The present disclosure relates generally to power and optics integration, and more particularly, to power and optical signal distribution in an electronics and photonics package.
As ASIC (Application-Specific Integrated Circuit) process nodes advance and device power continues to increase, delivering requisite power is becoming more challenging. Higher power distribution also presents additional thermal challenges. When the ASIC or other electronic integrated circuit is packaged with a cold plate, additional difficulties arise in delivering power to the electronic integrated circuit and optical signals to a photonic integrated circuit.
Overview
In one embodiment, an apparatus generally comprises an upper cold plate and a lower cold plate, at least one of the upper cold plate or the lower cold plate comprising an electrical or optical path extending therethrough, a substrate and die package interposed between the upper cold plate and the lower cold plate, and a connector coupled to one of the upper cold plate or the lower cold plate for transmitting power or an optical signal through the electrical or optical path to the substrate and die package.
In another embodiment, an apparatus generally comprises a first cold plate comprising an electrical path extending therethrough, a second cold plate comprising an optical path extending therethrough, a substrate and die package comprising at least one electronic integrated circuit and at least one photonic integrated circuit, the substrate and die package interposed between the first cold plate and the second cold plate, an electrical connector coupled to the first cold plate for transmitting power or electrical signals through the electrical path, and an optical connector coupled to the second cold plate for transmitting optical signals through the optical path.
In yet another embodiment, a method generally comprises creating an electrical path and an optical path through cold plates, positioning the cold plates on opposite sides of a substrate and die package, and transmitting power through the electrical path and an optical signal through the optical path, wherein the power is transmitted from a power connector coupled to one of the cold plates and the optical signal is transmitted from or received at an optical connector coupled to one of the cold plates.
Further understanding of the features and advantages of the embodiments described herein may be realized by reference to the remaining portions of the specification and the attached drawings.
Example Embodiments
The following description is presented to enable one of ordinary skill in the art to make and use the embodiments. Descriptions of specific embodiments and applications are provided only as examples, and various modifications will be readily apparent to those skilled in the art. The general principles described herein may be applied to other applications without departing from the scope of the embodiments. Thus, the embodiments are not to be limited to those shown, but are to be accorded the widest scope consistent with the principles and features described herein. For purpose of clarity, details relating to technical material that is known in the technical fields related to the embodiments have not been described in detail.
A power distribution system may be configured to deliver power from a point-of-load (POL) to an ASIC (Application-Specific Integrated Circuit) or other integrated circuit. As power requirements increase, additional thermal considerations may be needed. In package optic applications may present additional challenges including integration of optics and delivery of optical signals without impacting cooling systems.
One or more embodiments described herein provide integration of power and optics for delivery through one or more cold plates to electronic and photonic integrated circuits (ICs) (die, ASIC, chip). As described in detail below, one or more electrical paths and optical paths are formed in cold plates to allow power to pass from the POL to electronic components coupled to the substrate and optical signals to pass through the cold plate to photonic elements. The cold plate may comprise, for example, a power delivery block (e.g., PCB (Printed Circuit Board)) with one or more power vias for transferring power through the cold plate and one or more openings for defining an optical path. The optical path may comprise one or more optical elements (e.g., waveguide, mirror, or other optics) for transmitting an optical signal through the cold plate and directing the optical signal to or from the photonic integrated circuit. As described in detail below, the optical path may be coupled to a connector positioned on the cold plate for receiving or transmitting the optical signal. The connector may also be configured for receiving power (e.g., multi-phase pulse power), which may be delivered to the POL for distribution through the cold plate.
The embodiments described herein operate in the context of a data communications network including multiple network devices. The network may include any number of network devices in communication via any number of nodes (e.g., routers, switches, gateways, controllers, edge devices, access devices, aggregation devices, core nodes, intermediate nodes, power sourcing equipment, powered devices, or other network devices), which facilitate passage of data within the network. One or more of the network devices may comprise one or more power and optics distribution systems described herein. The network device may further include any combination of memory, processors, power supply units, and network interfaces.
Referring now to the drawings, and first to
Power is delivered at element 12 to a plurality of POLs (POL modules (circuits), power components) 14a, 14c, 14d, 14e. In one example, pulse power at a voltage greater than 100V (e.g., 108V, 380V) or any other suitable voltage, is delivered to the fixed POL 14a. The power source 12 may also deliver pulse power to POLs 14c, 14d, and 14e (e.g., fixed POLs). In another example, the power source 12 delivers 54 VDC (or any other suitable voltage (e.g., intermediate bus voltage level selected based on overall system efficiency, routeability, and cost)) to POL modules 14c, 14d, 14e. The fixed POL 14a transfers power (e.g., at 54 VDC or other voltage) to the regulated POL (POL converter, POL regulator) 14b, which distributes power to ASICs 16 (e.g., integrated circuit, die, chip, multi-chip module (MCM), and the like). As described below, the fixed POL 14a may be connected to the regulated POL 14b through a bus bar interconnect or any other suitable electrical connection. The regulated POL 14b may provide, for example, 150 amp or greater output. Each power connection may also include 10 Mbps (or any other data rate) communications. In the example shown in
It is to be understood that the term “POL module” as used herein may refer to various types of POL configurations, including, for example, discrete POLs and modules or power delivery block-based voltage regulator designs. Also, it may be noted that the POLs may be single phase or multi-phase POLs that may work together to deliver one or more output.
System components (POL modules, cold plates, electronic and photonic package (substrate and die package)) are connected to the board 10. The board 10 may comprise a printed circuit board or the components may be directly attached to sheet metal modules, a line card, or any other suitable support member. For example, a line card circuit board may be removed and the electronic package interconnected through fiber and copper connections at the ASIC edge.
As previously noted, pulse power may be supplied to one or more of the POL modules. The term “pulse power” (also referred to as “pulsed power”) as used herein refers to power that is delivered in a plurality of voltage pulses (sequence of voltage pulses) 18a in which voltage varies between a very small voltage (e.g., close to 0V, 3V) during a pulse-off time 19a and a larger voltage (e.g., ≥12V) during a pulse-on time 19b. High voltage pulse power (high voltage pulses) (e.g., >56V, ≥60V, ≥300V, ˜108 VDC, ˜380 VDC) may be transmitted from power sourcing equipment (PSE) to a powered device (PD) for use in powering the powered device, whereas low voltage pulse power (low voltage pulses) (e.g., ˜12V, ˜24V, ≤30V, ≤56V) may be used over a short interval for start-up (e.g., initialization, synchronization, charging local energy storage, powering up a controller, testing, or any combination thereof). For example, high voltage pulse power may be transmitted from power sourcing equipment to a powered device for use in powering the powered device, as described in U.S. patent application Ser. No. 16/671,508 (“Initialization and Synchronization for Pulse Power in a Network System”), filed Nov. 1, 2019, which is incorporated herein by reference in its entirety. Pulse power transmission may be through cables, transmission lines, bus bars, backplanes, PCBs (Printed Circuit Boards), and power distribution systems, for example.
In one or more embodiments, the pulse power may be delivered in multiple phases (18b, 18c in
It is to be understood that the voltage, power, and current levels described herein are only provided as examples and power may be delivered at different levels (volts, amps, watts) than described herein without departing from the scope of the embodiments. Power may be received as ESP (Extended Safe Power) (also referred to as FMP (Fault Managed Power)) (e.g., pulse power, multi-phase pulse power, pulse power with fault detection and safety protection), PoE (Power over Ethernet), or in accordance with any current standard or future standard.
The term ESP (or FMP) as used herein refers to high power (e.g., >100 Watts (W)), high voltage (e.g., ≥56 Volts (V)) operation with pulse power delivered on one or more wires or wire pairs in a cable (e.g., Ethernet cable). In one or more embodiments, ESP includes fault detection (e.g., fault detection at initialization and between high voltage pulses), and pulse synchronization. As shown in
In one or more embodiments, an apparatus comprises the cold plate 25 comprising a first side 27a (upper surface as viewed in
The term “substrate and die package” as used herein may refer to one or more electronic or photonic integrated circuits coupled to one or more substrates (printed circuit board, electrical board, ceramic board). One or more of the electronic or photonic integrated circuits may be attached to one or more sides of the substrate. For example, as described below with respect to
Optical path 23 is created to allow light (indicated by arrow in optical path) to pass through the cold plate 25 and substrate to reach the optical engine (photonic integrated circuit, chip, die) 29. In the example shown in
In one or more embodiments, the optical path 23 may be part of a dedicated cutout separate from the electronics as shown in
In one or more embodiments, the optical path 23 may be constructed from an optical bulk material (e.g., SiO2 or other suitable material) in which a plurality of waveguides and mirrors are defined, as described in U.S. patent application Ser. No. 16/546,084 (“Periscope Optical Assembly”), filed on Aug. 20, 2019, which is incorporated herein by reference in its entirety. The optical path 23 may comprise an optical path structure (e.g., periscope optical assembly) comprising, for example, one or more waveguide, mirror, lens, optical grating, filter, or any combination thereof. The optics may be defined by various processes in the bulk material based on the refractive index and the angle of light passing from one region to another. For example, a waveguide may be defined to confine light to a predefined path in the bulk material, whereas optics (e.g., a mirror) may redirect light received in one direction to a second direction. Other optics may have other effects on light carried in the bulk material, such as a lens focusing/converging or diffusing/diverging incoming light, an optical grating splitting and diffracting light into several beams, a filter removing, blocking, attenuating, or polarizing certain wavelengths of light, etc. Laser patterning may be used to define paths of the waveguide and a physical or chemical etching process may be used to form the mirror. The mirror may be defined, for example, as three-dimensional reflective structures within the bulk material or the mirror may be defined via a reflective surface treatment. It may also be noted that the optical path 23 may be formed from one piece or multiple pieces combined together as described below with respect to
An example of a fabrication process for creating the optical path 23 in the cold plate and substrate is described below with respect to
As previously described, in addition to providing the optical path 23 through the cold plate 25, one or more electrical paths 28 may be created in the cold plate. As shown in the example of
The power delivery block 26 comprises a plurality of through holes (vias) 28, which extend through the entire thickness of the power delivery block (as shown in phantom in
The term “power delivery block” as used herein may refer to any block of thermal and conductive material in which electrical paths (e.g., power vias) may be formed to allow for the passage of power directly through the cold plate 25. Although the term “printed circuit board” is used herein as an example of a substrate for the power delivery block 26, in other implementations the PCB may be replaced with other substrates (e.g., ceramic circuit boards) or other elements. Also, non-printed circuit boards may be used for the power delivery block 26. For example, a piece of glass may be laser patterned with waveguides and plated with metal vias to form a combined optical path and electrical path. Also, as previously noted, other components in addition to or instead of the PCB may be inserted into the cold plate 25.
The cold plate 25 may comprise, for example, liquid, gas, or multi-phase (multi-phase cold plate) based cooling. The through power vias 28 may deliver 10 amps per tube, for example, and may be cooled by the cold plate 25. In one or more embodiments, the cold plate 25 is formed with one or more openings for insertion of one or more power delivery blocks 26, which may be, for example, press fit into the cold plate 25. An epoxy resin or adhesive fill may be used to press and position the power delivery block 26 within the cold plate 25. The epoxy resin may be used to account for tolerances between the power delivery block 26 and cold plate opening. If the cold plate 25 utilizes cooling tubes or reservoirs, these are routed or positioned around the power delivery block and optical path openings. The cold plate 25 keeps a temperature rise low for the power vias 28, thereby maximizing current transfer from the POL 22 to the substrate and die package. In one example, the cold plate 25 is configured with multiple internal zones to maintain optical temperature below 75 degrees Celsius. It is to be understood that the cold plate and temperature described herein are only examples and other designs may be used to maintain cooling at different temperatures.
In one or more embodiments, the power block, power vias, and cold plate may be configured as described in U.S. patent application Ser. No. 16/743,371 (“Power Distribution from Point-of-Load With Cooling”), filed Jan. 15, 2020, which is incorporated herein by reference in its entirety.
The power delivery blocks 26 and vias 28 formed therein extend through the cold plate 25 to provide power to the attached substrate and die package 21. For simplification, only a portion of the power delivery blocks 26 and vias 28 are shown in phantom extending through the cold plate 25. Also, the substrate and die package 21 is shown as a single block structure, but it is to be understood that the package may comprise one or more substrates with any number of components (e.g., electronic integrated circuit, ASIC, photonic integrated circuit, optical engine, die, chip, chiplet, FAU (Fiber Attachment (Array) Unit), CAU (Copper Attachment (Array) Unit)) attached thereto, as described below with respect to
In one or more embodiments, an additional cold plate 31 may be used, with the substrate and die package 21 interposed between the two cold plates 25, 31 to provide additional cooling. It may be noted that use of the second cooling plate 31 is optional based on power and cooling requirements. Also, it is to be understood that the cold plate 25, 31 may comprise any number of individual cold plates. For example, the cold plate may comprise two or more smaller cold plates with one or more of the power delivery block, electrical path, or optical path interposed therebetween.
In addition to passing power through the power delivery block 26, communications (e.g., control plane communications) may also pass through the power delivery block. Thus, the electrical paths may transmit power or electrical signals therethrough. In one or more embodiments, control communications for the regulated POL and for the ASIC to a system FPGA (Field-Programmable Gate Array) may pass through the cold plate 25 or through ribbon cables. In one or more embodiments, communications may pass through communication vias (not shown) formed in the power delivery blocks, which may include both power vias and communication vias or only communication vias. In one example, lower speed communications may pass through the POL (e.g., 200 Mbps range). The cold plate 25 may include any combination of power delivery blocks with power vias, communication vias, or optical paths. Control plane communications may also be provided through separate communications elements (e.g., via ribbon cable or other means), which may be used to move control communications in and out of the package. In one or more embodiments full speed PCIe (Peripheral Component Interconnect express) or faster may be used. The cold plate 25 may be connected to any number or combination of POL modules 22 and communication modules.
It is to be understood that the configuration shown in
It should be noted that the terms lower, upper, bottom, top, below, above, horizontal, vertical, and the like, which may be used herein are relative terms dependent upon the orientation of the package and components and should not be interpreted in a limiting manner. These terms describe points of reference and do not limit the embodiments to any particular orientation or configuration. For example, the assembly shown in
Referring now to
Bus bars 34 are shown connected to a multi-zone POL 30 (e.g., with DC power to rail voltage) with POL modules 32 attached to the cold plate 35 and configured to distribute power from the POL modules to an electronic and optical package comprising the substrate 41, the electronic integrated circuit 33 (ASIC, NPU (Network Processing Unit), die, chip), and two optical engines (photonic integrated circuits) 39 (SerDes (Serializer/Deserializer) chiplet) attached to the substrate. The electronic and optical package (also referred to herein as a substrate and die package) may comprise one or more integrated circuit, ASIC, NPU, MCM, die, chip, chiplet, processor, electronic component, or photonic component attached to one or more substrates. In the example of
In the example shown in
As previously described, the cold plate 35 includes one or more power delivery blocks 36 (e.g., PWR PCB) inserted into the cold plate, with one or more electrical paths (power vias) 38 formed therein. In one or more embodiments, the power delivery blocks 36 are formed separately from the cold plate 35 and inserted into openings 46 formed in the cold plate for receiving the blocks. As discussed above, an epoxy resin or adhesive fill may be used to press and position the power delivery blocks 36 within the openings 46 in the cold plate 35.
The substrate 41 may comprise traces 43 and pads 45 embedded within or deposited on the substrate for connection with the power vias 38 and die 33, 39. Etching, deposition, bonding, or other processes may be used to form the traces and pads. The substrate 41 may be bonded to the cold plate 35 using solder processes, as well known by those skilled in the art.
It is to be understood that the components and arrangement shown in
Also, as previously noted, the terms lower, upper, bottom, top, below, above, and the like, are relative terms dependent upon the orientation of the package. Thus, the cold plate 35 may be the “lower cold plate”, with the optical and electrical paths extending upward through the cold plate to the substrate and die package. As described below, the optical and electrical paths may be in both cold plates for power and optical signal distribution from both sides of the substrate and die package. As described below, the optical engine 39 may also be positioned on an upper surface of the substrate 41.
Referring now to
It is to be understood that the term “substrate” as used herein with respect to
Referring first to
The optical engines (photonic integrated circuits, photonic dies, photonic chips) 39 may be first attached to the interposer 51 and substrate 41, which is then attached to the cold plate 35. The cutouts 50, 52 may then be formed in the cold plate 35, substrate 41, and interposer 51 to accommodate the optical path. In one or more embodiments, a sleeve (not shown) may be inserted into the openings, which may be formed using any suitable process.
As shown in
As shown in
As previously described, the optical paths may also extend through a lower cold plate positioned adjacent to the photonic chip 39, in which case the optical path may be coupled directly to the photonic chip, without passing through the substrate 41 or interposer 51.
It is to be understood that the optical paths shown and described herein are only examples and the structures may be configured or manufactured different than described or shown without departing from the scope of the embodiments. As previously noted, multiple optical paths may be attached or plugged together to create an optical path between an upper surface of the cold plate and the photonic die. The optical path may be formed from various materials (e.g., glass, heat-resistant polymers, etc.) using various processes. In one example, laser patterning of glass may be used to write waveguides and precisely write and etch mechanical features such as plugs for interlocking slots (described below with respect to
In one or more embodiments, optical signals and pulse power may be received from a connector inserted into a connector cage coupled to the optical path as shown in
As noted above, the cold plate 65 may be the “lower cold plate”, with the optical and electrical paths extending upward through the cold plate to the substrate and die package. The optical and electrical paths may also be located in both cold plates for power and optical signal distribution from both sides of the substrate and die package.
It is to be understood that the interface configuration shown in
In one or more embodiments, the optical portion of the connector assembly may be configured as shown and described in U.S. patent application Ser. No. 16/544,699 (“Connection Features for Electronic and Optical Packaging”), filed Aug. 19, 2019, which is incorporated herein by reference in its entirety. The connector may be modified to include electrical power input (e.g., multi-phase pulse power as described above with respect to
The cable connector 86 provides an optical connection between optical fibers 88 and the optical features on the photonic element 82 and an electrical connection between electrical wires 89 in the cable and an electrical interface on the connector 80. The cable connector 86 may include alignment pins 87, which may assist in the mechanical alignment of the optical connector to the frame 81 and photonic element 82. As previously noted, the cable connector 86 may comprise an MPO connector modified to provide an electrical connection between electrical wires 89 in the hybrid cable and the connector 80. Electrical wires 89, which are received in a hybrid cable comprising the optical fibers 88 and electrical wires, may be coupled to the cable connector at various locations. For example, as shown in
The assembled optical and electrical connector 80 and cable connector 86 are shown in
It is to be understood that the connector assembly shown in
The cold plates are positioned on opposite sides of the substrate and die package (step 92). Optical signals and power are then transmitted through the cold plates from one or more electrical or optical connectors to one or more electronic or photonic integrated circuits (step 94).
It is to be understood that the process shown in
In one or more embodiments, the apparatus 100 comprises the upper cold plate 110 and the lower cold plate 112, at least one of the upper cold plate or the lower cold plate comprising an electrical or optical path extending therethrough, a substrate and die package (substrate 108, die 102, optical engine 104) interposed between the upper cold plate and the lower cold plate, and a connector 114, 116 coupled to one of the upper cold plate or the lower cold plate for transmitting power or an optical signal through the electrical or optical path to the substrate and die package.
In one or more embodiments, the apparatus 100 comprises a first cold plate (110 or 112) comprising the electrical path extending therethrough and a second cold plate comprising the optical path 122 extending therethrough, the substrate and die package comprising at least one electronic integrated circuit (die 102) and at least one photonic integrated circuit (optical engine 104), the substrate and die package interposed between the two cold plates, an electrical connector (POL module) 114 coupled to the first cold plate for transmitting power or electrical signals through the electrical path, and an optical connector 116 coupled to the second cold plate for transmitting optical signals through the optical path.
In the example shown in
In the example shown in
It is to be understood that the components and arrangement shown in
Although the apparatus and method have been described in accordance with the embodiments shown, one of ordinary skill in the art will readily recognize that there could be variations made to the embodiments without departing from the scope of the embodiments. Accordingly, it is intended that all matter contained in the above description and shown in the accompanying drawings shall be interpreted as illustrative and not in a limiting sense.
The present application is a continuation application of U.S. Patent Application No. 16/983,932, entitled INTEGRATION OF POWER AND OPTICS THROUGH COLD PLATES FOR DELIVERY TO ELECTRONIC AND PHOTONIC INTEGRATED CIRCUITS, filed on Aug. 3, 2020, which is a continuation-in-part of U.S. patent application Ser. No. 16/842,393, entitled INTEGRATION OF POWER AND OPTICS THROUGH COLD PLATE FOR DELIVERY TO ELECTRONIC AND PHOTONIC INTEGRATED CIRCUITS, filed on Apr. 7, 2020 and also claims priority from U.S. Provisional Patent Application No. 63/012,822, entitled INTEGRATION OF POWER AND OPTICS THROUGH MULTIPLE COLD PLATES FOR DELIVERY TO ELECTRONIC AND PHOTONIC INTEGRATED CIRCUITS, filed on Apr. 20, 2020, which are incorporated herein by reference in their entireties.
Number | Name | Date | Kind |
---|---|---|---|
3335324 | Buckeridge | Aug 1967 | A |
3962529 | Kubo | Jun 1976 | A |
4811187 | Nakajima | Mar 1989 | A |
4997388 | Dale | Mar 1991 | A |
5053920 | Staffiere et al. | Oct 1991 | A |
5652893 | Ben-Meir | Jul 1997 | A |
5901040 | Cromwell et al. | May 1999 | A |
6008631 | Johari | Dec 1999 | A |
6220955 | Posa | Apr 2001 | B1 |
6259745 | Chan | Jul 2001 | B1 |
6285550 | Belady | Sep 2001 | B1 |
6353264 | Coronel et al. | Mar 2002 | B1 |
6636538 | Stephens | Oct 2003 | B1 |
6685364 | Brezina | Feb 2004 | B1 |
6690696 | Byren et al. | Feb 2004 | B2 |
6784790 | Lester | Aug 2004 | B1 |
6826368 | Koren | Nov 2004 | B1 |
6855881 | Khoshnood | Feb 2005 | B2 |
6860004 | Hirano | Mar 2005 | B2 |
7266267 | Bakir et al. | Sep 2007 | B2 |
7310430 | Mallya et al. | Dec 2007 | B1 |
7325150 | Lehr | Jan 2008 | B2 |
7420355 | Liu | Sep 2008 | B2 |
7490996 | Sommer | Feb 2009 | B2 |
7492059 | Peker | Feb 2009 | B2 |
7509505 | Randall | Mar 2009 | B2 |
7583703 | Bowser | Sep 2009 | B2 |
7589435 | Metsker | Sep 2009 | B2 |
7593747 | Karam | Sep 2009 | B1 |
7603570 | Schindler | Oct 2009 | B2 |
7616465 | Vinciarelli | Nov 2009 | B1 |
7813646 | Furey | Oct 2010 | B2 |
7835389 | Yu | Nov 2010 | B2 |
7854634 | Filipon | Dec 2010 | B2 |
7881072 | DiBene | Feb 2011 | B2 |
7915761 | Jones | Mar 2011 | B1 |
7921307 | Karam | Apr 2011 | B2 |
7924579 | Arduini | Apr 2011 | B2 |
7940787 | Karam | May 2011 | B2 |
7973538 | Karam | Jul 2011 | B2 |
8020043 | Karam | Sep 2011 | B2 |
8037324 | Hussain | Oct 2011 | B2 |
8081589 | Gilbrech | Dec 2011 | B1 |
8184525 | Karam | May 2012 | B2 |
8276397 | Carlson | Oct 2012 | B1 |
8279883 | Diab | Oct 2012 | B2 |
8310089 | Schindler | Nov 2012 | B2 |
8319627 | Chan | Nov 2012 | B2 |
8345439 | Goergen | Jan 2013 | B1 |
8350538 | Cuk | Jan 2013 | B2 |
8358893 | Sanderson | Jan 2013 | B1 |
8386820 | Diab | Feb 2013 | B2 |
8700923 | Fung | Apr 2014 | B2 |
8712324 | Corbridge | Apr 2014 | B2 |
8750710 | Hirt | Jun 2014 | B1 |
8781637 | Eaves | Jul 2014 | B2 |
8787775 | Earnshaw | Jul 2014 | B2 |
8829917 | Lo | Sep 2014 | B1 |
8836228 | Xu | Sep 2014 | B2 |
8842430 | Hellriegel | Sep 2014 | B2 |
8849471 | Daniel | Sep 2014 | B2 |
8966747 | Vinciarelli | Mar 2015 | B2 |
9019895 | Li | Apr 2015 | B2 |
9024473 | Huff | May 2015 | B2 |
9184795 | Eaves | Nov 2015 | B2 |
9189036 | Ghoshal | Nov 2015 | B2 |
9189043 | Vorenkamp et al. | Nov 2015 | B2 |
9273906 | Goth | Mar 2016 | B2 |
9319101 | Lontka | Apr 2016 | B2 |
9321362 | Woo | Apr 2016 | B2 |
9373963 | Kuznelsov | Jun 2016 | B2 |
9419436 | Eaves | Aug 2016 | B2 |
9484771 | Braylovskiy | Nov 2016 | B2 |
9510479 | Vos | Nov 2016 | B2 |
9531551 | Balasubramanian | Dec 2016 | B2 |
9590811 | Hunter, Jr. | Mar 2017 | B2 |
9618714 | Murray | Apr 2017 | B2 |
9640998 | Dawson | May 2017 | B2 |
9646916 | Emma | May 2017 | B1 |
9665148 | Hamdi | May 2017 | B2 |
9693244 | Maruhashi | Jun 2017 | B2 |
9734940 | McNutt | Aug 2017 | B1 |
9853689 | Eaves | Dec 2017 | B2 |
9874930 | Vavilala | Jan 2018 | B2 |
9882656 | Sipes, Jr. | Jan 2018 | B2 |
9893521 | Lowe | Feb 2018 | B2 |
9948198 | Imai | Apr 2018 | B2 |
9979370 | Xu | May 2018 | B2 |
9985600 | Xu et al. | May 2018 | B2 |
10007628 | Pitigoi-Aron | Jun 2018 | B2 |
10028417 | Schmidtke | Jul 2018 | B2 |
10128764 | Vinciarelli | Nov 2018 | B1 |
10157817 | Zhou | Dec 2018 | B1 |
10211590 | Filgas et al. | Feb 2019 | B2 |
10248178 | Brooks | Apr 2019 | B2 |
10281513 | Goergen | May 2019 | B1 |
10393959 | Razdan et al. | Aug 2019 | B1 |
10407995 | Moeny | Sep 2019 | B2 |
10439432 | Eckhardt | Oct 2019 | B2 |
10541758 | Goergen | Jan 2020 | B2 |
10631443 | Byers | Apr 2020 | B2 |
10877219 | Traverso et al. | Dec 2020 | B1 |
20010024373 | Cuk | Sep 2001 | A1 |
20020126967 | Panak | Sep 2002 | A1 |
20030147225 | Kenny, Jr. et al. | Aug 2003 | A1 |
20040000816 | Khoshnood | Jan 2004 | A1 |
20040033076 | Song et al. | Feb 2004 | A1 |
20040043651 | Bain | Mar 2004 | A1 |
20040073703 | Boucher | Apr 2004 | A1 |
20040264214 | Xu | Dec 2004 | A1 |
20050197018 | Lord | Sep 2005 | A1 |
20050268120 | Schindler | Dec 2005 | A1 |
20060125092 | Marshall | Jun 2006 | A1 |
20060202109 | Delcher | Sep 2006 | A1 |
20060209875 | Lum | Sep 2006 | A1 |
20070103168 | Batten | May 2007 | A1 |
20070143508 | Linnman | Jun 2007 | A1 |
20070236853 | Crawley | Oct 2007 | A1 |
20070263675 | Lum | Nov 2007 | A1 |
20070284946 | Robbins | Dec 2007 | A1 |
20070288125 | Quaratiello | Dec 2007 | A1 |
20080054720 | Lum | Mar 2008 | A1 |
20080198635 | Hussain | Aug 2008 | A1 |
20080229120 | Diab | Sep 2008 | A1 |
20080310067 | Diab | Dec 2008 | A1 |
20090027033 | Diab | Jan 2009 | A1 |
20090294954 | Bakir et al. | Dec 2009 | A1 |
20100077239 | Diab | Mar 2010 | A1 |
20100117808 | Karam | May 2010 | A1 |
20100171602 | Kabbara | Jul 2010 | A1 |
20100187683 | Bakir et al. | Jul 2010 | A1 |
20100190384 | Lanni | Jul 2010 | A1 |
20100237846 | Vetteth | Sep 2010 | A1 |
20100290190 | Chester | Nov 2010 | A1 |
20110004773 | Hussain | Jan 2011 | A1 |
20110007664 | Diab | Jan 2011 | A1 |
20110057612 | Taguchi | Mar 2011 | A1 |
20110083824 | Rogers | Apr 2011 | A1 |
20110085304 | Bindrup et al. | Apr 2011 | A1 |
20110228578 | Serpa | Sep 2011 | A1 |
20110266867 | Schindler et al. | Nov 2011 | A1 |
20110290497 | Stenevik | Dec 2011 | A1 |
20120043935 | Dyer | Feb 2012 | A1 |
20120064745 | Ottliczky | Mar 2012 | A1 |
20120147559 | Barowski et al. | Jun 2012 | A1 |
20120170927 | Huang | Jul 2012 | A1 |
20120201089 | Barth | Aug 2012 | A1 |
20120231654 | Conrad | Sep 2012 | A1 |
20120287984 | Lee | Nov 2012 | A1 |
20120317426 | Hunter, Jr. | Dec 2012 | A1 |
20120319468 | Schneider | Dec 2012 | A1 |
20130077923 | Weem | Mar 2013 | A1 |
20130079633 | Weem | Mar 2013 | A1 |
20130103220 | Eaves | Apr 2013 | A1 |
20130249292 | Blackwell, Jr. | Sep 2013 | A1 |
20130272721 | Van Veen | Oct 2013 | A1 |
20130329344 | Tucker | Dec 2013 | A1 |
20140030900 | Leigh | Jan 2014 | A1 |
20140064675 | Tanaka et al. | Mar 2014 | A1 |
20140111180 | Madan | Apr 2014 | A1 |
20140126151 | Campbell | May 2014 | A1 |
20140129850 | Paul | May 2014 | A1 |
20140258742 | Chien | Sep 2014 | A1 |
20140258813 | Lusted | Sep 2014 | A1 |
20140265550 | Milligan | Sep 2014 | A1 |
20140348462 | Yabre | Nov 2014 | A1 |
20140372773 | Heath | Dec 2014 | A1 |
20150078740 | Sipes, Jr. | Mar 2015 | A1 |
20150106539 | Leinonen | Apr 2015 | A1 |
20150115741 | Dawson | Apr 2015 | A1 |
20150207317 | Radermacher | Jul 2015 | A1 |
20150215001 | Eaves | Jul 2015 | A1 |
20150215131 | Paul | Jul 2015 | A1 |
20150309271 | Huegerich et al. | Oct 2015 | A1 |
20150333918 | White, III | Nov 2015 | A1 |
20150340818 | Scherer | Nov 2015 | A1 |
20160018252 | Hanson | Jan 2016 | A1 |
20160020911 | Sipes, Jr. | Jan 2016 | A1 |
20160064938 | Balasubramanian | Mar 2016 | A1 |
20160111877 | Eaves | Apr 2016 | A1 |
20160118784 | Saxena | Apr 2016 | A1 |
20160133355 | Glew | May 2016 | A1 |
20160134331 | Eaves | May 2016 | A1 |
20160142217 | Gardner | May 2016 | A1 |
20160188427 | Chandrashekar | Jun 2016 | A1 |
20160197600 | Kuznetsov | Jul 2016 | A1 |
20160241148 | Kizilyalli | Aug 2016 | A1 |
20160259140 | Blomster | Sep 2016 | A1 |
20160262288 | Chainer | Sep 2016 | A1 |
20160273722 | Crenshaw | Sep 2016 | A1 |
20160294500 | Chawgo | Oct 2016 | A1 |
20160308683 | Pischl | Oct 2016 | A1 |
20160352535 | Hiscock | Dec 2016 | A1 |
20160365967 | Tu et al. | Dec 2016 | A1 |
20170041152 | Sheffield | Feb 2017 | A1 |
20170041153 | Picard | Feb 2017 | A1 |
20170047312 | Budd et al. | Feb 2017 | A1 |
20170054296 | Daniel | Feb 2017 | A1 |
20170110871 | Foster | Apr 2017 | A1 |
20170123466 | Carnevale | May 2017 | A1 |
20170146260 | Ribbich | May 2017 | A1 |
20170155517 | Cao | Jun 2017 | A1 |
20170155518 | Yang | Jun 2017 | A1 |
20170164525 | Chapel | Jun 2017 | A1 |
20170214236 | Eaves | Jul 2017 | A1 |
20170229886 | Eaves | Aug 2017 | A1 |
20170234738 | Ross | Aug 2017 | A1 |
20170244318 | Giuliano | Aug 2017 | A1 |
20170248976 | Moller | Aug 2017 | A1 |
20170294966 | Jia | Oct 2017 | A1 |
20170325320 | Wendt | Nov 2017 | A1 |
20180024964 | Mao | Jan 2018 | A1 |
20180053313 | Smith | Feb 2018 | A1 |
20180054083 | Hick | Feb 2018 | A1 |
20180060269 | Kessler | Mar 2018 | A1 |
20180088648 | Otani | Mar 2018 | A1 |
20180098201 | Torello | Apr 2018 | A1 |
20180102604 | Keith | Apr 2018 | A1 |
20180123360 | Eaves | May 2018 | A1 |
20180159430 | Albert | Jun 2018 | A1 |
20180188712 | MacKay | Jul 2018 | A1 |
20180191513 | Hess | Jul 2018 | A1 |
20180254624 | Son | Sep 2018 | A1 |
20180313886 | Mlyniec | Nov 2018 | A1 |
20180340840 | Bullock | Nov 2018 | A1 |
20190029102 | Chen et al. | Jan 2019 | A1 |
20190126764 | Fuhrer | May 2019 | A1 |
20190267804 | Matan | Aug 2019 | A1 |
20190272011 | Goergen | Sep 2019 | A1 |
20190277899 | Goergen | Sep 2019 | A1 |
20190277900 | Goergen | Sep 2019 | A1 |
20190278347 | Goergen | Sep 2019 | A1 |
20190280895 | Mather | Sep 2019 | A1 |
20190304630 | Goergen | Oct 2019 | A1 |
20190312751 | Goergen | Oct 2019 | A1 |
20190342011 | Goergen et al. | Nov 2019 | A1 |
20190363493 | Sironi | Nov 2019 | A1 |
20190391350 | Evans et al. | Dec 2019 | A1 |
20200029475 | Park | Jan 2020 | A1 |
20200044751 | Goergen | Feb 2020 | A1 |
20200057218 | Islam et al. | Feb 2020 | A1 |
20200350096 | Zanetti et al. | Nov 2020 | A1 |
20210055489 | Maker et al. | Feb 2021 | A1 |
20210219415 | Goergen et al. | Jul 2021 | A1 |
Number | Date | Country |
---|---|---|
1209880 | Jul 2005 | CN |
201689347 | Dec 2010 | CN |
204836199 | Dec 2015 | CN |
205544597 | Aug 2016 | CN |
205544597 | Aug 2016 | CN |
104081237 | Oct 2016 | CN |
104412541 | May 2019 | CN |
1936861 | Jun 2008 | EP |
2120443 | Nov 2009 | EP |
2257009 | Jan 2010 | EP |
2257009 | Dec 2010 | EP |
2432134 | Mar 2012 | EP |
2693688 | Feb 2014 | EP |
2007049822 | Feb 2007 | JP |
2009534822 | Sep 2009 | JP |
2018093702 | Jun 2018 | JP |
9316407 | Aug 1993 | WO |
WO199316407 | Aug 1993 | WO |
WO2006127916 | Nov 2006 | WO |
WO2010053542 | May 2010 | WO |
WO2017054030 | Apr 2017 | WO |
WO2017167926 | Oct 2017 | WO |
WO2018017544 | Jan 2018 | WO |
WO2019023731 | Feb 2019 | WO |
WO2019212759 | Nov 2019 | WO |
Entry |
---|
https://www.fischerconnectors.com/us/en/products/fiberoptic. |
http://www.strantech.com/products/tfoca-genx-hybrid-2x2-fiber-optic-copper-connector/. |
http://www.qpcfiber.com/product/connectors/e-link-hybrid-connector/. |
https://www.lumentum.com/sites/default/files/technical-library-items/poweroverfiber-tn-pv-ae_0.pdf. |
“Network Remote Power Using Packet Energy Transfer”, Eaves et al., www.voltserver.com, Sep. 2012. |
Product Overview, “Pluribus VirtualWire Solution”, Pluribus Networks, PN-PO-VWS-05818, https://www.pluribusnetworks.com/assets/Pluribus-VirtualWire-PO-50918.pdf, May 2018, 5 pages. |
Implementation Guide, “Virtual Chassis Technology Best Practices”, Juniper Networks, 8010018-009-EN, Jan. 2016, https://wwwjuniper.net/us/en/local/pdf/implementation-guides/8010018-en.pdf, 29 pages. |
Yencheck, Thermal Modeling of Portable Power Cables, 1993. |
Zhang, Machine Learning-Based Temperature Prediction for Runtime Thermal Management across System Components, Mar. 2016. |
Data Center Power Equipment Thermal Guidelines and Best Practices. |
Dynamic Thermal Rating of Substation Terminal Equipment by Rambabu Adapa, 2004. |
Chen, Real-Time Termperature Estimation for Power MOSEFETs Conidering Thermal Aging Effects:, IEEE Trnasactions on Device and Materials Reliability, vol. 14, No. 1, Mar. 2014. |
Jingquan Chen et al: “Buck-boost PWM converters having two independently controlled switches”, 32nd Annual IEEE Power Electronics Specialists Conference. PESC 2001. Conference Proceedings, Vancouver, Canada, Jun. 17-21, 2001; [Annual Power Electronics Specialists Conference], New York, NY: IEEE, US, vol. 2, Jun. 17, 2001 (Jun. 17, 2001), pp. 736-741, XP010559317, DOI: 10.1109/PESC.2001.954206, ISBN 978-0-7803-7067-8 paragraph [SectionII]; figure 3. |
Cheng K W E et al: “Constant Frequency, Two-Stage Quasiresonant Convertor”, IEE Proceedings B. Electrical Power Applications, 1271980 1, vol. 139, No. 3, May 1, 1992 (May 1, 1992), pp. 227-237, XP000292493, the whole document. |
International Search Report and Written Opinion in counterpart International Application No. PCT/US2021/024235, dated Jul. 6, 2021, 14 pages. |
Bart Grabowski, “7 ASIC Integration Benefits”, Sigenics, Inc., Feb. 4, 2019, 5 pages; https://www.sigenics.com/blog/7-asic-integration-benefits. |
Aaron Yamell, “Point-of-Load Module Considerations”, DigiKey, Aug. 17, 2016, 7 pages; https://www.digikey.com/en/articles/point-of-load-module-considerations. |
English Translation and Original Office Action in counterpart Chinese Application No. 202180026193.6 dated Oct. 28, 2023, 15 pages. |
English Translation and Original Office Action in counterpart Japanese Application No. 2022-552303, dated Nov. 2, 2023, 20 pages. |
Number | Date | Country | |
---|---|---|---|
20220187553 A1 | Jun 2022 | US |
Number | Date | Country | |
---|---|---|---|
63012822 | Apr 2020 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 16983932 | Aug 2020 | US |
Child | 17688271 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 16842393 | Apr 2020 | US |
Child | 16983932 | US |