This disclosure relates generally to lighting, and embodiments of the disclosure include techniques for fabricating a large area non-polar or semi-polar gallium and nitrogen containing substrates using nucleation, growth, and coalescing processes. The disclosure can provide substrates for LEDs for white lighting, multi-colored lighting, flat panel displays and other optoelectronic devices.
In the late 1800's, Thomas Edison invented the light bulb. The conventional light bulb, commonly called the “Edison bulb,” has been used for over one hundred years. The conventional light bulb uses a tungsten filament enclosed in a glass bulb sealed in a base, which is screwed into a socket. The socket is coupled to AC power or DC power. The conventional light bulb can be found commonly houses, buildings, and outdoor lightings, and other areas requiring light. Unfortunately, the conventional light bulb dissipates about 90% of the energy used as thermal energy. Additionally, the conventional light bulb routinely fails often due to thermal expansion and contraction of the filament.
Solid state lighting techniques are known. Solid state lighting relies upon semiconductor materials to produce light emitting diodes (LEDs). Red LEDs use Aluminum Indium Gallium Phosphide or AlInGaP semiconductor material. Most recently, Shuji Nakamura pioneered the use of InGaN materials to produce optoelectronic devices emitting light in the violet, blue, and green color range for LEDs and laser diodes. The blue and violet colored LEDs and laser diodes have led to innovations such as solid state white lighting.
GaN-based devices fabricated on bulk GaN substrates with nonpolar or semipolar crystallographic orientations have been shown to have certain favorable characteristics, such as improved efficiency at high current densities and/or elevated temperatures. Most such substrates, however, have been limited in size, with lateral dimensions of about 5 mm wide by 15 mm long. This size limitation, together with relatively high cost, has significantly limited the development and implementation of nonpolar and semipolar GaN-based devices. What is needed is a cost effective means for fabricating large area nonpolar and semipolar bulk GaN substrates, together with methods for fabricating high performance, low cost LEDs and laser diodes on these substrates.
In a specific embodiment, the method includes providing a gallium and arsenic containing substrate having a major surface region and forming a plurality of recessed regions within a thickness of the substrate. Preferably, each of the recessed regions has a first exposed surface of a first crystallographic orientation and a second exposed surface of a second crystallographic orientation. Masking material is formed over at least the first exposed surface of each of the recessed regions, and a nucleation material is formed over the second exposed surface of each of the recessed regions. Gallium and nitrogen containing material are then formed over the nucleation material to fill the recessed regions to form growth structures in each of the recessed regions. The growth structures are then coalesced to form a thickness of a gallium and nitrogen containing material. Then a step of releasing the resulting thickness of the gallium and nitrogen containing material is performed to separate it from at least the major surface region.
The present method provides for fabrication of cost-effective, large area nonpolar and semipolar bulk GaN substrates. The substrates may be used as seed crystals for subsequent bulk crystal growth. In addition, the method enables fabrication of cost-effective, high-performance LEDs and laser diodes. The present method and resulting device can be fabricated using known process equipment, which is easy and cost effective to scale.
Referring to
The above sequence of steps provides large area crystalline material.
As shown,
Referring again to the
Etched trenches 150 are then formed, e.g. with a depth d between about 1 micron and about 10 microns and with sidewalls that are vertical to within 30 degrees, for example, by reactive-ion etching with Cl2/BCl3/SiCl4 and/or with CF4/CHF3/SF6/O2/Ar/N2 or other suitable chemistry. Afterward a wet-etch can be used to remove damage resulting in a plurality of smooth (111)A surfaces 140 on sidewalls of the etched trenches 150.
Referring now to
Referring now to
Referring now to
Referring to now to
In a specific embodiment, using a deposition process, a mask layer 120, e.g., SiOx or SiNx, is deposited onto the surface with a thickness of approximately 50 nm-1 micron. The mask is patterned into strips by conventional photolithography, with the edges of the masks lying along the intersection of (111)A surfaces with the large-area surface. The openings between the masks 530 preferably have a width w between about 1 micron and about 10 microns and the pattern has a period L between about 2 microns and about 5000 microns, or preferably between about 5 microns and about 1000 microns. Trenches with (111)A facets 540 are then formed, for example, by wet-etching with a selective etch or other suitable process. In another specific embodiment, the openings between the masks comprise a two-dimensional array of localized openings, for example, with a square, rectangular, hexagonal, or circular shape.
Referring now to
Referring now to
A mask layer, e.g., SiOx or SiNx, is deposited onto the surface, with a thickness of approximately 50 nm-1 micron, by directional deposition 810, e.g., sputtering, ion beam deposition, onto the non-(111)A surfaces, as shown in
Next, a thick GaN layer 330 is grown by hydride vapor phase epitaxy (HVPE), as shown in
Referring now to
In a specific embodiment, the method also deposits an n-type contact 1112, and a p-type contact 1102. In some embodiments, at least one of the set of n-type and p-type contacts is placed in specific registry respect to the coalescence fronts and/or the regions containing stacking faults, if present. Contacts may be placed to cover substantially all of the stacking faults in the substrate, if present. The light emission portion may be centered over the coalescence front, or between the coalescence front and a region of stacking faults, if present. In one specific embodiment, transparent p-type contacts are deposited and are placed in such a way that they avoid contact with at least one of coalescence fronts, which may have an elevated concentration of threading dislocations, and regions containing stacking faults. In this way a light-emitting structure may be formed that is substantially free of stacking faults and has a relatively low concentration of threading dislocations. In certain embodiments, a defective region associated with a coalescence front and/or a region of stacking fault is utilized as a shunt path for reducing series resistance. In certain embodiments, n-type contacts are placed above coalescence fronts, with an edge dislocation density above 103 cm−1, and/or regions with a concentration of stacking faults above 101 cm−1, for example, above seed regions.
Referring now to
a) shows a top view of a device structure, for example, of LEDs, where transparent p-contacts 1470 have been aligned with respect and placed so as not to be in contact with either the seed regions 1330 or the coalescence fronts 340.
Individual die, for example, light emitting diodes or laser diodes, may be formed by sawing, cleaving, slicing, singulating, or the like, between adjacent sets of electrical contacts. Referring again to
The methods described herein provide means for fabricating large-area non-polar and semi-polar gallium-containing nitride substrates, albeit having some potentially defective regions. The methods described herein provide means for fabricating high-performance light emitting diodes and/or laser diodes that avoid potential issues associated with defective regions in the large-area non-polar and semi-polar substrates.
While the above is a description of the specific embodiments, various modifications, alternative constructions and equivalents may be used. Therefore, the above description and illustrations should not be taken as limiting the scope of the appended claims.
This application claim priority to U.S. provisional application, 61/507,829, filed on Jul. 14, 2011, entitled “LARGE AREA NONPOLAR OR SEMIPOLAR GALLIUM AND NITROGEN CONTAINING SUBSTRATE AND RESULTING DEVICES”, which is hereby incorporated by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
6398867 | D'Evelyn et al. | Jun 2002 | B1 |
6533874 | Vaudo et al. | Mar 2003 | B1 |
6596079 | Vaudo et al. | Jul 2003 | B1 |
6639925 | Niwa et al. | Oct 2003 | B2 |
6656615 | Dwilinski et al. | Dec 2003 | B2 |
6686608 | Takahira | Feb 2004 | B1 |
6764297 | Godwin et al. | Jul 2004 | B2 |
6765240 | Tischler et al. | Jul 2004 | B2 |
6784463 | Camras et al. | Aug 2004 | B2 |
6787814 | Udagawa | Sep 2004 | B2 |
6858882 | Tsuda et al. | Feb 2005 | B2 |
6861130 | D'Evelyn et al. | Mar 2005 | B2 |
7001577 | Zimmerman et al. | Feb 2006 | B2 |
7012279 | Wierer, Jr. et al. | Mar 2006 | B2 |
7026756 | Shimizu et al. | Apr 2006 | B2 |
7053413 | D'Evelyn et al. | May 2006 | B2 |
7063741 | D'Evelyn et al. | Jun 2006 | B2 |
7078731 | D'Evelyn et al. | Jul 2006 | B2 |
7098487 | D'Evelyn et al. | Aug 2006 | B2 |
7112829 | Picard et al. | Sep 2006 | B2 |
7119372 | Stokes et al. | Oct 2006 | B2 |
7125453 | D'Evelyn et al. | Oct 2006 | B2 |
7160531 | Jacques et al. | Jan 2007 | B1 |
7175704 | D'Evelyn et al. | Feb 2007 | B2 |
7198671 | Ueda | Apr 2007 | B2 |
7252712 | Dwilinski et al. | Aug 2007 | B2 |
7285801 | Eliashevich et al. | Oct 2007 | B2 |
7316746 | D'Evelyn et al. | Jan 2008 | B2 |
7368015 | D'Evelyn et al. | May 2008 | B2 |
7420261 | Dwilinski et al. | Sep 2008 | B2 |
7569206 | Spencer et al. | Aug 2009 | B2 |
7625446 | D'Evelyn et al. | Dec 2009 | B2 |
7642122 | Tysoe et al. | Jan 2010 | B2 |
7704324 | D'Evelyn et al. | Apr 2010 | B2 |
7705276 | Giddings et al. | Apr 2010 | B2 |
7759710 | Chiu et al. | Jul 2010 | B1 |
7871839 | Lee et al. | Jan 2011 | B2 |
7976630 | Poblenz et al. | Jul 2011 | B2 |
8021481 | D'Evelyn | Sep 2011 | B2 |
8048225 | Poblenz et al. | Nov 2011 | B2 |
8097081 | D'Evelyn | Jan 2012 | B2 |
8148801 | D'Evelyn | Apr 2012 | B2 |
8188504 | Lee | May 2012 | B2 |
8198643 | Lee et al. | Jun 2012 | B2 |
8207548 | Nagai | Jun 2012 | B2 |
8278656 | Mattmann et al. | Oct 2012 | B2 |
8284810 | Sharma et al. | Oct 2012 | B1 |
8299473 | D'Evelyn et al. | Oct 2012 | B1 |
8303710 | D'Evelyn | Nov 2012 | B2 |
8306081 | Schmidt et al. | Nov 2012 | B1 |
8323405 | D'Evelyn | Dec 2012 | B2 |
8329511 | D'Evelyn | Dec 2012 | B2 |
8354679 | D'Evelyn et al. | Jan 2013 | B1 |
20010009134 | Kim et al. | Jul 2001 | A1 |
20010048114 | Morita et al. | Dec 2001 | A1 |
20020070416 | Morse et al. | Jun 2002 | A1 |
20020105986 | Yamasaki | Aug 2002 | A1 |
20020182768 | Morse et al. | Dec 2002 | A1 |
20020189532 | Motoki et al. | Dec 2002 | A1 |
20030140845 | D'Evelyn et al. | Jul 2003 | A1 |
20030164507 | Edmond et al. | Sep 2003 | A1 |
20030183155 | D'Evelyn et al. | Oct 2003 | A1 |
20030209191 | Purdy | Nov 2003 | A1 |
20030232512 | Dickinson et al. | Dec 2003 | A1 |
20040000266 | D'Evelyn et al. | Jan 2004 | A1 |
20040023427 | Chua et al. | Feb 2004 | A1 |
20040124435 | D'Evelyn et al. | Jul 2004 | A1 |
20040161222 | Niida et al. | Aug 2004 | A1 |
20050087753 | D'Evelyn et al. | Apr 2005 | A1 |
20050098095 | D'Evelyn et al. | May 2005 | A1 |
20050109240 | Maeta et al. | May 2005 | A1 |
20050121679 | Nagahama et al. | Jun 2005 | A1 |
20050128469 | Hall et al. | Jun 2005 | A1 |
20050152820 | D'Evelyn et al. | Jul 2005 | A1 |
20050167680 | Shei et al. | Aug 2005 | A1 |
20050205215 | Giddings et al. | Sep 2005 | A1 |
20050263791 | Yanagihara et al. | Dec 2005 | A1 |
20060032428 | Dwilinski et al. | Feb 2006 | A1 |
20060037529 | D'Evelyn et al. | Feb 2006 | A1 |
20060037530 | Dwilinski et al. | Feb 2006 | A1 |
20060048699 | D'Evelyn et al. | Mar 2006 | A1 |
20060096521 | D'Evelyn et al. | May 2006 | A1 |
20060118799 | D'Evelyn et al. | Jun 2006 | A1 |
20060163589 | Fan et al. | Jul 2006 | A1 |
20060169993 | Fan et al. | Aug 2006 | A1 |
20060177362 | D'Evelyn et al. | Aug 2006 | A1 |
20060207497 | D'Evelyn et al. | Sep 2006 | A1 |
20060213429 | Motoki et al. | Sep 2006 | A1 |
20060214287 | Ogihara et al. | Sep 2006 | A1 |
20060255343 | Ogihara et al. | Nov 2006 | A1 |
20070057337 | Kano et al. | Mar 2007 | A1 |
20070096239 | Cao et al. | May 2007 | A1 |
20070105351 | Motoki et al. | May 2007 | A1 |
20070114569 | Wu et al. | May 2007 | A1 |
20070121690 | Fujii et al. | May 2007 | A1 |
20070131967 | Kawaguchi et al. | Jun 2007 | A1 |
20070141819 | Park et al. | Jun 2007 | A1 |
20070142204 | Park et al. | Jun 2007 | A1 |
20070158785 | D'Evelyn et al. | Jul 2007 | A1 |
20070178039 | D'Evelyn et al. | Aug 2007 | A1 |
20070181056 | D'Evelyn et al. | Aug 2007 | A1 |
20070210074 | Maurer et al. | Sep 2007 | A1 |
20070215033 | Imaeda et al. | Sep 2007 | A1 |
20070228404 | Tran et al. | Oct 2007 | A1 |
20070274359 | Takeuchi et al. | Nov 2007 | A1 |
20070290224 | Ogawa | Dec 2007 | A1 |
20080006831 | Ng | Jan 2008 | A1 |
20080023691 | Jang et al. | Jan 2008 | A1 |
20080025360 | Eichler et al. | Jan 2008 | A1 |
20080073660 | Ohno et al. | Mar 2008 | A1 |
20080083741 | Giddings et al. | Apr 2008 | A1 |
20080083929 | Fan et al. | Apr 2008 | A1 |
20080087919 | Tysoe et al. | Apr 2008 | A1 |
20080106212 | Yen et al. | May 2008 | A1 |
20080121906 | Yakushiji | May 2008 | A1 |
20080128752 | Wu | Jun 2008 | A1 |
20080156254 | Dwilinski et al. | Jul 2008 | A1 |
20080198881 | Farrell et al. | Aug 2008 | A1 |
20080211416 | Negley et al. | Sep 2008 | A1 |
20080230765 | Yoon et al. | Sep 2008 | A1 |
20080282978 | Butcher et al. | Nov 2008 | A1 |
20080285609 | Ohta et al. | Nov 2008 | A1 |
20080298409 | Yamashita et al. | Dec 2008 | A1 |
20090078955 | Fan et al. | Mar 2009 | A1 |
20090092536 | Kawabata et al. | Apr 2009 | A1 |
20090146170 | Zhong et al. | Jun 2009 | A1 |
20090218593 | Kamikawa et al. | Sep 2009 | A1 |
20090250686 | Sato et al. | Oct 2009 | A1 |
20090301387 | D'Evelyn | Dec 2009 | A1 |
20090301388 | D'Evelyn | Dec 2009 | A1 |
20090309110 | Raring et al. | Dec 2009 | A1 |
20090320744 | D'Evelyn | Dec 2009 | A1 |
20090320745 | D'Evelyn et al. | Dec 2009 | A1 |
20100001300 | Raring et al. | Jan 2010 | A1 |
20100003492 | D'Evelyn | Jan 2010 | A1 |
20100025656 | Raring et al. | Feb 2010 | A1 |
20100031872 | D'Evelyn | Feb 2010 | A1 |
20100031873 | D'Evelyn | Feb 2010 | A1 |
20100031874 | D'Evelyn | Feb 2010 | A1 |
20100031875 | D'Evelyn | Feb 2010 | A1 |
20100031876 | D'Evelyn | Feb 2010 | A1 |
20100032691 | Kim | Feb 2010 | A1 |
20100108985 | Chung et al. | May 2010 | A1 |
20100109030 | Krames et al. | May 2010 | A1 |
20100117101 | Kim et al. | May 2010 | A1 |
20100117118 | Dabiran et al. | May 2010 | A1 |
20100147210 | D'Evelyn | Jun 2010 | A1 |
20100151194 | D'Evelyn | Jun 2010 | A1 |
20100295088 | D'Evelyn et al. | Nov 2010 | A1 |
20110017298 | Lee | Jan 2011 | A1 |
20110100291 | D'Evelyn | May 2011 | A1 |
20110108081 | Werthen et al. | May 2011 | A1 |
20110121331 | Simonian et al. | May 2011 | A1 |
20110175200 | Yoshida | Jul 2011 | A1 |
20110183498 | D'Evelyn | Jul 2011 | A1 |
20110220912 | D'Evelyn | Sep 2011 | A1 |
20110256693 | D'Evelyn et al. | Oct 2011 | A1 |
20110262773 | Poblenz et al. | Oct 2011 | A1 |
20120000415 | D'Evelyn et al. | Jan 2012 | A1 |
20120007102 | Feezell et al. | Jan 2012 | A1 |
20120073494 | D'Evelyn | Mar 2012 | A1 |
20120091465 | Krames et al. | Apr 2012 | A1 |
20120118223 | D'Evelyn | May 2012 | A1 |
20120119218 | Su | May 2012 | A1 |
20120137966 | D'Evelyn et al. | Jun 2012 | A1 |
20120178215 | D'Evelyn | Jul 2012 | A1 |
20120187412 | D'Evelyn et al. | Jul 2012 | A1 |
20120199952 | D'Evelyn et al. | Aug 2012 | A1 |
Number | Date | Country |
---|---|---|
2005-289797 | Oct 2005 | JP |
2006057463 | Jun 2006 | WO |
WO2007-004495 | Jan 2007 | WO |
WO2012-016033 | Feb 2012 | WO |
Entry |
---|
D'Evelyn et al., ‘Bulk GaN Crystal Growth by The High-Pressure Ammonothermal Method,’ Journal of Crystal Growth, vol. 300, 2007, pp. 11-16. |
Fukuda et al., ‘Prospects for the Ammonothermal Growth of Large GaN Crystal,’ Journal of Crystal Growth, vol. 305, 2007, pp. 304-310. |
Iso et al., ‘High Brightness Blue InGaN/GaN Light Emitting Diode on Nonpolar m-Plane Bulk GaN Substrate,’ Japanese Journal of Applied Physics, vol. 46, No. 40, pp. L960-L962, 2007. |
Lide et al., ‘Thermal Conductivity of Ceramics and Other Insulating Materials,’ CRC Handbook of Chemistry and Physics, 91st Edition, 2010-2011, pp. 12-203 and 12-204. |
Pattison et al., ‘Gallium Nitride Based Microcavity Light Emitting Diodes With 2λ Effective Cavity Thickness’, Applied Physics Letters, vol. 90, Issue 3, 031111 (2007) 3pg. |
Sarva et al., ‘Dynamic Compressive Strength of Silicon Carbide Under Uniaxial Compression,’ Material Sciences and Engineering, vol. A317, 2001, pp. 140-144. |
Tyagi et al., ‘Semipolar (1011) InGaN/GaN Laser Diodes on Bulk GaN Substrates,’ Japanese Journal of Applied Physics, vol. 46, No. 19, 2007, pp. L444-L445. |
USPTO Office Action for U.S. Appl. No. 12/133,364 dated Nov. 26, 2010. |
USPTO Office Action for U.S. Appl. No. 12/133,364 dated Jun. 1, 2011. |
USPTO Notice of Allowance for U.S. Appl. No. 12/133,364 dated Oct. 11, 2011. |
USPTO Office Action for U.S. Appl. No. 12/133,365 dated Jun. 9, 2011. |
USPTO Office Action for U.S. Appl. No. 12/133,365 dated Oct. 18, 2011. |
USPTO Office Action for U.S. Appl. No. 12/334,418 dated Apr. 5, 2011. |
USPTO Office Action for U.S. Appl. No. 12/334,418 dated Oct. 19, 2011. |
USPTO Office Action for U.S. Appl. No. 12/478,736 dated Sep. 27, 2011. |
USPTO Office Action for U.S. Appl. No. 12/478,736 dated Feb. 7, 2012. |
USPTO Notice of Allowance for U.S. Appl. No. 12/478,736 dated Apr. 23, 2012. |
USPTO Office Action for U.S. Appl. No. 12/484,095 dated Nov. 10, 2010. |
USPTO Office Action for U.S. Appl. No. 12/484,095 dated Jul. 8, 2011. |
USPTO Office Action for U.S. Appl. No. 12/497,969 dated Feb. 2, 2012. |
USPTO Office Action for U.S. Appl. No. 12/497,969 dated Jul. 5, 2012. |
USPTO Office Action for U.S. Appl. No. 12/534,838 dated May 3, 2011. |
USPTO Office Action for U.S. Appl. No. 12/534,838 dated Jan. 13, 2012. |
USPTO Office Action for U.S. Appl. No. 12/534,838 dated Mar. 20, 2012. |
USPTO Notice of Allowance for U.S. Appl. No. 12/534,838 dated Jun. 8, 2012. |
USPTO Office Action for U.S. Appl. No. 12/534,843 dated Sep. 10, 2012. |
USPTO Office Action for U.S. Appl. No. 12/534,844 dated Sep. 16, 2010. |
USPTO Office Action for U.S. Appl. No. 12/534,844 dated Feb. 2, 2011. |
USPTO Notice of Allowance for U.S. Appl. No. 12/534,849 dated Jul. 31, 2012. |
USPTO Office Action for U.S. Appl. No. 12/534,857 dated Sep. 1, 2010. |
USPTO Notice of Allowance for U.S. Appl. No. 12/534,857 dated May 27, 2011. |
USPTO Office Action for U.S. Appl. No. 12/546,458 dated Jul. 20, 2011. |
USPTO Notice of Allowance for U.S. Appl. No. 12/546,458 dated Nov. 28, 2011. |
USPTO Office Action for U.S. Appl. No. 12/556,558 dated Sep. 16, 2010. |
USPTO Notice of Allowance for U.S. Appl. No. 12/556,558 dated Mar. 22, 2011. |
USPTO Office Action for U.S. Appl. No. 12/556,562 dated Sep. 15, 2010. |
USPTO Office Action for U.S. Appl. No. 12/556,562 dated Mar. 21, 2011. |
USPTO Notice of Allowance for U.S. Appl. No. 12/556,562 dated Jul. 27, 2011. |
USPTO Office Action for U.S. Appl. No. 12/569,337 dated May 9, 2012. |
USPTO Office Action for U.S. Appl. No. 12/569,841 dated Dec. 23, 2011. |
USPTO Office Action for U.S. Appl. No. 12/634,665 dated Apr. 25, 2012. |
USPTO Office Action for U.S. Appl. No. 12/724,983 dated Mar. 5, 2012. |
USPTO Notice of Allowance for U.S. Appl. No. 12/754,886 dated May 17, 2012. |
USPTO Notice of Allowance for U.S. Appl. No. 12/754,886 dated Jun. 5, 2012. |
USPTO Notice of Allowance for U.S. Appl. No. 12/754,886 dated Jun. 20, 2012. |
USPTO Office Action for U.S. Appl. No. 12/785,404 dated Mar. 6, 2012. |
USPTO Notice of Allowance for U.S. Appl. No. 12/785,404 dated Jul. 16, 2012. |
USPTO Office Action for U.S. Appl. No. 13/179,346 dated Aug. 17, 2012. |
USPTO Notice of Allowance for U.S. Appl. No. 13/425,304 dated Aug. 22, 2012. |
Choi et al., ‘2.51 microcavity InGaN light-emitting diodes fabricated by a selective dry-etch thinning process’, Applied Physics Letters, 2007, 91(6), 061120. |
Weisbuch et al., ‘Recent results and latest views on microcavity LEDs’, Light-Emitting Diodes: Research, Manufacturing, and Applications VIII, ed. By S.A. Stockman et al., Proc. SPIE, vol. 5366, p. 1-19 (2004). |
USPTO Notice of Allowance for U.S. Appl. No. 12/478,736 dated Oct. 9, 2012. |
USPTO Notice of Allowance for U.S. Appl. No. 12/569,337 dated Nov. 15, 2012. |
USPTO Office Action for U.S. Appl. No. 12/569,844 dated Oct. 12, 2012. |
USPTO Office Action for U.S. Appl. No. 12/634,665 dated Oct. 1, 2012. |
USPTO Office Action for U.S. Appl. No. 12/891,668 dated Sep. 25, 2012. |
USPTO Office Action for U.S. Appl. No. 13/025,833 dated Jul. 12, 2012. |
USPTO Office Action for U.S. Appl. No. 13/041,199 dated Nov. 30, 2012. |
USPTO Office Action for U.S. Appl. No. 13/175,739 dated Dec. 7, 2012. |
USPTO Office Action for U.S. Appl. No. 13/179,346 dated Dec. 13, 2012. |
USPTO Office Action for U.S. Appl. No. 13/226,249 dated Oct. 10, 2012. |
USPTO Notice of Allowance for U.S. Appl. No. 12/534,843 dated Jan. 24, 2013. |
Communication from the Polish Patent Office re P394857 dated Jan. 22, 2013, 2 pages. |
USPTO Notice of Allowance for U.S. Appl. No. 12/634,665 dated Feb. 15, 2013. |
USPTO Office Action for U.S. Appl. No. 13/041,199 dated Mar. 12, 2013. |
USPTO Notice of Allowance for U.S. Appl. No. 13/226,249 dated Feb. 21, 2013. |
Number | Date | Country | |
---|---|---|---|
61507829 | Jul 2011 | US |