the present description, interconnect material is composed of one or more metal or other conductive structures. A common example is the use of copper lines and structures that may or may not include barrier layers between the copper and surrounding ILD material. As used herein, the term metal includes alloys, stacks, and other combinations of multiple metals. For example, the metal interconnect lines may include barrier layers, stacks of different metals or alloys, etc. The interconnect lines are also sometimes referred to in the arts as traces, wires, lines, metal, or simply interconnect.
In an embodiment, as is also used throughout the present description, hardmask materials are composed of dielectric materials different from the interlayer dielectric material. In some embodiments, a hardmask layer includes a layer of a nitride of silicon (e.g., silicon nitride) or a layer of an oxide of silicon, or both, or a combination thereof. Other suitable materials may include carbon-based materials. In another embodiment, a hardmask material includes a metal species. For example, a hardmask or other overlying material may include a layer of a nitride of titanium or another metal (e.g., titanium nitride). Potentially lesser amounts of other materials, such as oxygen, may be included in one or more of these layers. Alternatively, other hardmask layers known in the arts may be used depending upon the particular implementation. The hardmask layers maybe formed by CVD, PVD, or by other deposition methods.
It is to be appreciated that the layers and materials described in association with
In another embodiment, EBL inline edits may be used to fabricate semiconductor devices, such as PMOS or NMOS devices of an integrated circuit. In one such embodiment, EBL inline edits are used to pattern a grating of active regions that are ultimately used to form fin-based or trigate or nanowire or nanoribbon or nanosheet structures. In another such embodiment, EBL inline edits are used to pattern a gate layer, such as a poly layer, ultimately used for gate electrode fabrication. As an example of a completed device,
Referring to
Referring to
In an embodiment, the semiconductor structure or device 1000 is a non-planar device such as, but not limited to, a fin-FET or a tri-gate or a nanowire or a nanoribbon or a nanosheet device. In such an embodiment, a corresponding semiconducting channel region is composed of or is formed in a three-dimensional body. In one such embodiment, the gate electrode stacks of gate lines 1008 surround at least a top surface and a pair of sidewalls of the three-dimensional body.
Embodiments disclosed herein may be used to manufacture a wide variety of different types of integrated circuits and/or microelectronic devices. Examples of such integrated circuits include, but are not limited to, processors, chipset components, graphics processors, digital signal processors, micro-controllers, and the like. In other embodiments, semiconductor memory may be manufactured. Moreover, the integrated circuits or other microelectronic devices may be used in a wide variety of electronic devices known in the arts. For example, in computer systems (e.g., desktop, laptop, server), cellular phones, personal electronics, etc. The integrated circuits may be coupled with a bus and other components in the systems. For example, a processor may be coupled by one or more buses to a memory, a chipset, etc. Each of the processor, the memory, and the chipset, may potentially be manufactured using the approaches disclosed herein.
Depending on its applications, computing device 1100 may include other components that may or may not be physically and electrically coupled to the board 1102. These other components include, but are not limited to, volatile memory (e.g., DRAM), non-volatile memory (e.g., ROM), flash memory, a graphics processor, a digital signal processor, a crypto processor, a chipset, an antenna, a display, a touchscreen display, a touchscreen controller, a battery, an audio codec, a video codec, a power amplifier, a global positioning system (GPS) device, a compass, an accelerometer, a gyroscope, a speaker, a camera, and a mass storage device (such as hard disk drive, compact disk (CD), digital versatile disk (DVD), and so forth).
The communication chip 1106 enables wireless communications for the transfer of data to and from the computing device 1100. The term “wireless” and its derivatives may be used to describe circuits, devices, systems, methods, techniques, communications channels, etc., that may communicate data through the use of modulated electromagnetic radiation through a non-solid medium. The term does not imply that the associated devices do not contain any wires, although in some embodiments they might not. The communication chip 1106 may implement any of a number of wireless standards or protocols, including but not limited to Wi-Fi (IEEE 802.11 family), WiMAX (IEEE 802.16 family), IEEE 802.20, long term evolution (LTE), Ev-DO, HSPA+, HSDPA+, HSUPA+, EDGE, GSM, GPRS, CDMA, TDMA, DECT, Bluetooth, derivatives thereof, as well as any other wireless protocols that are designated as 3G, 4G, 5G, and beyond. The computing device 1100 may include a plurality of communication chips 1106. For instance, a first communication chip 1106 may be dedicated to shorter range wireless communications such as Wi-Fi and Bluetooth and a second communication chip 1106 may be dedicated to longer range wireless communications such as GPS, EDGE, GPRS, CDMA, WiMAX, LTE, Ev-DO, and others.
The processor 1104 of the computing device 1100 includes an integrated circuit die packaged within the processor 1104. In some implementations of the disclosure, the integrated circuit die of the processor includes one or more structures fabricated using an inline circuit edit approach, in accordance with implementations of embodiments of the disclosure. The term “processor” may refer to any device or portion of a device that processes electronic data from registers and/or memory to transform that electronic data into other electronic data that may be stored in registers and/or memory.
The communication chip 1106 also includes an integrated circuit die packaged within the communication chip 1106. In accordance with another implementation of embodiments of the disclosure, the integrated circuit die of the communication chip includes one or more structures fabricated using an inline circuit edit approach, in accordance with implementations of embodiments of the disclosure.
In further implementations, another component housed within the computing device 1100 may contain an integrated circuit die that includes one or more structures fabricated using an inline circuit edit approach, in accordance with implementations of embodiments of the disclosure.
In various implementations, the computing device 1100 may be a laptop, a netbook, a notebook, an ultrabook, a smartphone, a tablet, a personal digital assistant (PDA), an ultra mobile PC, a mobile phone, a desktop computer, a server, a printer, a scanner, a monitor, a set-top box, an entertainment control unit, a digital camera, a portable music player, or a digital video recorder. In further implementations, the computing device 1100 may be any other electronic device that processes data.
Embodiments of the present disclosure may be provided as a computer program product, or software, that may include a machine-readable medium having stored thereon instructions, which may be used to program a computer system (or other electronic devices) to perform a process according to embodiments of the present disclosure. In one embodiment, the computer system is coupled with an e-beam tool such as described in association with
The exemplary computer system 1200 includes a processor 1202, a main memory 1204 (e.g., read-only memory (ROM), flash memory, dynamic random access memory (DRAM) such as synchronous DRAM (SDRAM) or Rambus DRAM (RDRAM), etc.), a static memory 1206 (e.g., flash memory, static random access memory (SRAM), etc.), and a secondary memory 1218 (e.g., a data storage device), which communicate with each other via a bus 1230.
Processor 1202 represents one or more general-purpose processing devices such as a microprocessor, central processing unit, or the like. More particularly, the processor 1202 may be a complex instruction set computing (CISC) microprocessor, reduced instruction set computing (RISC) microprocessor, very long instruction word (VLIW) microprocessor, processor implementing other instruction sets, or processors implementing a combination of instruction sets. Processor 1202 may also be one or more special-purpose processing devices such as an application specific integrated circuit (ASIC), a field programmable gate array (FPGA), a digital signal processor (DSP), network processor, or the like. Processor 1202 is configured to execute the processing logic 1226 for performing the operations described herein.
The computer system 1200 may further include a network interface device 1208. The computer system 1200 also may include a video display unit 1210 (e.g., a liquid crystal display (LCD), a light emitting diode display (LED), or a cathode ray tube (CRT)), an alphanumeric input device 1212 (e.g., a keyboard), a cursor control device 1214 (e.g., a mouse), and a signal generation device 1216 (e.g., a speaker).
The secondary memory 1218 may include a machine-accessible storage medium (or more specifically a computer-readable storage medium) 1232 on which is stored one or more sets of instructions (e.g., software 1222) embodying any one or more of the methodologies or functions described herein. The software 1222 may also reside, completely or at least partially, within the main memory 1204 and/or within the processor 1202 during execution thereof by the computer system 1200, the main memory 1204 and the processor 1202 also constituting machine-readable storage media. The software 1222 may further be transmitted or received over a network 1220 via the network interface device 1208.
While the machine-accessible storage medium 1232 is shown in an exemplary embodiment to be a single medium, the term “machine-readable storage medium” should be taken to include a single medium or multiple media (e.g., a centralized or distributed database, and/or associated caches and servers) that store the one or more sets of instructions. The term “machine-readable storage medium” shall also be taken to include any medium that is capable of storing or encoding a set of instructions for execution by the machine and that cause the machine to perform any one or more of the methodologies of the present disclosure. The term “machine-readable storage medium” shall accordingly be taken to include, but not be limited to, solid-state memories, and optical and magnetic media.
Implementations of embodiments of the disclosure may be formed or carried out on a substrate, such as a semiconductor substrate. In one implementation, the semiconductor substrate may be a crystalline substrate formed using a bulk silicon or a silicon-on-insulator substructure. In other implementations, the semiconductor substrate may be formed using alternate materials, which may or may not be combined with silicon, that include but are not limited to germanium, indium antimonide, lead telluride, indium arsenide, indium phosphide, gallium arsenide, indium gallium arsenide, gallium antimonide, or other combinations of group III-V or group IV materials. Although a few examples of materials from which the substrate may be formed are described here, any material that may serve as a foundation upon which a semiconductor device may be built falls within the spirit and scope of the present disclosure.
A plurality of transistors, such as metal-oxide-semiconductor field-effect transistors (MOSFET or simply MOS transistors), may be fabricated on the substrate. In various implementations of the disclosure, the MOS transistors may be planar transistors, nonplanar transistors, or a combination of both. Nonplanar transistors include FinFET transistors such as double-gate transistors and tri-gate transistors, and wrap-around or all-around gate transistors such as nanoribbon and nanowire transistors. Although the implementations described herein may illustrate only planar transistors, it should be noted that the disclosure may also be carried out using nonplanar transistors.
Each MOS transistor includes a gate stack formed of at least two layers, a gate dielectric layer and a gate electrode layer. The gate dielectric layer may include one layer or a stack of layers. The one or more layers may include silicon oxide, silicon dioxide (SiO2) and/or a high-k dielectric material. The high-k dielectric material may include elements such as hafnium, silicon, oxygen, titanium, tantalum, lanthanum, aluminum, zirconium, barium, strontium, yttrium, lead, scandium, niobium, and zinc. Examples of high-k materials that may be used in the gate dielectric layer include, but are not limited to, hafnium oxide, hafnium silicon oxide, lanthanum oxide, lanthanum aluminum oxide, zirconium oxide, zirconium silicon oxide, tantalum oxide, titanium oxide, barium strontium titanium oxide, barium titanium oxide, strontium titanium oxide, yttrium oxide, aluminum oxide, lead scandium tantalum oxide, and lead zinc niobate. In some embodiments, an annealing process may be carried out on the gate dielectric layer to improve its quality when a high-k material is used.
The gate electrode layer is formed on the gate dielectric layer and may consist of at least one P-type workfunction metal or N-type workfunction metal, depending on whether the transistor is to be a PMOS or an NMOS transistor. In some implementations, the gate electrode layer may consist of a stack of two or more metal layers, where one or more metal layers are workfunction metal layers and at least one metal layer is a fill metal layer.
For a PMOS transistor, metals that may be used for the gate electrode include, but are not limited to, ruthenium, palladium, platinum, cobalt, nickel, and conductive metal oxides, e.g., ruthenium oxide. A P-type metal layer will enable the formation of a PMOS gate electrode with a workfunction that is between about 4.9 eV and about 5.2 eV. For an NMOS transistor, metals that may be used for the gate electrode include, but are not limited to, hafnium, zirconium, titanium, tantalum, aluminum, alloys of these metals, and carbides of these metals such as hafnium carbide, zirconium carbide, titanium carbide, tantalum carbide, and aluminum carbide. An N-type metal layer will enable the formation of an NMOS gate electrode with a workfunction that is between about 3.9 eV and about 4.2 eV.
In some implementations, the gate electrode may consist of a “U”-shaped structure that includes a bottom portion substantially parallel to the surface of the substrate and two sidewall portions that are substantially perpendicular to the top surface of the substrate. In another implementation, at least one of the metal layers that form the gate electrode may simply be a planar layer that is substantially parallel to the top surface of the substrate and does not include sidewall portions substantially perpendicular to the top surface of the substrate. In further implementations of the disclosure, the gate electrode may consist of a combination of U-shaped structures and planar, non-U-shaped structures. For example, the gate electrode may consist of one or more U-shaped metal layers formed atop one or more planar, non-U-shaped layers.
In some implementations of the disclosure, a pair of sidewall spacers may be formed on opposing sides of the gate stack that bracket the gate stack. The sidewall spacers may be formed from a material such as silicon nitride, silicon oxide, silicon carbide, silicon nitride doped with carbon, and silicon oxynitride. Processes for forming sidewall spacers are well known in the art and generally include deposition and etching process steps. In an alternate implementation, a plurality of spacer pairs may be used, for instance, two pairs, three pairs, or four pairs of sidewall spacers may be formed on opposing sides of the gate stack.
As is well known in the art, source and drain regions are formed within the substrate adjacent to the gate stack of each MOS transistor. The source and drain regions are generally formed using either an implantation/diffusion process or an etching/deposition process. In the former process, dopants such as boron, aluminum, antimony, phosphorous, or arsenic may be ion-implanted into the substrate to form the source and drain regions. An annealing process that activates the dopants and causes them to diffuse further into the substrate typically follows the ion implantation process. In the latter process, the substrate may first be etched to form recesses at the locations of the source and drain regions. An epitaxial deposition process may then be carried out to fill the recesses with material that is used to fabricate the source and drain regions. In some implementations, the source and drain regions may be fabricated using a silicon alloy such as silicon germanium or silicon carbide. In some implementations the epitaxially deposited silicon alloy may be doped in situ with dopants such as boron, arsenic, or phosphorous. In further embodiments, the source and drain regions may be formed using one or more alternate semiconductor materials such as germanium or a group III-V material or alloy. And in further embodiments, one or more layers of metal and/or metal alloys may be used to form the source and drain regions.
One or more interlayer dielectrics (ILD) are deposited over the MOS transistors. The ILD layers may be formed using dielectric materials known for their applicability in integrated circuit structures, such as low-k dielectric materials. Examples of dielectric materials that may be used include, but are not limited to, silicon dioxide (SiO2), carbon doped oxide (CDO), silicon nitride, organic polymers such as perfluorocyclobutane or polytetrafluoroethylene, fluorosilicate glass (FSG), and organosilicates such as silsesquioxane, siloxane, or organosilicate glass. The ILD layers may include pores or air gaps to further reduce their dielectric constant.
The interposer 1300 may be formed of an epoxy resin, a fiberglass-reinforced epoxy resin, a ceramic material, or a polymer material such as polyimide. In further implementations, the interposer 1300 may be formed of alternate rigid or flexible materials that may include the same materials described above for use in a semiconductor substrate, such as silicon, germanium, and other group III-V and group IV materials.
The interposer 1300 may include metal interconnects 1308 and vias 1310, including but not limited to through-silicon vias (TSVs) 1312. The interposer 1300 may further include embedded devices 1314, including both passive and active devices. Such devices include, but are not limited to, capacitors, decoupling capacitors, resistors, inductors, fuses, diodes, transformers, sensors, and electrostatic discharge (ESD) devices. More complex devices such as radio-frequency (RF) devices, power amplifiers, power management devices, antennas, arrays, sensors, and MEMS devices may also be formed on the interposer 1300.
In accordance with embodiments of the disclosure, apparatuses or processes disclosed herein may be used in the fabrication of interposer 1300.
Computing device 1400 may include other components that may or may not be physically and electrically coupled to the motherboard or fabricated within an SoC die. These other components include, but are not limited to, volatile memory 1410 (e.g., DRAM), non-volatile memory 1412 (e.g., ROM or flash memory), a graphics processing unit 1414 (GPU), a digital signal processor 1416, a crypto processor 1442 (a specialized processor that executes cryptographic algorithms within hardware), a chipset 1420, an antenna 1422, a display or a touchscreen display 1424, a touchscreen controller 1426, a battery 1429 or other power source, a power amplifier (not shown), a global positioning system (GPS) device 1428, a compass 1430, a motion coprocessor or sensors 1432 (that may include an accelerometer, a gyroscope, and a compass), a speaker 1434, a camera 1436, user input devices 1438 (such as a keyboard, mouse, stylus, and touchpad), and a mass storage device 1440 (such as hard disk drive, compact disk (CD), digital versatile disk (DVD), and so forth).
The communications chip 1408 enables wireless communications for the transfer of data to and from the computing device 1400. The term “wireless” and its derivatives may be used to describe circuits, devices, systems, methods, techniques, communications channels, etc., that may communicate data through the use of modulated electromagnetic radiation through a non-solid medium. The term does not imply that the associated devices do not contain any wires, although in some embodiments they might not. The communication chip 1408 may implement any of a number of wireless standards or protocols, including but not limited to Wi-Fi (IEEE 802.11 family), WiMAX (IEEE 802.16 family), IEEE 802.20, long term evolution (LTE), Ev-DO, HSPA+, HSDPA+, HSUPA+, EDGE, GSM, GPRS, CDMA, TDMA, DECT, Bluetooth, derivatives thereof, as well as any other wireless protocols that are designated as 3G, 4G, 5G, and beyond. The computing device 1400 may include a plurality of communication chips 1408. For instance, a first communication chip 1408 may be dedicated to shorter range wireless communications such as Wi-Fi and Bluetooth and a second communication chip 1408 may be dedicated to longer range wireless communications such as GPS, EDGE, GPRS, CDMA, WiMAX, LTE, Ev-DO, and others.
The processor 1404 of the computing device 1400 includes one or more structures fabricated using an inline circuit edit approach, in accordance with implementations of embodiments of the disclosure. The term “processor” may refer to any device or portion of a device that processes electronic data from registers and/or memory to transform that electronic data into other electronic data that may be stored in registers and/or memory.
The communication chip 1408 may also include one or more structures fabricated using an inline circuit edit approach, in accordance with implementations of embodiments of the disclosure.
In further embodiments, another component housed within the computing device 1400 may contain one or more structures fabricated using an inline circuit edit approach, in accordance with implementations of embodiments of the disclosure.
In various embodiments, the computing device 1400 may be a laptop computer, a netbook computer, a notebook computer, an ultrabook computer, a smartphone, a tablet, a personal digital assistant (PDA), an ultra mobile PC, a mobile phone, a desktop computer, a server, a printer, a scanner, a monitor, a set-top box, an entertainment control unit, a digital camera, a portable music player, or a digital video recorder. In further implementations, the computing device 1400 may be any other electronic device that processes data.
In all instances described herein, other types of charge particle, e.g., proton, or neutral atom particle beams could be used instead of or in addition to an electron-beam for mask-less patterning such as described above. Examples include: Neon, Helium, Gallium, Xenon, and other ionized particle beams, as well as neutral charge beams.
Thus, lithographic methodologies involving, and apparatuses suitable for, inline circuit edits have been disclosed.
The above description of illustrated implementations of embodiments of the disclosure, including what is described in the Abstract, is not intended to be exhaustive or to limit the disclosure to the precise forms disclosed. While specific implementations of, and examples for, the disclosure are described herein for illustrative purposes, various equivalent modifications are possible within the scope of the disclosure, as those skilled in the relevant art will recognize.
These modifications may be made to the disclosure in light of the above detailed description. The terms used in the following claims should not be construed to limit the disclosure to the specific implementations disclosed in the specification and the claims. Rather, the scope of the disclosure is to be determined entirely by the following claims, which are to be construed in accordance with established doctrines of claim interpretation.
Example embodiment 1: An integrated circuit structure includes a first conductive line and a second conductive line in a first dielectric layer, the second conductive line laterally spaced apart from the first conductive line. The integrated circuit structure also includes a first conductive via and a second conductive via in a second dielectric layer, the second dielectric layer over the first dielectric layer, the second conductive via laterally spaced apart from the first conductive via, the first conductive via vertically over and connected to the first conductive line, and the second conductive via vertically over but separated from the second conductive line.
Example embodiment 2: The integrated circuit structure of example embodiment 1, wherein the second conductive via is separated from the second conductive line by a portion of the second dielectric layer.
Example embodiment 3: The integrated circuit structure of example embodiment 1 or 2, wherein the second conductive via is separated from the second conductive line by an etch stop layer between the first dielectric layer and the second dielectric layer, and wherein the first conductive via extends through the etch stop layer.
Example embodiment 4: The integrated circuit structure of example embodiment 1, 2 or 3, wherein the first conductive via is in a first via opening and the second conductive via is in a second via opening, and wherein a residual resist material is in the second via opening but not in the first via opening.
Example embodiment 5: The integrated circuit structure of example embodiment 1, 2, 3 or 4, wherein the second conductive via is fabricated to be separated from the second conductive line by an inline circuit edit process.
Example embodiment 6: An integrated circuit structure includes a dielectric layer having a plurality of protrusions. A plurality of conductive lines is on the dielectric layer. Individual ones of the plurality of conductive lines are on a corresponding one of the plurality of protrusions of the dielectric layer, but one of the plurality of protrusions does not have a conductive line thereon.
Example embodiment 7: The integrated circuit structure of example embodiment 6, wherein the one of the plurality of protrusions that does not have a conductive line thereon has an uppermost surface below an uppermost surface of the remaining ones of the plurality of protrusions having the corresponding individual one of the plurality of conductive lines thereon.
Example embodiment 8: The integrated circuit structure of example embodiment 6 or 7, wherein the individual ones of the plurality of conductive lines each have a hardmask thereon.
Example embodiment 9: The integrated circuit structure of example embodiment 6, 7 or 8, wherein the plurality of conductive lines is in a second dielectric layer, the second dielectric layer over and in contact with the one of the plurality of protrusions that does not have a conductive line thereon.
Example embodiment 10: The integrated circuit structure of example embodiment 6, 7, 8 or 9, wherein the one of the plurality of protrusions is fabricated to not have a conductive line thereon by an inline circuit edit process.
Example embodiment 11: A computing device includes a board, and a component coupled to the board. The component includes an integrated circuit structure including a first conductive line and a second conductive line in a first dielectric layer, the second conductive line laterally spaced apart from the first conductive line. The integrated circuit structure also includes a first conductive via and a second conductive via in a second dielectric layer, the second dielectric layer over the first dielectric layer, the second conductive via laterally spaced apart from the first conductive via, the first conductive via vertically over and connected to the first conductive line, and the second conductive via vertically over but separated from the second conductive line.
Example embodiment 12: The computing device of example embodiment 11, further including a memory coupled to the board.
Example embodiment 13: The computing device of example embodiment 11 or 12, further including a communication chip coupled to the board.
Example embodiment 14: The computing device of example embodiment 11, 12 or 13, wherein the component is a packaged integrated circuit die.
Example embodiment 15: The computing device of example embodiment 11, 12, 13 or 14, wherein the component is selected from the group consisting of a processor, a communications chip, and a digital signal processor.
Example embodiment 16: A computing device includes a board, and a component coupled to the board. The component includes an integrated circuit structure including a dielectric layer having a plurality of protrusions. A plurality of conductive lines is on the dielectric layer. Individual ones of the plurality of conductive lines are on a corresponding one of the plurality of protrusions of the dielectric layer, but one of the plurality of protrusions does not have a conductive line thereon.
Example embodiment 17: The computing device of example embodiment 16, further including a memory coupled to the board.
Example embodiment 18: The computing device of example embodiment 16 or 17, further including a communication chip coupled to the board.
Example embodiment 19: The computing device of example embodiment 16, 17 or 18, wherein the component is a packaged integrated circuit die.
Example embodiment 20: The computing device of example embodiment 16, 17, 18 or 19, wherein the component is selected from the group consisting of a processor, a communications chip, and a digital signal processor.