Integrated CMOS and MEMS devices with air dieletrics

Information

  • Patent Grant
  • 9365412
  • Patent Number
    9,365,412
  • Date Filed
    Wednesday, April 3, 2013
    11 years ago
  • Date Issued
    Tuesday, June 14, 2016
    8 years ago
Abstract
A monolithically integrated CMOS and MEMS device. The device includes a first semiconductor substrate having a first surface region and one or more CMOS IC devices on a CMOS IC device region overlying the first surface region. The CMOS IC device region can also have a CMOS surface region. A bonding material can be provided overlying the CMOS surface region to form an interface by which a second semiconductor substrate can be joined to the CMOS surface region. The second semiconductor substrate has a second surface region coupled to the CMOS surface region by bonding the second surface region to the bonding material. The second semiconductor substrate includes one or more first air dielectric regions. One or more free standing MEMS structures can be formed within one or more portions of the processed first substrate.
Description
BACKGROUND OF THE INVENTION

Embodiments of the present invention relate generally to integrated devices. More particularly, embodiments of the present invention provide a method for fabricating an integrated CMOS and MEMS device using an air dielectric. More specifically, embodiments of the present invention provide a method for bonding one or more semiconductor materials to form one or more air dielectric regions within an integrated CMOS and MEMS device. Merely by way of example, the MEMS devices can include at least an accelerometer, a gyroscope, a magnetic sensor, a pressure sensor, a microphone, a humidity sensor, a temperature sensor, a chemical sensor, a biosensor, an inertial sensor, and others. Additionally, the other applications include at least a sensor application or applications, system applications, and broadband applications, among others. But it will be recognized that embodiments of the invention have a much broader range of applicability.


Research and development in integrated microelectronics have continued to produce astounding progress in CMOS and MEMS. CMOS technology has become the predominant fabrication technology for integrated circuits (IC). MEMS, however, continues to rely upon conventional process technologies. In layman's terms, microelectronic ICs are the “brains” of an integrated device which provides decision-making capabilities, whereas MEMS are the “eyes” and “arms” that provide the ability to sense and control the environment. Some examples of the widespread application of these technologies are the switches in radio frequency (RF) antenna systems, such as those in the iPhone™ device by Apple, Inc. of Cupertino, Calif., and the Blackberry™ phone by Research In Motion Limited of Waterloo, Ontario, Canada, and accelerometers in sensor-equipped game devices, such as those in the Wii™ controller manufactured by Nintendo Company Limited of Japan. Though they are not always easily identifiable, these technologies are becoming ever more prevalent in society every day.


Beyond consumer electronics, use of IC and MEMS has limitless applications through modular measurement devices such as accelerometers, gyroscopes, actuators, and sensors. In conventional vehicles, accelerometers and gyroscopes are used to deploy airbags and trigger dynamic stability control functions, respectively. MEMS gyroscopes can also be used for image stabilization systems in video and still cameras, and automatic steering systems in airplanes and torpedoes. Biological MEMS (Bio-MEMS) implement biosensors and chemical sensors for Lab-On-Chip applications, which integrate one or more laboratory functions on a single millimeter-sized chip only. Other applications include Internet and telephone networks, security and financial applications, and health care and medical systems. As described previously, ICs and MEMS can be used to practically engage in various type of environmental interaction.


Although highly successful, ICs and in particular MEMS still have limitations. Similar to IC development, MEMS development, which focuses on increasing performance, reducing size, and decreasing cost, continues to be challenging. Additionally, applications of MEMS often require increasingly complex microsystems that desire greater computational power. Unfortunately, such applications generally do not exist. These and other limitations of conventional MEMS and ICs may be further described throughout the present specification and more particularly below.


From the above, it is seen that techniques for improving operation of integrated circuit devices and MEMS are highly desired.


BRIEF SUMMARY OF THE INVENTION

According to the present invention, techniques related generally to integrated devices and systems are provided. More particularly, embodiments of the present invention provide a method for fabricating an integrated CMOS and MEMS device using an air dielectric. More specifically, embodiments of the present invention provide a method for patterning one or more semiconductor layers to form one or more air dielectric regions within an integrated CMOS and MEMS device. Merely by way of example, the MEMS devices can include at least an accelerometer, a gyroscope, a magnetic sensor, a pressure sensor, a microphone, a humidity sensor, a temperature sensor, a chemical sensor, a biosensor, an inertial sensor, and others. Additionally, the other applications include at least a sensor application or applications, system applications, and broadband applications, among others. But it will be recognized that the invention has a much broader range of applicability.


A specific embodiment of the present invention provides a method for fabricating a monolithic integrated CMOS and MEMS device. The method includes providing a first semiconductor substrate having a first surface region and forming one or more CMOS IC devices on a CMOS IC device region overlying the first surface region. The CMOS IC device region can also have a CMOS surface region. A bonding material can be formed overlying the CMOS surface region to form an interface by which a second semiconductor substrate can be joined to the CMOS surface region. The second semiconductor substrate having a second surface region to the CMOS surface region by bonding the second surface region to the bonding material, the second semiconductor substrate comprising one or more first air dielectric regions. One or more free standing MEMS structures can be formed within one or more portions of the processed first substrate.


Embodiments of the present invention can provide many benefits over conventional techniques. For example, the present technique provides an easy to use process that relies upon conventional technology. In some embodiments, the method provides higher device yields in dies per wafer with the integrated approach. Additionally, the method provides a process and system that are compatible with conventional process technology without substantial modifications to conventional equipment and processes. In a specific embodiment, the air dielectric regions can reduce metal line coupling, capacitance, signal interference, and other related issues. Also, these regions can reduce parasitic coupling to the substrate, reduce signal loss, and reduce power while increasing bandwidth. These benefits, as well as others, can be used to achieve higher performance (i.e. less reflection and lower power) in antennas and lower loss and higher isolation in transmission lines. Embodiments of the invention provide for an improved MEMS device system and related applications for a variety of uses. One or more embodiments of the present invention provide for one or more MEMS and related applications, which may be integrated on one or more CMOS device structures. Depending upon the embodiment, one or more of these benefits may be achieved. These and other benefits will be described in more throughout the present specification and more particularly below.


Various additional embodiments, features, and advantages of the present invention can be more fully appreciated with reference to the detailed description and accompanying drawings that follow.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1A is a simplified cross-section diagram of an integrated CMOS and MEMS device according to an embodiment of the present invention;



FIG. 1B is a simplified cross-section diagram of an integrated CMOS and MEMS device according to an embodiment of the present invention;



FIG. 1C is a simplified cross-section diagram of an integrated CMOS and MEMS device according to an embodiment of the present invention;



FIG. 2A is a simplified cross-section diagram of an integrated CMOS and MEMS device according to an embodiment of the present invention;



FIG. 2B is a simplified cross-section diagram of an integrated CMOS and MEMS device according to an embodiment of the present invention;



FIG. 3 is a simplified cross-section diagram of an integrated CMOS and MEMS device according to an embodiment of the present invention;



FIG. 4A is a simplified cross-section diagram of an integrated CMOS and MEMS device according to an embodiment of the present invention;



FIG. 4B is a simplified cross-section diagram of an integrated CMOS and MEMS device according to an embodiment of the present invention;



FIG. 4C is a simplified cross-section diagram of an integrated CMOS and MEMS device according to an embodiment of the present invention;



FIG. 5A is a simplified cross-section diagram of an integrated CMOS and MEMS device according to an embodiment of the present invention;



FIG. 5B is a simplified cross-section diagram of an integrated CMOS and MEMS device according to an embodiment of the present invention;



FIG. 5C is a simplified cross-section diagram of an integrated CMOS and MEMS device according to an embodiment of the present invention;



FIG. 6A is a simplified cross-section diagram of an integrated CMOS and MEMS device according to an embodiment of the present invention;



FIG. 6B is a simplified cross-section diagram of an integrated CMOS and MEMS device according to an embodiment of the present invention;



FIG. 6C is a simplified cross-section diagram of an integrated CMOS and MEMS device according to an embodiment of the present invention;



FIG. 6D is a simplified cross-section diagram of an integrated CMOS and MEMS device according to an embodiment of the present invention;



FIG. 7A is a simplified cross-section diagram of an integrated CMOS and MEMS device according to an embodiment of the present invention;



FIG. 7B is a simplified cross-section diagram of an integrated CMOS and MEMS device according to an embodiment of the present invention;



FIG. 7C is a simplified cross-section diagram of an integrated CMOS and MEMS device according to an embodiment of the present invention;



FIG. 7D is a simplified cross-section diagram of an integrated CMOS and MEMS device according to an embodiment of the present invention; and



FIG. 8 is a simplified flow diagram of an integrated CMOS and MEMS device fabrication method according to an embodiment of the present invention.





DETAILED DESCRIPTION OF THE INVENTION

According to the present invention, techniques related generally to integrated devices and systems are provided. More particularly, the present invention provides a method for fabricating an integrated CMOS and MEMS device using an air dielectric. More specifically, the present invention provides a method for bonding semiconductor materials to form one or more air dielectric regions within an integrated CMOS and MEMS device. Merely by way of example, the MEMS devices can include at least an accelerometer, a gyroscope, a magnetic sensor, a pressure sensor, a microphone, a humidity sensor, a temperature sensor, a chemical sensor, a biosensor, an inertial sensor, and others. Additionally, the other applications include at least a sensor application or applications, system applications, and broadband applications, among others. But it will be recognized that the invention has a much broader range of applicability.



FIGS. 1A-1C are simplified cross-section diagrams of an integrated CMOS and MEMS device according to an embodiment of the present invention. These diagrams are merely an example, which should not unduly limit the scope of the claims herein. One of ordinary skill in the art would recognize other variations, modifications, and alternatives. As shown, each of devices 100, 102, and 104 includes a thickness of silicon material 110, one or more CMOS integrated circuit (IC) devices 120, and a dielectric layer 130. Components shown in these figures can represent an initial phase for a method of fabricating an integrated CMOS and MEMS device using air dielectrics. Those of ordinary skill in the art will recognize other variations, modifications, and alternatives.


In an embodiment, a layer of material can be spatially disposed overlying a thickness of silicon material 110 to form a first semiconductor substrate. In a specific embodiment, the layer of material disposed overlying thickness of silicon material 110 can be a buried oxide (BOX) layer 112, as shown in device 100 of FIG. 1A. In another specific embodiment, the layer of material disposed overlying thickness of silicon material 110 can be an epitaxial (EPI) layer 114, as shown in device 102 of FIG. 1B. In yet another specific embodiment, the first semiconductor substrate can have just thickness of silicon material 110, as shown in device 104 of FIG. 1C. In further embodiments, the first semiconductor substrate can have a silicon, single crystal silicon, or polycrystalline silicon material. Those skilled in the art will recognize other variations, modifications, and alternatives.


In an embodiment, the first semiconductor substrate can have a first surface region and the CMOS device region can be a region overlying the first surface region. One or more CMOS IC devices 120 can be spatially disposed on the CMOS IC device region overlying the first surface region. The CMOS IC device region can have a CMOS surface region. In a specific embodiment, one or more CMOS IC devices 120 can include transistor devices, metal layers, via structures, and others. In further embodiments, additional transistors, metal layers, and structures can be added. The fabrication of one or more CMOS IC device 120 can be done through foundry-compatible processes. Of course, there can be other variations, modifications, and alternatives.


In an embodiment, dielectric layer 130 can be spatially disposed overlying the CMOS surface region. Dielectric layer 130 can have one or more patterned regions. In a specific embodiment, dielectric layer 130 can be a top oxide layer or formed via a chemical mechanical planarization (CMP) process. As stated previously, there can be other variations, modifications, and alternatives.


It is also understood that the examples and embodiments described herein are for illustrative purposes only and that various modifications or changes in light thereof will be suggested to persons skilled in the art and are to be included within the spirit and purview of this application and scope of the appended claims.



FIGS. 2A and 2B are simplified cross-section diagrams of an integrated CMOS and MEMS device according to an embodiment of the present invention. This diagram is merely an example, which should not unduly limit the scope of the claims herein. One of ordinary skill in the art would recognize other variations, modifications, and alternatives. As shown, each of devices 200 and 202 includes a thickness of silicon material 210, one or more CMOS integrated circuit (IC) devices 220, and a dielectric layer 230, and a second semiconductor substrate 240. Components shown in these figures can represent a step in a method of fabricating an integrated CMOS and MEMS device using air dielectrics. Those of ordinary skill in the art will recognize other variations, modifications, and alternatives.


In an embodiment, a layer of material can be spatially disposed overlying thickness of silicon material 210 to form a first semiconductor substrate. In a specific embodiment, the layer of material disposed overlying thickness of silicon material 210 can be a buried oxide (BOX) layer 212, as shown in device 200 of FIG. 2A. In another specific embodiment, the layer of material disposed overlying thickness of silicon material 210 can be an epitaxial (EPI) layer or the first semiconductor substrate can have just thickness of silicon material 210. In further embodiments, the first and second semiconductor substrate can have a silicon, single crystal silicon, or polycrystalline silicon material. Those skilled in the art will recognize other variations, modifications, and alternatives.


In an embodiment, the first semiconductor substrate can have a first surface region and the CMOS device region can be a region overlying the first surface region. One or more CMOS IC devices 220 can be spatially disposed on the CMOS IC device region overlying the first surface region. The CMOS IC device region can have a CMOS surface region. In a specific embodiment, one or more CMOS IC devices 220 can include transistor devices, metal layers, via structures, and others. In further embodiments, additional transistors, metal layers, and structures can be added. The fabrication of one or more CMOS IC device 220 can be done through foundry-compatible processes. Of course, there can be other variations, modifications, and alternatives.


In an embodiment, dielectric layer 230 can be spatially disposed overlying the CMOS surface region. Dielectric layer 230 can have one or more patterned regions. In a specific embodiment, dielectric layer 230 can be a top oxide layer or formed via a chemical mechanical planarization (CMP) process. As stated previously, there can be other variations, modifications, and alternatives.


In an embodiment, second semiconductor substrate 240 can be joined to the CMOS surface region by bonding the second surface region to dielectric layer 230, as shown in device 200 of FIG. 2A. The second semiconductor substrate can have a second surface region. Also, the second semiconductor substrate can be patterned such that one or more portions of the second substrate within a vicinity of one or more CMOS IC devices 220 are removed in order to form one or more first air dielectric regions 244, as shown in device 202 of FIG. 2B. In a specific embodiment, the second substrate can be patterned before bonding. Air dielectric regions 244 can reduce metal line coupling, capacitance, signal interference, and other related issues. In a specific embodiment, regions 244 can also reduce parasitic coupling to the substrate, reduce signal loss, and reduce power while increasing bandwidth. These benefits, as well as others, can be used to achieve higher performance (i.e. less reflection and lower power) in antennas and lower loss and higher isolation in transmission lines. Again, there can be other variations, modifications, and alternatives.


It is also understood that the examples and embodiments described herein are for illustrative purposes only and that various modifications or changes in light thereof will be suggested to persons skilled in the art and are to be included within the spirit and purview of this application and scope of the appended claims.



FIG. 3 is a simplified cross-section diagram of an integrated CMOS and MEMS device according to an embodiment of the present invention. This diagram is merely an example, which should not unduly limit the scope of the claims herein. One of ordinary skill in the art would recognize other variations, modifications, and alternatives. As shown, device 300 includes a thickness of silicon material 310, one or more CMOS integrated circuit (IC) devices 320, and a dielectric layer 330, and a second semiconductor substrate 340. Components shown in these figures can represent a step in a method of fabricating an integrated CMOS and MEMS device using air dielectrics. Those of ordinary skill in the art will recognize other variations, modifications, and alternatives.


In an embodiment, a layer of material can be spatially disposed overlying thickness of silicon material 310 to form a first semiconductor substrate. In a specific embodiment, the layer of material disposed overlying thickness of silicon material 310 can be a buried oxide (BOX) layer 312. In another specific embodiment, the layer of material disposed overlying thickness of silicon material 310 can be an epitaxial (EPI) layer or the first semiconductor substrate can have just thickness of silicon material 310. In further embodiments, the first and second semiconductor substrate can have a silicon, single crystal silicon, or polycrystalline silicon material. Those skilled in the art will recognize other variations, modifications, and alternatives.


In an embodiment, the first semiconductor substrate can have a first surface region and the CMOS device region can be a region overlying the first surface region. One or more CMOS IC devices 320 can be spatially disposed on the CMOS IC device region overlying the first surface region. The CMOS IC device region can have a CMOS surface region. In a specific embodiment, one or more CMOS IC devices 320 can include transistor devices, metal layers, via structures, and others. In further embodiments, additional transistors, metal layers, and structures can be added. The fabrication of one or more CMOS IC device 320 can be done through foundry-compatible processes. Of course, there can be other variations, modifications, and alternatives.


In an embodiment, dielectric layer 330 can be spatially disposed overlying the CMOS surface region. Dielectric layer 330 can have one or more patterned regions. In a specific embodiment, dielectric layer 330 can be a top oxide layer or formed via a chemical mechanical planarization (CMP) process. As stated previously, there can be other variations, modifications, and alternatives.


In an embodiment, second semiconductor substrate 340 can be joined to the CMOS surface region by bonding the second surface region to dielectric layer 330. The second semiconductor substrate can have a second surface region. Also, the second semiconductor substrate can be patterned such that one or more portions of the second substrate within a vicinity of one or more CMOS IC devices 320 are removed in order to form one or more first air dielectric regions 344. In a specific embodiment, the second substrate can be patterned before bonding. Air dielectric regions 344 can reduce metal line coupling, capacitance, signal interference, and other related issues. In a specific embodiment, regions 344 can also reduce parasitic coupling to the substrate, reduce signal loss, and reduce power while increasing bandwidth. These benefits, as well as others, can be used to achieve higher performance (i.e. less reflection and lower power) in antennas and lower loss and higher isolation in transmission lines. Again, there can be other variations, modifications, and alternatives.


In an embodiment, the first substrate can be thinned to a desired thickness while maintaining attachment to the CMOS IC device region. In a specific embodiment, the thinning can include a grinding process to remove a thickness of material from the first semiconductor substrate to expose a ground surface region. This process can be done by removing a portion of thickness of silicon material 310 without removing any portion the BOX layer. In other embodiments, this process can be done by removing a portion of thickness of silicon material 310 without removing any portion of the EPI layer or without removing material from the CMOS IC device region. Again, there can be other variations, modifications, and alternatives.


It is also understood that the examples and embodiments described herein are for illustrative purposes only and that various modifications or changes in light thereof will be suggested to persons skilled in the art and are to be included within the spirit and purview of this application and scope of the appended claims.



FIGS. 4A-4C are simplified cross-section diagrams of an integrated CMOS and MEMS device according to an embodiment of the present invention. This diagram is merely an example, which should not unduly limit the scope of the claims herein. One of ordinary skill in the art would recognize other variations, modifications, and alternatives. As shown, each of devices 400, 402, and 404 includes a thickness of silicon material 410, one or more CMOS integrated circuit (IC) devices 420, and a dielectric layer 430, and a second semiconductor substrate 440. Components shown in these figures can represent a step in a method of fabricating an integrated CMOS and MEMS device using air dielectrics. Those of ordinary skill in the art will recognize other variations, modifications, and alternatives.


In an embodiment, a layer of material can be spatially disposed overlying thickness of silicon material 410 to form a first semiconductor substrate. In a specific embodiment, the layer of material disposed overlying the thickness of silicon material 410 can be a buried oxide (BOX) layer 412. In another specific embodiment, the layer of material disposed overlying thickness of silicon material 410 can be an epitaxial (EPI) layer or the first semiconductor substrate can have just thickness of silicon material 410. In further embodiments, the first and second semiconductor substrate can have a silicon, single crystal silicon, or polycrystalline silicon material. Those skilled in the art will recognize other variations, modifications, and alternatives.


In an embodiment, the first semiconductor substrate can have a first surface region and the CMOS device region can be a region overlying the first surface region. One or more CMOS IC devices 420 can be spatially disposed on the CMOS IC device region overlying the first surface region. The CMOS IC device region can have a CMOS surface region. In a specific embodiment, one or more CMOS IC devices 420 can include transistor devices, metal layers, via structures, and others. In further embodiments, additional transistors, metal layers, and structures can be added. The fabrication of one or more CMOS IC device 420 can be done through foundry-compatible processes. Of course, there can be other variations, modifications, and alternatives.


In an embodiment, dielectric layer 430 can be spatially disposed overlying the CMOS surface region. Dielectric layer 430 can have one or more patterned regions. In a specific embodiment, dielectric layer 430 can be a top oxide layer or formed via a chemical mechanical planarization (CMP) process. As stated previously, there can be other variations, modifications, and alternatives.


In an embodiment, second semiconductor substrate 440 can be joined to the CMOS surface region by bonding the second surface region to dielectric layer 430. The second semiconductor substrate can have a second surface region. Also, the second semiconductor substrate can be patterned such that one or more portions of the second substrate within a vicinity of one or more CMOS IC devices 420 are removed in order to form one or more first air dielectric regions 444. In a specific embodiment, the second substrate can be patterned before bonding. Air dielectric regions 444 can reduce metal line coupling, capacitance, signal interference, and other related issues. In a specific embodiment, regions 444 can also reduce parasitic coupling to the substrate, reduce signal loss, and reduce power while increasing bandwidth. These benefits, as well as others, can be used to achieve higher performance (i.e. less reflection and lower power) in antennas and lower loss and higher isolation in transmission lines. Again, there can be other variations, modifications, and alternatives.


In an embodiment, the first substrate can be thinned to a desired thickness while maintaining attachment to the CMOS IC device region. In a specific embodiment, the thinning can include a grinding process to remove a thickness of material from the first semiconductor substrate to expose a ground surface region. This process can be done by removing a portion of thickness of silicon material 410 without removing any portion the BOX layer. In other embodiments, this process can be done by removing a portion of thickness of silicon material 310 without removing any portion of the EPI layer or without removing material from the CMOS IC device region.


In a specific embodiment, the thinning can include subjecting the ground surface region to a polishing process to smooth the ground surface region to a predetermined surface roughness, as shown in FIG. 4A. During either or both the grinding process and/or the polishing process, the thickness of the first substrate can be monitored. In a specific embodiment, the monitoring includes using an interferometer process to measure an indication associated with the thickness of the first semiconductor substrate. The interferometer process can use an electromagnetic radiation in an infrared wavelength range. In a specific embodiment, the polishing process can include a blanket etching process, as shown in FIG. 4A.


Also, the thinning can include cleaving a portion of the first semiconductor substrate at a cleave region to remove the desired thickness from the first substrate. The cleave region can be within a vicinity of the desired thickness, which is a remaining portion of the first substrate that is still attached to the CMOS IC device region. In another specific embodiment, the first substrate can be an SOI substrate including a bulk portion, overlying insulating layer, and single crystal device layer. The thinning can include selectively removing a portion of the SOI substrate from the single crystal device layer while maintaining attachment to the CMOS IC device region. In another specific embodiment, the thinning can include a patterned etching process such that one or more portions of the first semiconductor substrate within a vicinity of one or more CMOS IC devices are removed to form one or more second air dielectric regions 414, as shown in FIG. 4B. In a specific embodiment, the first substrate can be patterned before bonding. Air dielectric regions 414 can reduce metal line coupling, capacitance, signal interference, and other related issues. In a specific embodiment, regions 414 can also reduce parasitic coupling to the substrate, reduce signal loss, and reduce power while increasing bandwidth. These benefits, as well as others, can be used to achieve higher performance (i.e. less reflection and lower power) in antennas and lower loss and higher isolation in transmission lines. These benefits, as well as others, can be used to achieve higher performance (i.e. less reflection and lower power) in antennas and lower loss and higher isolation in transmission lines. Again, there can be other variations, modifications, and alternatives.


In an embodiment, one or more via structures can be formed within one or more portions of the desired thickness of the first semiconductor substrate. In a specific embodiment, one or more via structures can extend from one or more portions of the CMOS IC device region to a vicinity of the desired thickness of the first substrate. The one or more via structures 416 can be configured as one or more stop structures to form one or more end point regions of the thinning Additionally, a conformal coating of metal material can be formed within the one or more via structures. Of course, there can be other variations, modifications, and alternatives.


It is also understood that the examples and embodiments described herein are for illustrative purposes only and that various modifications or changes in light thereof will be suggested to persons skilled in the art and are to be included within the spirit and purview of this application and scope of the appended claims.



FIGS. 5A-5C are simplified cross-section diagrams of an integrated CMOS and MEMS device according to an embodiment of the present invention. This diagram is merely an example, which should not unduly limit the scope of the claims herein. One of ordinary skill in the art would recognize other variations, modifications, and alternatives. As shown, each of devices 500, 502, and 504 includes a thickness of silicon material 510, one or more CMOS integrated circuit (IC) devices 520, and a dielectric layer 530, a second semiconductor substrate 540, and an encapsulation layer 550. Components shown in these figures can represent a step in a method of fabricating an integrated CMOS and MEMS device using air dielectrics. Those of ordinary skill in the art will recognize other variations, modifications, and alternatives.


In an embodiment, thickness of silicon material 510 can be operably coupled to a BOX layer 512 to form a first semiconductor substrate. There can be different semiconductor substrate compositions and patterned etching processes can be applied to create one or more first air dielectric regions 514 within one or more portions of the first substrate and one or more second air dielectric regions 544 within one or more portions of the second substrate. Other variations, modifications, and alternatives regarding the first and second semiconductor substrate, the CMOS IC devices, dielectric layers and thinning processes have been discussed in the previous figures.


In an embodiment, encapsulation layer 550 can be spatially disposed overlying the first semiconductor substrate, which is shown in FIG. 5A overlying the CMOS IC devices 520, dielectric layer 530, and second semiconductor substrate 540. In a specific embodiment, encapsulation layer 550 can include a wafer layer protection layer (WLP layer), which can include a layer of material bonded to the first substrate. In another specific embodiment, the WLP layer can be a thin film of material deposited overlying the first substrate, as shown in FIG. 5B. Those skilled in the art will recognize other variations, modifications, and alternatives.


In an embodiment, one or more via structures 560 can be formed within one or more portions of the desired thickness of the first semiconductor substrate. In a specific embodiment, one or more via structures can extend from one or more portions of the CMOS IC device region to a vicinity of the desired thickness of the first substrate. One or more via structures 560 can be configured as one or more stop structures to form one or more end point regions of the thinning Additionally, a conformal coating of metal material can be formed within the one or more via structures 560. Via structures 560 can also extend through encapsulation layer 550. Of course, there can be other variations, modifications, and alternatives.


It is also understood that the examples and embodiments described herein are for illustrative purposes only and that various modifications or changes in light thereof will be suggested to persons skilled in the art and are to be included within the spirit and purview of this application and scope of the appended claims.



FIGS. 6A-6D are simplified cross-section diagrams of an integrated CMOS and MEMS device according to an embodiment of the present invention. This diagram is merely an example, which should not unduly limit the scope of the claims herein. One of ordinary skill in the art would recognize other variations, modifications, and alternatives. As shown, each of devices 600, 602, 604, and 606 includes a thickness of silicon material 610, one or more CMOS integrated circuit (IC) devices 620, and a dielectric layer 630, a second semiconductor substrate 640, an encapsulation layer 650, and one or more bonding structures. Components shown in these figures can represent a step in a method of fabricating an integrated CMOS and MEMS device using air dielectrics. Those of ordinary skill in the art will recognize other variations, modifications, and alternatives.


In an embodiment, thickness of silicon material 610 can be operably coupled to a BOX layer 612 to form a first semiconductor substrate. There can be different semiconductor substrate compositions and patterned etching processes can be applied to create one or more first air dielectric regions 614 within one or more portions of the first substrate and one or more second air dielectric regions 644 within one or more portions of the second substrate. Several types of WLP layers, such as wafer and thin film, can be applied depending on the type of application. Other variations, modifications, and alternatives regarding the first and second semiconductor substrate, the CMOS IC devices, dielectric layers and thinning processes have been discussed in the previous figures.


In an embodiment, one or more bonding structures can be operably coupled to each of devices 600, 602, 604, and 606. In a specific embodiment, a trench can be etched such that bonding pads 670 can be disposed on one or more portions of the top oxide layer, as shown in device 600 of FIG. 6A. In another specific embodiment, one or more bonding structures 672 can be operably coupled to device 602. Bonding structures 672 can have accessible regions overlying a portion of encapsulation layer 650, as shown in FIG. 6B. In another embodiment, one or more bonding structures 672 can be operably coupled to device 604. Bonding structures 672 can have accessible regions within one or more portions of the second semiconductor substrate, as shown in FIG. 6C. In the cases of FIGS. 6B and 6C, an isolation layer 680 is needed to separate the accessible regions of bonding structures 670 from the other device layers. In yet another embodiment, one or more bonding structures 674 can be operably coupled to device 606. Bonding structures 674 can have accessible regions within one or more portions of encapsulation layer 650. Each of bonding structures 672 and 674 can have a bonding pad, a via structure, and a pad structure, but can have other structures as well. Of course, there can be other variations, modifications, and alternatives.


It is also understood that the examples and embodiments described herein are for illustrative purposes only and that various modifications or changes in light thereof will be suggested to persons skilled in the art and are to be included within the spirit and purview of this application and scope of the appended claims.



FIGS. 7A-7D are simplified cross-section diagrams of an integrated CMOS and MEMS device according to an embodiment of the present invention. This diagram is merely an example, which should not unduly limit the scope of the claims herein. One of ordinary skill in the art would recognize other variations, modifications, and alternatives. As shown, each of devices 700, 702, 704, and 706 includes a thickness of silicon material 710, one or more CMOS integrated circuit (IC) devices 720, and a dielectric layer 730, a second semiconductor substrate 740, an encapsulation layer 750, one or more bonding structures, and one or more free standing MEMS structures. Components shown in these figures can represent a step in a method of fabricating an integrated CMOS and MEMS device using air dielectrics. Those of ordinary skill in the art will recognize other variations, modifications, and alternatives.


In an embodiment, the thickness of silicon material can be operably coupled to a BOX layer 712 to form a first semiconductor substrate. There can be different semiconductor substrate compositions and patterned etching processes can be applied to create one or more first air dielectric regions 714 within one or more portions of the first substrate and one or more second air dielectric regions 744 within one or more portions of the second substrate. Several types of encapsulation layers, such as wafer and thin film, can be applied depending on the type of application. Also, several types of bonding structures including bonding pads, via structures, and pad structures can and operably coupled to the integrated device to provide accessible connection points. Other variations, modifications, and alternatives regarding the first and second semiconductor substrate, the CMOS IC devices, dielectric layers and thinning processes have been discussed in the previous figures.


In an embodiment, one or more free standing MEMS structures can be formed within one or more portions of the desired thickness of the first semiconductor substrate. One or more MEMS structures can be configured to be supported by one or more members integrally formed on the desired thickness of the first semiconductor substrate. Each of devices 700, 702, 704, and 706 shows a specific type of MEMS device that can be formed within the first substrate. The MEMS structures can include a varactor 790, a switch 792, an inductor 794, a filter 796, and others. The MEMS structures can also include inertial sensors, pressure sensors, timing devices, and rf devices, but can be others as well. There can be other variations, modifications, and alternatives.


In a specific embodiment, a sacrificial layer can be formed overlying the one or more free standing MEMS structures. An enclosure layer can then be formed overlying the sacrificial layer. The enclosure layer can have one or more openings to expose one or more portions of the sacrificial layer. In a specific embodiment, the enclosure layer can include a titanium material, which can be activated as a getter layer. In other embodiments, the enclosure layer can include a material selected from a metal, a semiconductor material, and amorphous silicon material, a dielectric layer, or a combination of these layers, and other materials as well. Of course, there can be other variations, modifications, and alternatives.


In an embodiment, the sacrificial layer can be removed via an ashing process to form an open region between the one or more free standing MEMS structures and the enclosure layer. Also, an encapsulating layer can be formed overlying the enclosure layer to substantially seal the one or more free standing MEMS structures to form a predetermined environment within the open region. In a specific embodiment, the predetermined environment can include an inert gaseous environment at a determined pressure. Also, the encapsulating layer can be selected from a metal layer, a spin on glass, a spray on glass, amorphous silicon, a dielectric layer, or any combination of these layers. In an embodiment, the enclosure layer can be configured overlying a first outer region of the desired thickness of the first substrate. The enclosure can have an upper cover region. One or more bonding structures 772 can be formed within a vicinity of the upper cover region and provided within a second outer region of the thickness of the first substrate. Of course, there can be other variations, modifications, and alternatives.


It is also understood that the examples and embodiments described herein are for illustrative purposes only and that various modifications or changes in light thereof will be suggested to persons skilled in the art and are to be included within the spirit and purview of this application and scope of the appended claims.



FIG. 8 is a simplified flow diagram illustrating a method of fabricating an integrated CMOS and MEMS device using air dielectrics according to an embodiment of the present invention. This diagram is merely an example, which should not unduly limit the scope of the claims herein. One of ordinary skill in the art would recognize many other variations, modifications, and alternatives. It is also understood that the examples and embodiments described herein are for illustrative purposes only and that various modifications or changes in light thereof will be suggested to persons skilled in the art and are to be included within the spirit and purview of this process and scope of the appended claims.


As shown in FIG. 8, the present method can be briefly outlined below.


1. Start;


2. Provide a first semiconductor substrate;


3. Form one or more CMOS circuits overlying the first substrate;


4. Form a dielectric layer overlying the CMOS circuits;


5. Join a second semiconductor substrate with air dielectric to the dielectric layer;


6. Thin the first semiconductor substrate;


7. Form one or more via structures;


8. Form a conformal metal coating within the via structures;


9. Form one or more MEMS devices;


10. Form an enclosure housing the MEMS devices;


11. Form bonding structures; and


12. Stop.


These steps are merely examples and should not unduly limit the scope of the claims herein. As shown, the above method provides a way of fabricating an integrated CMOS and MEMS device using air dielectrics according to an embodiment of the present invention. One of ordinary skill in the art would recognize many other variations, modifications, and alternatives. For example, various steps outlined above may be added, removed, modified, rearranged, repeated, and/or overlapped, as contemplated within the scope of the invention.


As shown in FIG. 8, method 800 begins at start, step 802. The present method provides a fabrication method for forming an integrated CMOS and MEMS device using air dielectrics. Many benefits are achieved by way of the present invention over conventional techniques. For example, the present technique provides an easy to use process that relies upon conventional technology. In some embodiments, the method provides higher device yields in dies per wafer with the integrated approach. Additionally, the method provides a process and system that are compatible with conventional process technology without substantial modifications to conventional equipment and processes. The invention provides for an improved integrated MEMS and CMOS circuit device and related methods for a variety of uses. Depending upon the embodiment, one or more of these benefits may be achieved. These and other benefits will be described in more throughout the present specification and more particularly below.


Following step 802, fabrication method 800 involves providing a first semiconductor substrate having a first surface region, step 804. In an embodiment, a layer of material can be spatially disposed overlying the thickness of silicon material to form a first semiconductor substrate. In a specific embodiment, the layer of material disposed overlying the thickness of silicon material can be a buried oxide (BOX) layer. In another specific embodiment, the layer of material disposed overlying the thickness of silicon material can be an epitaxial (EPI) layer or the first semiconductor substrate can have just the thickness of silicon material. In further embodiments, the first and second semiconductor substrate can have a silicon, single crystal silicon, or polycrystalline silicon material. Those skilled in the art will recognize other variations, modifications, and alternatives.


In an embodiment, the first semiconductor substrate can have a first surface region and a CMOS device region can be a region overlying the first surface region. One or more CMOS IC devices can be formed on the CMOS IC device region overlying the first surface region, step 806. The CMOS IC device region can have a CMOS surface region. In a specific embodiment, the one or more CMOS IC devices can include transistor devices, metal layers, via structures, and others. In further embodiments, additional transistors, metal layers, and structures can be added. The fabrication of the one or more CMOS IC devices can be done through foundry-compatible processes. Of course, there can be other variations, modifications, and alternatives.


Following the formation of CMOS IC devices, a dielectric layer can be formed overlying the CMOS surface region, step 808. The dielectric layer can have one or more patterned regions. In a specific embodiment, the dielectric layer can be a top oxide layer or formed via a chemical mechanical planarization (CMP) process. As stated previously, there can be other variations, modifications, and alternatives.


After the dielectric layer is formed, a second semiconductor substrate can be joined to the CMOS surface region by bonding the second surface region to the dielectric layer, step 810. The second semiconductor substrate can have a second surface region. Also, the second semiconductor substrate can be patterned such that one or more portions of the second substrate within a vicinity of the one or more CMOS IC devices are removed in order to form one or more first air dielectric regions. Again, there can be other variations, modifications, and alternatives.


After joining the second substrate, the first substrate can be thinned to a desired thickness while maintaining attachment to the CMOS IC device region, step 812. In a specific embodiment, the thinning can include a grinding process to remove a thickness of material from the first semiconductor substrate to expose a ground surface region. This process can be done by removing a portion of the thickness of silicon material without removing any portion the BOX layer. In other embodiments, this process can be done by removing a portion of the thickness of silicon material without removing any portion of the EPI layer or without removing material from the CMOS IC device region.


In a specific embodiment, the thinning can include subjecting the ground surface region to a polishing process to smooth the ground surface region to a predetermined surface roughness. During either or both the grinding process and/or the polishing process, the thickness of the first substrate can be monitored. In a specific embodiment, the monitoring includes using an interferometer process to measure an indication associated with the thickness of the first semiconductor substrate. The interferometer process can use an electromagnetic radiation in an infrared wavelength range. In a specific embodiment, the polishing process can include a blanket etching process.


Also, the thinning can include cleaving a portion of the first semiconductor substrate at a cleave region to remove the desired thickness from the first substrate. The cleave region can be within a vicinity of the desired thickness, which is a remaining portion of the first substrate that is still attached to the CMOS IC device region. In another specific embodiment, the first substrate can be an SOI substrate including a bulk portion, overlying insulating layer, and single crystal device layer. The thinning can include selectively removing a portion of the SOI substrate from the single crystal device layer while maintaining attachment to the CMOS IC device region. In another specific embodiment, the thinning can include a patterned etching process such that one or more portions of the first semiconductor substrate within a vicinity of one or more CMOS IC devices are removed to form one or more second air dielectric regions. Again, there can be other variations, modifications, and alternatives.


After the desired thickness of the first substrate remains, one or more via structures can be formed within one or more portions of the desired thickness of the first substrate, step 814. In a specific embodiment, one or more via structures can extend from one or more portions of the CMOS IC device region to a vicinity of the desired thickness of the first substrate. The one or more via structures can be configured as one or more stop structures to form one or more end point regions of the thinning Additionally, a conformal coating of metal material can be formed within the one or more via structures, step 816. Of course, there can be other variations, modifications, and alternatives.


Following the formation of the metal coating, one or more free standing MEMS structures can be formed within one or more portions of the desired thickness of the first semiconductor substrate, step 818. One or more MEMS structures can be configured to be supported by one or more members integrally formed on the desired thickness of the first semiconductor substrate. The MEMS structures can include a varactor, a switch, an inductor, a filter, and others. The MEMS structures can also include inertial sensors, pressure sensors, timing devices, and rf devices, but can be others as well. There can be other variations, modifications, and alternatives.


After the MEMS device are formed, an enclosure layer can be formed overlying the first semiconductor substrate, step 820. In a specific embodiment, the enclosure layer can be a WLP layer, which can include a layer of material bonded to the first substrate. In another specific embodiment, the WLP layer can be a thin film of material deposited overlying the first substrate. Those skilled in the art will recognize other variations, modifications, and alternatives.


In an embodiment, one or more bonding structures can be formed within one or more portions of the integrated device. In a specific embodiment, a trench can be etched such that the bonding pads can be disposed on one or more portions of the top oxide layer. In another specific embodiment, the one or more bonding structures can be operably coupled to the integrated device. The bonding structures can have accessible regions overlying a portion of the enclosure layer. In another embodiment, the one or more bonding structures can be operably coupled to the integrated device. The bonding structures can have accessible regions within one or more portions of the second semiconductor substrate. In these cases with accessible regions, an isolation layer is needed to separate the accessible regions of the bonding structures from the other device layers. In yet another embodiment, the one or more bonding structures can be operably coupled to the integrated device. The bonding structures can have accessible regions within one or more portions of the enclosure layer. Each of the bonding structures can have a bonding pad, a via structure, and a pad structure, but can have other structures as well. Of course, there can be other variations, modifications, and alternatives.


The above sequence of processes provides a fabrication method for forming an integrated CMOS and MEMS device according to an embodiment of the present invention. As shown, the method uses a combination of steps including providing a first substrate, forming CMOS devices, forming a dielectric layer, joining a second substrate with patterned air dielectric regions to the dielectric layer, thinning the first substrate, forming via structures, forming a conformal metal coating within the via structures, and forming one or more free standing MEMS structures, and forming an enclosure. Other alternatives can also be provided where steps are added, one or more steps are removed, or one or more steps are provided in a different sequence without departing from the scope of the claims herein. Further details of the present method can be found throughout the present specification.

Claims
  • 1. A monolithic integrated CMOS and MEMS device, the device comprising: a thickness of a first semiconductor substrate having a first top surface region and a first bottom surface region;one or more CMOS integrated circuit (IC) devices provided on a CMOS integrated circuit (IC) device region coupled to the first bottom surface region, the CMOS IC device region having a CMOS surface region, wherein the one or more CMOS IC devices includes a plurality of transistors configured in an upside-down orientation;a bonding material coupled to the CMOS surface region;a second semiconductor substrate having a second top surface region and a second bottom surface region, the second top surface region coupled to the CMOS surface region by bonding the second top surface region to the bonding material, the second semiconductor substrate comprising one or more first air dielectric regions spatially configured towards the second top surface region;one or more free standing MEMS structures overlying and adjacent to one or more portions of the first top surface region of the thickness of the first semiconductor substrate.
  • 2. The device of claim 1 wherein the first semiconductor substrate is selected from a group consisting of: a buried oxide (BOX) layer overlying a silicon substrate, an epitaxial (EPI) layer overlying a silicon substrate, an amorphous silicon substrate, a single crystal silicon substrate, and a polycrystalline silicon substrate.
  • 3. The device of claim 1 wherein each of the plurality of transistors has source and drain regions above a gate region, and the one or more free standing MEMS structures are disposed closer to the source and drain regions than to the gate region.
  • 4. The device of claim 1 further comprising one or more via structures within one or more portions of the first semiconductor substrate, the one or more via structures extending from one or more portions of the CMOS integrated circuit device region to a vicinity of the thickness of the first semiconductor substrate.
  • 5. The device of claim 1 further comprising an enclosure layer overlying the one or more free standing MEMS devices, the enclosure layer having one or more openings.
  • 6. The device of claim 5 wherein the enclosure layer comprises a titanium material, the titanium material being activated as a getter layer.
  • 7. The device of claim 5 further comprising: an open region provided between the one or more free standing MEMS structures and the enclosure layer; andan encapsulating layer provided overlying the enclosure layer to substantially seal the one or more free standing MEMS structures to form a predetermined environment within the open region.
  • 8. The device of claim 7 wherein the predetermine environment comprises an inert gas at a determined pressure.
  • 9. The device of claim 1 further comprising one or more bond pad openings to expose one or more bond pads coupled to the CMOS device layer.
  • 10. The device of claim 1 further comprising an enclosure housing the one or more free standing MEMS structures, the enclosure configured overlying the first outer region of the thickness of the first semiconductor substrate, the enclosure having an upper cover region.
  • 11. A monolithic integrated CMOS and MEMS device, the device comprising: a thickness of a first semiconductor substrate having a first top surface region, a first bottom surface region, and one or more first air dielectric regions;one or more CMOS integrated circuit (IC) devices provided on a CMOS integrated circuit (IC) device region coupled to the first bottom surface region, the CMOS IC device region having a CMOS surface region, wherein the one or more CMOS IC devices includes a plurality of transistors configured in a flipped orientation;a bonding material coupled to the CMOS surface region;a second semiconductor substrate having a second top surface region and a second bottom surface region, the second top surface region coupled to the CMOS surface region by bonding the second surface region to the bonding material, the second semiconductor substrate comprising one or more second air dielectric regions spatially configured towards the second top surface region;one or more free standing MEMS structures overlying one or more portions of the first top surface region of the thickness of the first semiconductor substrate.
  • 12. The device of claim 11 wherein the first semiconductor substrate is selected from a group consisting of: a buried oxide (BOX) layer overlying a silicon substrate, an epitaxial (EPI) layer overlying a silicon substrate.
  • 13. The device of claim 11 wherein the bonding material is a chemical mechanical planarization (CMP) processed bonding material or a top oxide material.
  • 14. The device of claim 11 further comprising an enclosure layer overlying the one or more free standing MEMS devices, the enclosure layer having one or more openings, wherein the enclosure layer comprises a titanium material, the titanium material being activated as a getter layer.
  • 15. The device of claim 14 further comprising: an open region provided between the one or more free standing MEMS structures and the enclosure layer; andan encapsulating layer provided overlying the enclosure layer to substantially seal the one or more free standing MEMS structures to form a predetermined environment within the open region, wherein the predetermined environment comprises an inert gas at a determined pressure.
  • 16. The device of claim 15 wherein the encapsulating layer is selected from a metal layer, a spin on glass, a spray on glass, amorphous silicon, a dielectric layer, or any combination of these layers.
  • 17. A monolithic integrated CMOS and MEMS device, the device comprising: a thickness of a first semiconductor substrate having a first top surface region and a first bottom surface region;one or more CMOS integrated circuit (IC) devices provided on a CMOS integrated circuit (IC) device region coupled to the first bottom surface region, the CMOS IC device region having a CMOS surface region, wherein the one or more CMOS IC devices includes a plurality of transistors configured in an upside-down orientation and a plurality of interconnect layers below the plurality of transistors;a bonding material coupled to the CMOS surface region;a second semiconductor substrate having a second top surface region and a second bottom surface region, the second top surface region coupled to the CMOS surface region by bonding the second top surface region to the bonding material, the second semiconductor substrate comprising one or more first air dielectric regions spatially configured towards the second top surface region;a bonding structure coupled to a top interconnect layer in the CMOS IC device region at the CMOS surface region;one or more free standing MEMS structures overlying and adjacent to one or more portions of the first top surface region of the thickness of the first semiconductor substrate.
  • 18. The device of claim 17 wherein the first semiconductor substrate is a buried oxide (BOX) layer overlying a silicon substrate or an epitaxial (EPI) layer overlying a silicon substrate.
  • 19. The device of claim 17 wherein the bonding structure comprises a portion extending through the second semiconductor substrate.
  • 20. The device of claim 17 wherein the bonding structure comprises a portion extending through the first semiconductor substrate.
CROSS-REFERENCES TO RELATED APPLICATIONS

The present application is a divisional application of and incorporates by reference, for all purposes, the following patent application: U.S. patent application Ser. No. 13/008,870, filed Jan. 18, 2011, now U.S. Pat. No. 8,421,082. The present invention also incorporates by reference, for all purposes, the following co-pending patent applications: U.S. patent application Ser. No. 12/490,067, filed Jun. 23, 2009, U.S. patent application Ser. No. 12/717,070, filed Mar. 3, 2010, U.S. patent application Ser. No. 12/945,087, filed Nov. 12, 2010, and U.S. patent application Ser. No. 12/945,834, filed Nov. 13, 2010.

US Referenced Citations (179)
Number Name Date Kind
3614677 Wilfinger Oct 1971 A
4954698 Yasunaga et al. Sep 1990 A
5140745 McKenzie Aug 1992 A
5157841 Dinsmore Oct 1992 A
5173597 Anglin Dec 1992 A
5488765 Kubota et al. Feb 1996 A
5493769 Sakai et al. Feb 1996 A
5610414 Yoneda et al. Mar 1997 A
5668033 Ohara Sep 1997 A
5729074 Shiomi et al. Mar 1998 A
6046409 Ishii et al. Apr 2000 A
6076731 Terrell Jun 2000 A
6115261 Platt et al. Sep 2000 A
6188322 Yao Feb 2001 B1
6263736 Thunder et al. Jul 2001 B1
6278178 Kwon et al. Aug 2001 B1
6480699 Lovoi Nov 2002 B1
6483172 Cote Nov 2002 B1
6485273 Goodwin-Johansson Nov 2002 B1
6534726 Okada et al. Mar 2003 B1
6576999 Sakai et al. Jun 2003 B2
6656604 Hasewaga Dec 2003 B2
6753664 Neufeld et al. Jun 2004 B2
6855572 Jeun et al. Feb 2005 B2
6912336 Ishii Jun 2005 B2
6933165 Musolf et al. Aug 2005 B2
6953983 Farrar Oct 2005 B2
6979872 Borwick et al. Dec 2005 B2
7019434 Helmbrecht Mar 2006 B2
7095226 Wan et al. Aug 2006 B2
7145555 Taylor et al. Dec 2006 B2
7183630 Fogelson et al. Feb 2007 B1
7193312 Boon et al. Mar 2007 B2
7195945 Edelstein et al. Mar 2007 B1
7239000 Witcraft Jul 2007 B2
7248131 Fazzio et al. Jul 2007 B2
7253079 Hanson et al. Aug 2007 B2
7258009 Imai Aug 2007 B2
7358724 Taylor et al. Apr 2008 B2
7370530 DCamp et al. May 2008 B2
7391091 Tondra Jun 2008 B2
7402449 Fukuda et al. Jul 2008 B2
7430674 Van Mueller et al. Sep 2008 B2
7453269 Won et al. Nov 2008 B2
7454705 Cadez et al. Nov 2008 B2
7456042 Stark Nov 2008 B2
7493496 Smith et al. Feb 2009 B2
7498715 Yang Mar 2009 B2
7511379 Flint Mar 2009 B1
7514760 Quevy Apr 2009 B1
7521783 Tsai et al. Apr 2009 B2
7536909 Zhao et al. May 2009 B2
7585750 Do et al. Sep 2009 B2
7612443 Bernstein et al. Nov 2009 B1
7671478 Wathanawasam et al. Mar 2010 B2
7676340 Yasui Mar 2010 B2
7690255 Gogoi et al. Apr 2010 B2
7708189 Cipriano May 2010 B1
7713785 Flint May 2010 B1
7779689 Li et al. Aug 2010 B2
7814791 Andersson et al. Oct 2010 B2
7814792 Tateyama et al. Oct 2010 B2
7814793 Sato Oct 2010 B2
7861422 MacDonald Jan 2011 B2
7891103 Mayor Feb 2011 B2
8011577 Mullen et al. Sep 2011 B2
8016191 Bonalle et al. Sep 2011 B2
8037758 Sato Oct 2011 B2
8056412 Rutkiewicz et al. Nov 2011 B2
8061049 Mayor Nov 2011 B2
8070055 Block et al. Dec 2011 B2
8087296 Ueda et al. Jan 2012 B2
8140358 Ling et al. Mar 2012 B1
8148808 Braden et al. Apr 2012 B2
8165323 Zhou Apr 2012 B2
8181874 Wan et al. May 2012 B1
8227285 Yang Jul 2012 B1
8236577 Hsu Aug 2012 B1
8245923 Merrill et al. Aug 2012 B1
8250921 Nasiri et al. Aug 2012 B2
8259311 Petschko Sep 2012 B2
8324047 Yang Dec 2012 B1
8342021 Oshio Jan 2013 B2
8367522 Yang Feb 2013 B1
8395252 Yang Mar 2013 B1
8395381 Lo Mar 2013 B2
8402666 Hsu et al. Mar 2013 B1
8407905 Hsu et al. Apr 2013 B1
8421082 Yang Apr 2013 B1
8450779 Guo et al. May 2013 B2
8476084 Yang et al. Jul 2013 B1
8476129 Jensen et al. Jul 2013 B1
8477473 Koury et al. Jul 2013 B1
8486723 Wan et al. Jul 2013 B1
20010053565 Khoury Dec 2001 A1
20020072163 Wong et al. Jun 2002 A1
20020134837 Kishon Sep 2002 A1
20030058069 Schwartz et al. Mar 2003 A1
20030095115 Brian et al. May 2003 A1
20030184189 Sinclair Oct 2003 A1
20030230802 Poo et al. Dec 2003 A1
20040002808 Hashimoto et al. Jan 2004 A1
20040016995 Kuo et al. Jan 2004 A1
20040017644 Goodwin-Johansson Jan 2004 A1
20040056742 Dabbaj Mar 2004 A1
20040063325 Urano et al. Apr 2004 A1
20040104268 Bailey Jun 2004 A1
20040113246 Boon Jun 2004 A1
20040119836 Kitaguchi et al. Jun 2004 A1
20040140962 Wang et al. Jul 2004 A1
20040177045 Brown Sep 2004 A1
20040207035 Witcraft et al. Oct 2004 A1
20040227201 Borwick, III et al. Nov 2004 A1
20050074147 Smith et al. Apr 2005 A1
20050090038 Wallace Apr 2005 A1
20050174338 Ing Aug 2005 A1
20050247787 Von Mueller et al. Nov 2005 A1
20060049826 Daneman et al. Mar 2006 A1
20060081954 Tondra et al. Apr 2006 A1
20060141786 Boezen et al. Jun 2006 A1
20060168832 Yasui et al. Aug 2006 A1
20060192465 Kornbluh et al. Aug 2006 A1
20060208326 Nasiri et al. Sep 2006 A1
20060211044 Green Sep 2006 A1
20060238621 Okubo et al. Oct 2006 A1
20060243049 Ohta et al. Nov 2006 A1
20060274399 Yang Dec 2006 A1
20070132733 Ram Jun 2007 A1
20070152976 Townsend et al. Jul 2007 A1
20070181962 Partridge et al. Aug 2007 A1
20070200564 Motz et al. Aug 2007 A1
20070281379 Stark et al. Dec 2007 A1
20080014682 Yang et al. Jan 2008 A1
20080066547 Tanaka et al. Mar 2008 A1
20080110259 Takeno May 2008 A1
20080119000 Yeh et al. May 2008 A1
20080123242 Zhou May 2008 A1
20080210007 Yamaji et al. Sep 2008 A1
20080211043 Chen Sep 2008 A1
20080211113 Chua et al. Sep 2008 A1
20080277747 Ahmad Nov 2008 A1
20080283991 Reinert Nov 2008 A1
20090007661 Nasiri et al. Jan 2009 A1
20090049911 Fukuda et al. Feb 2009 A1
20090108440 Meyer et al. Apr 2009 A1
20090115412 Fuse May 2009 A1
20090153500 Cho et al. Jun 2009 A1
20090262074 Nasiri et al. Oct 2009 A1
20090267906 Schroderus Oct 2009 A1
20090307557 Rao et al. Dec 2009 A1
20090321510 Day et al. Dec 2009 A1
20100044121 Simon et al. Feb 2010 A1
20100045282 Shibasaki et al. Feb 2010 A1
20100071467 Nasiri et al. Mar 2010 A1
20100075481 Yang Mar 2010 A1
20100083756 Merz et al. Apr 2010 A1
20100095769 Matsumoto et al. Apr 2010 A1
20100109102 Chen et al. May 2010 A1
20100171570 Chandrahalim Jul 2010 A1
20100208118 Ueyama Aug 2010 A1
20100236327 Mao Sep 2010 A1
20100248662 Sheynblat et al. Sep 2010 A1
20100260388 Garret et al. Oct 2010 A1
20100302199 Taylor et al. Dec 2010 A1
20100306117 Terayoko Dec 2010 A1
20100307016 Mayor et al. Dec 2010 A1
20100312519 Huang et al. Dec 2010 A1
20110131825 Mayor et al. Jun 2011 A1
20110146401 Inaguma et al. Jun 2011 A1
20110154905 Hsu Jun 2011 A1
20110172918 Tome Jul 2011 A1
20110183456 Hsieh et al. Jul 2011 A1
20110198395 Chen Aug 2011 A1
20110265574 Yang Nov 2011 A1
20110266340 Block et al. Nov 2011 A9
20110312349 Forutanpour et al. Dec 2011 A1
20120007597 Seeger et al. Jan 2012 A1
20120007598 Lo et al. Jan 2012 A1
20120215475 Rutledge et al. Aug 2012 A1
Non-Patent Literature Citations (14)
Entry
U.S. Appl. No. 12/913,440, Final Office Action mailed Oct. 10, 2013, 10 pages.
U.S. Appl. No. 12/944,712 Final Office Action mailed Aug. 21, 2013, 15 pages.
U.S. Appl. No. 12/983,309 Notice of Allowance mailed Aug. 13, 2013, 11 pages.
U.S. Appl. No. 13/924,457 Notice of Allowance mailed Sep. 18, 2013, 11 pages.
U.S. Appl. No. 13/035,968 Non-Final Office Action mailed Jul. 31, 2013, 8 pages.
U.S. Appl. No. 13/035,969 Non-Final Office Action mailed Oct. 25, 2013, 11 pages.
U.S. Appl. No. 13/751,014 Notice of Allowance mailed Jul. 31, 2013, 9 pages.
U.S. Appl. No. 12/787,368 Non-Final Office Action mailed Sep. 19, 2013, 19 pages.
U.S. Appl. No. 13/922,983 Notice of Allowance mailed Oct. 7, 2013, 10 pages.
U.S. Appl. No. 12/787,200 Notice of Allowance mailed Sep. 26, 2013, 11 pages.
U.S. Appl. No. 13/177,053 Non-Final Office Action mailed Sep. 18, 2013, 12 pages.
U.S. Appl. No. 13/164,311 Notice of Allowance mailed Sep. 17, 2013, 8 pages.
U.S. Appl. No. 13/163,672 Non-Final Office Action mailed Sep. 5, 2013, 7 pages.
U.S. Appl. No. 12/940,025 Notice of Allowance mailed Oct. 17, 2013,10 pages.
Related Publications (1)
Number Date Country
20160060102 A1 Mar 2016 US
Provisional Applications (1)
Number Date Country
61296432 Jan 2010 US
Divisions (1)
Number Date Country
Parent 13008870 Jan 2011 US
Child 13855988 US