Existing semiconductor process flows do not facilitate the integration of Field Effect Transistors (FETs), Junction Field Effect Transistors (JFETs) and Bipolar Junction Transistors (BJTs). Traditional processes to fabricate the above-mentioned devices have certain aspects and characteristics that may be inconsistent and/or incompatible with aspects and characteristics of the other devices. One example is that bipolar junction transistors tend to be formed as a vertically-oriented device, rather than laterally-oriented as is true for field effect transistors. These inconsistencies and incompatibilities may conflict within a process flow, such that conventional fabrication philosophies separate the fabrication of the different devices into individual process flows.
The described embodiments are directed to an electrical device integration solution that may be used to fabricate three fundamental transistor types, e.g., Vertical Slit Field Effect Transistor (VeSFET) devices, JFET devices and BJT devices, on the same underlying substrate wafer and within a single process flow.
The VeSFET may be used in a periodic design based on unit circle with through-thickness tungsten plugs for low parasitic capacitances and resistance with dense packing. Such a design may result in higher performance for a given node, are inherently resistant to ionizing radiation, exhibit a high ION/IOFF characteristics and low power consumption.
The described embodiments may be used to produce an integration of complementary VeSFETs for high speed/bandwidth VeSFETs based on the unit-circle, Analog VeSFETs (AVeSFETs) designed for analog performance, JFETs and BJTs, along with high capacitance-density lateral thermalmetal-oxide-metal (LT-MOM) capacitors.
An example embodiment of the integration and fabrication process of the invention is summarized in
Referring to
Referring to
The described embodiments may be used to produce integrated devices for, e.g., defense applications requiring radiation-hard monolithic interface electronics with MEMS, and commercial applications in spaces where a high level of integration is necessary, such as Internet of Things (IoT) and data storage (e.g., non-volatile memory in the form of VeSFET-based flash memory).
The described embodiments present a process flow that facilitates the design and build of a mixed circuit system on a wafer, and due to the unique nature of the devices, the control of circuit parameters by physical device shape and standard process deviations to control circuit operation.
In one aspect, the invention may be a method of fabricating a semiconductor device, comprising, within a single process flow, forming, on a silicon on insulator (SOI) wafer, at least one of an n channel, digital VeSFET, a p channel, digital VeSFET, an n channel, analog VeSFET, and a p channel, analog VeSFET. The method may further comprise forming, on the SOI wafer, at least one of a JFET, a BJT and a LT-MOM capacitor.
The method may further comprise forming the at least one of an n channel, digital VeSFET, a p channel, digital VeSFET, an n channel, analog VeSFET, and a p channel, analog VeSFET, according to a periodic design based on a unit circle. In one embodiment, forming the at least one of an n channel, digital VeSFET, a p channel, digital VeSFET, an n channel, analog VeSFET, and a p channel, analog VeSFET, may comprise one or more of (i) defining a mesa, (ii) growing sacrificial oxide and n-VeSFET gate oxide, (iii) depositing p+ poly-Si for n-VeSFET gates, (iv) performing chemical-mechanical planarization (CMP), (v) depositing a nitride protective layer, (vi) defining an n-VeSFET gate, (vii) growing a p-VeSFET gate oxide, (viii) depositing n+ poly-Si for p-VeSFET gates, (ix) depositing a nitride protective layer, and (x) defining an p-VeSFET gate.
In an embodiment, forming the BJT may comprise one or more of (i) growing screen oxide for at least one implant, (ii) etching at least one alignment mark, (iii) doping an npn collector, (iv) doping a pnp collector, (v) doping a p-channel and npn base; (vi) doping an n-channel and pnp base, (vii) performing an activation anneal and an oxide removal, (viii) defining an npn emitter, (ix) depositing an n+ poly-Si for npn-emitter and n-contact fill, and (x) performing chemical-mechanical planarization (CMP).
In an embodiment, forming the JFET may comprise one or more of performing an oxide fill, (ii) defining an n-JFET gate and p-contact, and (iii) defining a p-JFET gate and n-contact.
In an embodiment, forming the LT-MOM capacitor may comprise one or more of (i) defining an LT-MOM capacitor, (ii) etching a poly-Si layer with XeF2, (iii) performing a chemical vapor deposition (CVD) of tungsten, and (iv) performing chemical-mechanical planarization (CMP).
In another aspect, the invention may be a method of fabricating a semiconductor device, comprising, within a single process flow, forming, on a silicon on insulator (SOI) wafer, at least one of an n channel, digital VeSFET, a p channel, digital VeSFET, an n channel, analog VeSFET, and a p channel, analog VeSFET. The method may further comprise forming, on the SOI wafer, at least one of an n channel JFET, a p channel JFET, an npn BJT, a pnp BJT, and a LT-MOM capacitor.
In another aspect, the invention may be a method of enhancing performance of a semiconductor node, comprising modifying a design of the semiconductor node, according to a three-dimensional architecture, to form a modified semiconductor node, and fabricating the modified semiconductor node on substrate, along with at least one other node of a different node type.
In another aspect, the invention may be a method of enhancing performance of semiconductor nodes, comprising modifying a design of a first semiconductor node, according to a first three-dimensional architecture, to form a first modified semiconductor node, modifying a design of a second semiconductor node, according to a second three-dimensional architecture, to form a second modified semiconductor node, and fabricating the first modified semiconductor node and the second modified semiconductor node on substrate. The first semiconductor node is a JFET, and the second semiconductor node is a MOSFET.
The patent or application file contains at least one drawing executed in color. Copies of this patent or patent application publication with color drawings will be provided by the Office upon request and payment of the necessary fee.
The foregoing will be apparent from the following more particular description of example embodiments, as illustrated in the accompanying drawings in which like reference characters refer to the same parts throughout the different views. The drawings are not necessarily to scale, emphasis instead being placed upon illustrating embodiments.
A description of example embodiments follows.
The teachings of all patents, published applications and references cited herein are incorporated by reference in their entirety.
The described embodiments are directed to a process flow for the fabrication of a family of devices built on silicon-on-insulator (SOI) wafers. An SOI basis material is advantageous to build complementary metal-oxide semiconductor (CMOS) circuits, because SOI material isolates devices facilitating low off-currents, and the device isolation greatly reduces the likelihood of a latch-up occurrence. Further, devices fabricated from SOI material are inherently radiation hard (i.e., resistant to degradation due to ionizing radiation).
The process flow of the described embodiments may be used to fabricate several different families of electrical devices on the same SOI wafer, all within one process flow. The families of electrical devices may include one or more of (i) Vertical Slit Field Effect Transistor (VeSFET) both high speed/bandwidth and analog types (as described herein, a high speed/bandwidth VeSFET is simply referred to as VeSFET, and an analog VeSFET is referred to as AVeSFET), (ii) Junction Field Effect Transistor (JFET), (iii) Bipolar Junction Transistor (BJT), (iv) Lateral Thermal Metal/Oxide/Metal Capacitor (LT-MOM) and (v) a flash memory VeSFET cell (i.e., a flash memory cell based on VeSFET devices). The above-mentioned devices each have certain characteristics that may be useful in particular circuit applications. Through a process based on the process flow of the described embodiments, any combination of the above-mentioned devices can be used to define a system of interest, thereby taking advantage of the different device characteristics all on the same basis material (i.e., SOT substrate).
A VeSFET is a majority carrier device that is modulated by two gates situated on opposing sides of a silicon slit. Gate material is chosen such that the associated work function difference pinches off the channel, and application of a gate bias allows current to flow from drain to source. The digital version of the VeSFET takes advantage of the repetitive nature of the device to increase the packing density. The analog version is larger but provides other advantages. For example, the channel length for analog VeSFETs can be adjusted, which may improve the output impedance of the transistor. This is important in applications where low frequency operation is suitable, such as current sources. Current sources are intended to be DC biasing circuits (hence minimal speed concerns), but require high output impedance. The ability to adjust length allows the bias point adjustment for a given current flow. As an example, low transconductance for internal loads of amplifier designs are preferred, which may be achieved by increasing the length. The ability to adjust length allows a much larger gate area for a given current, which would improve the 1/F (Flicker) noise performance at the expense of slower speeds.
The JFET may use a defined P/N junction to modulate the transistor and may be used in circuits requiring a high input impedance. The BJT devices are built in a lateral fashion and may be used in high performance analog applications (e.g., amplifiers).
The LT-MOM uses the gate oxide of the devices to create embedded capacitors having a very high capacitance per unit area (e.g., F/cm2) for use in analog circuits.
Combinations of these devices on a single substrate, made possible by the process flow of the described embodiments, allow a designer to define and fabricate devices useful in mixed-signal circuit applications. Examples of components of such mixed-signal circuit applications may include differential amplifier with gain stages, analog to digital converters (ADCs), general digital logic components, data storage (i.e., digital storage), among others.
For an example embodiment, the major process flow steps may be summarized as follows:
Details of these summary steps are set forth in more detail below.
Referring to
The Tungsten pillars allow these wafers to go into standard back end of line (BEOL) processing. It is also noted that the wafer is built on SOI so that wafer scale technology may be used to stack the wafers up and take advantage of three-dimensional (3D) circuit architecture.
Analog VeSFETs (Complementary n-Channel and p-Channel)
The VeSFET in general has some basic advantages as compared to the State-of-the-Art MOS (Metal-Oxide-Semiconductor) transistors. The device is a majority carrier device with a conducting channel based on depletion widths for turn-on and turn-off characteristics as opposed to a surface inversion layer. This is similar to a JFET in operation and has unique advantages over standard MOSFETs. The channel is formed in the bulk of the silicon, away from the oxide interfaces, which improves carrier mobility, and 1/F (flicker) noise. The gate oxide is comparably thicker than a standard MOSFET, which reduces gate leakage (tunneling current). The gate oxide can be made out of thermally-grown SiO2, leveraging decades of process experience and low cost processing. The ratio of the “ON” current to the “OFF” current (ION/IOFF) has been measured to be at least eight orders of magnitude better than the best-in-class FinFET devices.
The VeSFET has dual, symmetric gates. This allows many unique digital and analog capabilities. For example, adjustment of the threshold voltage, VT, may be made with the second gate. Higher order Boolean digital processing is possible with fewer transistors as compared to standard devices (one transistor can be an “AND” Boolean function as opposed to two MOSFETs). It is possible to build high input impedance, unity gain, inverting amplifiers. As conceived this would be the first of its kind.
The VeSFET is built on a Silicon-On-Insulator (SOI) substrate, and is trench isolated in 360 degrees, so it effectively is oxide isolated everywhere as opposed to junction isolated, which has problems with leakage currents. The VeSFET has lower leakage currents as a result, and shows much higher levels of overall electrical isolation.
The geometry of the layout allows a compact design, which inherently has low parasitic resistance and capacitance. This geometry allows for a highly efficient design yielding high speed per unit of power consumption. The geometry also allows for a highly dense digital layout in equivalent digital Gates/Area metric. This adds digital capability (more transistors), and saves money (wafer cost is constant, but VeSFETs achieve more transistor/chip and/or more chips/wafer).
The VeSFET has regularly arrayed metal pillars that run the entire vertical dimension of the transistors. This creates a naturally low resistance path for current to get in and out of the transistor. These pillars act as a natural heat sink in a dense digital, microprocessor-like, layout. This would allow higher digital operations without fear of thermal issues.
The standard high speed/bandwidth VeSFET is an all circle, unit-size cell layout to achieve the advantages attributed to geometry, as described above. This restricts both the slit width and length to be the process minimum size. The analog performance is far superior to the FinFET and planar MOSFETs of similar process capability, but it is not adjustable. The “Analog” VeSFET described herein addresses this limitation.
All devices can be arrayed in parallel to effectively adjust the W (width), but the “Analog” VeSFET's L (length) is now designer adjustable, similar to that of a standard transistor. The output impedance can be increased with increasing L at the expense of speed (lower FT). Current sources are excellent examples where this device would be preferred over the standard circular VeSFET. The gate area can now be increased to improve, the already superior to a standard transistor 1/F noise. For a given current, the operating point can now be adjusted to achieve a desired gM (transconductance).
JFETs (Complementary n-channel and p-channel)
JFETs exhibit a low 1/F noise, due to their lack of an oxide layer. JFETs are natural depletion mode devices, which exhibit majority carrier current flow.
The integrated process JFET has some unique novel advantages over a standard J-FET. The effective threshold voltage, thus IDSS (VGS=0V) on current, is adjustable by the designer by 2D layout adjustment. Existing process technologies have this fixed. Ultra-deep sub-micron process technologies do not offer the JFET as a device due to its' added complexity and cost. The integrated flow building the JFET orthogonal to standard practices can offer this component at much lower complexity and cost than what exists today. The JFET in the integrated process flow as designed has two symmetrical gates, which allows for another level of effective threshold voltage control.
Bipolar Transistors (Complementary npn and pnp)
Bipolar junction transistors (BJTs) have historically provided numerous benefits over the standard MOSFET for certain applications. These include, but are not limited to, (i) superior transconductance-to-current ratio, gM/IC of almost 38, which is typically at least twice, and usually more than twice, as high as a MOSFET, (ii) higher self gain, gM/gOUT, than the MOSFET −60 dB (npn) vs. 35 dB (NMOS), degrading to less than 15 dB for deep sub-micron NMOS, and (iii) higher speed, FT, vs. operational voltage than the MOSFET.
The npn and pnp BJT fabricated using the described embodiments, which also is oriented laterally, as opposed to the typical vertical orientation of a conventional bipolar transistor, has all the typical advantages plus some unique additional ones.
The lateral structure is consistent with this new standard integrated process flow, and along with the lack of a critical vertical depth for the base, is much easier to fabricate. Higher quality and lower cost will be a result while maintaining the typical bipolar advantages.
The lateral structure improves the collector resistance given the vertical metal pillars are uniform through the Z-direction. Typical bipolar transistors have a deep buried layer, which is high resistance naturally plus the current travels a long path through the silicon to get back up to the surface where the common metallization resides. Both these add significantly to the collector resistance of the common transistor.
The base width is the most critical geometry on the bipolar transistor—the common process and design accomplishes this thin layer through doping and temperature diffusion alone, which is very challenging to control accurately. This new lateral bipolar transistor the base region is defined by very accurate mask and mask alignment tolerances of the deep sub-micron process equipment, and not so much on less controlled process steps.
Due to process challenges and costs it is very unusual, if not impossible, to find an existing alternative process that can integrate ultra-deep sub-micron MOSFETs with analog bipolar transistors. The process of the described embodiments allows this integration with reasonable complexity and cost due to the lateral nature of the structures on SOI.
The designer can now adjust many of the performance characteristics and trade-offs, which in the past was not an option for them. This is a major advantage. For example: (i) speed, FT, vs. breakdown voltage, BVCEO (extending the collector region in two dimensions), (ii) Current gain, β, vs. breakdown voltage, BVCEO (extending the base region in two dimensions); (iii) current gain, β, vs. base resistance, rB (position of the base contact regions in two dimensions).
The capacitor is a critical analog “bread-n-butter” component that is required for analog and mixed-signal design, and it should have certain performance characteristics. In the advantages listed below of the LT-MOM as compared to existing available technologies, dielectric permittivity is assumed the same. The LT-MOM initially will use SiO2 with a relative permittivity of 3.9, but can in the future use high-K dielectrics such as Hafnium dioxide (HfO2).
Advantages include (i) high density—Farads per unit area (F/μm2), (ii) linearity, voltage coefficient (i.e., capacitance variation with respect to signal voltage), (iii) temperature coefficient (i.e., capacitance variation with respect to temperature), (iv) capacitive density per breakdown voltage (F/μm2/BV), (v) natural matching to at least 10 bits of resolution (˜0.1%), (vi) high ratio of desired capacitance, CMAIN, to unwanted stray capacitance, CPARASITIC (CMAIN/CPAR), and high resonance frequency, (FRES).
The conventional process technologies of today offer numerous flavors of capacitor for different purposes. Cost and complexity are a common issue amongst all options. The process technologies used for linear signal process analog and mixed-signal applications are as follows.
(I) Polysilicon-Polysilicon—this process adds another polysilicon conducting layer and deposited oxide and/or nitride as the dielectric. This type of capacitor is common in analog process technologies.
(II) MIM (Metal-Insulator-Metal)—the capacitor is built up in the metal stack to reduce the parasitic capacitance, and the insulator/dielectric is deposited rather than grown. [65 nm Process used as comparison]
MOM (Metal-Oxide-Metal)—the capacitor is built from the extensive number of interconnect metal layers. [65 nm Process used as comparison: 5-Layers].
LT-MOM fabricated using the described embodiments—lateral thick metal terminals with a thermally grown oxide using the gate oxide process. This is considered the highest quality oxide in the semiconductor industry given its critical role in all transistor performance.
The LT-MOM capacitor fabricated using the described embodiments can be implemented on the back-end of the integrated process flow without undue complication. When fabricated according to the described embodiments, the LT-MOM may be the most ideal capacitor ever built to date in the semiconductor industry.
While example embodiments have been particularly shown and described, it will be understood by those skilled in the art that various changes in form and details may be made therein without departing from the scope of the embodiments encompassed by the appended claims.
This application claims the benefit of U.S. Provisional Application No. 62/580,379, filed on Nov. 1, 2017. This application is related to U.S. Provisional Application No. 62/466,673, filed on Mar. 3, 2017, and to U.S. Provisional Application No. 62/850,401, filed on Nov. 1, 2017. The entire teachings of the above applications are incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
62580379 | Nov 2017 | US |