The invention relates to an antifuse connection for integrated circuits for the activation of redundant circuits or chip functions of flip-chip arrangements with an under-bump metallization on standard pads on the surface of a chip for the incorporation of bumps, and to a method for production of such antifuse connections.
Redundant circuits are usually concomitantly integrated in integrated circuits in order to be able to activate these as required. Such redundant circuits are activated if individual circuit parts are not functional on account of a defective processing (e.g., defects, particles). The redundant circuits then undertake the task of the defective circuits and the overall chip is fully functional.
In order to activate the redundant circuit, the integrated circuit has to be electrically isolated from the defective region and be connected to a redundant circuit (replacement circuit). This is done by means of fuses for isolating current paths and antifuses for connecting current paths.
An example of a fuse and an antifuse and also a method for production and activation of a fuse and an antifuse emerge from German patent application 196 04 776 A1 and corresponding PCT application WO 97/29515.
These fuses have hitherto been integrated in the metallization layers of the integrated circuit. In order to isolate a fuse, then, a laser beam is directed onto it and the fuse is blown. What is problematic in this case is that the fuse is encapsulated in a dielectric, so that the encapsulating dielectric layer often bursts open during the fuse blowing operation. This then results in reliability problems such as leakage currents, corrosion, etc.
After the processing of the chips has finished, the chips are electrically checked for functionality prior to mounting into a housing. Non-functioning chips are repaired with the fuses as above before they are mounted into housings.
The invention is based on the object, then, of providing an antifuse connection for integrated circuits for the activation of redundant circuits, which can be provided with little outlay and in the case of which the problems that can be noted in the prior art do not occur. Furthermore, the intention is to demonstrate a method by which such antifuse connections can be produced.
The object on which the invention is based is achieved by virtue of the fact that further mini-pads are arranged on the surface of the chip alongside the standard pads. The further mini-pads are electrically connected to functional units in the chip. Selected mini-pads are connected to one another by antifuse connections patterned from the under-bump metallization.
Reliability problems are thus avoided because the antifuses are produced by normal patterning of the UBM metallization and a high-energy laser processing is unnecessary.
The object on which the invention is based is furthermore achieved by means of a method for production of antifuse connections, that is characterized in that firstly the UBM metallization is deposited on the chip and a photoresist layer is deposited on the metallization and the regions of the standard pads are exposed. Subsequently, the areas required for the antifuse connections are additionally exposed by means of a laser or an electron beam. Afterward, the photoresist is developed and the UBM metallization including the antifuse connections is patterned.
The invention will be explained in more detail below using an exemplary embodiment. In the associated figures of the drawing:
In the case of the invention described below, a metallization plane, which is used for the application of so-called bumps onto the standard pads 1 on a chip 2 of a flip-chip metallization (UBM: under-bump metallization), is utilized for the formation of fuses or antifuses. After the processing of the wafer has finished, this UBM metallization 3 is deposited in planar fashion on the wafer and, as a result of a subsequent patterning, is left only above the standard pads 1. In a further step, bumps (not illustrated) are then applied to the standard pads 1, by means of which bumps the chip 2 can then be electrically contact-connected to a leadframe or a printed circuit board.
According to
The particular advantage of this “antifusing” can be seen in the fact that it is possible to correct the circuit up to directly prior to the packaging of the circuit, that is to say the mounting of the chip 2 on a leadframe and subsequent molding (encapsulation), that is to say up to the concluding UBM deposition and patterning.
A further advantage lies in the fact that the “antifusing” according to the invention cannot lead to any reliability problems whatsoever in the chip 2 since the antifuse connections 5 are situated on the surface of the chip 2 and are only deposited at the required locations.
Furthermore, in contrast to the laser fuses used hitherto, active or passive components can also be arranged under the antifuse connections 5.
The UBM metallization can be used according to the invention for the antifuse connections 5 described and also for programming the circuit. That is to say, the function of the chip can be defined in terms of hardware here in the case of chips with a plurality of functions outside the production line. Furthermore, the UBM metallization can be used as a chip wiring plane, as a result of which a metallization plane can be obviated, which leads to a significant saving of costs.
Before the patterning of the UBM metallization is performed, all the chips 2 on a wafer are tested with regard to their functionality. Afterward, the UBM metallization is deposited and a photoresist layer is deposited thereon and the regions of the standard pads 1 are exposed, but are not yet developed. Afterward, the areas required for the antifuse connections 5 are then additionally exposed for example by means of a laser or an electron beam. Afterward, the photoresist is then developed and the UBM metallization is patterned. This is then followed by the further processes required for flip-chip mounting.
Number | Date | Country | Kind |
---|---|---|---|
103 49 749 | Oct 2003 | DE | national |
This is a divisional application of U.S. application Ser. No. 11/409,255, which was filed on Apr. 21, 2006 now U.S. Pat. No. 7,919,363, which is a continuation of International Application No. PCT/DE2004/002284, filed Oct. 14, 2004, which designated the United States and was not published in English, and which is based on German Application No. 103 49 749.8 filed Oct. 23, 2003, all of which applications are incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
5578836 | Husher et al. | Nov 1996 | A |
5844297 | Crafts et al. | Dec 1998 | A |
5883435 | Geffken et al. | Mar 1999 | A |
6194235 | Ma | Feb 2001 | B1 |
6222212 | Lee et al. | Apr 2001 | B1 |
6300688 | Wong | Oct 2001 | B1 |
6451681 | Greer | Sep 2002 | B1 |
6515343 | Shroff et al. | Feb 2003 | B1 |
6515344 | Wollesen | Feb 2003 | B1 |
6577017 | Wong | Jun 2003 | B1 |
6730989 | Reithinger et al. | May 2004 | B1 |
6831294 | Nishimura et al. | Dec 2004 | B1 |
6841813 | Walker et al. | Jan 2005 | B2 |
6841875 | Ohsumi | Jan 2005 | B2 |
6911730 | New | Jun 2005 | B1 |
6987031 | Eng et al. | Jan 2006 | B2 |
7029946 | Murata | Apr 2006 | B2 |
7947978 | Lin et al. | May 2011 | B2 |
8178435 | Lin | May 2012 | B2 |
20010034070 | Damon et al. | Oct 2001 | A1 |
20020000672 | Mori | Jan 2002 | A1 |
20020008309 | Akiyama | Jan 2002 | A1 |
20020149105 | Yoon et al. | Oct 2002 | A1 |
20020149391 | Duesman | Oct 2002 | A1 |
20020163019 | Mohsen | Nov 2002 | A1 |
20030045026 | Fogal et al. | Mar 2003 | A1 |
20030098495 | Amo et al. | May 2003 | A1 |
20030099907 | Tei et al. | May 2003 | A1 |
20030129819 | Tseng | Jul 2003 | A1 |
20030155659 | Verma et al. | Aug 2003 | A1 |
20030162331 | Tong et al. | Aug 2003 | A1 |
20040007778 | Shinozaki et al. | Jan 2004 | A1 |
20040021199 | Trivedi | Feb 2004 | A1 |
20040048458 | Yang | Mar 2004 | A1 |
20040051177 | Schoellkopf | Mar 2004 | A1 |
20050006688 | Solo De Zaldivar | Jan 2005 | A1 |
20050221540 | Fischer et al. | Oct 2005 | A1 |
20060118927 | Verma et al. | Jun 2006 | A1 |
20060278895 | Burr et al. | Dec 2006 | A1 |
20090067135 | Hirai | Mar 2009 | A1 |
Number | Date | Country |
---|---|---|
0 707 343 | Apr 1996 | EP |
1 073 118 | Jan 2001 | EP |
05-129441 | May 1993 | JP |
WO 9220095 | Nov 1992 | WO |
Number | Date | Country | |
---|---|---|---|
20110140236 A1 | Jun 2011 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11409255 | Apr 2006 | US |
Child | 13032248 | US |
Number | Date | Country | |
---|---|---|---|
Parent | PCT/DE2004/002284 | Oct 2004 | US |
Child | 11409255 | US |