Integrated circuit capacitor

Information

  • Patent Grant
  • 6653676
  • Patent Number
    6,653,676
  • Date Filed
    Monday, July 30, 2001
    22 years ago
  • Date Issued
    Tuesday, November 25, 2003
    20 years ago
Abstract
The present invention discloses a novel integrated circuit capacitor and a method of forming such a capacitor. The capacitor formation begins with a base electrode 18 adjacent an insulating region 26. This base electrode 18 can comprise either polysilicon or a metal. A layer 28 of a first material, such as a siliciding metal, is formed over the base electrode 18 as well as the adjacent insulating region. A self-aligned capacitor electrode 12 can then be formed by reacting the first material 28 with the base electrode 18 and removing unreacted portions of the first material 28 from the insulating region 26. The capacitor is then completed by forming a dielectric layer 16 over the self-aligned capacitor electrode 12 and a second capacitor electrode 14 over the dielectric layer 16.
Description




FIELD OF THE INVENTION




This invention relates generally to semiconductor devices and specifically to an integrated circuit capacitor and a method of forming a capacitor.




BACKGROUND OF THE INVENTION




The increasing density of integrated circuits (e.g., dynamic random access memories) is increasing the need for materials with high dielectric constants to be used in electrical devices such as capacitors. Generally, capacitance is directly related to the surface area of the electrode in contact with the capacitor dielectric, but is not significantly affected by the electrode volume. The current method generally utilized to achieve higher capacitance per unit area is to increase the surface area/unit area by increasing the topography, such as in trench and stack capacitors using SiO


2


or SiO


2


/Si


3


N


4


as the dielectric. This approach becomes very difficult in terms of manufacturability for devices such as the 256 Mbit and 1 Gbit DRAMs.




An alternative approach is to use a high permittivity dielectric material. Many perovskite, ferroelectric, or high dielectric constant (hereafter abbreviated HDC) materials such as (Ba,Sr)TiO


3


(BST) usually have much larger capacitance densities than standard SiO


2


—SiN


4


—SiO


2


(ONO) capacitors. Various metals and metallic compounds, and typically noble metals such as platinum and conductive oxides such as RuO


2


, have been proposed as the electrodes for these HDC materials.




As an example, Yamamichi et al. teach a (Ba, Sr) TiO


3


(BST) based stacked capacitor with a RuO


2


/Ru/TiN/TiSix storage node. “An ECR MOCVD (Ba,Sr) TiO


3


based stacked capacitor technology with RuO


2


/Ru/TiN/TiSi


x


storage nodes for Gbit-scale DRAMs,” 1995 IEDM 119. In this process, fully planarized n-type polysilicon plugs were fabricated. Fifty nanometer titanium and 50 nm TiN layers were then deposited using a Ti metal target. This double layer was treated by RTA in N


2


at 700° C. for 30 seconds to form a TiSi


x


silicide layer. Furthermore, a 50-100 nm metal Ru layer was inserted between the RuO


2


and BST deposition.




Unfortunately, the materials which are compatible with HDC dielectrics tend to be difficult to process. For example, Yamamichi et al. teach only a simple block structure of RuO


2


. Much engineering effort has gone into processing materials such as silicon, oxides and nitrides but less common materials have been the subject of less investigation. Accordingly, techniques to deposit and etch materials other than those commonly used are not well known. As a result, it is presently difficult to use HDC materials in anything but the simplest structures.




SUMMARY OF THE INVENTION




The present invention provides an integrated circuit capacitor which can be used in a wide variety of devices including dynamic random access memories (DRAMs). As DRAM dimensions continue to shrink and the density corresponds to increase by factors of four, the storage cell is getting small while the required storage charge remains about the same. Conventional oxynitride (N/O) dielectrics have smaller storage charge per unit area than high dielectric constant materials such as Ta


2


O


5


, Ba


1-x


Sr


x


TiO


3


(BST), SrTiO


3


, and Pb


1-x


Zr


x


TiO


3


(PZT). Thus, metal-insulator-metal (MIM) capacitors using the high dielectric constant materials have been proposed for supplying high storage charge density in a small storage cell. The present invention proposes self-aligned MIM capacitor formation which can be used in conjunction with high dielectric constant materials.




The capacitor formation begins with a base electrode material adjacent an insulating region. This base electrode material can comprise polysilicon or a metal. A layer of a first material, such as a siliciding metal, is formed over the base electrode material as well as the adjacent insulating region. A self-aligned capacitor electrode can then be formed by reacting the first material with the base electrode material and removing unreacted portions of the first material from the insulating region. The capacitor is then completed by forming a dielectric layer over the self-aligned capacitor electrode and a second capacitor electrode over the dielectric layer. Each of the dielectric layer and/or the second capacitor electrode may be aligned with the storage node but do not have to be.




In one specific embodiment, a bottom electrode formed from doped polysilicon is patterned using conventional photoresist and etching. A conformal silicide layer is formed along the bottom electrode (or storage node in a DRAM) through silicidation using rapid thermal anneal (RTA) following a chemical vapor deposition (CVD) metal deposition. The non-silicided metal layer is selectively etched away. A nitridation process using N


2


or NH


3


plus rapid thermal nitridation (RTN) is applied to form a metal nitride conductive layer along the bottom electrode. During this process, a thin SiON layer may consequently be formed on the surface of any adjacent oxide regions. The dielectric and top plate are sequentially deposited on the bottom electrode to form the self-aligned MIM capacitor.




The resultant structure provides a novel integrated circuit capacitor. In one embodiment, this capacitor includes a semiconductor region, a silicide layer disposed on the semiconductor region, a conductive nitride layer disposed on the silicide layer, a dielectric layer disposed on the silicide layer, and a conductive layer disposed on the dielectric layer. A second embodiment capacitor has a first electrode which includes a semiconductor region and a conductive nitride layer disposed on the semiconductor region. The conductive nitride includes a metal silicide.




The present invention discloses a unique process for forming a self-aligned capacitor plate. In addition, this self-aligned electrode has good oxidation resistance and a high work function. For example, conductive nitride electrodes have better oxidation resistance and higher work function than pure metal electrodes. These conductive nitrides can be used as direct capacitor electrodes or electrode diffusion barriers, which are typically needed for BST or PZT deposition. In particular, this self-aligned conductive nitride electrodes are suitable for the Ta


2


O


5


.











BRIEF DESCRIPTION OF THE DRAWINGS




The above features of the present invention will be more clearly understood from consideration of the following descriptions in connection with accompanying drawings in which:





FIG. 1

is a cross-sectional view of a first embodiment stacked capacitor of the present invention;





FIGS. 2



a


-


2




c


are cross-sectional views of alternate embodiment capacitors;





FIGS. 3



a


-


3




g


are cross-sectional views illustrating the formation of an integrated circuit capacitor of the present invention;





FIGS. 4



a


-


4




c


are diagrams of a DRAM circuit which can utilize the capacitor of the present invention;





FIGS. 5



a


-


5




j


are cross-sectional views illustrating one process flow for forming a DRAM which utilizes the capacitor of the present invention; and





FIG. 6

is a cross-sectional view of a trench capacitor of the present invention.











DETAILED DESCRIPTION OF ILLUSTRATIVE EMBODIMENTS




The making and use of the various embodiments are discussed below in detail. However, it should be appreciated that the present invention provides mny applicable inventive concepts which can be embodied in a wide variety of specific contexts. The specific embodiments discussed are merely illustrative of specific ways to make and use the invention, and do not limit the scope of the invention.




The structure of the present invention will be described first. A method of fabricating a simple structure will then be described. Finally, the present invention will be described in terms of one specific application—the dynamic random access memory.





FIG. 1

illustrates a simplified view of a first embodiment integrated circuit capacitor


10


of the present invention. It is noted in viewing

FIG. 1

, as well as subsequent figures, that no attempt has been made to draw the various levels to scale. Specific dimensions will be provided in the written description when warranted.




Capacitor


10


includes a first electrode


12


, a second electrode


14


and a dielectric layer


16


. As with any capacitor, dielectric layer


16


separates first and second electrodes


12


and


14


. The capacitance of the cell can be expressed as C


s


/A=ε


0


ε


r


/t, where C


s


is the storage cell capacitance, A is the total surface area of the capacitor, t is the dielectric film thickness, and ε


0


and ε


r


stand for vacuum and relative permittivities, respectively. Prior art capacitors have used a high dielectric constant (k) layer


16


. In this context, a high dielectric constant material is defined as one which has a dielectric constant of about 50 or greater. Any material which has this property could be encompassed. Specific materials will also be disclosed. When a specific material is discussed it is preferably a high dielectric material but does not need to be.




Examples of high dielectric materials include Ta


2


O


5


, BST, SrTiO


3


, and PZT. These high dielectric constant materials are typically grown by metal-organic chemical vapor deposition (MOCVD) in oxygen ambient. As a result, the bottom electrode must be resistant to oxidation. Since a conventional polysilicon bottom electrode


12


will form a SiO


2


layer if a high-k dielectric film


16


is deposited directly, a metal or conductive nitride electrode is typically included with the use of the high-k dielectrics.




As an example, one prior art paper has proposed using Ta2O


5


for the storage dielectrics with a CVD tungsten plate on top of polysilicon as the bottom electrode. T. Kaga et al., “A 0.29 μm


2


MIM-CROWN Cell and Process Technologies for 1-Gigabit DRAMs,” 1994 IEDM 927. The tungsten electrode is oxidized at temperatures above 400° C., Hence, this material is not a good candidate for a high-k dielectric electrode since it will oxidize during dielectric formation. Other CVD metals such as platinum, palladium and aluminum or conductive nitrides such as TaSiN, TiSIN, WN, TiN, and TiAlN deposited on polysilicon have also been proposed for the bottom electrode. But these materials need additional patterning and etching processes. Furthermore, the above CVD processes are either not available or mature currently. In order to have an easy integrated electrode and robust processes, we propose a self-aligned bottom electrode process for integrated circuit capacitors which can be used with the high-k dielectrics.




To accomplish this goal,

FIG. 1

illustrates a first electrode


12


which comprises a multilayer structure. For example, first electrode


12


can comprise semiconductor region


18


, metal layer


20


and conductive diffusion-barrier layer


22


.




In the preferred embodiment, the semiconductor region


18


comprises silicon although other materials are possible. Polysilicon tends to be the preferred material since much know-how exists relating to the processing of silicon structures. Other materials could alternatively be used. In an alternate embodiment, semiconductor region


18


may be replaced by a metal region. On such embodiment is described in further detail in co-pending application Ser. No. 09/014,484.




Layer


20


preferably comprises a silicide layer. Any number of materials can be used including tantalum silicide (TaSi


x


), titanium silicide (TiSi


x


), aluminum silicide (AlSi


x


), tungsten silicide (WSi


x


), molybdenum silicide (MoSi


x


), Cobalt Silicide (CoSi


x


), and metal alloy silicides. Layer


20


can range in thickness from about 3 nm to about 100 nm. A thinner layer tends to add less stress so a thickness of at least about 3 nm is typically used.




In the preferred embodiment, electrode layer


22


comprises a conductive nitride layer. Materials which can be used for this layer include Ta—Si—N, Ti—Si—N, W—Si—N, Ti—N, Mo—Si—N, Ti—Al—N, W—N, Mo—N, and metal alloy silicon nitrides. (For the purposes of this patent, the dashes included within the chemical notations are used to denote the fact that each of the elements in the compound may not be present in equal portions. One of ordinary skill in the art could deduce the proper compound without undue experimentation.) Other embodiments can utilize other barrier layer


22


materials including other ternary (or greater) amorphous nitrides (e.g., Ta—B—N, Ti—B—N), exotic conductive nitrides (e.g., Zr-nitride, Y-nitride, Sc-nitride and other rare earth nitrides, n-deficient Al-nitride, doped Al-nitride, Mg-nitride, Ca-nitride, Sr-nitride, Ba-nitride), or alloys of the these exotic conductive nitrides with common silicon processing materials such as TiN, CaN, Ni-nitride, Co nitride, Ta-nitride and W-nitride, and noble metal insulator alloys such as Pt—Si—N, Pd—Si—O, Pd—B—(O,N), Pd—Al—N, Ru—Si—(O,N), Ir—Si—O, Re—Si—N, Rh—Al—N, and Ag—Si N. Further, barrier layer


22


can comprise multiple layers including combinations of the above materials.




In the embodiment described above, the bottom electrode


12


comprises a polysilicon/silicide/conductive nitride structure. In an alternate embodiment, which is not illustrated, bottom electrode


12


can comprise a metal/conductive nitride structure. The silicidation and nitridation processes described below will form self-aligned electrodes with beginning polysilicon or metal electrodes. It is also noted that the nitridation process (described below) could consume all the silicide


20


depending on silicide thickness and nitridation conditions. In that embodiment, the final structure


12


would comprise a semiconductor (or metal) layer


18


and a conductive nitride layer


22


(without the intervening metal layer


20


).




Electrode


18


may be formed form metallic material such as tungsten, titanium, tantalum, molybdenum, cobalt, zirconium, ruthenium, or metal alloys or silicides. For metal silicides, tungsten tends to be preferred since it is currently being used in other processes and has better oxidation resistance and a larger work function than titanium or tantalum. In any event, titanium, tantalum, or any of the other materials can still be used.




One of the advantages of the capacitor of the present invention is that it can be fabricated with a large number of dielectric materials


16


. While standard oxide and nitride materials can be used, the present invention can also be used with high dielectric constant materials including tantalum pentoxide (Ta


2


O


5


), barium strontium titanate or simply BST (Ba


1-x


Sr


x


TiO


3


), strontium titanate (SrTiO


3


) and lead zirconium titanate or simply PZT (Pb


1-x


Zr


x


TiO


3


). As noted above, these materials are not compatible with simply silicon structures. But these materials can be used with the structure described herein.




Top electrode


14


can comprise just about any conductive material. The only criteria is that the electrode material be physically (e.g., adhesively, thermally) compatible with dielectric material


16


. For example, electrode


14


can comprise silicon (e.g., polysilicon), a metal (e.g., aluminum, copper, palladium, platinum, ruthenium, gold, silver, tantalum, titanium, molybdenum, tungsten), a silicide (e.g., TaS


x


, TiSi


x


, AlSi


x


, CoSix, WSi


x


, MoSi


x


, an alloy silicide), a conductive nitride (e.g., Ti—N, Ti—Al—N, Ta—Si—N, W—Si—N, W—N, Mo—N, Ru—N, Sn—N, Zr—N), a conducive oxide (e.g., RuO


2


, SnO, ZO, IrO), or other conductive materials (e.g., a carbide such as tantalum carbide, a boride such as titanium boride).




One of the advantages of the present invention is that any of a variety of structures can be easily fabricated. While the bottom electrode


12


can be a simple planar structure, other structures such as crowns and other 3-D storage shelf shapes can also be formed. In this context, a non-planar structure is meant to encompass structures other than a simple “table top”.

FIGS. 2



a


-


2




c


illustrate three of such structures as examples.

FIG. 2



a


illustrates a simple crown structure with a cylindrical bottom electrode


12


.

FIG. 2



b


illustrates a capacitor which includes a spacer


23


and

FIG. 2



c


illustrates a crown capacitor with concentric cylinders. These figures have been included to demonstrate that the present invention can be used with a wide range of storage node shapes. Other storage node shapes such as fins are also possible.




A process for forming the capacitor of the present invention will now be described with reference to

FIGS. 3



a


-


3




f


. While a simple stacked capacitor will be illustrated, it is noted that any number of structure shapes can also be formed using the same steps.




Referring now to

FIG. 3



a


, a plug


24


is formed through conventional patterning and etching. The plug


24


material can be doped polysilicon or a metal. For purposes of discussion, a polysilicon plug


24


will be assumed for the description that follows. The nature of the plug is not critical, however, and can be eliminated completely. For example, the same material used to make the storage node may also fill the hole.




In the example of

FIG. 3



a


, polysilicon plug


24


is formed within an insulating layer


26


. In the preferred embodiment, insulating layer


26


comprises a oxide layer formed through the decomposition of tetraethyloxysilane (TEOS) on a borophosphosilicate glass (BPSG) layer. The TEOS process is desirable since the resultant oxide tends to have better oxide properties than BPSG in terms of breakdown, leakage, and density. Hence, the TEOS oxide is deposited on top of BPSG.




Referring next to

FIG. 3



b


, metal layer


28


is formed over the structure. In the preferred embodiment, a CVD metal layer


28


is deposited over the entire surface of electrode


18


as well as insulating region


26


. In the preferred embodiment, metal layer


28


should be a material that is relatively good for oxidation resistance and has a high work function. Preferred materials would include tantalum, titanium, aluminum, tungsten, molybdenum, cobalt, titanium aluminum, and metal alloys.




A silicidation process can then be performed as illustrated in

FIG. 3



c


. The process can be performed by furnace anneal or RTA (rapid thermal anneal) in an inert gas (e.g., Ar, N


2


, H


2


/N


2


, He) ambient to form a metal silicide


20


along portions of bottom electrode


18


. The non-silicided metal layer


28


on top of insulating region


26


will be selectively etched away so that the metal silicide layer


20


remains intact as shown in

FIG. 3



d.






As illustrated in

FIG. 3



e


, a nitridation process using N


2


or NH


3


is applied to the metal silicide layer


20


to form a conductive nitride layer


22


. This process may optionally include a rapid thermal nitridation (RTN) step. Conductive nitride layer


22


is preferred since it has a much better oxidation resistance and higher work function than pure metals and metal silicides.




If a metal base electrode


18


is used, it can be nitrided using a nitridation process by N


2


or NH


3


plasma plus RTN to form metal nitride


22


(without intervening layer


20


) This metal nitride


22


will also have better oxidation resistance and a higher work function than a pure metal electrode. In this alternate embodiment, conductive nitride layer


22


is formed as part of the bottom electrode


12


instead of the metal silicide nitride formed in the case of using the polysilicon base electrode


18


. Further examples of metal electrodes are provided in co-pending application Ser. No. 09/014,484.




The self-aligned electrode 12 is formed after the nitridation of the metal base electrode


18


or metal silicide intervening layer


20


. An advantage of this process is that the bottom electrode


12


is formed self-aligned with the original base electrode


18


. Since well known materials such as silicon can be used as the base electrode, this electrode can take a variety of shapes and sizes. This advantage will be explored in more detail below with reference to DRAM devices.




A silicon-oxide-nitride (SiON) insulating layer (not shown) may be formed on the surface of the oxide insulating region


26


during the nitridation process. Since SiON is not conductive and any plasma damage will be repaired by RTN, any SiON layer should have no effect on the cell array. Specifically, the SiON layer should not induce leakage in the capacitor.




Referring now to

FIG. 3



f


, dielectric layer


16


is formed. In the preferred embodiment, a CVD (e.g., PECVD) dielectric layer


16


, which can be Ta


2


O


5


for instance, is deposited along surface of the insulating region


26


and bottom electrode


12


. As discussed above, other dielectric materials such as BST or PZT can also be used.

FIG. 3



f


illustrates dielectric layer


16


extending beyond the limits of storage node


12


. It is noted that this feature is not necessary.




An upper electrode


14


can next be formed over capacitor dielectric


16


to complete the capacitor as shown in

FIG. 3



g


. This electrode layer


14


can be formed by CVD, plasma enhanced CVD, or sputtering, for example. As discussed above, a large number of materials can be used. A multilayered structure can also be used. Electrode layer


14


can extend beyond dielectric layer


16


and/or storage mode


12


or can be aligned with the underlying layers.




Three test structures were built using the teachings of the present invention. Specific process details for these three embodiments are provided in Table. These examples are intended to provide general parameters for some of the key process steps in capacitor fabrication. Other steps, as described elsewhere or otherwise known, will be used or substituted in the actual formation of production devices.















TABLE 1









Process Step




Embodiment 1




Embodiment 2




Embodiment 3











Provide wafer




n-type Si wafer




n-type Si wafer




n-type Si wafer






Form storage




polysilicon




polysilicon




polysilicon






node






Metal layer




sputter W




sputter W




CVD of WSi,







(deposited at




(deposited at







room temp.)




room temp.)






Silicidation




heat at about




heat at about




NA







650° C. to




650° C. to







750° C. for




750° C. for







1-10 min.




1-10 min.






Nitridation




none




RTN in NH


3


at




N


2


plasma at






(in general, RTN





760 torr and




about 400° C. plus






has temperature





800° C. for




RTN in NH


3


at






of 700-850° C.,





about 2




760 torr and






pressure of





minutes




800° C. for about 2






100-760






minutes






torr for 1-5






minutes






Ta


2


O


5


deposition




about 15 nm




about 15 nm




about 15 nm






at about 400° C.






O


2


Plasma




about 300 W,




about 300 W,




about 300 W,







400° C. for




400° C. for




400° C. for 15







15 min.




15 min.




15 min.






Ozone Anneal




about 270° C.




about 270° C.




about 270° C.







for about




for about




for about







10 min.




10 min.




10 min.






Effective oxide




5.9 nm




4.45 nm




3.44 nm






thickness






Critical voltages




+Vc = 0.85 V




+Vc = 1.23 V




+Vc = 1.24 V






at a critical




−Vc = 3.8 V




−Vc = 2.4 V




−Vc = 1.94 V






leakage current






density of 10


−8








A/cm


2
















Each of the test capacitors described in Table 1 was fabricated with a gold top electrode which was deposited using a shadow mask. Data taken from these devices indicated that the most critical parameters are effective oxide thickness (T


eff


) and positive critical voltage. The targets are low T


eff


(large cell capacitance) and high critical voltages. The critical voltage should be greater than one volt or half of memory array voltage.




The method and structure of the present invention provide an integrated circuit capacitor which can be used in a wide variety of applications. For example, the capacitor of the present invention can be used in a dynamic random access memory (DRAM), an analog-to-digital (A/D) converter, a digital-to-analog (D/A) converter, or just about any other integrated circuit chip. To demonstrate some of the advantageous features, the present invention will be further described in the context of a DRAM.




A simplified schematic diagram of a DRAM array is illustrated in

FIG. 4



a


. As shown, a plurality of memory cells can be formed in an array of rows and columns.

FIG. 4



a


illustrates only six bit lines BL and four word lines WL in what in actuality would likely be a much larger array. The pass transistor Q of each memory cell has a gate G coupled to a word line WL and a source/drain region BLC (for bit line contact) coupled to a bit line BL. The transfer gate G of one pass transistor Q will be electrically coupled to the word line WL for a number of other pass transistors.




Although not shown, the memory cells can be addressed by external row and column address signals which are applied to row and column address buffers, respectively. The row address signals are then applied to row decoders and the column address signals are applied to column decoders. The signals generated by the row and column decoders are then applied select the bit line and word line which is being accessed.





FIG. 4



a


also illustrates some of the peripheral circuitry which would be included with a memory array. For example, each pair of bit lines BL and BL(bar) is coupled to a sense amplifier SA The bit lines BL and BL(bar) are also coupled to input/outline lines I/O and I/O(bar) through select transistors Y


0


-Y


2


. Other peripheral circuitry such as the row decoders, column decoders, address buffers, I/O buffers and so on are not illustrated here. For the purposes of this invention, the memory cell and fabrication method are independent of the memory architecture.




As an example, the memory array can be designed as an asynchronous memory or as a synchronous memory. A synchronous memory can be timed with an internal clock (not shown) or an external clock (not shown). The device can have a single external data terminal or multiple external data terminals (i.e., wide word). The array can store a total of 4 megabits, 16 megabits, 64 megabits, 256 megabits, one gigabit of information, or more.




A simplified block diagram of a memory device is shown in

FIG. 4



b


. The internal device circuitry includes an array and peripheral circuitry. The array may be divided into a number of blocks depending upon the device architecture. Sense amplifiers may be interleaved within the array blocks.




Several external terminals are illustrated in

FIG. 4



b


. Address terminals A


0


, A


1


, . . . , A


n


are provided for receiving row and column addresses. These terminals may be multiplexed (i.e., a first address is applied at a first time and a second address applied at a second time). A single data terminal D is also illustrated. This terminal may comprise an input, an output or an input/output. Other data terminals may also be included. For example, a wide word device will have multiple data terminals. In general, these terminals are provided for receiving input signals from circuitry (not shown) external of the array and for providing output signals to circuitry (not shown) external of the array.





FIG. 4



b


also illustrates a number of control/status signals. These signals are used to operate the memory device. For example, an asynchronous memory device may be operated by applying chip select, row address strobe and column address strobe signals. Other signals may indicate whether a read or write operation is being performed. In a synchronous device, one of the control signals may be a clock signal. Status signals may provide information about the device to the external system. For example, the device may include a signal indicating whether a refresh operation is taking place or which portion of the array is being accessed.




A memory array of the present invention could also be embedded in a larger integrated circuit device. An embedded memory is a memory array and its associated control circuitry on the same integrated circuit as a substantial amount of logic.

FIG. 4



c


has been included to illustrate a simple block diagram of an embedded memory. In this example, a DRAM array is included along with a processor (e.g., microprocessor, digital signal processor, specialty processor, microcontroller), another memory array (e.g., SRAM, non-volatile memory such as EPROM, EEPROM, flash memory, PROM, ROM, another DRAM array) and other logic circuitry. These particular blocks have been chosen to illustrate the wide variety of other logic which could be included. Any combination of the devices could be included.




An exemplary method of forming a DRAM device will now be described with respect to

FIGS. 5



a


-


5




j


. This method is included to illustrate how the present invention could be easily incorporated in a DRAM process flow.




Referring now to

FIG. 5



a


, a DRAM device


50


will be formed in a semiconductor substrate


52


.

FIG. 5



a


illustrates field isolation regions


54


and four word line/pass gates


56


. While illustrated with field isolation


54


, it is also noted that other isolation techniques such as trench isolation can be used. Pass transistors


56




b


and


56




c


will form the gates of the two memory cells which will be illustrated in these drawings. Word lines


56




a


and


56




d


, on the other hand, will serve as the pass transistors for gates in other rows of the device.




Referring now to

FIG. 5



b


storage plate plugs


58


are formed. The regions


58


are analogous to regions


24


illustrated in

FIGS. 3



a


through


3




g


. Regions


58


can be formed, for example, by depositing a layer of oxide material


57


over the word lines (which may be surrounded by nitride regions which are not shown) and then etching contact holes through the oxide


57


. As described above the plugs


58


can be formed from polysilicon or a metal.




Bit line regions


60


are formed in

FIG. 5



c


. As illustrated, in this example, the two memory cells being fabricated will share a single bit line (see

FIG. 4



a


for the electrical schematic). While it is not critical to this invention, the bit line may comprise any conductive material such as silicon or a metal.




Referring now to

FIG. 5



d


, formation of the storage node of the capacitors is continued. An insulating layer


62


is formed over the bit lines


60


. Using standard patterning and etching techniques, a contact hole is formed through insulating layer


62


to expose plug


58


. Subsequently a second conductive layer


64


is formed over the insulating layer and so as to contact plugs


58


. The conductive layer


64


preferably comprises polysilicon or a metal as described above.




Referring now to

FIG. 5



e


a dummy masking layer


66


is formed over the conductive layer


64


. Using standard patterning and etching techniques, masking layer


66


is patterned so as to protect the portion of layer


64


which will become part of the storage node. Masking layer


66


and conductive layer


64


are then etched to create the portion of the storage node structure illustrated in

FIG. 5



e.






Referring now to

FIG. 5



f


, a second conductive layer


68


is formed over the structure. In the preferred embodiment, layer


68


comprises a conformally deposited polysilicon material which will surround dummy layer


66


. The layer


68


can then be anisotropically etched so as to leave side wall along the dummy layers


66


. After the dummy layer


66


is removed, a cylindrical storage node


18


will remain as illustrated in

FIG. 5



g


. Storage node


18


, which comprises conductive regions


58


,


64


and


68


, is analogous to the base electrode


18


illustrated in

FIGS. 1-3

.




Using the prior art processing techniques, a standard ONO dielectric could then be formed over the storage node


18


to serve as capacitor dielectric. Alternatively, one could attempt to use a high dielectric constant material such as tantalum pentoxide, BST, or PZT. As discussed above, however, these materials are not compatible with the silicon. Electrode materials, such as platinum, which are compatible with high-k dielectrics, however would be difficult to form on the silicon structure. The self-aligned technique of the present invention will solve these problems.




The remaining steps in forming the integrated circuit capacitor are the same as those described above with respect to

FIGS. 3



a


-


3




g


. Referring now to

FIG. 5



h


, a metal layer


28


is formed over the device


50


. Any of the materials described above with respect to

FIG. 3

can be used. As illustrated in

FIG. 5



i


, a self-aligned silicide process can then be performed. In other words, the conductive layer


28


is reacted with the storage node


18


but not with the intervening isolation regions. The unreacted portions of layer


28


can then be removed leaving only a metal silicide layer surrounding the storage node as illustrated in

FIG. 5



i.






Following the formation of layer


20


, a conductive nitride layer


22


can be formed as was described with respect to

FIG. 3



e


. Alternatively, a metal storage node


18


could have been used and directly nitrided as also described previously. After the storage node


12


is complete, a dielectric layer


16


can be formed as was described with respect to


3




f


and then a top conductor


14


can be formed as was described with respect to

FIG. 3



g


. The final structure of the DRAM capacitors is illustrated in

FIG. 5



j.






It is noted that a number of additional steps will be required before the DRAM device is completed. Since these steps are not critical to the present invention, they will not be described here beyond the acknowledgment of their existence.




The fabrication process described with respect to

FIGS. 5



a


-


5




j


demonstrates the value of the method of the present invention. As was shown, the self-aligned storage node formation was performed after a standard silicon storage node process. Each of the patents listed in Table 2 describe a process for forming a stacked capacitor DRAM device. The present invention can be incorporated with any of these process flows (as well as innumerable other process flows). Accordingly, each of the methods described in the following patents are incorporated herein by reference.
















TABLE 2









Patent




Issue









Number




Date




Inventor




Assignee




Title











5,480,826




Jan. 2,




Sugahara




Mitsubishi




Method of







1996




et al.





Manufacturing










Semiconductor Device










having a Capacitor






5,491,103




Feb. 13,




Ahn et al.




Samsung




Method for







1996






Manufacturing










a Capacitor Structure










of a Semiconductor










Memory Device






5,491,104




Feb. 13,




Lee et al.




ITRI




Method for Fabricating







1996






DRAM Cells having










Fin-Type Stacked










Storage Capacitor






5,494,841




Feb. 27,




Dennison




Micron




Split-Polysilicon







1996




et al.





CMOS Process for










Multi-Megabit










Dynamic Memories










Incorporating Stacked










Container Capacitor










Cells






5,498,562




Mar. 12,




Dennison




Micron




Semiconductor







1996




et al.





Processing










Methods of Forming










Stacked Capacitors






5,501,998




Mar. 26,




Chen




ITRI




Method for Fabricating







1996






Dynamic Random










Access Memory










Cells having










Vertical Sidewall










Stacked Storage










Capacitors






5,506,164




Apr, 9,




Kinoshita




Mitsubishi




Method of







1996




et al.





Manufacturing a










Semiconductor Device










having a Cylindrical










Capacitor






5,508,218




Apr. 16,




Jun




LG




Method for Fabricating







1996





Semicon




a Semiconductor










Memory






5,508,222




Apr. 16,




Sakao




NEC




Fabrication Process for







1996






Semiconductor Device






5,516,719




May 14,




Ryou




Hyundai




Method for the







1996






Fabrication










of a Capacitor in a










Semiconductor Device






5,521,112




May 28,




Tseng




ITRI




Method of Making







1996






Capacitor for










Stack Dram Cell






5,529,946




Jun. 25,




Hong




UMC




Process of Fabricating







1996






DRAM Storage










Capacitors






5,532,182




Jul. 2,




Woo




Hyundai




Method for Fabricating







1996






Stacked Capacitor of










a DRAM Cell






5,534,457




Jul. 9,




Tseng




ITRI




Method of Forming a







1996




et al.





Stacked Capacitor with










an “I” Shaped










Storage Node






5,534,458




Jul. 9,




Okudaira




Mitsubishi




Method of







1996




et al.





Manufacturing a










Semiconductor Device










with High










Dielectric Capacitor










having Sidewall Spacers






5,536,671




Jul. 16,




Park




Hyundai




Method for Fabricating







1995






Capacitor of a










Semiconductor Device






5,539,230




Jul. 23,




Cronin




IBM




Chimney Capacitor







1996






5,543,345




Aug. 6,




Liaw




Vanguard




Method for Fabricating







1996




et al.





Crown Capacitors for a










DRAM Cell






5,543,346




Aug. 6,




Keum




Hyundai




Method of Fabricating







1996




et al.





a Dynamic Random










Access Memory










Capacitor






5,545,582




Aug. 13,




Roh




Samaung




Method for







1996






Manufacturing










Semiconductor Device










Capacitor






5,545,585




Aug. 13,




Wang




TSMC




Method of Making a







1996




et al.





DRAM Circuit with










Fin-Shaped Stacked










Capacitors






5,547,890




Aug. 20,




Tseng




Vanguard




DRAM Cell with







1996






a Cradle-Type










Capacitor






5,550,076




Aug. 27,




Chen




Vanguard




Method of Manufacture







1996






of Coaxial Capacitor










for DRAM










Memory Cell and Cell










Manufactured Thereby






5,550,077




Aug. 27,




Tseng




Vanguard




DRAM Cell with a







1996




et al.





Conb-Type Capacitor






5,550,078




Aug. 27,




Sung




Vanguard




Reduced Mask DRAM







1996






Process






5,550,080




Aug. 27,




Kim




Hyundai




Method for Fabricating







1996






Capacitors of Semi-










conductor Device






5,552,334




Sep. 3,




Tseng




Vanguard




Method for Fabricating







1996






a Y-Shaped Capacitor










in a DRAM Cell






5,554,556




Sep. 10,




Erna




Fujitsu




Method of Making a







1996






Semiconductor Memory










Device having an










an Increased










Capacitance










of Memory Cell






5,554,557




Sep. 10,




Koh




Vanguard




Method for Fabricating







1996






a Stacked Capacitor










with a Self










Aligned Node










Contact in a Memory










Cell






5,556,802




Sep. 17,




Bakeman,




IBM




Method of Making







1996




Jr. et al.





Corrugated Vertical










Stack Capacitor










(CVSTC)






5,561,311




Oct. 1,




Hama-




Toshiba




Semiconductor Memory







1996




moto





with Insulation Film








et al.





Embedded in Groove










Formed on Substrate






5,563,088




Oct. 8,




Tseng




Vanguard




Method for Fabricating







1996






a Stacked Capacitor










in a DRAM Cell






5,563,089




Oct. 8,




Jost et al.




Micron




Method of Forming a







1996






Bit Line Over










Capacitor Array of










Memory Cells and










an Array of Bit










Line Over Capacitor










Array of Memory Cells














As should be clear from the description of

FIGS. 5



g


-


5




j


, the present invention can be applied to any of the processes disclosed in the patents incorporated by reference in Table 2.




As an example, consider the DRAM fabrication method taught in U.S. Pat. No. 5,491,103 (one of the patents incorporated by reference in the list above). This patent teaches a method for manufacturing a capacitor structure of an integrated semiconductor memory device. As disclosed in that patent, a sacrificial material layer is formed on a semiconductor substrate. A first conductive layer is then formed on the sacrificial material layer. A resist layer and an oxide layer are then formed on the first conductive layer and patterned to form a first pattern. A first material layer is formed on the first conductive layer and anisotropically etched to form a spacer on sidewalls of the first pattern. The first conductive layer is then etched using the spacer as an etch-mask and using said sacrificial material layer as an etch end-point. After the first pattern is removed, a second conductive layer is formed on the resultant structure. The second conductive layer can then be anisotropically etched using the sacrificial material layer as the etch end-point. The spacer together with the sacrificial layer are then removed to form a base storage electrode of a capacitor.




The '103 patent then teaches that a dielectric material such as an ONO or tantalum pentoxide can be deposited onto the surface of the storage electrode. These materials, however, have shortcomings. For example, the ONO dielectric has a relatively low dielectric constant compared to materials such as Ta


2


O


5


. The Ta


2


O


5


, however, is difficult to process since the necessary anneal step tends to oxidize the polysilicon storage electrode.




Fortunately, the present invention can easily be implemented to overcome these shortcomings. Specifically, the polysilicon base storage electrode taught in the '103 patent can easily be modified so as to be compatible with high-k dielectrics such as Ta


2


O


5


. As taught herein, a self-aligned reaction can be produced to generate a conductive barrier layer between the storage electrode and the dielectric material. In this context, a self-aligned reaction is meant to encompass any reaction process which creates the conductive barrier layer on the storage electrode without creating a conductor on adjacent insulating regions and without using a patterning step. For example, a silicide layer can be formed by a self-aligned reaction and a conductive nitride formed on the silicide layer.




A similar modification can be made to each of the other incorporated patents listed in Table 2. After the bottom electrode is completed, the self-aligned reaction process can be utilized to create a conductive barrier. At that point, any of the high-k dielectric materials can be used for the capacitor dielectric.




The present invention can also be incorporated in a trench capacitor. A trench capacitor is a capacitor in which one of the electrodes is formed from the semiconductor substrate. The substrate


52


could comprise a semiconductor layer formed over an insulating layer (such as in an SOI device). Alternatively, a stacked capacitor could be formed within a trench. But this embodiment would be implemented as described above.





FIG. 6

illustrates a trench capacitor DRAM which could utilize the novel concepts of the present invention. In this case, the first electrode


12


comprises a multilayer structure as described herein. For example, a silicide layer (not shown) could be formed within the trench using a self-aligned process. A conductive nitride layer (not explicitly shown) could then be formed over the silicide layer. The dielectric


16


and second electrode


14


could then be formed. For details of one specific method of forming a trench capacitor DRAM device can be found in U.S. Pat. No. 5,317,177, incorporated herein by reference.




While described thus far with respect to integrated circuit capacitors, the present invention can also be utilized with other integrated circuit elements. For example, the concepts of the present invention can be applied to metal gate and diffusion and oxidation barrier applications in other integrated circuits such as application specific integrated circuits (ASIC) and logic devices. Metal gates can be formed from materials such as tungsten, titanium, molybdenum/tungsten silicon nitride, titanium silicon nitride, titanium nitride, molybdenum nitride, tantalum silicon nitride, or tantalum nitride. These gates can be formed with or without polysilicon/oxide (gate oxide). Examples of diffusion barrier applications are tungsten silicon nitride, tungsten nitride, titanium silicon nitride, titanium nitride, molybdenum nitride, tantalum silicon nitride, and tantalum nitride.




While this invention has been described with reference to illustrative embodiments, this description is not intended to be construed in a limiting sense. Various modifications and combinations of the illustrative embodiments, as well as other embodiments of the invention, will be apparent to persons skilled in the art upon reference to the description. It is therefore intended that the appended claims encompass any such modifications or embodiments.



Claims
  • 1. An integrated circuit capacitor comprising:a silicon region having a first bottom surface, a first side surface, and a first top surface, the first side surface being in contact with an electrically insulating region; a silicide region having a second bottom surface, a second top surface, and a second edge surface, the second bottom surface being in contact with and coincident to the first top surface of the silicon region, the second edge surface being in contact with the electrically insulating region, the second top surface being spaced apart from the second bottom surface and the first top surface by the thickness of the silicide region; a conductive nitride region having a third bottom surface, a third top surface, and a third edge surface, the third bottom surface being in contact with and coincident to the second top surface, the third edge surface being in contact with the electrically insulating region and being substantially coplanar with the second edge surface, the third top surface being spaced apart from the third bottom surface and the second top surface by the thickness of the conductive nitride region, the area of the third top surface being the area of a bottom electrode of the integrated circuit capacitor, a dielectric layer disposed on the third top surface, making contact to the third top surface; and a conductive layer disposed on the dielectric layer, making contact to the dielectric layer.
  • 2. The capacitor of claim 1 wherein the silicide is selected from the group consisting of tantalum silicide, titanium silicide, aluminum silicide, tungsten silicide, molybdenum silicide, cobalt silicide, and a metal alloy silicide.
  • 3. The capacitor of claim 1 wherein the conductive nitride is selected from the group consisting of tantalum silicon nitride, titanium silicon nitride, tungsten silicon nitride, molybdenum silicon nitride, cobalt silicon nitride, titanium aluminum nitride, and tungsten nitride.
  • 4. The capacitor of claim 1 wherein the dielectric layer comprises an oxide and nitride material.
  • 5. The capacitor of claim 1 wherein the dielectric layer is selected from the group consisting of tantalum pentoxide, lead zirconium titanate, barium strontium titanate, and strontium titanate.
RELATED PATENT APPLICATION

This application is a division of application Ser. No. 09/014,724, filed Jan. 28, 1998 now U.S. Pat. No. 6,294,420, which claims priority under 35 USC §119(e)(1) of provisional application No. 60/037,247 filed Jan. 31, 1997. This invention is related to concurrently filed application Ser. No. 09/014,434 and U.S. Pat. No. 6,096,597 issued Aug. 1, 2000, which are each incorporated herein by reference.

US Referenced Citations (11)
Number Name Date Kind
5381302 Sandhu et al. Jan 1995 A
5491103 Ahn et al. Feb 1996 A
5576240 Radosevich et al. Nov 1996 A
5576579 A nello et al. Nov 1996 A
5677226 Ishitani Oct 1997 A
5920761 Jeon Jul 1999 A
5981331 Tsunemine Nov 1999 A
5986301 Fukushima et al. Nov 1999 A
5994153 Na gel et al. Nov 1999 A
5998250 Andricacos Dec 1999 A
6004839 Hayashi et al. Dec 1999 A
Foreign Referenced Citations (4)
Number Date Country
0 697 720 Feb 1996 EP
01-298717 Jan 1989 JP
05-243487 Sep 1993 JP
06-244133 Sep 1994 JP
Non-Patent Literature Citations (16)
Entry
English Abstract of JP 06 244133A, Section : E, Section No. 1636, vol. 18, No. 626, p. 102, Nov. 29, 1994.
Shigeo Onishi, Kazuyuki Hamada, Kazuya Ishihara, Yasuyuki Ito, Seiichi Yokoyama, Jun Kudo and Keizo Sakiyama, A Half-Micron Ferroelectric Memory Cell Technology with Stacked Capacitor Structure, pp. 843-846, IEDM, 1994.
Hideaki Matsuhashi and Satoshi Nishikawa, Optimum Electrode Materials for Ta205 Capacitors for High-and-Low Temperature Processes, Received Sep. 16, 1993; accepted for publication Dec. 18, 1993, Jpn. J. Appl. Phys. vol. 33 (1994) pp. 1293-1297 Part 1, No. 3A, Mar. 1994.
Petrov E. Mojab, F. Adibi, J. E. Greene, L. Hultman, J.E. Sundgren Interfacial reactions in epitaxial AUTi1-xAlxN (0<x<0.2) modle diffusion-barrier Structures, 1993 American Vacuum Society, Received Jul. 24, 1992; accepted Oct. 24, 1992, pp. 11-17, J. Vac. Sci. Technol. A 11(1), Jan/Feb 1993.
S. Yamamichi, P-Y Lesaicherre, H. Yamaguchi*, K. Takemura*, S. Stone, H.Yabuta*, K. Sato, T. Tamura, K., Nakajima, S. Ohnishi, K. Tokashiki, Y. Hayashi, Y. Kato*, Y. Miyasaka*, M. Yoshida*, and H. Ono, An ECR Mocvd (Ba,Sr), TiO3 based stacked capacitor technology with RuO2/Ru/TIN/TiSix storage nods For Gibit-scale DRAMs, IEDM pp. 119-122, 1995.
L. D. Lanzerotti, A. St. Amour, C. W. Liu, and J. C. Sturm, Si/Sil-x-yGexCy/Si Heterojuction Bipolar Transistors, pp. 930-932, IEDM, 1994.
Y. Takaishi, M. Sakao, S. Kamiyama, H. Suzuki and H. Watanabe, Low-Temperature Integrated Process Below 500° C for Thin Ta205 Capacitor for Gi a-Bit DRAMs, IEDM, pp. 839-842, 1994.
P-Y Lesaicherre, S. Yamamichi, H. Yamaguchi*, K. Takemura*, H. Watanabe, K. Tokashiki, K. Satoh, T. Sakuma, *M. Yoshida, S. Ohnishi, K. Nakajima, K. Shibahara, Y. Miyasaka*, and H. Ono, A Gibt-scale DRAM stacked capacitor technolo with ECR Mocvd SrTiO3 and RIE patterned RuO2/TiN storage nodes, IEDM, pp. 831-834, 1994.
K. W. Kwon, I.-S. Park, D.H. Han, E. S. Kim, S. T. Ahn, and M. Y. Lee, Ta205 Capacitors for 1 Gbit DRAM and Beyond, IEDM, pp. 835-838, 1994.
Stanley Wolf and Richard N. Tauber, Silicon Processing for the VLSI ERA, Process Technology, Lattice Press© 1986, vol. 1: Process Techolo , Sunbeach, California, p. 390.
P.J Pokeia, J. S. Reid, C.-K. Kwok, E.Kolawa, and M.-A. Nicolet, Thermal oxidation of amorphous ternary Ta36Si14N50 thin films, American Institute of Physics, Received Mar. 25, 1991; accepted for publication Jun. 6, 1991, pp. 2828-2832, J. Appl. Phys. 70 (5) Sep. 1991.
T. Kaga, Y. Sudoh, H. Goto, K. Shoji, T. Kisu, H. Yamashita, R. Nagai, S. Iijima, M. Ohkura, F. Murai, T. Tanaka, Y. Goto, N. Yokoyama, M. Horiguchi, M. Isoda, T. Nishida, and E. Takeda, A 0.29-um2 MIM-Crown Cell and Process Technologies for 1-Gigabit DRAMs, pp. 927-929, IEDM, 1994.
Toru Kaga, Tokuo Kure, Hiroshi Shinriki, Yashifumi Kawamoto, Fumic Murai, Takashi Nishida, Yoshinodu Nakagome, Digh Hisamoto, Teruaki Kisu, Eiji Takeda, Kiy00 Itoh, Crown-shaped Stacked-Capacitor Cell for 1.5-V Operation 64-Mb Dram's, IEEE Transactions on Electron Devices vol. 38, No. 2, Feb. 1991, pp. 255-261.
H. K. Kang, K. H. Kim, Y. G. Shin, I. S. Park, K. M. Ko, C. G. Kim, K. Y. Oh, S. E. Kim, C. G. Hong, K. W. Kwon, J. Y. Y00, Y. G. Kim, C. G. Lee, W. S. Paick, D. I. Suh, C. J. Park, S. I. Lee, S. T. Ahn, C. G. Hwang, and M. Y. Lee, Highly Manufacturable Process Technology for Reliable 256 Mbit and 1 Gbit DRAMs, pp. 635-638, IEDM, 1994.
Patent Abstracts of Japan English Abstract of JP 01298717A.
Patent Abstracts of Japan, English abstract of JP 05243487.
Provisional Applications (1)
Number Date Country
60/037247 Jan 1997 US