1. Field of the Invention
The present invention relates to a laser irradiation apparatus (an apparatus including a laser and an optical system for guiding a laser beam emitted from the laser to an irradiation object) for carrying out annealing to, for example, a semiconductor material homogeneously and effectively.
2. Related Art
In recent years, a technique for manufacturing a thin film transistor (hereinafter referred to as a TFT) over a substrate has been developed drastically, and application to an active matrix display device has been advanced. In particular, a TFT formed using a poly-crystalline semiconductor film is superior in field-effect mobility to a TFT formed using a conventional amorphous semiconductor film, and therefore high-speed operation becomes possible when the TFT is formed using the poly-crystalline semiconductor film. For this reason, it has been tried that a driver circuit, which has been conventionally provided outside a substrate, is formed over the same substrate as a pixel and that the driver circuit controls the pixel.
With the increase in the demand of semiconductor devices, it has been required to manufacture the semiconductor devices in shorter time at lower temperature. As a substrate used in a semiconductor device, a glass substrate, which is less expensive than a quartz substrate, is often used. Although the glass substrate is sensitive to heat and easy to deform due to the heat, a TFT using a poly-crystalline semiconductor film formed over a glass substrate can be obtained easily by crystallizing a semiconductor film formed over the glass substrate at low temperature according to laser annealing.
Moreover, compared with an annealing method using radiant heat or conductive heat, the laser annealing has advantages that processing time can be drastically shortened and a semiconductor film over a substrate is heated selectively and locally so that almost no thermal damage is given to the substrate.
As laser oscillators used in the laser annealing, there are a pulsed laser oscillator and a continuous wave laser oscillator according to the oscillation method. In recent years, it has been known that the crystal grain formed in the semiconductor film becomes larger when using the continuous wave laser oscillator such as an Ar laser or a YVO4 laser than when using the pulsed laser oscillator such as an excimer laser in crystallizing the semiconductor film. When the crystal grain in the semiconductor film becomes larger, the number of crystal grain boundaries in the channel region of the TFT formed using the semiconductor film decreases, and the mobility becomes higher so that more sophisticated devices can be developed. For this reason, the continuous wave laser oscillator is attracting attention.
However, the laser annealing with a continuous wave laser oscillator has a problem in that an annealed state of an irradiation surface becomes inhomogeneous. This is because a laser beam emitted from a continuous wave laser oscillator has Gaussian energy distribution in which the energy is attenuated from the center toward the ends. Accordingly, homogeneous annealing is difficult to achieve.
An apparatus shown in
By performing laser irradiation while displacing the linear beam in its minor-axis direction, the entire surface of an amorphous semiconductor is annealed so that crystallization, enhancement of crystallinity, and activation of an impurity element can be performed.
However, since the conventional laser irradiation apparatus needs to use a plurality of expensive cylindrical lens arrays and to arrange them so as to form a desired linear beam as described above, the apparatus has a problem in that the size and cost of the apparatus increases. Further, the laser annealing is performed by shaping the linear beam into a desired size. When the size of the linear beam is changed in laser annealing, it is necessary to rearrange the optical system or to replace an optical component. Therefore, optical alignment is required every time the size of the linear beam is changed, which consumes a large amount of time. This results in the low throughput (see Reference 1: Japanese Patent Application Laid-Open No: 2003-257885).
The present inventor has already suggested a laser irradiation apparatus which is compact and less expensive to overcome the problems of the conventional laser irradiation apparatus.
Specifically, in
However, the above laser irradiation apparatus still has a problem of inhomogeneous energy distribution at the end portions of the rectangular beam. Moreover, since it is necessary to replace the diffractive optical element or other lenses or to rearrange the optical elements in order to change the size of the beam, the optical alignment takes much time, thereby resulting in the low throughput.
It is an object of the present invention to solve the above problems. Specifically, it is an object of the present invention to provide a laser irradiation apparatus capable of forming a laser beam having a shape required for annealing and having homogeneous energy distribution by providing a slit in which a slit opening (portion) has changeable length at an image-forming position of a diffractive optical element.
To achieve the above object, the present invention employs the following constitution. It is to be noted that the laser annealing method herein described indicates a technique to recrystallize a damaged layer or an amorphous layer in a semiconductor substrate or a semiconductor film, a technique to crystallize an amorphous semiconductor film formed over a substrate by laser irradiation, and a technique to crystallize an amorphous semiconductor film formed over a substrate by laser irradiation after introducing an element for promoting crystallization such as nickel into the amorphous semiconductor film. Moreover, the laser annealing includes a technique applied to planarization or modification of the surface of the semiconductor substrate or the semiconductor film. In this specification, laser beams shaped into a line, an ellipse, and a rectangle on the irradiation surface are respectively referred to as a linear beam, an elliptical beam, and a rectangular beam.
The present invention discloses a laser irradiation apparatus comprising a laser oscillator, a diffractive optical element, a slit, and a condensing lens, wherein the slit has a slit opening whose length is changeable.
The present invention discloses another laser irradiation apparatus comprising a laser oscillator, a diffractive optical element, a slit, and a condensing lens, wherein the slit has a slit opening whose length is changeable and wherein laser beams with various lengths can be delivered to an irradiation surface.
The present invention discloses another laser irradiation apparatus comprising a laser oscillator, a diffractive optical element, a slit, and a condensing lens, wherein the slit has a slit opening whose length is changeable and wherein laser beams with various lengths can be delivered obliquely to an irradiation surface.
In the above constitution of the present invention, the length of the slit opening in a major-axis direction is changeable.
In the above constitution of the present invention, the slit is provided between a diffractive optical element and a condensing lens on the optical path of a laser beam emitted from a laser oscillator.
According to another constitution of the present invention, a laser beam is emitted from a continuous wave laser or a pulsed laser with a repetition frequency of 10 MHz or more. The continuous wave laser is (1) a laser having a single crystal or a poly crystal as a medium or (2) a gas laser such as an Ar laser, a Kr laser, or a CO2 laser. YAG, YVO4, YLF, YAlO3, GdVO4, alexandrite, or Ti:sapphire is given as the single crystal, and YAG, Y2O3, YVO4, YAlO3, or GdVO4 each of which is doped with one or plural kinds selected from the group consisting of Nd, Yb, Cr, Ti, Ho, Er, Tm, and Ta is given as the poly crystal. The pulsed laser with a repetition frequency of 10 MHz or more is a laser having a single crystal or a poly crystal as a medium. YAG, YVO4, or GdVO4 is given as the single crystal, and YAG, Y2O3, YVO4, YAlO3, or GdVO4 each of which is doped with one or plural kinds selected from the group consisting of Nd, Yb, Cr, Ti, Ho, Er, Tm, and Ta is given as the poly crystal.
According to the present invention, a laser beam emitted from a laser oscillator is transmitted through a diffractive optical element so that a laser beam having homogeneous energy distribution and having a linear, elliptical, or rectangular cross section is formed at a slit. Then, the laser beam formed at the slit is projected to an irradiation surface so that the laser beam with homogeneous energy distribution is formed on the irradiation surface. With this laser beam employed in the laser annealing, an amorphous semiconductor film over a substrate can be annealed homogeneously.
Further, when the length of the slit opening in the major-axis direction is changed in a direction perpendicular to the traveling direction of the laser beam, the end portions of the rectangular beam can be blocked and the laser beam can be shaped into a desired size. Accordingly, the optical alignment or the replacement of the optical component is no longer necessary, and rectangular beams of various sizes can be formed in short time.
Moreover, since the size of the rectangular beam can be changed easily in accordance with devices to be manufactured, many substrates can be processed in short time, which leads to the high throughput. Furthermore, since homogeneous annealing can be performed on the substrate, the homogeneity of the crystallinity within the substrate can be enhanced. For this reason, the variation in the electric characteristic can be decreased; therefore, the reliability can be enhanced. When the present invention is applied to a mass-production line for TFTs, it is possible to manufacture TFTs with high operating characteristic effectively.
As a result, the operating characteristic and the reliability of the semiconductor device, typically an active matrix type liquid crystal display device, can be enhanced. Moreover, the manufacturing process of the semiconductor device can have a wider margin to boost the yield; therefore, the manufacturing cost of the semiconductor device can be decreased.
In the accompanying drawings:
The laser irradiation apparatus comprises a laser oscillator 101, a diffractive optical element 102, a slit 103, a mirror 104, and a condensing lens 105. As the condensing lens 105, a convex lens (a spherical lens or a convex cylindrical lens) can be used. As the laser oscillator 101, a known continuous wave laser or a solid-state laser can be used. The continuous wave laser is a laser having a single crystal or a poly crystal as a medium. YAG, YVO4, YLF, YAlO3, GdVO4, alexandrite, or Ti:sapphire is given as the single crystal, and YAG, Y2O3, YVO4, YAlO3, or GdVO4 each of which is doped with one or plural kinds selected from the group consisting of Nd, Yb, Cr, Ti, Ho, Er, Tm, and Ta is given as the poly crystal. In addition, a gas laser such as an Ar laser, a Kr laser, or a CO2 laser can be used. Moreover, among pulsed lasers, pulsed lasers with a repetition frequency of 10 MHz or more having a single crystal or a poly crystal as a medium can be used. YAG, YVO4, or GdVO4 is given as the single crystal, and YAG, Y2O3, YVO4, YAlO3, or GdVO4 each of which is doped with one or plural kinds selected from the group consisting of Nd, Yb, Cr, Ti, Ho, Er, Tm, and Ta is given as the poly crystal. By employing either the continuous wave laser or the pulsed laser with a repetition frequency of 10 MHz or more as the laser oscillator 101, it is possible to form a semiconductor film having crystal grains each of which is large enough to form a TFT in at least one crystal grain.
Not only a continuous wave laser but also a pulsed laser with high repetition frequency may be used in a step of annealing a semiconductor film according to the following reason. It is said that it takes several tens to several hundred ns to solidify a semiconductor film completely after irradiating the semiconductor film with a laser. Therefore, with a pulsed laser having low repetition frequency, a pulsed laser beam is delivered after the semiconductor film irradiated with the previous laser beam is melted and solidified. Accordingly, after the irradiation with the pulsed laser beam, crystal grains grow radially so as to be centrosymmetric at recrystallization. Then, since a crystal grain boundary is formed at a boundary between the adjacent crystal grains, a surface of the semiconductor film becomes uneven.
However, with a pulsed laser having high repetition frequency, a pulsed laser beam is delivered to a semiconductor film after the semiconductor film is melted by the previous laser beam and before the semiconductor film is solidified. Therefore, unlike the case of using the pulsed laser beam having low repetition frequency, an interface between a solid phase and a liquid phase can be moved in the semiconductor film. Therefore, a semiconductor film having crystal grains grown continuously toward the scanning direction of the laser beam can be formed.
The diffractive optical element 102 is also referred to as DOE for short or a diffractive optics. The diffractive optical element 102 is an element by which a spectrum is obtained using diffraction of light and which serves as a condensing lens by forming many grooves in its surface. With the diffractive optical element 102, the laser beam emitted from the continuous wave laser oscillator 101 with Gaussian energy distribution can be shaped into a rectangular beam with homogeneous energy distribution.
The slit 103 is a flat-plate member set at the position where the laser beam forms an image with the diffractive optical element 102. Specifically, the slit 103 is provided at the position where the laser beam forms a rectangular image having homogeneous energy distribution with the diffractive optical element 102. A schematic view of the slit 103 is illustrated in
A supporting piece 114 having a circular hole 116 with a female screw formed inside is fixed to an approximately center portion of each of the shielding plates 113a and 113b. Moreover, a motor 111 to which one end of a screw axis 112 is fixed and which rotates the screw axis 112 in positive and negative directions freely is provided at a side of the shielding plates 113a or 113b that is opposite to the slit 103. The other end of the screw axis 112 is fixed to the female screw formed in the hole 116 of the supporting piece 114 at the shielding plates 113a and 113b. For this reason, when the motor 111 is driven, the screw axis 112 is rotated to move the shielding plates 113a and 113b of the slit opening 110 in the major-axis direction through the supporting piece 114 as indicated with arrows in the figure. Thus, the length of the slit opening 110 in the major-axis direction can be changed. As the motor 111, a linear motor or the like can be used. Besides, for example, an ultrasonic stage can be used instead of the motor. Further, when the slit is opened and closed at strokes of 100 μm or less, a piezo element can be used.
Thus, the length of the slit opening 110 in the major-axis direction can be changed by moving the shielding plates 113a and 113b in left and right directions at the opposite ends of the slit opening 110. For this reason, it is possible to block a part of the rectangular beam formed with the diffractive optical element 102, particularly a part thereof that has inhomogeneous energy distribution at the opposite end portions in the major-axis direction, as needed and to form a beam having homogeneous energy distribution on the irradiation surface. With this beam, homogeneous annealing can be performed to an amorphous semiconductor film over a substrate.
The advantage of opening and closing the slit is not just to block the region of the beam having inhomogeneous energy distribution at the opposite end portions thereof in the major-axis direction. There is another advantage that the length of the beam in the major-axis direction can be adjusted to be a desired length in accordance with the design rule on the irradiation surface. In this case, the optical alignment or the replacement of the optical component is not necessary. Specifically, the beam length H can be changed in accordance with positions where TFTs are to be formed over the substrate 107.
In
According to the present invention, it is possible to perform laser irradiation while changing the direction where the laser beam is delivered as shown in
With such a constitution, a laser beam emitted from the laser oscillator 101 is shaped into a line, an ellipse, or a rectangle with homogeneous energy distribution by the diffractive optical element 102. Then, the laser beam shaped thus forms an image once at a slit 103. After transmitting through the slit 103, the laser beam is reflected by the mirror 104, and condensed by the condensing lens 105. Subsequently, the condensed laser beam is delivered obliquely to the substrate 107 with the non-single crystal semiconductor film 106 formed thereover. A laser beam 120 formed on the substrate 107 has a shape of a line, an ellipse, or a rectangle. In this embodiment, the laser beam 120 is a rectangular beam. The laser beam is scanned on the entire surface of the non-single crystal semiconductor film 106 by moving the X-axis stage 108 or the Y-axis stage 109.
The rectangular beam 120 formed on the substrate 107 has a size of approximately 150 to 400 μm in the major-axis direction and approximately 1 to 30 μm in the minor-axis direction. The length thereof in the major-axis direction may be determined with the length thereof in the minor-axis direction so as to secure enough energy density for crystallization. Here, the length of the rectangular beam 120 in the minor-axis direction has an upper limit of approximately 30 μm and a lower limit of approximately 1 μm due to the limitation in the optical design. It is not preferable that the length of the rectangular beam in the minor-axis direction exceeds the upper limit because the surface of the semiconductor film becomes rough. In fact, when the laser beam with a power of 10 W has a length of approximately 10 μm in the minor-axis direction, the length thereof in the major-axis direction is approximately 400 μm. When the laser beam with a power of 3 W has a length of approximately 8 μm in the minor-axis direction, the length thereof in the major-axis direction is approximately 150 μm.
As described above, the rectangular beam 120 is delivered obliquely to the substrate 107 in order to prevent the interference between the incident beam and a beam reflected on a bottom surface of the substrate 107, which is described as follows with reference to
When the interference occurs, the crystallinity becomes inhomogeneous in the region where the interference occurs. However, when the incidence angle θ is set larger than the predetermined angle as shown in
As thus described, the size of a linear, elliptical, or rectangular beam can be adjusted as desired by changing the length of the slit opening 110. Therefore, it is possible to shape the beam in accordance with the size of an irradiation surface and to conduct laser annealing to a region to be used.
The present invention is not limited to the constitution of the above embodiment. The design of the constitution can be changed and modified appropriately without departing from the scope of the present invention.
This embodiment shows a process for forming a thin film transistor (TFT) with a laser annealing apparatus according to the present invention.
Initially, a base film 801 is formed over a substrate 800 as shown in
The base film 801 is provided in order to prevent the alkali-earth metal or alkali metal such as Na included in the substrate 800 from diffusing into the semiconductor film. The alkali-earth metal or alkali metal causes an adverse effect on the characteristic of the semiconductor element when it is in the semiconductor. Therefore, the base film is formed with an insulating material such as silicon oxide, silicon nitride, or silicon nitride oxide, which can suppress the diffusion of the alkali-earth metal and alkali metal into the semiconductor film. In the present embodiment, a silicon nitride oxide film is formed in thickness from 10 to 400 nm by a plasma CVD (Chemical Vapor Deposition) method.
In the case of using the substrate containing even a slight amount of the alkali metal or the alkali-earth metal such as the glass substrate or the plastic substrate, it is effective to provide the base film 801 for the purpose of preventing the diffusion of the impurity. When the substrate such as a quartz substrate is used which hardly diffuses the impurity, the base film 801 is not necessarily provided.
Next, an amorphous semiconductor film 802 is formed over the base film 801 in thickness from 25 to 100 nm (preferably from 30 to 60 nm) by a known method (a sputtering method, an LPCVD method, a plasma CVD method, or the like). The amorphous semiconductor film 802 may be formed with silicon or silicon germanium. Silicon is used in this embodiment. When silicon germanium is used, it is preferable that the concentration of germanium is in the range of approximately 0.01 to 4.5 atomic %.
Next, a laser annealing apparatus according to the present invention is used to irradiate the amorphous semiconductor film 802 with a laser beam 803 and to crystallize the amorphous semiconductor film 802 as shown in
For more compact electronic apparatuses and improvement of their performance, it is necessary to arrange as many TFTs as possible efficiently in the limited area and to shorten wirings. For these reasons, in some cases, the width of the beam is not utilized effectively in the layout. That is to say, when the annealing is conducted using a laser beam with the fixed width, the end of the beam often overlaps with a portion where a TFT is to be formed. When TFTs are formed in accordance with the layout, the crystallization state on the semiconductor film varies within the TFTs. Therefore, when an electronic apparatus is manufactured with these TFTs, such variation significantly affects the performance of the electronic apparatus. For example, in the layout (
In this embodiment, the width of the beam can be freely adjusted by moving the shielding plates 113a and 113b at the slit 103 shown in
Moreover, since a part of the laser beam having low energy intensity can be blocked with the slit 103, it is possible to irradiate the amorphous semiconductor film over the substrate with the linear, elliptical, or rectangular beam with more than predetermined intensity, and to perform the homogeneous annealing.
After that, a crystalline semiconductor film 804 formed by the laser irradiation is patterned to form an island-shaped semiconductor film 805. Moreover, a gate insulating film 806 is formed covering the island-shaped semiconductor film 805. The gate insulating film 806 can be formed with silicon oxide, silicon nitride, silicon nitride oxide, or the like by the plasma CVD method or the sputtering method. In this embodiment, a silicon nitride oxide film is formed in 115 nm thick by the plasma CVD method.
Next, a conductive film is formed over the gate insulating film 806, and patterned to form a gate electrode 807. After that, the gate electrode or a resist, which has been formed and patterned, is used as a mask, and impurity elements imparting n-type or p-type conductivity are added selectively. Thus, a source region 808, a drain region 809, an LDD region 810, and the like are formed. According to the above steps, an N-channel TFT 811 and 813, and a P-channel TFT 812 can be formed over the same substrate.
Subsequently, an insulating film 814 is formed as a protective film for those TFTs. As the insulating film 814, a silicon nitride film or a silicon nitride oxide film is formed in a single-layer or multilayer structure having a total thickness of 100 to 200 nm by the plasma CVD method or the sputtering method. In this embodiment, a silicon oxynitride film is formed in 100 nm thick by the plasma CVD method. By providing the insulating film 814, it is possible to obtain a blocking action to block impurity elements such as oxygen or moisture in the air.
Next, an insulating film 815 is formed. Here, the insulating film 815 is formed with an organic resin film (such as polyimide, polyamide, BCB (benzocyclobuten), acrylic, or siloxane), a TOF film, an inorganic interlayer insulating film (an insulating film containing silicon such as silicon nitride or silicon oxide), a low-k (low dielectric constant) material, or the like. Siloxane is a material whose skeletal structure includes a bond of silicon (Si) with oxygen (O)). As the substituent, an organic substituent containing at least hydrogen, such as an alkyl substituent or aromatic hydrocarbon may be used. A fluoro substituent may be used as the substituent. Moreover, an organic substituent containing at least hydrogen and a fluoro substituent may be used as the substituent. Since the insulating film 815 is formed mainly for the purpose of relaxing and flattening steps due to TFTs formed over the glass substrate, it is preferable to use a film being superior in flattening.
Moreover, an insulating film 814 and an insulating film 815 are patterned by a photolithography method to form a contact hole reaching the impurity region.
Next, a conductive film is formed with a conductive material, and a wiring 816 is formed by patterning the conductive film. After that, an insulating film 817 is formed as a protective film, and thus, a semiconductor device shown in
Before the laser crystallization step, a crystallization step using the catalyst element may be performed. As the catalyst element, nickel (Ni), germanium (Ge), iron (Fe), palladium (Pd), tin (Sn), lead (Pb), cobalt (Co), platinum (Pt), copper (Cu), or gold (Au) can be used. The laser irradiation melts an upper part of the semiconductor film but does not melt a lower part of the semiconductor film. Therefore, a crystal remaining without being melted in the lower part of the semiconductor film becomes a crystal nucleus, and the crystallization is promoted starting from the lower part toward the upper part of the semiconductor film.
Therefore, differently from the case in which the semiconductor film is crystallized only by the laser beam, it is possible to enhance the crystallinity of the semiconductor film further and to suppress the roughness of the surface of the semiconductor film after the laser crystallization. Accordingly, the variation of the characteristics of the semiconductor elements to be formed afterward typified by TFTs can be more suppressed and the off-current can be also suppressed.
It is to be noted that the crystallization may be performed in such a way that the heat treatment is performed after the catalyst element is added in order to promote the crystallization and that the laser beam is delivered in order to enhance the crystallinity further. Alternatively, the heat treatment may be omitted. Further alternatively, after the heat treatment for the crystallization, the laser processing may be performed while keeping the temperature of the heat treatment.
Although the present embodiment shows an example in which the laser irradiation method according to the present invention is used to crystallize the semiconductor film, the laser irradiation method may be applied to activate the impurity element doped in the semiconductor film. Moreover, the method for manufacturing a semiconductor device according to the present invention may be applied to the method for manufacturing an integrated circuit or a semiconductor display device.
As transistors for circuits such as a driver and a CPU (central processing unit), transistors each having the LDD structure or a structure in which the LDD overlaps with the gate electrode are preferable. To increase the operation speed, the size of the transistor is desirably decreased. Since the transistor completed by the present embodiment has the LDD structure, the transistor according to the present invention is preferably used for the circuit in which high-speed operation is required.
According to the present invention, various electronic apparatuses can be completed with thin film transistors.
Moreover, the transistor formed in this embodiment can be used as an ID chip. For example, by using the manufacturing method shown in other embodiment, the transistor can be used as an integrated circuit or a memory in the ID chip, or as an ID tag. When the transistor is used as the memory, it is possible to record a circulation process of products and a manufacturing process such as a production area, a producer, a manufacturing date, or a processing method. Moreover, it becomes easier for wholesalers, retailers, and consumers to know such information.
Furthermore, when the transistor is used as the ID tag with radio frequency function mounted, settlement of products and inventory work can be simplified by using the ID tags instead of conventional barcodes.
As thus described, the semiconductor device manufactured according to the present invention can be applied in a wide range, and the semiconductor device manufactured according to the present invention can be applied to various electronic apparatuses in various fields.
Number | Date | Country | Kind |
---|---|---|---|
2004-137374 | May 2004 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
4176925 | Kocher et al. | Dec 1979 | A |
4262208 | Suzki et al. | Apr 1981 | A |
4420233 | Nomoto et al. | Dec 1983 | A |
4734550 | Imamura et al. | Mar 1988 | A |
4743932 | Matsui | May 1988 | A |
4786358 | Yamazaki et al. | Nov 1988 | A |
4814829 | Kosugi et al. | Mar 1989 | A |
4851978 | Ichihara | Jul 1989 | A |
4861964 | Sinohara | Aug 1989 | A |
4865686 | Sinohara | Sep 1989 | A |
4879451 | Gart | Nov 1989 | A |
4942588 | Yasui et al. | Jul 1990 | A |
5005969 | Kataoka | Apr 1991 | A |
5010230 | Uemura | Apr 1991 | A |
5059013 | Jain | Oct 1991 | A |
RE33947 | Shinohara | Jun 1992 | E |
5134426 | Kataoka et al. | Jul 1992 | A |
5145808 | Sameshima et al. | Sep 1992 | A |
5237149 | Macken et al. | Aug 1993 | A |
5307184 | Nishiwaki et al. | Apr 1994 | A |
5448336 | Shiraishi | Sep 1995 | A |
5466908 | Hosoya et al. | Nov 1995 | A |
5608492 | Sato | Mar 1997 | A |
5643801 | Ishihara et al. | Jul 1997 | A |
5721416 | Burghardt et al. | Feb 1998 | A |
5724122 | Oskotsky | Mar 1998 | A |
5728215 | Itagaki et al. | Mar 1998 | A |
5756364 | Tanaka et al. | May 1998 | A |
5815494 | Yamazaki et al. | Sep 1998 | A |
5932118 | Yamamoto et al. | Aug 1999 | A |
6002523 | Tanaka | Dec 1999 | A |
6008101 | Tanaka et al. | Dec 1999 | A |
6008144 | Shih et al. | Dec 1999 | A |
6100961 | Shiraishi et al. | Aug 2000 | A |
6168968 | Umemoto et al. | Jan 2001 | B1 |
6172820 | Kuwahara | Jan 2001 | B1 |
6187088 | Okumura | Feb 2001 | B1 |
6246524 | Tanaka | Jun 2001 | B1 |
6259512 | Mizouchi | Jul 2001 | B1 |
6322220 | Sano et al. | Nov 2001 | B1 |
6323937 | Sano | Nov 2001 | B1 |
6353218 | Yamazaki et al. | Mar 2002 | B1 |
6388386 | Kunii et al. | May 2002 | B1 |
6393042 | Tanaka | May 2002 | B1 |
6429100 | Yoneda | Aug 2002 | B2 |
6495405 | Voutsas et al. | Dec 2002 | B2 |
6504896 | Miyake et al. | Jan 2003 | B2 |
6524977 | Yamazaki et al. | Feb 2003 | B1 |
6528397 | Taketomi et al. | Mar 2003 | B1 |
6563567 | Komatsuda et al. | May 2003 | B1 |
6573163 | Voutsas et al. | Jun 2003 | B2 |
6642091 | Tanabe | Nov 2003 | B1 |
6664147 | Voutsas | Dec 2003 | B2 |
6676878 | O'Brien et al. | Jan 2004 | B2 |
6686978 | Voutsas | Feb 2004 | B2 |
6750423 | Tanaka et al. | Jun 2004 | B2 |
6777276 | Crowder et al. | Aug 2004 | B2 |
6818484 | Voutsas | Nov 2004 | B2 |
6818568 | Tanaka | Nov 2004 | B2 |
6852609 | Yang | Feb 2005 | B2 |
6861614 | Tanabe et al. | Mar 2005 | B1 |
6870125 | Doi et al. | Mar 2005 | B2 |
6885432 | Tsuji | Apr 2005 | B2 |
6891175 | Hiura | May 2005 | B2 |
6908835 | Sposili et al. | Jun 2005 | B2 |
6911659 | Malo | Jun 2005 | B1 |
6949452 | Hatano et al. | Sep 2005 | B2 |
6961361 | Tanaka | Nov 2005 | B1 |
6962860 | Yamazaki et al. | Nov 2005 | B2 |
6984573 | Yamazaki et al. | Jan 2006 | B2 |
6989300 | Tanabe | Jan 2006 | B1 |
7049184 | Tanabe | May 2006 | B2 |
7063999 | Tanabe et al. | Jun 2006 | B2 |
7078281 | Tanaka et al. | Jul 2006 | B2 |
7105048 | Yamazaki et al. | Sep 2006 | B2 |
7109069 | Kokubo et al. | Sep 2006 | B2 |
7164152 | Im | Jan 2007 | B2 |
7192852 | Hatano et al. | Mar 2007 | B2 |
7223644 | Inoue et al. | May 2007 | B2 |
7252910 | Hasegawa et al. | Aug 2007 | B2 |
7253120 | Glazer et al. | Aug 2007 | B2 |
7259081 | Im | Aug 2007 | B2 |
7303980 | Yamazaki et al. | Dec 2007 | B2 |
7388172 | Sercel et al. | Jun 2008 | B2 |
7402772 | Hamada et al. | Jul 2008 | B2 |
7452788 | Yamazaki et al. | Nov 2008 | B2 |
7666769 | Hatano et al. | Feb 2010 | B2 |
7772523 | Tanaka et al. | Aug 2010 | B2 |
8173977 | Tanaka | May 2012 | B2 |
20010046088 | Sano et al. | Nov 2001 | A1 |
20020102821 | Voutsas | Aug 2002 | A1 |
20030068836 | Hongo et al. | Apr 2003 | A1 |
20030086182 | Tanaka et al. | May 2003 | A1 |
20030112322 | Tanaka | Jun 2003 | A1 |
20030150843 | Doi et al. | Aug 2003 | A1 |
20030153182 | Yamazaki et al. | Aug 2003 | A1 |
20040228004 | Sercel et al. | Nov 2004 | A1 |
20050035104 | Tanaka et al. | Feb 2005 | A1 |
20050169330 | Hongo et al. | Aug 2005 | A1 |
20050247684 | Tanaka | Nov 2005 | A1 |
20070001228 | Kokubo et al. | Jan 2007 | A1 |
20070077696 | Tanaka et al. | Apr 2007 | A1 |
20090127477 | Tanaka | May 2009 | A1 |
20110024406 | Tanaka et al. | Feb 2011 | A1 |
Number | Date | Country |
---|---|---|
1055479 | Nov 2000 | EP |
1 724 048 | Nov 2006 | EP |
1724048 | Dec 2009 | EP |
360044194 | Mar 1985 | JP |
01-260812 | Oct 1989 | JP |
02-032317 | Feb 1990 | JP |
402084955 | Mar 1990 | JP |
03-226392 | Oct 1991 | JP |
04-307727 | Oct 1992 | JP |
405052998 | Mar 1993 | JP |
408101322 | Apr 1996 | JP |
09-129573 | May 1997 | JP |
409210911 | Aug 1997 | JP |
09-270393 | Oct 1997 | JP |
09-321311 | Dec 1997 | JP |
10113779 | May 1998 | JP |
10-286683 | Oct 1998 | JP |
11-354463 | Dec 1999 | JP |
02000058478 | Feb 2000 | JP |
2000-091264 | Mar 2000 | JP |
2000-269161 | Sep 2000 | JP |
2000-323428 | Nov 2000 | JP |
2000-343254 | Dec 2000 | JP |
2001-074950 | Mar 2001 | JP |
2001-156017 | Jun 2001 | JP |
2003-142401 | May 2003 | JP |
2003-197916 | Jul 2003 | JP |
2003-203876 | Jul 2003 | JP |
2003-209065 | Jul 2003 | JP |
2003-257885 | Sep 2003 | JP |
2003-280080 | Oct 2003 | JP |
2003-289080 | Oct 2003 | JP |
2004-056058 | Feb 2004 | JP |
2004-088084 | Mar 2004 | JP |
2004-103628 | Apr 2004 | JP |
2004-226717 | Aug 2004 | JP |
2004-289140 | Oct 2004 | JP |
2005-217209 | Aug 2005 | JP |
2005-217267 | Aug 2005 | JP |
WO2005-090520 | Sep 2005 | WO |
WO2006118312 | Nov 2006 | WO |
Entry |
---|
Akito Hara et al., “Selective Single-Crystalline-Silicon Growth at the Pre-defined Active Regions of TFTs on a Glass by a Scanning DPSS CW Laser Irradiation,” Technical Report of IEICE, ED2001-10 SDM2001-10 (Apr. 2001), pp. 21-27. |
Akito Hara et al., “Ultra-high Performance Poly-Si TFTs on a Glass by a Stable Scanning CW Laser Lateral Crystallization,” AM-LCD '01, pp. 227-230. |
F. Takeuchi et al., “Performance of Poly-Si TFTs Fabricated by a Stable Scanning CW Laser Crystallization,” AM-LCD '01, pp. 251-254. |
International Search Report (Application No. PCT/JP2005/006207) Dated July 5, 2005. |
Written Opinion (Application No. PCT/JP2005/006207) Dated July 5, 2005. |
Office Action (Application No. 200580009439.X) Dated Jan. 4, 2008. |
Akito Hara et al., “Selective Single-Crystalline-Silicon Growth at the Pre-defined Active Regions of TFTs on a Glass by a Scanning DPSS CW Laser Irradiation,” Technical Report of IEICE, ED2001-10 SDM2001-10 (Apr. 2001), pp. 21-27, Apr. 2001. |
Akito Hara et al., “Ultra-high Performance Poly-Si TFTs on a Glass by a Stable Scanning CW Laser Lateral Crystallization,” AM-LCD '01, pp. 227-230, Jul. 2001. |
F. Takeuchi et al., “Performance of Poly-Si TFTs Fabricated by a Stable Scanning CW Laser Crystallization,” AM-LCD '01, pp. 251-254, Jul. 2001. |
Number | Date | Country | |
---|---|---|---|
20050247684 A1 | Nov 2005 | US |