Integrated circuit on high performance chip

Abstract
A method of fabricating a die containing an integrated circuit, including active components and passive components, includes producing a first substrate containing at least one active component of active components and a second substrate containing critical components of the passive components, such as perovskites or MEMS, and bonding the two substrates by a layer transfer. The method provides an improved monolithic integration of devices such as MEMS with transistors.
Description
RELATED APPLICATIONS

This application claims priority from French Patent Application No. 0307617 filed Jun. 24, 2003, which is incorporated by reference herein.


BACKGROUND

The present invention relates to the field of integrated circuits, and in particular to that of passive components integrated on die.


In the field of integrated circuits, there is an increasing requirement: to reduce the size taken up by the components, to reduce the fabrication costs, and to introduce new functions.


To achieve these objectives, it is necessary to integrate collectively onto the same analog or digital integrated circuit die an increasing number of components that were previously fabricated separately. There are essentially three categories of such components: circuits called “active” (transistors), components called “passive” (resistors, capacitors, inductors), and, finally, micro-electro-mechanical systems (MEMS) (acoustic filters, radio-frequency switches, variable capacitors).


Passive components and/or MEMS can be integrated independently of transistors, but their monolithic integration with transistors is the most beneficial in terms of compactness and cost. However, this monolithic integration causes a certain number of technological difficulties.


First, the nature of the layers and the treatments necessitated by the fabrication of the passive components are not always readily compatible with fabrication on the active circuits. For example, there exist situations in which the production of a second material after that of a first material in a stack on a silicon wafer necessitates the use of a temperature higher than that above which said first material is degraded unacceptably. This is the case in particular for integrating decoupling capacitors into integrated circuits. These capacitors must store a high electrical charge—the electrical charge is proportional to the capacitance and to the supply voltage, so increasing the capacitance improves the required performance (it will be remembered that the capacitance is proportional to the dielectric constant and to the electrode area and inversely proportional to the thickness of the dielectric of the capacitor).


Capacitors are conventionally produced on the same wafer as transistors. To reduce production costs, it is naturally desirable to use small capacitors. Obtaining the required capacitances using dielectric materials with a dielectric constant that is very high compared to the usual materials (SiO2, Si3N4, Ta2O5, ZrO2 or Al2O3) may then be envisaged.


There exist ferroelectric materials, belonging to the class of perovskites, which have very high dielectric constants (relative constant of several hundred units). Perovskites constitute almost all of the materials investigated for high-capacitance capacitor applications in the required range of dielectric constants (see for example the paper by T. Ayguavives et al. entitled “Physical Properties of (Ba,Sr)TiO3 Thin Films used for Integrated Capacitors in Microwave Applications”, IEEE 2001). The perovskite crystalline phase is usually obtained at temperatures from 600° C. to 700° C. However, these temperatures are incompatible with the aluminum- or copper-based interconnection metal of the transistors. Although certain prior art low-temperature processes use a perovskite (see for example the paper by D. Liu et al. entitled “Integrated Thin Film Capacitor Arrays”, International Conference on High Density Packaging and MCMs, 1999), they in fact relate to a phase in which the perovskite is not pure or is of mediocre structural or microstructural quality, which means that the dielectric constant is very much lower than that of the same material when annealed at a higher temperature.


The standard methods mentioned hereinabove therefore do not really exploit the advantages of perovskites, because the maximum authorized temperature decreases progressively as and when the process steps are carried out, and the main difficulty results from the fact that the placement of a “hot” process material (the dielectric) occurs after that of a “cold” process material (the interconnection metal).


There is nevertheless known in the art a method for heating the dielectric to a temperature higher than the interconnection metals can withstand. It consists in isolating the dielectric from the interconnection metal by means of a thermal protection layer and then annealing the dielectric using a pulsed laser with sufficiently brief pulses for the temperature of the metal to remain lower than the temperature of the dielectric and to remain acceptable, provided that thermal diffusion is relatively low (see for example the paper by P. P. Donohue et al. entitled “Pulse-Extended Excimer Laser Annealing of Lead Zirconate Titanate Thin Films”, proceedings of the 12th International Symposium on Integrated Ferroelectrics, Aachen, Germany, March 2000, published in Integrated Ferroelectrics, vol. 31, pages 285 to 296, 2000). This method is difficult to control, however, because the protective layer remains on the wafer. The protective layer therefore cannot be very thick (it is usually less than 2 μm thick), and it may affect the electrical performance of the devices. The temperature difference between the interconnection metal and the dielectric is therefore limited; in other words, the temperature to which the dielectric may be subjected is limited. Moreover, the stack is subjected to a high thermal gradient during this operation, which can generate a surface temperature that is too high or cause non-homogeneous crystallization of the dielectric or deterioration of materials, such as microcracks, as a result of thermal expansion.


One prior art solution to this temperature problem consists in producing the passive devices incorporating the capacitors on a silicon wafer other than the substrate containing the active components and then connecting the two dies together by wires or by microballs (see for example the paper by R. Heistand et al. entitled “Advances in Passive Integration for C/RC Arrays & Networks with Novel Thin & Thick Film Materials”, 36th Nordic IMAPS conference, Helsinki, 1999). These methods have certain drawbacks, however: wires cannot be used to make short connections between capacitor and transistors, and microball connections may be produced on top of a circuit only once; if the capacitors are made of this material, it is no longer possible to add other functions such as switches or surface wave filters, for example.


To avoid these problems, the production temperature is usually limited to about 450° C., which enables integration of the components in the usual metallizations, or above them, in integrated circuits based on aluminum or copper (see for example the paper by S. Jenei et al. entitled “High-Q Inductors and Capacitors on Si Substrate”, IEEE 2001, or the paper by Bryan C. Hendrix et al. entitled “Low-Temperature Process for High-Density Thin-Film Integrated Capacitors”, International Conference on High-Density Interconnect and Systems Packaging, 2000). Because of this temperature limit, these standard methods are greatly limited in terms of the type of material and the dielectric constants that can be achieved. The required capacitance values are therefore obtained by producing capacitors occupying a large area, which limits the integration possibilities and adds to the cost of the die because of the increased area that is occupied on the silicon wafer.


There is nevertheless known in the art a method for increasing the area of the electrodes without increasing the lateral dimensions of the die (see the paper by F. Roozeboom et al. entitled “High-Value MOS Capacitor Arrays in Ultradeep Trenches in Silicon”, published in Microelectronic Engineering, vol. 53, pages 581 to 584, Elsevier Science 2000). This method consists in exploiting the depth of the substrate to integrate metal oxide semiconductor (MOS) decoupling capacitors by excavating an array of deep narrow trenches in the substrate: a dielectric layer and then an electrode layer are disposed around these trenches—the other electrode of the array of capacitors covers the surface of the substrate. However, apart from the difficulty of producing uniform dielectric layers in the trenches, the use of capacitor arrays in trenches makes planar integration of passive components with active components difficult.


More generally, a second difficulty arising from the monolithic integration of passive components or MEMS with transistors is that it is not possible to exploit the vertical dimension to improve the characteristics or the compactness of the passive components.


A third difficulty to which the monolithic integration of passive components or MEMS with transistors gives rise is that the type of substrate used for the active circuits disturbs the characteristics of the passive components.


For example, the substrates used for CMOS or BICMOS circuits have conductivities of the order of 10 Ω.cm at most. The currents induced in these substrates by the inductors or conductive lines cause high losses and thereby reduce the quality factors of these structures (high inductance, high resonant frequency, low stray capacitance).


A first prior art solution consists in eliminating a portion of the substrate under the areas that are to receive the inductors and conductive lines (see for example U.S. Pat. No. 5,539,241). A second prior art solution consists in making the substrate insulative under the areas that are to receive the inductors and conductive lines (see for example the paper by H.-S. Kim et al. entitled “A Porous-Si-based Novel Isolation Technology for Mixed-Signal Integrated Circuits”, Symposium on VLSI Technology, 2000). A third solution is disclosed in U.S. Pat. No. 6,310,387—the underlying conductive layers are structured by producing a large number of small conductive areas in a checkerboard pattern that are separated from each other by an insulator and are not grounded. These areas serve as shielding because, in operation, low eddy currents are produced therein that prevent the magnetic field penetrating as far as the substrate; these areas are small enough to prevent these eddy currents inducing in the inductors a magnetic flux opposite to the required flux.


However, these various techniques are complex to use, may compromise the robustness of the integrated circuit and make the placement of active components difficult.


Finally, a difficulty raised specifically by the monolithic integration of MEMS with transistors is that it is necessary to add a cover to protect the mechanical components, without interfering with their operation. One prior art solution consists in bonding a silicon wafer of the same diameter as the wafer on which the circuits have been produced (see for example the paper by H. Tilmans et al. entitled “Zero-Level Packaging for MEMS or MST Devices: the IRS Method”, mstnews 1/00). This technology is relatively costly because it is necessary to add to the cost of the supplementary substrate the cost of bonding, the cost of thinning and the cost of local etching to obtain access to the output electrical contacts on the surface of the circuit, and all of this is needed only to provide protection by means of a cover.


BRIEF SUMMARY

To solve most of the difficulties described hereinabove, a first aspect of the invention proposes a method of fabricating a die containing an integrated circuit comprising active components and passive components, said method being distinguished in that it comprises the following steps: a first substrate is produced containing at least one active component of said active components and a second substrate is produced containing “critical” components of said passive components, and the two substrates are bonded by layer transfer. The active components may be transistors, for example.


Passive components are said to be “critical” if their production directly on the substrate containing the active circuits and the metallic interconnections would give rise to a problem; for the reasons explained hereinabove, this may refer to MEMS, for example, and/or high-quality inductors and/or capacitors whose dielectric material is a perovskite.


Certain critical passive components, such as MEMS and/or capacitors, are preferably produced in said second substrate before said bonding of the two substrates.


According to the invention, a second material may in particular be produced on a silicon substrate at a temperature higher than the maximum temperature to which the silicon substrate may be heated because of a first material already present on the wafer. The invention enables this by producing the second material separately from the silicon wafer on which it is to end up and then integrating the second material onto that wafer by layer transfer techniques. In the particular case of decoupling capacitors, the invention enables the dielectric material of the capacitor to be heated to temperatures enabling crystallization in the perovskite phase without any restriction being imposed by the underlying interconnection metal and without having recourse to a thermal protection barrier between the two materials.


The method of the invention also produces conveniently a structure for protecting the MEMS. This is because the MEMS being produced on the surface of the second substrate that is to be transferred onto the first substrate is this first substrate itself (in which an appropriate cavity has been formed beforehand) that serves as a protective structure for the MEMS after bonding the two substrates. This has the advantage that it economizes on the production of a cover as in the prior art.


According to particular features of the invention, dielectric insulation trenches intended to reduce electromagnetic interference between the various components of the future die are further produced during the production of the second substrate.


According to other particular features, non-critical passive components, such as capacitor arrays in trenches are further produced during the production of the second substrate.


Certain other critical passive components are preferably produced in the vicinity of the face of the second substrate opposite the bonding face after said bonding of the two substrates. In the case of inductors, this has the advantage of considerably reducing the effects of the induced currents (energy losses, interference suffered by the active components, etc.), even if the second substrate is conductive, since this places the inductors far from the first substrate.


To reduce further the losses caused by induced currents and to improve the quality factors of the inductors, according to particular features, the inductors will be produced on top of inductive insulation trenches previously formed in the second substrate. A second aspect of the invention also relates to different dies containing integrated circuits.


Thus, first, the invention relates to a die fabricated by any of the methods briefly described above. Second, the invention relates to a die containing an integrated circuit comprising active components and passive components and consisting of a single stack of layers, said die being distinguished in that it includes an interface between two of said layers such that the portion of the die situated on one side of said interface contains at least one active component of said active components and the other portion of the die contains “critical” components of said passive components. According to particular features, said critical passive components comprise capacitors whose dielectric material is a perovskite and/or MEMS enclosed in cavities situated inside said die.


According to particular features, the die further comprises dielectric insulation trenches. According to other particular features, said integrated circuit further comprises non-critical passive components such as capacitor arrays in trenches.


According to other particular features, said active components are disposed in the vicinity of a first face of the die and said integrated circuit further comprises inductors situated in the vicinity of the face of the die opposite said first face. According to even more particular features, said inductors are situated above inductive insulation trenches.


According to other particular features, said active components are disposed in the vicinity of a first face of the die which further comprises interconnection lines that emerge in the vicinity of the face of the die opposite said first face. The advantages of these dies are essentially the same as those of the corresponding fabrication processes.


Other aspects and advantages of the invention will become apparent on reading the following detailed description of particular embodiments given below by way of non-limiting example.





BRIEF DESCRIPTION OF THE DRAWINGS

The invention can be better understood with reference to the following drawings and description. The components in the figures are not necessarily to scale, emphasis instead being placed upon illustrating the principles of the invention. Moreover, in the figures, like referenced numerals designate corresponding parts throughout the different views.



FIG. 1 shows a first substrate treated by one embodiment of the invention.



FIG. 2 shows a second substrate treated by that embodiment of the invention.



FIG. 3 shows the assembly obtained after transfer in accordance with the invention of said second substrate 2 onto said first substrate 1.



FIG. 4 shows the die obtained by this embodiment of the invention.



FIG. 5 is a view to a larger scale of a portion of FIG. 4.





DETAILED DESCRIPTION


FIG. 1 shows a “first” substrate 1 consisting of a wafer of silicon or any other type III-V semiconductor material. The method of the invention begins with the preparation of two substrates 1 and 2 in either order or simultaneously. This first substrate 1 contains active components 3 that have been integrated by any technique known in the art (for example the CMOS or BICMOS technique) and metal interconnections (not shown).


In this embodiment, a thick layer 4 of insulation, for example SiO2, is deposited and, where appropriate, etched locally (forming cavities 5) in vertical alignment with any Microelectromechanical Systems (MEMS) components on the second substrate. Finally, metallization areas 9 are produced that are subsequently connected to other portions of the die (see below).



FIG. 2 represents a wafer forming a “second” substrate 2. In this embodiment, the second substrate 2 has been formed with: dielectric insulating trenches 6, capacitors 7 with a very high dielectric constant, MEMS 8, capacitor arrays 15 in trenches, and inductive insulation trenches 18.


The fabrication of capacitors 7 whose dielectric material is a perovskite will be described in detail. Two embodiments will be described by way of example. In a first embodiment of capacitors 7 whose dielectric material is a perovskite, a second substrate 2 is made of an insulative material, high-resistivity silicon or a semi-insulator such as glass. The following steps are then carried out: a) a layer of silicon oxide SiO2 is deposited; b) a first electrode is deposited. The first electrode may consist of a plurality of layers of metallic materials, for example, a layer of Ti, RuO2 or IrO2, covered with a layer of platinum; c) using any prior art method (for example the Sol Gel, cathode sputtering or MOCVD method), the dielectric material is deposited, consisting of a thin layer of a perovskite such as SrTiO3, Pb(ZrxTi1-x)O3 (known as “PZT”) or (BaxSr1-x)TiO3 (known as “BST”); d) the dielectric material is annealed at a high temperature (for example 700° C.) to obtain the perovskite phase; e) a second electrode is deposited, which may consist of a plurality of layers of metallic materials, for example a layer of platinum covered with a layer of Ti; and f) a layer of insulation, for example SiO2, is preferably deposited to encourage subsequent bonding (see below).


Another method of fabricating capacitors 7, whose dielectric material is a perovskite, uses as the second substrate 2 a thick layer of perovskite produced beforehand. In this case, the above steps a) to d) are omitted.


The method of the invention therefore produces, at the required high temperature, capacitors having a dielectric of very high dielectric constant without risk of damaging the active components or the metallic interconnections of the future integrated circuit.


The MEMS components 8 may operate electromechanically or electroacoustically, such as electromechanical switches or acoustic resonators. The MEMS components 8 are produced in a manner that is known in the art by a succession of deposition and etching operations.


The fabrication of capacitor arrays in trenches 15 is described in detail next. The capacitors have electrodes of large area (and therefore also of high capacitance), which are implanted as described in the paper by F. Roozeboom cited above. To be more precise: a) trenches are etched in accordance with predefined patterns and to a depth slightly greater than the future thickness of the substrate after thinning (see below); b) a high-quality dielectric is grown on the faces of each trench. This dielectric must be as thin as possible for the capacitance values of the capacitors 15 to be as high as possible. For example, if the voltage to be applied to the terminals of the capacitors is a few volts, a thickness of dielectric from 10 nm to 50 nm is preferably grown. If the substrate 2 is of silicon, silicon oxide obtained by a thermal effect is advantageously used for this purpose, possibly in combination with nitriding or deposition of silicon nitride. Dielectrics of higher permittivity may also be used, for example Al2O3, HgO2 or Ta2O5 deposited in a manner known in the art; c) the trenches are filled with a highly conductive material to produce one of the plates of the capacitor. Undoped polycrystalline silicon or polycrystalline silicon that is doped in situ may be used for this purpose, for example; and d) localized etching of said highly conductive material is carried out by masking to delimit areas on the surface of the substrate 2 and isolate the plates of the capacitor from the remainder of the semiconductor circuit.


A high-conductivity material (such as silicon) is preferably selected for the substrate 2 because the substrate will constitute one of the plates of the capacitors in trenches. The flanks of the trenches on the substrate side must be strongly doped to render the substrate sufficiently conductive. Finally, an ohmic contact will be produced on the substrate in order to be able to connect one electrode of the capacitors to an electrical circuit.


Alternatively, in the case of integrated circuits that do not include any capacitor arrays in trenches, it is instead preferable to select a low-conductivity material (such as glass) for the second substrate 2 to limit the losses caused by induced currents generated by the inductors (see below).


By making it possible to excavate deep trenches in the second substrate 2, the invention grows electrodes of large area for these capacitors and thereby, for a given substrate lateral area, considerably increases the capacitance value compared to a standard monolithic integration method.


The inductive insulation trenches 18 are produced in accordance with the teaching of U.S. Pat. No. 6,310,387 summarized above. As already explained, these trenches 18 contribute to the production of inductors of high quality.


Finally, metallization produces contacts on the plates of the capacitors 7 of very high capacitance value, and on the MEMS 8 and connects them to each other. Metallization areas 10 are also produced that are subsequently connected to other portions of the die by vias formed through the second substrate 2 (see below). Mechanical-chemical polishing is preferably applied to the upper layer of the resulting wafer to impart to it a roughness encouraging layer transfer by molecular adhesion.



FIG. 3 shows the combination obtained after bonding the second substrate 2 onto the first substrate 1 by the method of the invention. The bond between the first substrate 1 and the second substrate 2 is preferably obtained by molecular adhesion or polymer gluing. It is preferable to avoid using a glue layer in order not to increase the total number of layers. However, this bond could also be produced by eutectic or anodic bonding, for example. It may be inconvenient to use soldering and brazing here, however, because of the attendant problems, well known to the person skilled in the art, of wettability, degassing and thermal insulation.


Thus, in the die produced by the method of the invention, the interface at which the two substrates have been bonded delimits two portions of the die. One portion contains at least one active component of the integrated circuit and the other portion contains the critical components of the integrated circuit.


It will be noted in particular that, in this embodiment, the alignment between the MEMS 8 and the cavities 5 is respected. Thus, the fabrication method of the invention protects electromechanical components such as these MEMS 8.


At this stage, to complete the fabrication of the die of the invention, it is necessary to construct the array of interconnections for connecting the electrodes of the capacitors and the underlying array of interconnections of the second substrate 2. It will be noted that here, in the context of the invention, access to buried layers is facilitated, in contrast to prior art monolithic fabrication methods, in which each successive layer may be deposited and immediately etched.


These final steps yield the die 100 shown in FIG. 4: a) The second substrate 2 is thinned and polished, for example by mechanical-chemical polishing. As explained in patent EP0807970, it is also possible to effect ionic implantation in a plane of the substrate 2 to create microcavities that weaken the substrate and allow subsequent fracture in this plane. Thinning is continued until it penetrates into the trench structures 6, 15 and 18; a first substrate is produced containing at least one active component of said active components and a second substrate is produced containing “critical” components of said passive components, and the two substrates are bonded by layer transfer; b) the second substrate 2, and then the dielectric layers in vertical alignment therewith are etched locally to uncover the future contacts on the metallization areas 9 and on the metallization areas 10; c) an insulator 11, for example SiO2, is deposited at low temperature to cover the free surface of the second substrate 2; d) vias 16 (respectively 17) are produced to connect the metallization areas 9 (respectively 10) to the free surface of the insulator 11. In this embodiment the technique disclosed in the paper by M. Tomisaka et al. entitled “Electroplating Cu Fillings for Through-Vias for Three-Dimensional Chip Stacking” (Electronic Components and Technology Conference, 2002) is used. FIG. 5 shows this interconnection between the components of the first substrate 1 and the components of the second substrate 2 by means of vias. The insulator 11 is etched first: to produce recessed patterns and holes known as “vias” in the insulator at predetermined locations intended to delimit future conductive lines, and to eliminate the insulator at the bottom of the vias. This etching is followed by conductive metallization of the surface and the inside of the holes formed in the insulator. For this purpose, thin layers of TaN or TiN are deposited, and this continuous base layer is used for electrolytic deposition of thick copper; and e) this copper and said continuous base layer are planarized using techniques known in the art (for example mechanical-chemical polishing) until the copper and the continuous base layer are completely eliminated from the higher areas of the insulator, so as to leave metal only in the recessed patterns produced in the step d) in the trenches of the insulator and in the vertical holes. In this way, vias (16, 17) and inductors 12 on the surface with a so-called “Damascene” structure are obtained (see FIG. 5). The depth of the recesses and the thickness of the metal are selected to minimize the resistance of this layer.


In a different embodiment, the metallization may be effected, in a manner known in the art, by a tungsten via associated with aluminum lines or areas.


The invention greatly reduces induced current losses, because producing these inductors 12 on the face of the second substrate 2 opposite the bonding face moves these inductors 12 away from the first substrate 1 (which may be a good conductor), and away from the trenches 18 situated under the inductors 12 to eliminate induced currents.


The present invention is not limited to the embodiments described hereinabove. The person skilled in the art will be able to develop diverse variants of the invention without departing from the scope of the appended claims. For example, there are described above embodiments in which the etching of the various layers is effected after transferring the second substrate onto the first. However, it is entirely possible to effect certain etching steps on the first substrate 1 and/or on the second substrate 2 before the transfer step. Also, other elements could naturally be added to the elements constituting the embodiments described above, such as barrier layers or non-stick layers.


Any embodiment of the fabrication method of the invention comprises, as explained above and as shown in the figures, the bonding of the substrates (1) and (2) by layer transfer, i.e., by adhesion of a face of the first substrate (1) to a face of the second substrate (2) over the major portion of their area (known as “full wafer” adhesion).


It will be noted that the die obtained in this way is particularly robust, as it consists of a single stack of layers (compared to prior art devices consisting of portions joined together by soldering or brazing joints or beads). This robustness in particular enables the safe production of cavities (hollow patterns, vias, etc.) in the die during the final fabrication stages, i.e., after bonding the two substrates. As explained above, inductors or interconnections (for example) may therefore be included in the integrated circuit in a manner that is particularly convenient. It will also be noted that, for the same reasons, the die obtained in this way is particularly compact compared to said prior art devices.


While various embodiments of the invention have been described, it will be apparent to those of ordinary skill in the art that many more embodiments and implementations are possible within the scope of the invention. Accordingly, the invention is not to be restricted except in light of the attached claims and their equivalents.

Claims
  • 1. A method of fabricating a die containing an integrated circuit comprising active components and passive components, at least a part of the passive components comprising critical passive components, the method comprising: producing a first substrate including at least one active component including heating the first substrate at a temperature lower than a first temperature above which the first substrate is unacceptably degraded;producing a second substrate including the critical passive components including heating the second substrate at a temperature higher than the first temperature;bonding the first and second substrates, wherein the bonding comprises performing a layer transfer; andafter bonding of the first and second substrates, producing at least one interconnection line between the components of the first and second substrates, the interconnection line passing through the second substrate.
  • 2. A method according to claim 1, wherein the at least one active component comprises transistors.
  • 3. A method according to claim 1, wherein the critical passive components comprise at least one capacitor and at least one microelectromechanical system (MEMS).
  • 4. A method according to claim 1 wherein the critical passive components comprise at least one capacitor or at least one microelectromechanical system (MEMS).
  • 5. A method according to claim 3, wherein a dielectric material of the at least one capacitor comprises a perovskite.
  • 6. A method according to claim 1, wherein producing the second substrate comprises producing an electrically conductive material.
  • 7. A method according to claim 1, wherein producing the second substrate comprises producing a dielectric material.
  • 8. A method according to claim 7, wherein producing the second substrate comprises producing perovskite.
  • 9. A method according to claim 1 further comprising producing dielectric insulation trenches in the second substrate during the production of the second substrate.
  • 10. A method according to claim 1 further comprising producing at least one non-critical passive component during the production of the second substrate.
  • 11. A method according to claim 10, wherein producing the non-critical passive component comprises producing a capacitor in trenches.
  • 12. A method according to claim 9 further comprising producing at least one inductor in the vicinity of a face of the second substrate opposite a bonding face after the bonding of the two substrates.
  • 13. A method according to claim 12 further comprising producing the at least one inductor on the dielectric insulation trenches.
  • 14. A die fabricated by a method according to claim 1.
  • 15. A die made of a single stack of layers, containing an integrated circuit comprising active components produced at a temperature lower than a first temperature above which the active components are unacceptably degraded and comprising passive components, wherein at least a part of the passive components comprising critical passive components produced at a temperature higher than the first temperature above which the active components are unacceptably degraded,wherein the die comprises an interface between two of the layers such that a first portion of the die situated on one side of the interface includes the active component and a second portion of the die situated on the other side of the interface includes the critical passive components produced at the temperature higher than the first temperature,wherein the die comprises at least one interconnection line between the components of the first and second portions, the interconnection line passing through the second portion of the die.
  • 16. A die according to claim 15 wherein the critical passive components comprise at least one capacitor and at least one MEMS enclosed in a cavity situated inside the die.
  • 17. A die according to claim 16, wherein the at least one capacitor comprises a dielectric material comprising perovskite.
  • 18. A die according to claim 15, wherein the die further comprises dielectric insulation trenches.
  • 19. A die according to claim 15, wherein the integrated circuit further comprises at least one non-critical passive component.
  • 20. A die according to claim 19 wherein the non-critical passive component comprises a capacitor in trenches.
  • 21. A die according to claim 15, wherein the active components are disposed in the vicinity of a first face of the die and wherein the integrated circuit further comprises at least one inductor situated in a vicinity of the face of the die opposite the first face.
  • 22. A die according to claim 21, wherein the at least one inductor is situated on inductive insulation trenches.
  • 23. A die according to any one of claim 15, wherein the active components are disposed in a vicinity of a first face of the die and the die further comprises at least one interconnection line that emerges in the vicinity of the face of the die opposite the first face.
  • 24. A die according to any one of claim 19 wherein the active components are disposed in a vicinity of a first face of the die and the die further comprises at least one interconnection line that emerges in the vicinity of the face of the die opposite the first face.
  • 25. A method according to claim 13, wherein the at least one inductor and at least one of the interconnection lines are produced during a same process step.
  • 26. The method according to claim 1, wherein the first temperature is about 450° C.
  • 27. The method according to claim 1, wherein producing the first substrate comprises producing a substrate including all of the active components of the integrated circuit, and wherein producing the second substrate comprises producing a substrate including only passive components.
  • 28. The method according to claim 1, wherein producing the first substrate further comprises producing the at least one active component comprising an interconnect metal that unacceptably degraded at a temperature above the first temperature.
Priority Claims (1)
Number Date Country Kind
03 07617 Jun 2003 FR national
PCT Information
Filing Document Filing Date Country Kind 371c Date
PCT/FR2004/001565 6/23/2004 WO 00 12/15/2005
Publishing Document Publishing Date Country Kind
WO2005/000733 1/6/2005 WO A
US Referenced Citations (223)
Number Name Date Kind
3901423 Hillberry et al. Aug 1975 A
3915757 Engel Oct 1975 A
3957107 Altoz et al. May 1976 A
3993909 Drews et al. Nov 1976 A
4006340 Gorinas Feb 1977 A
4028149 Deines et al. Jun 1977 A
4039416 White Aug 1977 A
4074139 Pankove Feb 1978 A
4107350 Berg et al. Aug 1978 A
4108751 King Aug 1978 A
4121334 Wallis Oct 1978 A
4170662 Weiss et al. Oct 1979 A
4179324 Kirkpatrick Dec 1979 A
4244348 Wilkes Jan 1981 A
4252837 Auton Feb 1981 A
4254590 Eisele et al. Mar 1981 A
4274004 Kanai Jun 1981 A
4342631 White et al. Aug 1982 A
4346123 Kaufmann Aug 1982 A
4361600 Brown Nov 1982 A
4368083 Bruel et al. Jan 1983 A
4412868 Brown et al. Nov 1983 A
4452644 Bruel et al. Jun 1984 A
4468309 White Aug 1984 A
4471003 Cann Sep 1984 A
4486247 Ecer et al. Dec 1984 A
4490190 Speri Dec 1984 A
4500563 Ellenberger et al. Feb 1985 A
4508056 Bruel et al. Apr 1985 A
4536657 Bruel Aug 1985 A
4539050 Kramler et al. Sep 1985 A
4542863 Larson Sep 1985 A
4566403 Fournier Jan 1986 A
4567505 Pease Jan 1986 A
4568563 Jackson et al. Feb 1986 A
4585945 Bruel et al. Apr 1986 A
4630093 Yamaguchi et al. Dec 1986 A
4684535 Heinecke et al. Aug 1987 A
4704302 Bruel et al. Nov 1987 A
4717683 Parrillo et al. Jan 1988 A
4764394 Conrad Aug 1988 A
4832253 Kloucek et al. May 1989 A
4837172 Mizuno et al. Jun 1989 A
4846928 Dolins et al. Jul 1989 A
4847792 Barna et al. Jul 1989 A
4853250 Boulos et al. Aug 1989 A
4887005 Rough et al. Dec 1989 A
4891329 Reisman et al. Jan 1990 A
4894709 Phillips et al. Jan 1990 A
4904610 Shyr Feb 1990 A
4920396 Shinohara et al. Apr 1990 A
4929566 Beitman May 1990 A
4931405 Kamijo et al. Jun 1990 A
4948458 Ogle Aug 1990 A
4952273 Popov Aug 1990 A
4956698 Wang Sep 1990 A
4960073 Suzuki et al. Oct 1990 A
4975126 Margail et al. Dec 1990 A
4982090 Wittmaack Jan 1991 A
4996077 Moslehi et al. Feb 1991 A
5013681 Godbey et al. May 1991 A
5015353 Hubler et al. May 1991 A
5034343 Rouse et al. Jul 1991 A
5036023 Dautremont-Smith et al. Jul 1991 A
5110748 Sarma May 1992 A
5120666 Gotou Jun 1992 A
5131968 Wells et al. Jul 1992 A
5138422 Fujii et al. Aug 1992 A
5198371 Li Mar 1993 A
5200805 Parsons et al. Apr 1993 A
5232870 Ito et al. Aug 1993 A
5234535 Beyer et al. Aug 1993 A
5242863 Xiang-Zheng et al. Sep 1993 A
5250446 Osawa et al. Oct 1993 A
5256581 Foerstner et al. Oct 1993 A
5259247 Bantien Nov 1993 A
5280819 Newkirk et al. Jan 1994 A
5300788 Fan et al. Apr 1994 A
5310446 Konishi et al. May 1994 A
5374564 Bruel Dec 1994 A
5400458 Rambosek Mar 1995 A
5405802 Yamagata et al. Apr 1995 A
5413951 Ohori et al. May 1995 A
5442205 Brasen et al. Aug 1995 A
5494835 Bruel Feb 1996 A
5524339 Gorowitz et al. Jun 1996 A
5539241 Abidi et al. Jul 1996 A
5559043 Bruel Sep 1996 A
5567654 Beilstein, Jr. et al. Oct 1996 A
5604235 Shaw et al. Feb 1997 A
5611316 Oshima et al. Mar 1997 A
5618739 Takahashi et al. Apr 1997 A
5622896 Knotter et al. Apr 1997 A
5633174 Li May 1997 A
5661333 Bruel et al. Aug 1997 A
5714395 Bruel Feb 1998 A
5741733 Bertagnolli et al. Apr 1998 A
5753038 Vichr et al. May 1998 A
5804086 Bruel Sep 1998 A
5811348 Matushita et al. Sep 1998 A
5817368 Hashimoto Oct 1998 A
5854123 Sato et al. Dec 1998 A
5863830 Bruel et al. Jan 1999 A
5863832 Doyle et al. Jan 1999 A
5877070 Goesele et al. Mar 1999 A
5880010 Davidson Mar 1999 A
5882987 Srikrishnan Mar 1999 A
5897331 Sopori Apr 1999 A
5909627 Egloff Jun 1999 A
5920764 Hanson et al. Jul 1999 A
5953622 Lee et al. Sep 1999 A
5966620 Sakaguchi et al. Oct 1999 A
5981400 Lo Nov 1999 A
5985412 Gösele Nov 1999 A
5993677 Biasse et al. Nov 1999 A
5994207 Henley et al. Nov 1999 A
6010591 Gösele Jan 2000 A
6013563 Henley et al. Jan 2000 A
6013954 Hamajima Jan 2000 A
6020252 Aspar et al. Feb 2000 A
6033974 Henley et al. Mar 2000 A
6048411 Henley et al. Apr 2000 A
6054363 Sakaguchi et al. Apr 2000 A
6054370 Doyle Apr 2000 A
6057212 Chan et al. May 2000 A
6071795 Cheung et al. Jun 2000 A
6080640 Gardner et al. Jun 2000 A
6096433 Kikuchi et al. Aug 2000 A
6103597 Aspar et al. Aug 2000 A
6103599 Henley et al. Aug 2000 A
6118181 Merchant et al. Sep 2000 A
6127199 Inoue Oct 2000 A
6146979 Henley et al. Nov 2000 A
6150239 Goesele et al. Nov 2000 A
6156215 Shimada et al. Dec 2000 A
6159323 Joly et al. Dec 2000 A
6190998 Bruel et al. Feb 2001 B1
6197695 Joly et al. Mar 2001 B1
6198159 Hosoma et al. Mar 2001 B1
6200878 Yamagata et al. Mar 2001 B1
6204079 Aspar et al. Mar 2001 B1
6225190 Bruel et al. May 2001 B1
6225192 Aspar et al. May 2001 B1
6251754 Ohshima et al. Jun 2001 B1
6256864 Gaud et al. Jul 2001 B1
6271101 Fukunaga Aug 2001 B1
6276345 Nelson et al. Aug 2001 B1
6287940 Cole et al. Sep 2001 B1
6294478 Sakaguchi et al. Sep 2001 B1
6303468 Aspar et al. Oct 2001 B1
6306720 Ding Oct 2001 B1
6310387 Seefeldt et al. Oct 2001 B1
6316333 Bruel et al. Nov 2001 B1
6323108 Kub et al. Nov 2001 B1
6323109 Okonogi Nov 2001 B1
6346458 Bower Feb 2002 B1
6362077 Aspar et al. Mar 2002 B1
6362082 Doyle et al. Mar 2002 B1
6407929 Hale et al. Jun 2002 B1
6417075 Haberger et al. Jul 2002 B1
6429094 Maleville et al. Aug 2002 B1
6429104 Auberton-Herve Aug 2002 B1
6465892 Suga Oct 2002 B1
6485533 Ishizaki et al. Nov 2002 B1
6504235 Schmitz et al. Jan 2003 B2
6513564 Bryan et al. Feb 2003 B2
6529646 Wight et al. Mar 2003 B1
6534380 Yamauchi et al. Mar 2003 B1
6548375 De Los Santos et al. Apr 2003 B1
6645831 Shaheen et al. Nov 2003 B1
6645833 Brendel Nov 2003 B2
6727549 Doyle Apr 2004 B1
6756285 Moriceau et al. Jun 2004 B1
6756286 Moriceau et al. Jun 2004 B1
6762076 Kim et al. Jul 2004 B2
6774010 Chu et al. Aug 2004 B2
6809009 Aspar et al. Oct 2004 B2
6846690 Farcy et al. Jan 2005 B2
6887769 Kellar et al. May 2005 B2
6946365 Aspar et al. Sep 2005 B2
7029548 Aspar et al. Apr 2006 B2
7067396 Aspar et al. Jun 2006 B2
7078811 Suga Jul 2006 B2
RE39484 Bruel Feb 2007 E
7494897 Fournel et al. Feb 2009 B2
7498234 Aspar et al. Mar 2009 B2
7615463 Aspar et al. Nov 2009 B2
7670930 Tauzin et al. Mar 2010 B2
7713369 Aspar et al. May 2010 B2
7772087 Nguyen et al. Aug 2010 B2
7883994 Moriceau et al. Feb 2011 B2
7902038 Aspar et al. Mar 2011 B2
20010007367 Ohkubo Jul 2001 A1
20010007789 Aspar et al. Jul 2001 A1
20020000646 Gooch et al. Jan 2002 A1
20020025604 Tiwari Feb 2002 A1
20020048948 Gang Apr 2002 A1
20020081861 Robinson et al. Jun 2002 A1
20020083387 Miner et al. Jun 2002 A1
20020145489 Cornett et al. Oct 2002 A1
20020153563 Ogura Oct 2002 A1
20020185469 Podlesnik et al. Dec 2002 A1
20020185684 Campbell et al. Dec 2002 A1
20030001221 Fischer et al. Jan 2003 A1
20030077885 Aspar et al. Apr 2003 A1
20040009649 Kub et al. Jan 2004 A1
20040209441 Maleville et al. Oct 2004 A1
20050029224 Aspar et al. Feb 2005 A1
20060281212 Moriceau et al. Dec 2006 A1
20070020895 Moriceau et al. Jan 2007 A1
20070037363 Aspar et al. Feb 2007 A1
20070087528 Kim et al. Apr 2007 A1
20070202660 Moriceau et al. Aug 2007 A1
20070259528 Moriceau et al. Nov 2007 A1
20070281445 Nguyen et al. Dec 2007 A1
20080254591 Deguet et al. Oct 2008 A1
20090120568 Deguet et al. May 2009 A1
20090130392 Aspar et al. May 2009 A1
20090156016 Di Cioccio Jun 2009 A1
20100025228 Tauzin et al. Feb 2010 A1
20100167499 Fournel et al. Jul 2010 A1
20100216294 Rabarot et al. Aug 2010 A1
20100323497 Fournel Dec 2010 A1
Foreign Referenced Citations (101)
Number Date Country
101 53 319 May 2003 DE
0 355 913 Feb 1990 EP
0 383 391 Aug 1990 EP
0 410 679 Jan 1991 EP
0 504 714 Sep 1992 EP
0 533 551 Mar 1993 EP
0 293 049 Sep 1993 EP
0 660 140 Jun 1995 EP
0 665 588 Aug 1995 EP
0 703 609 Mar 1996 EP
0 717 437 Jun 1996 EP
0 754 953 Jan 1997 EP
0807970 May 1997 EP
0 786 801 Jul 1997 EP
0 767 486 Sep 1997 EP
0 793 263 Sep 1997 EP
0 801 419 Oct 1997 EP
0849 788 Jun 1998 EP
0 889 509 Jan 1999 EP
0 895 282 Feb 1999 EP
0 898 307 Feb 1999 EP
0 917 193 May 1999 EP
0 938 129 Aug 1999 EP
0 902 843 Mar 2000 EP
0 989 593 Mar 2000 EP
0 994 503 Apr 2000 EP
1 050 901 Nov 2000 EP
1 059 663 Dec 2000 EP
1 096 259 May 2001 EP
1 014 452 May 2006 EP
2 671 472 Jul 1992 FR
2 681 472 Mar 1993 FR
2 558 263 Jul 1995 FR
2 725 074 Mar 1996 FR
95 08882 Jun 1996 FR
2 736 934 Jan 1997 FR
2 748 850 Nov 1997 FR
2 748 851 Nov 1997 FR
2 758 907 Jul 1998 FR
2 767 416 Feb 1999 FR
2 767 604 Feb 1999 FR
2 771 852 Jun 1999 FR
2 773 261 Jul 1999 FR
2 774 510 Aug 1999 FR
2 781 925 Feb 2000 FR
2 789 518 Aug 2000 FR
2 796 491 Jan 2001 FR
2 797 347 Feb 2001 FR
2 809 867 Dec 2001 FR
2 819 099 Jul 2002 FR
2 211 991 Jul 1989 GB
53-104156 Sep 1978 JP
58 31519 Feb 1983 JP
59-54217 Mar 1984 JP
61-129872 Jun 1986 JP
62265717 Nov 1987 JP
101004013 Jan 1989 JP
01-128570 May 1989 JP
01-169917 Jul 1989 JP
08017777 Jan 1990 JP
4199504 Jul 1992 JP
07-254690 Oct 1995 JP
7-302889 Nov 1995 JP
8133878 May 1996 JP
09-213594 Aug 1997 JP
09-307719 Nov 1997 JP
10163166 Jun 1998 JP
10233352 Sep 1998 JP
11045862 Feb 1999 JP
11074208 Mar 1999 JP
11087668 Mar 1999 JP
11-145436 May 1999 JP
11-233449 Aug 1999 JP
11317577 Nov 1999 JP
128757 Jun 2000 RU
WO 9520824 Aug 1995 WO
WO 9908316 Feb 1999 WO
WO 9935674 Jul 1999 WO
WO 9939378 Aug 1999 WO
WO 0048238 Aug 2000 WO
WO 0063965 Oct 2000 WO
WO 0111930 Feb 2001 WO
WO 0143168 Jun 2001 WO
WO 0205344 Jan 2002 WO
WO 0247156 Jun 2002 WO
WO 02083387 Oct 2002 WO
WO 02084721 Oct 2002 WO
WO 02084722 Oct 2002 WO
WO 03013815 Feb 2003 WO
WO 03021667 Mar 2003 WO
WO 03032384 Apr 2003 WO
WO 2004044976 May 2004 WO
WO 2004059711 Jul 2004 WO
WO 2004064146 Jul 2004 WO
WO 2005019094 Mar 2005 WO
WO 2005043615 May 2005 WO
WO 2007020351 Feb 2007 WO
WO 2007036631 Apr 2007 WO
WO 2007110515 Oct 2007 WO
WO 2008093008 Aug 2008 WO
WO 2009087290 Jul 2009 WO
Related Publications (1)
Number Date Country
20060252229 A1 Nov 2006 US