The invention relates to energy beam scanning, and more particularly, to laser trim motion, calibration, imaging, and fixturing techniques.
It is known to change the electrical properties of passive and some active electronic elements by removing material therefrom. Methods of removing material include applying laser energy for vaporizing a portion of the material, applying laser energy for ablative removal of the material, and applying laser energy to affect a photochemical reaction for removing and/or otherwise altering an electrical performance characteristic of the material. The relative effect of these three processes depends on the energy density and wavelength of the laser, and the properties of the material illuminated by the laser.
Laser material processing is routinely performed using a position and power controlled laser beam that is directed to scan over a desired region of the material for processing. These techniques are used to process individual passive electronic elements such as resistors, capacitors and inductors, as well as to process electrical elements in microchips (e.g., for memory chip repair and/or for trimming electrical elements formed onto silicon or other crystalline substrates). A conventional beam-directing device of a laser material processing system usually includes a galvanometer and scan lens, which is used to position the laser beam.
In particular, a laser beam is directed over a region of the electrical element to remove or trim material from the element. The trimming may affect the electrical performance of the element by reducing the volume of electrical material in the element or by altering a path of electron flow through the material, e.g. by creating a longer resistive path or even by creating an open circuit by completely removing a conductive path between two elements. It is well known in the manufacturing of precision electrical resistors to laser trim each resistor to adjust its resistive value to fall within a desired range. It is also known to measure the resistive value during the laser trimming process and to continue to trim the resistor until the resistive value is acceptable.
In laser subsystems, the beam-directing device must be calibrated. More particularly, the galvanometer mirror scanners, which are often referred to as a “galvo” or “galvos”, or other type scanner componentry must be calibrated to eliminate field distortions inherent in the scan lens typically included in such subsystems. Such distortions will otherwise result in a pin cushion-type of field pattern. To accomplish the calibration correction, the distortion has to be translated into a regular X-Y grid pattern with the correct size, shape, and orthogonality for the accuracy that is required for full trimming. As shown in
Referring to
b shows a top view of marks 220 through a camera vision subsystem looking through the scan lens of the beam-directing device. In a first calibration option, the locations of marks 220 at the center of a cross hair for each of the marks is found. Offsets from ideal locations of those marks are determined. By applying a compensation based on the determined offsets in a conventional manner, the field becomes square as shown in
a depicts a second calibration option for mapping and calibrating the beam-directing device. Here, a reference grid or plate 300, that may be chrome on quartz or some other material, is accurately printed or etched, and placed on the substrate fixture 200 parallel to the X and Y axes of the system. This reference grid 300 provides point locations that can be viewed with a camera.
b shows a top view of the reference grid or plate 300 showing a detail of a cross location 310 on the reference grid 300 and a camera cross hair 320 centered on a crossed location. The beam-directing device positions corresponding to cross point locations for the grid across the scan lens field are taken and used as compensation for the non-linearity in the system.
In conventional laser-trimming systems with through-the-lens camera viewing via the beam-directing device, one problem is that the laser beam and cameras typically are not coaxial. Thus, compensation is required. The only way to determine the location of the beam is to use the first calibration option as shown in
A major problem with both of these calibration options is that a sacrificial plate 210 or reference grid 300 must be placed into the machine prior to this operation. This requires operator intervention and thus cannot be done in an automated fashion during processing.
Another problem associated with conventional laser trimming systems is that there is a requirement to maintain parallelism of the probe tips relative to the work piece that is being probed during trimming. Thus, once a probe card is installed in the system it must be adjusted for parallelism.
b shows the probe card 400 over substrate fixture 430, and the roll and pitch axes. The roll and pitch of the probe card 400 must be aligned in order to make the probe card 400 parallel to the substrate fixture 430. Typically, in conventional systems, this is done manually with knobs that are turned by hand to align the probe card when the probe card is inserted in the system. Furthermore, the probe card pitch and roll is usually aligned using either the eye to determine where the probe tips are relative to the substrate fixture 430 across the probe card 400, or by probing an actual circuit mounted on the substrate fixture and determining when good readings are obtained in the measurement system that is attached onto the probe card.
This aligning is typically an iterative process. First, an adjustment to roll or pitch is made. Then, a measurement(s) are taken. Then, further adjustments are made as necessary, and so on. Additionally, for very fine pitch applications, such as applications requiring the probing of elements on a work piece, it is not possible to visually determine the position of the probe tips since the adjustments are so small. Thus, the planarization alignment process is cumbersome in that it is manual, iterative, and requires significant operator intervention. Further, the accuracy of the results is marginal. High accuracy is important, particularly for finer pitch applications, which require a very high degree of planarization between the probe card and the surface of the work piece.
In any system that uses a probe card with fixed probe tips, in addition to planarization alignment, the probe card must also be aligned in the system for other purposes.
In one technique, the vision subsystem looks through a scan lens to determine the location of both the probe tips 5200 and the probe pads 5300. The operator then manually rotates the probe card 5000 and offsets either the position of the circuit 5100 or the probe card 5000 itself relative to the circuit 5100 so that the imaged locations are aligned. In the other technique, the operator manually rotates the probe card 5000 and offsets either the position of the circuit 5100 or the probe card 5000 itself relative to the circuit 5100, in order to make proper contact between the probe tips 5200 and probe pads 5300. This can be checked using a measurement system when the probe card 5000 is in contact with the circuit 5100.
A major problem with these techniques is that the process is manual and iterative and vision subsystems are often not able to see the correct location of the probe tip because they are unable to focus on a probe that is not perfectly planar with the substrate. Thus, conventional techniques for aligning probe card tips with the circuit probe pads require substantial time and operator effort in order to achieve proper alignment.
Another alignment that must be considered is related to the substrate. In particular, and as shown in
One of the major problems with conventional substrate alignment techniques is that the edges of the printed circuit board (PCB) panel are typically not well defined with reference to the circuits within the edges. Therefore, aligning the panel to edge stops will not greatly improve the alignment of the circuits formed on the panel. A second problem is that the circuits or any underlying components on the underside of the panel are prone to damage if the panel is translated when in contact with the substrate fixture. A third problem is the mechanical difficulty encountered when rotating larger panels mounted on top of an X-Y stage. All of these issues are further exacerbated by large panel sizes typically used in PCB production, which implicates larger substrate fixtures.
Another alignment that must be considered is related to the circuits within a substrate. Typically, the circuits on a substrate are often all laid out in a single orientation within the substrate, as shown in
Conversely,
Conventional laser trimming systems used in the trimming of substrates for hybrid circuits and chip resistors typically use a step and repeat handler, similar to that shown in
In the conventional step and repeat handler 800, the X-Y stage 810 is typically a linear stepper motor riding on an air cushion over the base plate 820. Both X and Y motions are equivalent in their speed of indexing. Large PCB panels typically contain many circuits that must be indexed under the probe card during trimming. This stepping and repeating between probe sites can account for a large fraction of the overall trim time for processing the panel. The panel fixture is typically fairly large and heavy for large PCB panels, and this weight means that the speed (velocity and acceleration), of the X-Y stage in moving such panels is typically quite slow. Furthermore, the larger travel distance required to cover these large PCB panels causes the accuracy of the X-Y stage 810 movement to degrade as the required movement distance increases. More particularly, the X-Y stage 810 is typically homed in one corner 860 of the base 820. As the stage moves further and further away from that location, there is an accumulation of errors that results in the lowering of the accuracy of movement.
Thus, conventional trimming systems use a step and repeat motion to index probing and trimming sites over a substrate. The time for this step and repeat motion between the trimming/probing locations is overhead that adds to the total process time for the substrate. In the case of small hybrid circuit substrates, the step and repeat motion may not be a significant fraction of the overall process time. However, for large PCB panels, especially where the number of individual probing and trimming sites on the panel is also large, this step and repeat overhead time can become a significant fraction of the total process time. Furthermore, the large size of the PCB panels to be trimmed typically infers a larger and higher mass of the substrate fixture, the movement of which will be at a slower acceleration and velocity than the acceleration and velocity at which a smaller substrate fixture used for convention small substrates can be moved.
There is a need, therefore, for techniques to reduce the move time necessary for the step and repeat motion, and in a more general sense, there is a need for techniques that improve lasing operations.
One embodiment of the present invention provides a system for probing circuit elements. The system includes a fixture having a platen surface configured to support a work piece having a target element. A probe holder is configured to support a probe for detecting a characteristic of the target element. A first stage is configured to rotate the probe holder about an axis substantially orthogonal to the platen surface, thereby enabling differently orientated circuits on the work piece to be probed (e.g., O-direction stage). In one such particular embodiment, the probe holder can be rotated through an angle in the range of at least 40 degrees to 280 degrees. A second stage is operatively coupled to the first stage, and is configured to move the probe holder substantially parallel to the axis (e.g., Z-direction stage). A controller is configured to control the first stage (and may also control the second stage), so as to automatically align probe tips of the probe with corresponding probe locations associated with the target element.
The system may further include a third stage that is configured to move the fixture substantially parallel to the platen surface (e.g., X-direction stage). Here, the second stage can be further configured to move the probe holder to a first stop location during loading of the work piece onto the fixture, to a third stop location during third stage movement of the fixture with the work piece loaded on the fixture, and to a second stop location during probing of the target element. The system may further include a fourth stage that is configured to move the fixture in a second direction that is substantially parallel to the platen surface and perpendicular to the first direction (e.g., Y-direction stage).
The system may further include a camera and an emitter configured to emit a beam of light to lase the target element. The camera is positioned to view the target element through the scan lens, wherein the camera has a viewing path that is substantially coaxial with a path of the beam. One such configuration further includes a focus telescope configured to simultaneously maintain optical focus of both the beam and the camera at the target element.
Another embodiment of the present invention provides a system for probing circuit elements. The system includes a fixture having a surface configured to support a work piece having a target element. The fixture includes a calibration subassembly configured to aid automatic calibration during at least one of probe card planarization, probe card alignment, galvo calibration, laser power measurement, and probe tip cleaning. A probe holder is configured to support a probe for detecting a characteristic of the target element. A first stage is configured to rotate the probe holder about an axis substantially orthogonal to the surface, so as to automatically align probe tips of the probe with corresponding probe locations associated with the target element (e.g., O-direction stage). In one such embodiment, the calibration subassembly is accessible even when work piece is mounted on the fixture, thereby allowing real-time automatic calibration procedures to be carried out.
Another embodiment of the present invention provides a system for positioning a work piece for lasing. The system includes a fixture having a surface substantially parallel to a plane and defined by a first axis and a second axis that is orthogonal to the first axis, the surface for supporting a work piece configured with a plurality of different areas disposed thereon, with each area including one or more circuit elements to be lased. A first stage is configured to move the fixture substantially parallel to the plane and the first axis, and a second stage is configured to move the first stage and the fixture substantially parallel to the plane and the second axis. A controller is configured to determine a path for movement between the different areas by directing movement of the first stage and the second stage based on distances along the first axis between each of the different areas and distances along the second axis between each of the different areas, thereby positioning each of the plurality of different areas for lasing the one or more circuit elements included in that area. The controller can be configured, for example, to determine a path for movement that is associated with a travel time that is comparable or shorter than travel time of other possible paths. Thus, optimal lasing procedures can be achieved.
In one such embodiment, the controller is configured to compute total time periods of movement of the first and the second stages to move the work piece respectively along the path based on the distances along the first axis and the distances along the second axis, to compare the computed total time periods, and to direct the movement of the first and the second stages in accordance with a result of the comparison. The system may further include a probe for measuring a characteristic of the one or more circuit elements included in the each area after positioning that area in a lasing position. Here, the controller is further configured to compute rotation of the probe in correspondence with the movement of the work piece along the path, based on the respective angular orientation of each of the plurality of different areas.
The features and advantages described herein are not all-inclusive and, in particular, many additional features and advantages will be apparent to one of ordinary skill in the art in view of the drawings, specification, and claims. Moreover, it should be noted that the language used in the specification has been principally selected for readability and instructional purposes, and not to limit the scope of the inventive subject matter.
a depicts a beam-directing device calibration set up for marking a sacrificial substrate with a beam directed by the beam-directing device.
b depicts a view of the laser marked sacrificial substrate of
a depicts a beam-directing device calibration set up for measuring a location of cross points on a reference grid.
b depicts a view of the reference grid of
a illustrates a side view of a probe card that is misaligned (planarity error) with respect to a circuit of a PCB panel to be probed.
b depicts the probe card of
a depicts a ceramic substrate having a plurality of substantially identical circuits to be trimmed with each circuit being oriented exactly alike.
b depicts a PCB panel having a plurality of substantially identical circuits to be trimmed with some circuits being oriented in different ways.
a shows a schematic representation of a lasing system configured in accordance with one embodiment of the present invention.
b depicts a stage support assembly of the lasing system of
c depicts the box and bridge structure configured in accordance with one embodiment of the present invention.
d depicts details of a linear stage that could be incorporated into the lasing system of
e depicts details of a Z-Theta stage that could be incorporated into the lasing system of
f depicts a panel fixture that could be incorporated into the lasing system of
g demonstrates drawing air through a panel fixture that could be incorporated into the panel fixture of
a depicts a panel fixture that includes a calibration subassembly configured in accordance with one embodiment of the present invention.
b depicts a glass calibration plate mounted on a panel fixture, in accordance with one embodiment of the present invention.
a depicts a cross sectional view of a calibration aperture and detector used for determining a position of the laser beam, configured in accordance with one embodiment of the present invention.
b depicts a plan view of the calibration aperture of
c depicts a graphical representation of an example detector signal, output by the detector shown in
d depicts an example plurality of calibration apertures which can be used to calibrate the laser beam position over an entire scan field, in accordance with an embodiment of the present invention.
e is a flow diagram of a calibration process in accordance with one embodiment of the present invention.
f depicts a cross sectional view of a calibration aperture and detector that can be used to carry out the process of
a and 13b depict a probe card mounting that provides roll and pitch adjustment of the probe card with respect to the probe card alignment plate in accordance with one embodiment of the present invention.
a depicts an example probe card alignment plate configured in accordance with one embodiment of the present invention.
b depicts a plurality of probes in contact with the probe card alignment plate of
a depicts the vision system of
b depicts the vision system of
c illustrates an example of an image captured by the vision system.
d illustrates an LED illumination system configured in accordance with one embodiment of the present invention.
a depicts a PCB panel placed on the panel fixture in an unknown orientation.
b depicts a PCB panel with coarse fiducial marks for globally determining panel position and fine fiducial marks for locally determining circuit position, in accordance with an embodiment of the present invention.
c depicts multiple PCB panels mounted on a panel fixture, in accordance with an embodiment of the present invention.
a depicts a motion sequence for moving a panel to a different x-position, in accordance with one embodiment of the present invention.
b depicts a velocity profile for the z-motion, in accordance with one embodiment of the present invention.
a depicts element material to be lased and copper fiducials on a panel with the element material located relative to copper circuit patterns.
b depicts an element to be lased that is not in its expected position.
Embodiments of the present invention enable calibration of a vision subsystem and/or a laser beam in a lasing system without the use of a sacrificial plate or a reference grid or plate, and without operator intervention and in a substantially automated fashion. Planarization of the probe card and the surface of the work piece is enabled with a high degree of accuracy, and in a less cumbersome manner relative to conventional techniques. Proper alignment of probe card tips with circuit probe pads can be achieved more quickly and more easily. Likewise, accurate alignment of circuits or circuit elements on a panel or other substrate without damage to circuits or elements on the underside of the substrate and/or without the need to rotate the substrate is enabled. Also, efficient lasing of different circuits laid out on a single substrate with different orientations is enabled. In a more general sense, the disclosed techniques can be employed to reduce overall lasing time for processing a effectively, and to improve the accuracy of the probing and lasing required in processing a panel or other substrate.
A panel typically includes at least one untrimmed circuit or other target element formed thereon. A target element may include, for example, a resistor, capacitor or inductor formed contiguous with dielectric or conductive layers, or both. The target element may also include a portion of the dielectric layer or a portion of the conductive layer, or both, as is the case for an untrimmed embedded capacitor. A panel typically includes other features as well, such conductive paths that are operatively coupled or otherwise part of electronic circuitry. Note that such electronic circuitry may be added to the panel before or after the trimming of the target elements. In addition, recall that a panel may be effectively used as a substrate for forming a plurality of substantially identical circuits, formed in a repeated pattern on the panel as shown in
Lasing System Architecture
a depicts a system 500 configured in accordance with an embodiment of the present invention, for lasing target circuit elements formed onto a panel such as a substrate or printed circuit board (PCB), or other type work piece. The system includes a system controller 550, a computer vision subsystem 552, a laser subsystem 530, a Z-Theta motion subassembly 562, a panel fixture 510, an X-Y motion subassembly 541, and a calibration subassembly 566. A target panel 540 is shown in place on the panel fixture 510, and a video display device 558 and input device 559 allow an operator to interface with the system.
Laser Subsystem
The laser subsystem 530, outlined in phantom, is for directing a laser beam 522 onto a surface of the panel 540 to trim or otherwise laser an element formed thereon. The laser subsystem 530 includes a laser beam emitter 521 and a beam-directing device 524 capable of directing the laser beam 522 over a selected region of the panel 540. An attenuator 523 and beam splitter 527 are coupled between the beam emitter 521 and the beam-directing device 524. The attenuator 523 can be used to decrease the laser power when desired (e.g., during a calibration sequence), and the beam splitter 527 splits the emitted beam 522 so that the beam travels to both the beam-directing optics and the computer vision subsystem 552. The laser subsystem 530 also includes a lens 520 positioned in the path of the laser beam 522, between the laser beam emitter 521 and the panel 540, for focusing the laser beam 522 to a desired spot size at the surface to be lased. The field of the lens 520 may range, for example, from about 1.0 inch in diameter up to about 8 inches in diameter. In one particular embodiment, the lens 520 has a field of view that allows the laser beam 522 to be directed over about a 2 by 2 inch to a 4 by 4 inch region of the panel 540. In this sense, the field of view of the laser subsystem 530 is defined by the design of the lens 520, which allows a focused beam to address any selected position within the field of view for processing target elements within a region of the panel that is positioned in the lens field of view.
The laser subsystem 530 may also include one or more laser subsystem controllers 526 for controlling the position, velocity and power output of the focused laser beam 522 during lasing, as well as during periods when the laser is not lasing. In this particular embodiment, the field of view of lens 520 is smaller than the panel 540 size. Therefore, in one operational sequence, all of the elements within the field of view are lased without moving the panel 540, and then the panel 540 is moved with respect to the field of view to position the next target portion of the panel 540 in the field of view for lasing. In one particular embodiment, the lens 520 is configured as a telecentric lens, and the beam-directing device 524 is positioned substantially at an entrance pupil of the lens 520 so that the laser beam 522 impinges substantially normal or perpendicular to the surface to be lased over the entire field of view of the lens 520.
Accordingly, the laser subsystem 530 emits a lasing beam that is focused substantially at a surface of a target element disposed on the panel 540 and has sufficient power to precisely remove or otherwise process the material of the that element in a controlled manner. The position of the laser beam 522 emitted by the laser subsystem 530 can be changed to impinge on elements anywhere within the field of view of the lens 520. The motion and modulation of the laser beam 522 is controlled by laser control signals issued by the laser subsystem controller 526. The laser subsystem controller 526 can be implemented, for example, as a programmable microcontroller unit including at least one processor, memory, I/O capability, and a number of functional processes (e.g., lasing algorithms associated with a number of different laser trimming applications) as will be apparent in light of this disclosure.
The desired positions and motion characteristics of the laser beam 522 are identified by signals received by the laser subsystem controller 526 from the system controller 550 over a connection 532, which can be any type of communications link. The system controller 550 directs the operation of the entire system 500. The system controller 550 includes at least one processor 550a and at least one memory 550b for storing programming and other data (e.g., calibration data). Memory 550b, as well as other memories described herein, can be any type memory, including, but not limited to, random access, floppy disk, hard disk, and/or optical disk. As shown in
The controllable laser subsystem 530 may be of any type, but generally includes a laser beam emitter 521 that emits an energy beam at a wavelength that is compatible with the type of lasing being performed. The emitter 521 may be, for example, a laser light generator or an optical fiber or any other element capable of emitting a laser beam configured for carrying out the desired lasing process. For example, if a dielectric material is primarily being trimmed, a CO2 laser that emits a beam at a wavelength of approximately 9-11 μm can be used. If a conductive or resistive layer or circuit element is being trimmed, a solid state laser that emits a beam at a wavelength of approximately 1.06 μm can be used. If the trimming is a photochemical process, the laser wavelength may be visible or ultraviolet light, such as that produced by a beam having a wavelength of approximately 533 nm and shorter. Selection of wavelength will be vary from one embodiment to the next as will be apparent in light of this disclosure, and the present invention is not intended to be limited by any one configuration.
The beam-directing device 524 may be any type of scanning device for moving a laser beam over a two dimensional region. In one particular embodiment, the beam-directing device 524 is implemented with a pair of orthogonally mounted galvanometer mirror scanners (sometimes referred to as galvos herein) as conventionally done. In one such embodiment, each galvanometer mirror scanner includes an angular position transducer for tracking the angular position of the mirror, and a servo driver for controlling the angular rotation of each deflecting mirror to direct the laser beam 522 to a desired position.
Note that in the embodiment illustrated in
Vision Subsystem
In order to view the panel 540, a computer vision subsystem 552 is provided to measure or determine a location of or to otherwise view an element in the camera field of view. Here, the vision subsystem 552 includes a video camera 554, and a video frame buffer and video image processing electronics 556. The vision subsystem 552 may be incorporated within, or be separate from and in communication with, the system controller 550. The vision subsystem 552 is positioned to view the panel 540 through the scan lens 520 such that the video camera 554 captures images within the field of view of the lens 520. The field of view of the camera, which is substantially smaller than the field of the scan lens 520, is positioned within the field of view the scan lens 520 using, for example, galvos included in the beam-directing device 524.
The images may be captured at rates, for instance, of about 30 frames per second to continuously update the image in the field of view. The images may be displayed on a video display device 558 for viewing by an operator. Alternatively, the images may be captured, stored and analyzed by the video image processing electronics 556 or the system controller 550, thereby providing a machine vision function to eliminate operator intervention. In this regard, the vision subsystem 552 in combination with the system controller 550 can be used to determine a location of any element or feature on the panel 540 according to known algorithms. More particularly, the processor 550a operates in accordance with programmed instructions, which implement one or more known algorithms and are stored in memory 550b, to process image data from the vision subsystem 552 to determine the applicable location.
Image data from the vision subsystem 552 may be used to select and/or inspect circuit elements on the panel 540. The vision subsystem 552 may also be used to capture images of one or more alignment targets, such as fiducials, on the panel 540 or on the panel fixture 510, to provide information about the position of the panel 540 so that targeted lasing can be carried out. In any case, images of the targeted areas may be used to determine a position or angular orientation of the panel 540 with respect to a system reference position or orientation.
Likewise, images of alignment targets and/or circuit elements may be used to determine a position of an object within the field of view of lens 520, and to direct the laser beam 522 in accordance with the determined positioning of the object. Image data from the vision subsystem 552 may also be used to determine if the correct panel 540 has been loaded onto panel fixture 510, if the targeted elements appear to be properly applied onto the panel 540, and if lased elements meet a predefined trim criteria such as whether the laser cut is properly positioned with respect to any edges or other features of the target element. Furthermore, image data from the vision subsystem 552 may be used to determine a position or condition of a measurement probe or probes, as will be described in-turn.
An error condition detected by the vision subsystem 552, or image data from which such an error condition can be determined, may be communicated to the system controller 550 where a logical decision can be made to either correct the error or to take some other automatic action in response to the error condition, including stopping the lasing operation. Note that the vision subsystem 552 itself may include logic for image processing operations, or may pass image data to the system controller 550 for image processing operations.
X-Y Motion Subsystem
The X-Y motion subassembly 541 of the lasing system 500 includes an X-Y stage 542 and an X-Y stage controller 544. The panel 540 is supported by the panel fixture 510, which is supported by the X-Y stage 542. Thus, the panel fixture 510 is movable by the X-Y stage 542 in the X and Y directions, in accordance with X-Y stage control signals issued by the X-Y stage controller 544. The control signals issued by the X-Y stage controller 544 are based on directives received from the system controller 550 via a connection 546, which may be any type of communications link. Stage controller 544 can be implemented in conventional technology, such as a processor and memory (e.g., programmable microcontroller unit or special purpose processing environment, such as ASIC or FPGA).
The stage 542 may also be implemented in conventional technology and includes, for example, a stepper or linear motor drive, or a ballscrew, belt or band assembly driven by a rotary motor, or by some other type drive mechanism. In any event, the stage 542 provides precision X-Y positioning of the panel 540 with respect to a reference position which could, for example, be the center of the field of view of the lens 520. By moving the panel fixture 510, different areas of the panel 540 can be positioned within the field of view of the lens 520. Alternatively, the panel fixture 510 may be held in a stationary position during trimming. In this case, the entire laser subsystem 530 and vision subsystem 552 may be mounted onto an X-Y stage 542. Here, the laser and vision subsystems 530 and 552 can be positioned over different portions of the panel fixture 510 to place the field of view of lens 520 over a region of the panel 542 targeted for trimming or other type of lasing.
Z-Theta Motion Subsystem
The Z-Theta motion subassembly 562 of lasing system 500 includes Z-Theta stage 560 and a Z-Theta stage controller 564. A probe card holder (not shown) for supporting a probe card (not shown) is mounted on the Z-Theta stage 560. As will be understood in light of this disclosure, a probe card can be used to probe circuit elements disposed on the surface of the panel 540. The probe card holder, and hence the probe card, is movable by the Z-Theta stage 560 in the Z and Theta directions, in accordance with Z-Theta stage control signals issued by the Z-Theta stage controller 564. The control signals issued by the Z-Theta stage controller 564 are based on directives received from the system controller 550 over a connection 563 which may be any type of communications link. Stage controller 564 can be implemented in conventional technology, such as a processor and memory (e.g., programmable microcontroller unit or special purpose processing environment, such as ASIC or FPGA).
The Z-Theta stage 560 may also be implemented in conventional technology and includes, for example, a stepper or linear motor drive, and/or a ballscrew, belt or band drive assembly driven by a rotary motor, or by some other type drive mechanism. In any event, the Z-theta stage 560 provides precision Z-Theta positioning of the probe card with respect to a reference position such as, for example, the center of the field of view of the lens 520. By moving the Z-Theta stage 560, and thereby moving the probe card holder and probe card, the probe card can be positioned over different portions of the panel 540 for probing.
Stage Support Assembly
As depicted in
In one embodiment, the laser subsystem 940 includes a laser emitter, galvanometers, and a scan lens similar to those described above with reference to laser subsystem 530 of
c depicts one embodiment of a support structure 9000 having a base 9005, bridge supports 9010A and 9010B and bridge 9015. The frame 9000 can be utilized in the stage support assembly 900 of
In one particular embodiment, the frame 9000 including base 9005, bridge supports 9010A and 9010B, bridge member 9015, and all of the equipment mounted thereon is designed with a fundamental resonant frequency of >50 Hz. This minimum resonant frequency is chosen to be greater than the typical frequencies present in the acceleration profiles for the X, Y, Z, and Theta stages. This serves to prevent the excitation of resonant modes by the motion of the stages, which could otherwise lead to ringing and other oscillations in the machine structure causing increased motion stage settling times and decreased accuracy of the laser subsystem position relative to the panel during processing.
In one embodiment, the frame structure 9000 is designed as a series of box sections fabricated from welded steel plate. The box sections represent very stiff construction elements that resist shearing, bending and twisting moments (e.g., torsion) and can be beneficially used wherever appropriate, as will be apparent in light of this disclosure. The stiffness of the box sections is such that the fundamental resonance of the overall structure is greater than 50 Hz. Steel is chosen for one embodiment, because of its excellent thermal expansion properties, and high joint strength when welded. Furthermore, the weight of the box sections, and hence the entire frame structure 9000, is reduced by the presence of holes or cut-outs, as shown in the side walls. The cut-out locations are chosen such that the removal of material in the cut-outs does not significantly reduce the stiffness of the box section along the relevant planes of stress within the frame structure 9000. The analysis of resonant frequencies for this frame embodiment is readily accomplished using established techniques such as finite element analysis (FEA) and well known mechanical engineering design and modeling tools and techniques.
d depicts an embodiment of a stage 9100, which could serve as either the X stage 920 or the Y stage 925 of
e depicts an embodiment of Z-Theta stage 9200, which could serve as the Z-Theta stage 945 of
On the Theta stage outer ring 9278 are mounted two Z axis stages 9210A and 9210B. These two Z stages operate concurrently to move a Z axis frame 9280 vertically and thereby move the probe card holder 9250 in the Z direction. The Z axis stages 9210A and 9210B are slaved together such that the force is equalized on the two sides of the Z axis frame 9280 so as to prevent distortion of the frame 9280 and non-parallel movement of the probe card holder 9250 relative to a panel fixture, such as the panel fixture 930 of
Due to the mass of typical Theta stages, it may be advantageous in some embodiments to fix the theta axis stage to the frame and mount the Z direction motion components to the Theta stage outer ring 9278. However, in other embodiments it may be desirable for the Theta stage to be mounted to one or more Z stages, as shown in
Additionally, to minimize the required power applied to the Z axis stages 9210A and 9210B to overcome the weight of these stages, they may be provided with an upward acting counterbalance 9220. In one such embodiment, the counterbalance includes a pneumatic cylinder as shown with the balancing force provided by air pressure controlled through a regulator (not shown). Alternatively, a mechanical linkage (not shown) could also be used to provide the mass counterbalancing force.
Panel Fixture
f depicts an embodiment of a panel fixture 9300 which could serve as the panel fixture 930 of
The panel fixture 9300 can be assembled using epoxy adhesive or equivalent, because of its vibration damping properties, but other assembly techniques could also be used if so desired. As shown in
f shows the vacuum manifold 9393 and a vacuum hose 9394 that connects to a vacuum pump 9397. Air flowing through the vacuum manifold 9393 is drawn from vacuum holes 9395. The vacuum at vacuum holes 9395 serves to hold down the panel when mounted on the panel fixture 9300. As an alternative to vacuum holes, the top plate 9385 of the panel fixture 9300 may be constructed from a porous material that allows air to flow into the interior of the fixture. The air flow requirements for the vacuum to hold down a panel with sufficient force depend upon the size and weight distribution of the panel. An area of the vacuum holes or surface in the case of a porous top plate, may not be covered by the panel due to the presence of holes or other cut-outs in the panel, or due to a clear margin surrounding the panel which allows for tolerance in the placement of the panel on the panel fixture 9300. Thus, it may be beneficial for the system controller (e.g., system controller 550 of
The construction of the panel fixture 9300 shown in
The top surface of the fixture 9300 may also be coated with a suitable coating 9325 for contact with the PCB panel. Typically, a controlled resistance coating is desired, since the elements disposed on the surface of the PCB are electronic. Such coating 9325 provides sufficient electrical isolation to avoid shorting electrical elements during the lasing process. At the same time, coating 9325 can be configured to prevent the build up of static charge on panel and/or the fixture. Static charge may affect measurements by the probe during trimming, or possibly damage the system or panels themselves. Typical coating resistivities lie in the range 106 ohms to 1012 ohms, and may be applied by laminating a polymer sheet to the platen surface of the top plate 9385 of fixture 9300. This high resistivity allows for dissipation of static charges while preventing significant electrical conduction between elements disposed on the panel bottom surface, or between those elements and the panel fixture 9300 itself, that could influence the trimming process. The coating 9325 should balance friction, electrical properties, and mechanical durability. In applications requiring a high degree of surface flatness, the thickness variations in the coating 9325 may be further reduced by final lapping and/or polishing.
The low mass of this embodiment of the panel fixture 9300 shown in
Calibration Subassembly
As shown in
The calibration subassembly 1035 includes sub-modules that function as calibration aids during probe card planarization, probe card alignment, galvo calibration and laser power measurement. The calibration subassembly 1035 also aids in probe tip cleaning. More specifically, a probe card planarization plate 1010, a probe card alignment plate 1015, a galvo calibration aperture 1020, a power measurement head 1060 and a probe tip scrub pad 1055 are disposed on the calibration subassembly 1035, so as to be accessible even when the PCB panel 1005 is mounted on the panel fixture 1030. A detector 1025, such as a photodiode or charged coupled device (CCD), is mounted immediately below the calibration aperture 1020. Note that the detector 1025 may form part of the calibration subassembly 1035 or could be an entirely separate element, is so desired. Note that the sub-modules of the calibration subassembly 1035 are in substantially the same plane as the top surface of the panel fixture 1030.
Focus Adjustment Calibration
Thus, the lasing system 1900 shown in
Before entering the beam-directing device, shown as including galvanometers 1924 and the scan lens 1920, the moving lens 1994 adjusts the divergence of the laser beam 1922 and the vision field at the galvos 1924 and the scan lens 1920. This change in divergence leads to a change in the effective focal length of the optics (the scan lens plus the focus telescope). This in turn results in a change in the height of the focal point at the panel 1940, thereby compensating for variations in panel thickness. Note that the beam expander 1990 could, if desired, alternatively take the form of a removable fixed lens. In such a case, the fixed lens is changed by the operator to adjust the divergence of the laser beam 1922.
As shown in
Position A results in the largest divergence of the beam 1992 entering the galvos 1924 and scan lens 1920. This in turn results in the shortest focal length (focal length A) of the beam 1922 downstream of the scan lens 1920, leading to the focal point A being at the highest distance within the working plane range 1995 from the panel fixture 1910. Position B is an intermediate moving lens 1994 position, which results in a beam divergence B, an intermediate focal length B and a focal point B at an intermediate distance, within the working plane range 1995 from the panel fixture 1910. With the moving lens 1994 at position C, an even less divergent beam, having beam divergence C. This in turn leads to the longest focal length C downstream of the scan lens 1920, and to focal point position C, closer to the panel fixture 1910 and thus better suited for thin panels.
Note that, as well as adjusting the focal point location of the laser beam 1922 at the surface of the panel 1940, the focus telescope 1990 also adjusts the effective focal plane of the vision subsystem 1952 due to its position downstream of the beam splitter 1927 and within the collinear portion of the path of the laser beam and reflected light directed via the galvos 1924 and scan lens 1920. Thus, the vision subsystem maintains a clear focus on the surface of the panel 1940, irrespective of the thickness of the panel.
Further note that the same effect as that obtained with the telescope can also be achieved using other beam modifying means. One example is the use of a transmissive or reflective adaptive optic that may be placed in the beam path at the same location as the telescope 1900. By changing the focal length of the adaptive optics, the beam divergence and vision system focus can be altered as previously described. In the case of transmissive optical elements, it is further desirable that the optics of the beam modifying device be highly transmissive at both the laser beam and vision system wavelengths. This can be achieved through the use of special anti-reflection coatings that provide maximum transmission at the laser and vision illumination wavelengths.
Since the focus of the vision system is maintained at the same plane as the laser beam focus using the technique described above, it is possible to determine the focus of the beam and vision subsystems using the image from the vision system alone. Thus, the telescope 1990 (or other corresponding beam adjusting means) could be adjusted once a panel is fixed to the panel fixture 1910, and images from the vision system 1952 processed by the image processing electronics and/or system controller to determine the best movable lens 1994 position based on the best image focus at the panel surface. Once the optimal telescope position is thus determined, the laser beam will necessarily also be focused at the panel surface.
In cases where the panel thickness varies across a single panel, it may be necessary to adjust the focus of the beam and vision subsystems during processing of the panel. This may be accomplished by first mapping the panel thickness profile within the XY plane using the vision subsystem as previously described, or other height sensing means, and then dynamically adjusting the telescope or other corresponding device to maintain this focus based on the profile data and the XY position of the panel fixture under the field of view of the scan lens 1920.
Tip Cleaning
During the trimming process it may be desirable to remove contaminants from the probe tips and/or condition the probe tips. It is common for debris and/or vapor to be emitted from the material being trimmed. Additionally, the panel probe pads themselves may have a coating or dust that is picked up by the probe tips during probing. Over time this material may form a deposit on the probe tips that compromises the electrical probe tip contact with pads on the panel. Furthermore, the probe tip morphology may change through extended use.
To extend the useful life of the probe card and probe tips, a probe scrub pad 1055 is included as part of the calibration subassembly 1035, as shown in
The system controller (e.g., controller 550 of
Power Measurement Calibration
Control of the laser power during lasing is critical to achieve quality results. The power for the laser must be set prior to lasing, such as during a job setup procedure. However, the laser power may drift over time due to laser instability, optical beam path drift, or contamination of optics. Thus, the laser power can also be checked periodically during any one job session.
To measure the laser beam power as it reaches the work piece, a power meter head 1060, which in one embodiment comprises a thermopile detector and amplifier, is included as part of the calibration subassembly 1035. The system controller commands (e.g., controller 550 of
During job setup, the power value is processed by the system controller, which then issues commands to the later subsystem to adjust the laser output power to that desired power prior to proceeding with lasing of the work piece. By adjusting the laser output power (e.g., by adjusting beam attenuators in the laser beam path between the laser and the work piece) while measuring the beam power at the power meter head 1060, the correct laser beam and/or attenuator settings may be established for the job. This calibration of laser power may be performed automatically by the system controller at the beginning of each lasing session (e.g., one calibration each time a new set of lasing parameters is loaded).
Additionally, the laser beam power may be monitored during lasing operations (i.e., during a job) to ensure that the laser beam power remains within tolerance of the desired value. This may also be done automatically and in real-time by the system controller during the lasing of any one element of a panel, or between trimming sites on a single panel, or between panels, or between panel batches, or at appropriate selected time intervals based on appropriate environmental and machine stability criteria for the particular application.
X-Y Stage Calibration
Without the use of a sacrificial plate or special grid as done in conventional systems, the laser beam scan field and the vision scan field can be calibrated using the known position of the XY stages (e.g., X-Y stages 542 of
In more detail, recall that the XY stages can be built on precisely machined bearing rails such that their motion is highly linear and orthogonal. However, due to inevitable mechanical tolerance build-up and other non-linearity in the position encoders, the motion is not perfect. Thus, errors in the XY stage motion are compensated by applying an error correction look-up table or error correction algorithm. The stage controller (X-Y stage controller 544 of
More particularly and a shown in
Laser and Vision Subsystem Calibration (Galvo Calibration)
As previously discussed in reference to
Referring to
The output signals from the detector 1025 are processed by the detector control module 1027. By processing the detector output signals, the detector control module 1027 determines a profile of the detector output signals versus scanner position. By recording a scan position coincident with the edge 1022 of the calibration aperture 1020 that corresponds to a user-defined threshold level of the detector 1025, the scan position that corresponds to a center of the aperture 1020 can be determined as being midway between scan positions where a threshold level is detected.
For example, using a first scan of the laser beam 1040 across the aperture 1020, the scan position that corresponds to the X-axis center position of the aperture 1020 can be computed by (X-position-left threshold+X-position-right threshold)/2. Hence, the x-scanner coordinates to precisely place the beam 1040 at this center position can be computed. A graphical representation of a one embodiment of this procedure is shown in
A second scan of the laser beam 1040 across the aperture 1020 is made in a perpendicular direction to the first scan to determine the scan position that corresponds to the Y-center of the aperture 1020. From the second scan of the laser beam 1040, the y-scanner coordinates to precisely place the beam 1040 at the center of the aperture 1020 are calculated. By setting coordinates for the galvos (or other beam-directing device 524) at these calculated coordinates, the laser beam 1040 can be placed at the same position that the center of aperture 1020 was in during the calibration scanning.
An alternative method for finding the center of the aperture 1020 is to scan the beam 1040 across the aperture 1020 to locate multiple points on the periphery of the aperture. The scanner X, Y coordinates are recorded for each of the multiple points at the circumference of the aperture 1020, or along the perimeter of the aperture 1020 if the aperture 1020 is not circular. With a sufficient number of known data points on the periphery of the aperture combined with knowledge as to the shape of the aperture 1020, the center of the aperture 1020 can then be calculated or otherwise predicted with a high degree of accuracy.
In one embodiment of the present invention, two galvanometer mirrors are used to scan the laser beam 1040. In this case, the scanner coordinates correspond to the angle of the two galvanometer mirrors in the galvos. However, note that any type of beam-directing device and beam scanning techniques, including polygon or acousto-optic techniques, can be used to direct a laser beam through the calibration aperture 1020.
After locating the scan position that corresponds to the center of the aperture 1020, the aperture 1020 is moved to a different location within an operating field of the scan lens 1050, which could serve as scan lens 520 of
Through a series of cycles, the scanner coordinates that correspond to the grid 1164 of aperture position, as shown in
Referring now to
Alternatively, the laser power can be reduced to a sufficiently low level to avoid damaging the target aperture upstream of the scan lens. However, this may not be possible if the laser has a restricted dynamic operating range. In another alternative embodiment, the detector 1025 may include multiple detectors, or a detector array, which detect the laser beam 1040.
The system controller 550 of
The detector 1025 locates the laser beam as it is scanned in the X-Y field 1162. The scan field could, for example, be a field of 2 by 2 inches or 4 by 4 inches. The field 1162 is formed on a plane at the surface of the panel 1005 on which the target elements are disposed. A different field 1162 is formed for each different scan lens. In one embodiment, the detector 1025 is mounted to the calibration subassembly 1035 and is moved along with the panel fixture 1030 using the X and Y stage, such as stages 920925 of
In one operational embodiment, the aperture 1020 is as shown in
The system controller 550 or control module 1027 then activates the laser and commands the beam-directing device to scan the laser beam 1040 in the field 1162. When the laser beam 1040 is sensed by the detector 1025, the control module 1027 executes a search algorithm to identify the edges of the aperture 1020. After each edge is located, the control module 1027 either: 1) records the commanded beam-directing device position and the stage positions and processes this information to calculate scanner coordinates for that location in the field 1162; or 2) transmits the identified edge locations to the system controller 550 which performs the recording and processing. The system controller 550 or control module 1027 then moves the X and Y stage to another location in the field 1162 and repeats the process to find the aperture edges.
Techniques used to determine the location of the edges of the aperture may beneficially include a binary search for the beam position, while the laser beam is alternated between corresponding above and below threshold signal positions with decreasing step size until a minimum tolerance is determined. Alternatively, the beam may be scanned over the edge and a maximum of the first and/or a zero of the second derivative of the signal may be used to calculate the edge position from the scan data. Here, the influence of noise on the detector signal, which can affect the edge sensing accuracy, is reduced.
This process is repeated at multiple locations. For example, 25 locations in a 2 by 2 square inch or 4 by 4 square inch area may be required to create an accurate mapping of the field 1162 in scanner coordinates. The system controller 550 or control module 1027 executes a control algorithm that includes at least a first order polynomial to process the position information to interpolate a coordinate map of the field 1162. The coordinate map can then be used to correct field distortions by extrapolating new command positions for the beam-directing device, which correspond to the targeted positions, from the scanner coordinates associated with the measured positions.
e is a flowchart of method for calibrating the laser such that a correlation between the position of the laser beam 1040 and the position of the laser beam-directing device 524 is established. The laser beam 1040 is attenuated 1142 to reduce the energy density and thereby avoid damaging the detector 1025. The laser beam 1040 is scanned 1144 over the calibration aperture 1020. The scanned beam is detected 1146 by detector 1025. The position of the laser beam 1040 is correlated 1148 with the position of the laser beam-directing device based on the detected laser beam characteristics. This correlation data is used to determine the center of the aperture 1020 on the work surface and/or the scanner position coordinates that correspond with a desired position of the laser beam 1040.
The use of different types of detectors allows lasers with different laser wavelengths, such as IR, UV, and visible, to be calibrated. Being able to calibrate different laser wavelengths, allows the system to process different types of materials.
The vision subsystem 552 is able to view through the optics of the beam-directing optics, e.g. via the galvanometers, and to view the entire field of the scan lens. The vision subsystem also must be calibrated with reference to the system coordinates, as well as any offsets that may be present between the vision subsystem and the laser subsystem due to non-coaxial alignment of the system. A similar technique to that described above for the laser beam calibration may be used to calibrate the vision subsystem.
As shown in
The system controller 550 executes a control algorithm that includes at least a first order polynomial to process the collected position information in order to interpolate a coordinate map of the field. The coordinate map can then be used by the system controller 550 to correct field distortions by extrapolating calibrated positions corresponding to the targeted positions in the system coordinates based on the coordinate mapping. The extrapolated calibrated positions are used in commanding the beam-directing device 524.
It should be noted that the laser subsystem 530 and vision subsystem 552 calibration may be performed separately or simultaneously to save time. Once the calibration aperture is located by the XY stages 542 at any of the grid locations previously described, the calibration of both the vision and laser beam subsystems can performed before moving the aperture to the next location.
It may further be advantageous to use the calibration techniques described herein but with a pattern of XY locations that does not form a regular grid or array of points. For example, it may be desirable to include a higher density or number of points near the edges of the scan lens 520 field since distortions are typically larger in this region, and a lower density or number of points in the middle of the field, thereby saving time during calibration.
It should also be noted that the destination number of points calibrated, and also the degree of the interpolating polynomials, is chosen to achieve the required accuracy of correction. In the case of a system including galvos, the required accuracy is typically better than few microns for a given scan lens f-theta distortion or linearity error of beam position with respect to galvo angle. Both flat field focus and good f-theta linearity across the scan field can be achieved, but typically require a complex lens design, often with multiple elements and/or exotic materials.
Thus, the above described calibration can reduce the cost and complexity of the scan lens 520 by compensating for the distortion in the design to the required degree for the particular application.
A variation in the calibration technique is to set the calibration points proximate to the locations in the scan lens 520 field that correspond to the target locations on the panel. In this manner, little or no interpolation of the transformed XY beam or vision subsystem position coordinates is needed. By avoiding the need for interpolation, and in the case where few elements are to be lased in the field, the time required during calibration could thereby be reduced.
Using the same calibration aperture 1020 provides a simple and accurate means for calibrating both the laser beam and vision system by, for example, correcting the galvo positions for beam and image positioning. The automated techniques described herein accurately and automatically calibrate the position of the laser beam and vision subsystems in the XY system coordinates. The technique can be configured to automatically determine if calibration is required, and to perform any necessary calibration. If desired, the determination and calibration can be automatically performed at predetermined intervals, or initiated at the operators request which is entered to the via an operator input device.
Focus Adjustment Calibration
Referring again to
To address this problem, the calibration aperture 1020 of a calibration subassembly 1035 is moved in the Z axis direction to facilitate calibration of the beam and/or vision subsystem for different focal planes. The calibration aperture 1020 is mounted on a translation stage 1180 controlled by the system controller 550.
In one particular embodiment, the system controller 550 commands both the translation stage 1180 shown in
Due to the laser beam and imaging being substantially coaxial and having respective paths passing through the same focus telescope 1990 optics, modification to the scan field shape resulting from a focus change is nearly identical for both the laser beam and the vision image. Thus, only one calibration needs to be performed, and the beam calibration at the upper focus position can be easily computed from the vision calibration data.
Since the relationship between the focus telescope 1990 setting and the scan field distortion is close to linear, the beam-directing device 524 (e.g. the galvo) calibration at any other focal plane can be interpolated or extrapolated using conventional techniques based on calibrations performed at the two focal planes. Note that the techniques described herein can be implemented with some variations. For example, the calibration may be performed for the actual panel thickness being trimmed such that interpolation is not required, if the panel thickness is relatively constant. Furthermore, other combinations that use the beam and vision calibration techniques described herein may be used for setup and testing.
In summary, the above described calibration provides a laser system, such as the system depicted in
Probe Card Planarization Calibration
In order to ensure that each of the probes will make sufficient contact with the probe pads of a circuit for measuring an electrical characteristic of a circuit element, probe card planarization can be performed.
Referring to
To calibrate the probe for planarity, a flat conducting test plate such as probe card planarization plate 1010, which in one embodiment is located at the panel fixture surface 1210, is connected to the probe measurement subsystem. In one particular operational sequence, the X and Y stages 542 move the fixture, and therefore the test plate 1010 under probe card 1201, which is typically supported by a probe holder as previously described. The probe measurement subsystem sets-up to measure resistance of selected probes A-E relative to the test plate. The Z stage moves down in small steps until first probe tip makes contact (e.g., the tip of probe ‘E’ in
Utilizing the saved Z position information, it is now possible to construct a Z map of the probe card. It can be determined if any probe tip contacts are missing (e.g., probe D in
Alternatively or additionally, probe tip planarization can be obtained by trimming the tips within the system by cutting, milling, grinding, or polishing the individual probe tips or all the tips simultaneously, so as to be parallel to the plate 1010. Testing may be performed before and/or after such tip trimming as per the procedure above.
Contact resistance testing after planarization gives verification of probe and electrical connection conditions. The point of contact, or Z contact position, can be determined after planarization, and the appropriate final Z position of the probe card to provide the correct over-travel for best probe contact and life can be computed using conventional techniques.
An embodiment of a probe planarization subassembly is shown in
The pivot 1307 and ball 1308 provide rotatable support for the probe card holder 1305 that, when combined with the linear actuators 1310 and 1315, provide highly accurate roll and pitch adjustment of the probe card holder 1305 and the supported probe card 1301, to obtain the desired contact between the probe tips and the probe pads on the circuit. For example, roll adjustment may be accomplished by controlling linear actuators 1310 and 1315 to apply equal forces in opposite directions, while pitch may be accomplished by controlling linear actuators 1310 and 1315 to apply equal forces in the same direction.
In operation, after a probe card 1201 is inserted into the probe card holder 1305, the planarization commences. A flat conducting plate referred to as the probe card planarization plate 1010, is included as part of the calibration subassembly 1035. The probe card planarization plate 1010 is connected to the measurement subsystem that is also connected to the probes on the probe card 1201. Through an iterative process, the probe card 1201 is brought into contact with the probe card planarization plate 1010, and adjustments are made to the roll and pitch using linear actuators 1310 and 1315, as shown in
The technique previously described may also be used to measure the probe tip planarization one probe tip with respect to other probe tips of the probe card. For example with reference to
Probe Card Alignment Calibration
The position of the probe card 1201 probe tips in three dimensional space must be determined in order to meet the probe tip positioning accuracy requirements for correct contact with the panel contact pads. Probe cards are typically manufactured with the probe tips positioned with good accuracy relative to one another in X, Y and Z direction. The X-Y offset and theta rotation of the probe card when installed in the probe card holder must be determined in system coordinates to achieve alignment to the circuit panel contact pads, and hence to the circuit and circuit elements, under test or being lased. In one particular embodiment, this is an automated operation.
As shown in
The operation could, for example, proceed by first moving the X and Y stages (e.g., X-Y stage 542 of
Based on the probe tip test feature contact, the X-Y offset and theta rotation offset of the probe card 1415 can be determined for the X-Y locations of the stage(s) corresponding to the tip locations, since the stage locations are predefined in the system coordinates. Thus, the probe card 1415 can be rotated into alignment by the theta-axis and the X-Y stage can adjust the relationship between the probe card 1415 and target circuit based on the determined X-Y offsets. The system controller uses a reverse transform of the XY tip locations or any other suitable technique, to determine rotation and XY offset values for the probe card with respect to system coordinates and uses these values to control the theta rotation angle of the Theta stage and the X-Y positioning of the X and Y stages during probing.
Automatic testing of the positions of other probe tips on the probe card 1415 can be performed to achieve optimum probe card 1415 orientation relative to a circuit through best fit or other conventional techniques. Coarse locating of the probe tips 1401A and 1401B relative to the test features 1405 may first be required so that the feature is found within reasonable time. This may be accomplished using the machine vision system (e.g., 552 of
The above sequence can also be automatically repeated at appropriate intervals during production trimming to ensure accurate probe tip positioning throughout a job and to determine/predict probe card failure. Additionally, two edge sensing can be performed by the vision subsystem to provide further alignment information for even a better determination of probe tip location relative to the test features 1405 on the probe card alignment plate 1015. Furthermore, a grid pattern test plate could be used to determine more than one probe tip location in parallel and thereby reduce the time required in order to calibrate the alignment of all the probe tips. Note that an actual panel circuit, rather than special probe card alignment plates 1015, could be used for alignment calibration, to determine some or all probe tip locations with respect to the actual circuit pads. In all cases, an optimum probe card theta rotation and X-Y offset may be determined through best fit or other conventional techniques.
Further note that the precise probe card alignment technique described herein could, if desired, alternatively be accomplished using a vision system connected to the system controller, or other sensing means, to determine the tip location with respect to the system coordinates along the X and Y axes. The technique may also be used to measure the probe tip XY locations with respect to other probe tips on the probe card. For example, an X-Y offset of one probe tip with respect to the locations of the tips of other probes may be determined, without first aligning the probe card in theta or X-Y direction to the system coordinates. The technique described above may additionally or alternatively be used during automated system trimming operations to test for probe card alignment, thereby reduce probing errors due to contact failure and predict probe card life. The technique may further be applied to systems incorporating moving probe subsystems, sometimes referred to as flying probes, in order to calibrate the probe tip locations in system coordinates.
Camera Configurations
a shows an embodiment of the camera 554 of
Referring to
An alternative configuration for the camera 554 of
The images of areas A through I can be obtained quickly and efficiently when the vision subsystem 552 incorporates through-the-lens imaging, such as in the case where the vision subsystem 552 looks through, for example, the galvos or other beam scanner 524 and the scan lens 520. The galvos or other beam scanner 524 may be commanded to move through positions for imaging areas A through I at a very high rate of speed. Images can be taken by the fine field camera 1580 through the magnifying optics 1581 of
The acquisition time for this example having 9 images (field of views A through I) is comparable to the acquisition time using a typical CCD camera, since movement of the galvos is extremely fast. Typical galvo move times to step from one area, such as area A, to another area such as area B is performed at a rate on the order of thirty frames per second. Note that the scanning of the field of view over the image area of interest may also or alternatively be accomplished by moving the panel using the X and/or Y stages 542 of
The tile images A through I are then merged together by the system controller 550 or image processing electronics 556 to provide a composite image corresponding to the full image of the entire feature. Note that the resolution (in pixel image size) of the composite image could be equivalent to the fine field camera resolution, or may be reduced by the image processing electronics 556 to a lower resolution than that required when unmerged tiles are displayed for fine inspection of the imaged feature, as with a single fine field camera field of view. The lowered resolution results in a reduction in the amount of data required to represent the composite image. This reduced amount of data approximates the amount of data required to represent an image of the full feature captured with a coarse field of view camera. Thus, images equivalent in those produced using a separate fine and coarse field cameras, and which can approximate an image produced using a separate coarse field camera, are obtainable using a single fine field camera. The resolution may be controlled through vision image processing electronics 556 and/or the system controller 550.
The vision subsystem 552 may also include a light source to provide illumination at the panel surface for viewing by the cameras.
In the embodiment of
More specifically, shown in
Panel Calibration
a depicts a PCB panel 1601 supported on a panel fixture 1605 in an unknown location and/or orientation. The PCB panel 1601 may have been placed on the panel fixture 1605 either manually or through some automatic loading means. The panel 1601 has coarse and fine fiducial marks, 1608 and 1610, as shown. Typically, there will be at least two coarse fiducials 1608, which are used for gross alignment of the panel 1601, and up to four fine fiducials 1610 (located near the panel corners) that are used for fine alignment of the panel 1601. The coarse fiducials 1608 could, for example, be similar to the image feature 1597 shown in
Also shown in
After loading the PCB panel 1601, the PCB panel 1601 is secured to the panel fixture 1605, for example, by vacuum pressure through vacuum holes disposed on the panel fixture 1605 as previously described. After the PCB panel 1601 is secured to the panel fixture 1605, the locations of both the coarse and fine fiducials are determined in order to map and transform the axes X′, Y′ of the panel 1601 to the system axes X, Y, shown in
To map the axes, the system typically will first acquire the positions of the coarse fiducials 1608. In this regard, X and Y stages will move the panel fixture 1605 to position the nominal locations of the coarse fiducials 1608 within a camera field of view, for example, the coarse camera field of view 1599, or the fine camera fields 1598 of view, as described above with reference to
The determined centers of the two coarse fiducials 1608 shown in this example embodiment are further processed by the processing electronics 556 or by the system controller 550 to determine the approximate transverse location and rotational offset of the panel 1601 with respect to the panel fixture 1605. Thereafter, the information obtained from the coarse fiducials 1608 (e.g., the determined feature center and offsets) is used by the controller 550 to direct acquisition of the four fine fiducial targets 1610, of which are shown disposed near the corners of the panel 1601. Using a similar technique, but now using only a fine field camera field of view as previously described, the fine fiducial images are acquired. The images are processed by the image processing electronics 556 and/or the system controller 550 to determine the center of each imaged fine fiducial. This information can be further processed, for example, by the image processing electronics 556 or the system controller 550 to precisely determine the transverse offset and the rotational offset of the panel 1601 with respect to the fixture 1605.
In summary, after the acquisition of the coarse fiducial 1608 and the fine fiducial 1610 target images, the system or vision subsystem image processing electronics execute conventional pattern recognition algorithms, either on a coarse field image or tiled fine field images in the case of the coarse fiducial, or a fine field image in the case of fine fiducials, to determine the coordinates of the center or another desired location relative to the center of each image feature. These coordinates are then further processed to determine the transverse and rotational offsets between the system coordinates and the panel coordinates using known algorithms, such as a reverse transformation. The system controller 550 or image processing electronics 556 then creates a map of the panel coordinate system X′, Y′ to the system coordinates X, Y. This provides the system controller 550 with the offset rotation, the offset transverse location in X, Y, the non-orthogonality and any other trapezoidal distortions of the panel 1601 with respect to the fixture 1605 in the system coordinates.
This alignment, transformation and mapping allows the system controller 550 to accurately determine the position of the panel 1601 on the panel fixture 1605 and, hence, to be able to accurately position and orient the probe card relative to any circuit on the panel, and to accurately position the laser beam and probe for accurate lasing and probing of any features disposed on the panel 1601. Note that this global alignment calibration may be performed on regions of the panel not necessarily encompassing all of the circuits on the panel. For example, it may be desirable, due to the presence of some non-linear distortions on the panel, to perform the above alignment calibration procedure multiple times to determine the appropriate location mappings for different areas covered by the respective alignments calibration.
Calibration to Circuit/Region
As shown in
Transformation from X″, Y″ is accomplished by imaging the local fine fiducials 1620 in a manner similar to that previously described with respect to panel fine fiducials 1610 and coarse fiducials 1608 to calibrate alignment of the PCB panel 1601, as shown in
During system operation, a first global or panel alignment calibration is performed using the coarse fiducials 1608 and fine fiducials 1610 of
In practice, the calculated transformation based on the alignment calibration data is used by the system controller 550 to transform the nominal trimming and probing locations (as stored in the database) into actual trimming and probing locations in system coordinates. Based on the alignment calibration data for the global panel and, if applicable, the local circuit/region, the system controller directs, for example, the X stage, the Y stage, and the Z and Theta stages to correctly orient and position the probe card relative to the trim circuit/region trim locations on the PCB panel. Specifically, the X stage is moved by the system controller 550 to move the panel fixture, and therefore the panel, along the X axis to compensate for an X offset determined in the alignment calibration processing. Similarly, the Y stage moves the panel fixture, and thus the panel, under control of the system controller 550 to compensate for any Y offset determined during the alignment calibration processing. The Theta stage is rotated and thereby rotates the probe card to compensate for any rotation determined during the alignment calibration processing. All of these actions serve to accurately position the probe card over the applicable circuit or region of the panel, and also accurately orient the laser beam locations over the elements to be trimmed or otherwise lased. The XY location of the panel and the theta rotation of the probe card aligned during the operations previously described may encompass the entire panel area, or regions of a panel including an individual circuit or group of circuits to be probed and/or trimmed.
It may be desirable for the system controller 550 to modify certain parameters used during the probing and lasing operations based on the alignment calibration data obtained. Parameters that may be affected include, but are not limited to, the trim start locations and directions of cut, the focus of the optical system with respect to the panel surface, and the probe card Z position with respect to the panel surface. Panel surface position data along the Z axis may be obtained during the global and/or local alignment calibration as has been described herein using the vision system 552 or other sensors.
Note that the above panel alignment operations may be completed on more than one distinct work piece or panel on the panel fixture. It is possible, in the case of panel sizes less than or equal to half of either or both of the panel fixture dimensions, e.g. the X and/or Y dimensions, to place two or more panels on the panel fixture for automatic processing. Additionally, two or more differing panels may also be placed and aligned on the panel fixture to minimize overheads by maximizing use of the panel fixture area. The global and/or local alignment calibration described herein may be implemented first on one panel, then on the next, and before and/or during trimming operations, until all of the panels concurrently supported on the panel fixture have been processed.
Note that various alternative configurations could be used implementing the principles described above to align the trimming laser subsystem, vision subsystem and/or probe to the panel. For example, the laser subsystem and probe could be moved by the X and Y stages, or the panel fixture could be moved by the Z-Theta stage. Alternatively, the panel fixture could be moved by one of the X or Y stages, while the laser subsystem and probe are moved by the other of the X, Y stages.
Processing Differently Oriented Circuits/Regions
In the circuit orientation shown in
In order to process the differently orientated circuits shown in
The system controller 550, such as that shown in
Automatic operation of the lasing system may involve automated loading and unloading of panels to and from the panel fixture using a panel handler (not shown). Special consideration must be given to the ranges and sequence of motion of the X, Y and Z stages of
In this regard, the Z axis stage may be configured to provide for an additional vertical travel range such that sufficient handling clearance is achieved between the panel fixture surface and the Z-theta stage and probe card and holder assemblies, if the X and/or Y stages travel range is insufficient to clear all portions of the panel from obstruction. Thus, in such an embodiment, a stage motion sequence during panel handling would involve first moving the Z axis to its uppermost position, then moving the X and/or Y stages to position the panel mounting area of the panel fixture (and any mounted panel) to a designated loading/unloading position, prior to panel handler operation(s) to mount or remove a panel.
Sequenced Motion To Accommodate Automated Panel Handling
Automatic operation of the lasing system may also involve automated unloading of special panels using a panel handler (not shown) from the panel fixture to a special panel storage location within the lasing system. Special consideration must also be given to the ranges and sequence of motion of the XY stage of
Thus, in such an embodiment, a stage motion sequence during special panel handling includes first moving the X and/or Y stages to position the panel fixture (and any mounted panel) in a designated loading/unloading position, lifting the panel from the panel fixture using a panel handler (not shown), moving the X and/or Y stages to position the panel fixture clear of the special panel storage location, and then placing the panel into the now unobstructed special panel storage location using the panel handler. A similar but reversed sequence can be implemented for the retrieval of a panel from the special panel storage location.
Step and Repeat X-Y Motion Path
The step and repeat time is defined as the time taken to move the PCB panel on the panel fixture using the X, Y, Z, and Theta stages from one circuit or region on the panel to the next. This time may be, for large PCB panels with many circuits, a significant fraction of the total processing time of a panel. There are two factors that contribute to the time taken to perform a step and repeat move. The first is the mass of the panel fixture and stages to be moved, and the second is the travel distance during the step and repeat motion.
As shown in
The step distance must also be considered to determine the optimal preferential axis of motion. The larger the step distance required to align the circuit probe and lasing optics from alignment with one circuit or region on the panel to alignment with the next circuit or region, the longer the time required to perform the step and repeat motion. The time required to perform the step and repeat motion can be determined based on the known acceleration and velocity of, for example, the panel fixture on the stages for each of the X stage 925 and Y stage 920 in the system. Furthermore, the total time determined for the step and repeat operation can be computed from the distance required to move in each of the X and Y directions for all of the probing sites on the panel. In one embodiment, the system controller 550 is able to determine the step and repeat path, such that the total step and repeat time is minimized for the step and repeat operations required to complete the panel. In this way, the overall process time of the panel is optimized.
The PCB panel 1701 shown in
Depending upon the orientation of the circuits or regions on the panel, Z and Theta axis motion may also need to be considered in the step and repeat operation. The time taken for the motion of the Z and Theta axes can also be minimized by the selected optimum step and repeat path. More particularly, the Theta motion is often slower than the X and/or Y motion. Hence, the optimized path is beneficially selected to minimize the number of rotations of the Theta axis during processing of the panel side.
During the processing of the panel, the step and repeat action is typically characterized by a sequence of axis motions. Depending on the direction of the step and the orientation of the circuits to be lased and/or probed, some combination of the X, Y, Z, and Theta axes movements is involved. Note that as a result of global and/or local alignment calibration of the panel, as previously discussed, a step from one trim/probe site to another along one axis of the panel may also involve some small motion of the orthogonal axis stage. Since it is desirable to minimize the time required to execute the step within the velocity and acceleration limits of the stages involved, coordinating the motions of two or more axes stages during the move may be advantageous.
a depicts an example of a move profile during a step in which the direction of movement is predominantly along the X axis. As shown, the Z axis positioning is plotted with respect to the X axis motion. It can be seen that there exist several phases to the move. For the purposes of this description, the initial condition is assumed to be that of the probe positioned in contact with a first probe site (e.g., with a first circuit or region) on a panel.
The first phase movement is initiated by the system controller issuing command signals to position the probe with respect to the next XYZ coordinate (e.g., the next circuit or region) on the panel. Since the probe is in a contact state, the first phase begins by raising the Z axis stage without moving the X,Y stages so as to prevent probe and panel damage.
Once the Z axis has reached a Z position that clears the probe from contact with the panel, phase two begins. At this point the X stage is commanded to accelerate in the desired direction. At approximately this time, the Z stage continues moving at some velocity, and is commanded to decelerate into an upper probe position. Accordingly, the X stage motion commences before the Z stage has reached its upper position.
The third phase is initiated once the X stage is approaching its target position. At this point, the X stage is commanded to decelerate into its target position. Also at approximately this time, the Z stage is commanded to accelerate down into a lower probe position. Note that the Z stage may or may not be stationary prior to the second phase downward motion, depending on the relative times required for the Z stage deceleration into the upper position and the X stage acceleration and travel to its target position. That is, the Z stage may immediately reverse its direction of movement upon reaching the upper probe position. In one embodiment, the acceleration and velocity of the X and Z axes is chosen such that the X stage fully stops in its target position before the Z stage has moved from its upper position such that the probe contacts the circuit or region on the panel surface. Thus, Z stage motion may commence before, but ends after, the X axis stage has reached its target position. In the final phase, the Z axis stage decelerates into its final probe contact position, with X axis stage stationary in its target position.
As described, the acceleration and velocity capabilities of both the X and Z axis stages are used to minimize the step time. The parameters and timing for the coordinated motion may be determined empirically using known computational techniques and programmed into the stage controller (e.g., 544 of
b further details an embodiment of the final phase of
As shown, the velocity of the Z axis is plotted with respect to Z position and the initial contact and final overtravel positions. The example Z velocity profile shown is characterized by two phases of deceleration. The first phase is a reduction in velocity to limit the probe tip impact with the pad surface. This reduction serves to prevent undue mechanical shock and possible damage to the probe tip and the probe pad, as well as limit possible probe tip bounce which could affect electrical contact. The second phase of the example final Z motion occurs after initial probe tip contact with the pad. Here, the Z stage velocity is further modified to best seat the probe tip into the probe pad surface. This final velocity and deceleration is chosen based on the overtravel desired, the probe type, the probe tip material, and the surface material and morphology of the probe pad.
b shows a further reduction in Z axis velocity during this final phase. However, based on the above factors, the final velocity may be chosen to be higher or lower than the initial contact velocity.
The system or stage controller (e.g., 550 or 564 of
Copper Tracing/Pad Adjustment Calibration
Traces on the PCB panel may be obtained during the global or the local alignment of the circuit panel or elements.
b depicts an alternative technique for determining the offset of the actual position 2022 element material 2020 relative to copper circuit tracings or pads material 2030. As shown, the actual element material position 2022 differs from a nominal or expected element material position 2027 (e.g., the specified design position of the element material 2020) with respect to copper circuit material 2030. This offset can be determined by imaging the nominal element material position 2027 using the vision subsystem 552. The actual element material position 2022 is determined by the system controller 550 using the image data. This position can then be compared by the system controller 550 to the nominal element material position 2027, which is typically stored at the system controller 550 to determine the offset.
The system controller 550 is typically programmed to start a trim operation at nominal trim start position 2040, as shown in
The reason for selecting the modified trim start position 2045 and trim direction 2047 could, for example, be to prevent damage to adjacent material that would occur if the nominal trim start position 2040 and trim direction 2042 were utilized. For example, due to the offset between the nominal and actual positions, adjacent material could be located at the nominal start position 2040 depicted in
It is common for PCB panels to contain element materials deposited at different steps of the production process, which may be located with some offset from one another. In a manner similar to that described herein, the location of one element material relative to another element material may be determined, and suitable adjustment to trim start locations and directions could be made for each element material and its location. Furthermore, the sizes of deposited element material features, whether fiducials or actual circuit elements, may be determined during this alignment calibration and used by the system controller 550 to adjust the trim start locations and directions, etc.
The system controller 550 of
The material offset data obtained during the alignment may be recorded and used by the automated trimming system to optimize probing and/or trimming parameters, or used by subsequent production processes in the manufacturing of the PCB panels. It is typical for errors to be present in the as-patterned element and circuit copper material location in the form of offsets, scale errors, and geometry errors. Calculations based on the alignment calibration data may be performed by the system controller 550 to provide recordable or transmittable values for these errors which can be used for future analysis and/or to correct the processes involved during PCB production prior to the probing and trimming operations on the automated trimming system.
While various embodiments of the invention are described herein, the present invention is not intended to be limited to any particular one or group. Various features and aspects of the above described invention may be used individually or jointly. Further, although various embodiments of the invention are described herein in the context of a particular environments and applications (e.g. trimming or drilling circuit boards), the principles of the present invention can be beneficially utilized in any number of environments and applications, such as the machining of silicon waters or blasting of links in redundant memory.
This application claims the benefit of U.S. Provisional Application No. 60/512,048, filed Oct. 17, 2003, which is herein incorporated in its entirety by reference.
Number | Date | Country | |
---|---|---|---|
60512048 | Oct 2003 | US |