Leadframe structure for concentrated photovoltaic receiver package

Information

  • Patent Grant
  • 8680656
  • Patent Number
    8,680,656
  • Date Filed
    Monday, January 5, 2009
    15 years ago
  • Date Issued
    Tuesday, March 25, 2014
    10 years ago
Abstract
In accordance with the present invention, there is provided multiple embodiments of a concentrated photovoltaic receiver package or module. In each embodiment of the present invention, the module comprises a leadframe including a first section and a second section disposed in spaced relation to each other. Mounted to the first section of the leadframe is a receiver die. The receiver die is electrically connected to both the first and second sections of the leadframe. In one embodiment of the present invention, the receiver die is electrically connected to the second section of the leadframe by a plurality of conductive wires. In another embodiment of the present invention, the receiver die is electrically connected to the second section of the leadframe by a conductive bonding material. Portions of the leadframe may optionally be covered by a molded body which can be used to define an alignment feature for a light concentrating device such as a light guide or optical rod.
Description
CROSS-REFERENCE TO RELATED APPLICATIONS

Not Applicable


STATEMENT RE: FEDERALLY SPONSORED RESEARCH/DEVELOPMENT

Not Applicable


BACKGROUND OF THE INVENTION

1. Technical Field of the Invention


The present invention relates generally to semiconductor devices, and more particularly to a robust, cost effective leadframe structure suitable for a concentrated photovoltaic (CPV) receiver module.


2. Description of the Related Art


Photovoltaic cells are a well known means for producing electrical current from electromagnetic radiation. Traditional photovoltaic cells comprise junction diodes fabricated from appropriately doped semiconductor materials. Such devices are typically fabricated as thin, flat wafers with the junction formed parallel to and near one of the flat surfaces. Photovoltaic cells are intended to be illuminated through their so-called “front” surface. Electromagnetic radiation absorbed by the semiconductor produces electron-hole pairs in the semiconductor. These electron-hole pairs may be separated by the electric field of the junction, thereby producing a photocurrent.


There is currently known in the electrical arts semiconductor devices known as CPV receiver die packages or modules. Currently known CPV modules typically comprise a ceramic substrate having a conductive pattern disposed on one side or face thereof. Attached to the substrate and electrically connected to the conductive pattern are electrical components, including a pair of preformed wire connectors and a packaged diode. Also attached to the substrate and electrically connected to the conductive pattern thereof is a receiver die. The electrical connection between the receiver die and the conductive pattern is often facilitated by a pair of braided ribbon connectors which extend along respective ones of opposed sides of the receiver die, which typically has a quadrangular or square configuration. The CPV module may further include a light concentration means which is adapted to concentrate solar radiation onto the front surface of the receiver die.


However, one of the major disadvantages associated with currently known CPV modules is attributable to the relatively high cost associated with their assembly and testing. Another deficiency lies with the lower conversion efficiency resulting from the higher receiver die temperatures. These higher temperatures of the receiver die are often attributable to the inefficiencies of known CPV modules in dissipating heat. The present invention addresses these and other shortcomings of prior art CPV modules, as will be described in more detail below.


BRIEF SUMMARY OF THE INVENTION

In accordance with one embodiment of the present invention, there is provided a robust, compact CPV (concentrated photovoltaic) receiver package or module which comprises a strip-based leadframe substrate with solder receiver die attach and multiple wire bonds. The module is finished by film-assist molding to expose the receiver die surface on a first side thereof, and a heat slug or heat sink on a second side thereof opposite the first side. Thus, the CPV module provides effective thermal dissipation, wire protection, electrical insulation, strip-level assembly and test capability, as well as molded alignment features which are adapted to accommodate an electromagnetic radiation concentration device such as a light guide or optical rod which concentrates solar radiation onto the receiver die.


More particularly, the multiple wire bonds included in the CPV module of the aforementioned embodiment provide for high power transmission, with the molded body included therein providing protection for the bond wires, as well as molded features for light guide or optical rod alignment. This CPV module also includes integrated leads for cabling, and the aforementioned built-in, exposed heat sink for heat dissipation. Further, the strip based assembly and test capability of such CPV module allows for the full automation of the assembly and testing thereof, thus providing significant cost benefits in relation to the fabrication process. In sum, as indicated above, the aforementioned CPV module provides a cost-effective, robust, compact package which uses film-assist molding of durable molding material, and includes multiple wire bonds, an exposed thermal pad (heat sink), exposed easy-access connectors, and molded-in features to help align an optical rod or light guide. As a result, such CPV module provides the required combination of good thermal dissipation to the heat sink, protection against intense, focused sunlight, high voltage potential isolation, accurate alignment of the optical rod or light guide, and ease of wiring connection.


In accordance with additional embodiments of the present invention, there is provided a CPV receiver package or module which has a robust, cost effective leadframe structure, and wherein the front surface of the receiver die is clear of obstruction for maximum sunlight reception, and the back surface of the receiver die is provided with a modality for good thermal dissipation. More particularly, in these additional embodiments of the CPV module, a receiver die is first attached to a bottom leadframe (bare or pre-molded with alignment features) using solder or other conductive die attach materials. A top leadframe with a generally U-shaped fork shape, or a quadrangular (e.g., square) shape, is then laid over the bottom frame. The electrical connection to the top of the receiver die is carried out by forming bonds with the top contact strips on two sides of the receiver die using solder or other conductive adhesives.


In these additional embodiments of the CPV module, no wire bonds, ribbon bonds, or flip chip bumps are needed. Additionally, the CPV module has an exposed top window for sunlight reception and an exposed bottom heat sink for thermal dissipation. As indicated above, the CPV module in these additional embodiments can be fabricated with a bare leadframe, a pre-molded bottom leadframe, or an over-mold for better strength. As also indicated above, the top leadframe can also have raised edges to serve as an alignment mechanism to assist the alignment with a light concentrating optical rod or light guide of the system. Additionally, the connectors of the CPV module may be provided with through holes for the screw fastening of electrical wires, with the CPV module also including integrated leads for cabling. Electrical connectors can also be located on the same side or opposite sides of the CPV module by rotating the top leadframe approximately 180°, with the top leadframe also optionally including a downset to secure connection with the contacts of the receiver die. Further, the strip based assembly and test capability of these additional embodiments of the CPV module allows for the full automation of the assembly and testing thereof, thus providing significant cost benefits in relation to the fabrication process.


The present invention is best understood by reference to the following detailed description when read in conjunction with the accompanying drawings.





BRIEF DESCRIPTION OF THE DRAWINGS

These, as well as other features of the present invention, will become more apparent upon reference to the drawings wherein:



FIG. 1 is a top plan view of a CPV module constructed in accordance with a first embodiment of the present invention;



FIG. 2 is a bottom plan view of the CPV module shown in FIG. 1;



FIG. 3 is a side-elevational view of the CPV module shown in FIGS. 1 and 2;



FIG. 4 is a cross-sectional view taken along line 4-4 of FIG. 1, further depicting the CPV module as being secured to an underlying heat sink and including an optical rod operatively coupled thereto;



FIG. 5 is a cross-sectional view taken along line 5-5 of FIG. 1;



FIG. 5A is a cross-sectional view similar to FIG. 5, but depicting a downset variant of the CPV module shown in FIGS. 1-5;



FIG. 6 is a top plan view of the CPV module shown in FIG. 1 prior to the formation of the molded body thereon;



FIG. 7 is a top plan view of a portion of a leadframe strip which may be used to produce CPV modules of the first embodiment;



FIG. 8 is a top plan view of a CPV module constructed in accordance with a second embodiment of the present invention;



FIG. 9 is a side-elevational view of the CPV module shown in FIG. 8;



FIG. 9A is a side-elevational view similar to FIG. 9, but depicting a vertical connector variant of the CPV module shown in FIGS. 8 and 9;



FIG. 10 is a top perspective view of a pre-molded variant of the bottom leadframe of the CPV module shown in FIGS. 8 and 9;



FIG. 11 is a cross-sectional view of a CPV module similar to that shown in FIGS. 8 and 9, but including the pre-molded variant of the bottom leadframe shown in FIG. 10;



FIG. 12 is a top plan view of a CPV module constructed in accordance with a third embodiment of the present invention;



FIG. 13 is a side-elevational view of the CPV module shown in FIG. 12;



FIG. 13A is a side-elevational view similar to FIG. 13, but depicting a vertical connector variant of the CPV module shown in FIGS. 12 and 13;



FIG. 14 is a cross-sectional view of a variant of the CPV module shown in FIGS. 12 and 13, further depicting the CPV module as being secured to an underlying heat sink and including an optical rod operatively coupled thereto;



FIG. 15 is a top plan view of a CPV module constructed in accordance with a fourth embodiment of the present invention;



FIG. 16 is a side-elevational view of the CPV module shown in FIG. 15;



FIG. 17 is a top plan view of a variant of the CPV module shown in FIGS. 15 and 16 and including a molded body;



FIG. 18 is a side-elevational view of the CPV module shown in FIG. 17; and



FIG. 19 is a top plan view of a CPV module constructed in accordance with a fifth embodiment of the present invention.





Common reference numerals are used throughout the drawings and detailed description to indicate like elements.


DETAILED DESCRIPTION OF THE INVENTION

Referring now to the drawings wherein the showings are for purposes of illustrating preferred embodiments of the present invention only, and not for purposes of limiting the same, FIGS. 1-5 and 6 depict a CPV module 10 constructed in accordance with a first embodiment of the present invention. As best seen in FIG. 6, the module 10 comprises a leadframe 12 which is preferably fabricated from a conductive metal material, such as copper. The leadframe 12 includes a first section 14 and a separate second section 16. The first section 14 includes a generally rectangular base portion 18 which defines opposed pairs of longitudinally and laterally extending side edges. In addition to the base portion 18, the first section 14 includes a generally square die pad portion 20 which protrudes from one of the longitudinally extending side edges of the base portion 18. Extending from the approximate center of the longitudinally extending side edge of the base portion 18 opposite the side edge from which the die pad portion 20 extends is a generally quadrangular connector portion 22 of the first section 14.


The second section 16 of the leadframe 12 includes a generally rectangular base portion 24 defining opposed pairs of longitudinally and laterally extending side edges. In addition to the base portion 24, the second section 16 includes an identically configured pair of prong portions 26 which extend in spaced, generally parallel relation to each other from a common longitudinally extending side edge of the base portion 24. Additionally, extending from the longitudinally extending side edge of the base portion 24 opposite the side edge having the prong portions 26 extending therefrom is a generally quadrangular connector portion 28 of the second section 16, the connector portion 28 being identically configured to the connector portion 22 of the first section 14. As is further seen in FIG. 6, the base portion 24 and prong portions 26 of the second section 16 collectively define a generally square gap or recess 30 which is sized and configured to accommodate the die pad portion 20 of the first section 14. More particularly, in the leadframe 12, the first and second sections 14, 16 are oriented relative to each other such that the die pad portion 20 is disposed within the recess 30. However, the first and second sections 14, 16 are maintained in spaced relation to each other, with a continuous gap or void being defined therebetween as shown in FIG. 6.


As most apparent from FIGS. 4 and 5, in the leadframe 12, the first section 14 is not of uniform thickness. Rather, it is contemplated that the first section 14 will be subjected to a partial etching process such that the base, die pad and connector portions 18, 20, 22 define generally planar top surfaces which extend in generally co-planar relation to each other, the die pad portion 20 defines a generally planar bottom surface which is disposed in opposed relation to the top surface thereof, and the base and connector portions 18, 20 define generally planar bottom surfaces which extend in generally co-planar relation to each other, but are perpendicularly recessed relative to the bottom surface of the die pad portion 20. It is also contemplated that the die pad portion 20 may be partially etched so as to define a shoulder or shelf 32 which extends along those three side surfaces thereof protruding from the base portion 18. The shelf 32 is perpendicularly recessed relative to the bottom surface of the die pad portion 20, and extends in opposed relation to the top surface thereof. The shelf 32 also extends in generally co-planar relation to the bottom surfaces of the base and connector portions 18, 22. The use of the shelf 32 will be described in more detail below.


Despite the first section 14 being partially etched as described above, it is contemplated that the second section 16 of the leadframe 12 will be of substantially uniform thickness. In this regard, the base, prong and connector portions 24, 26, 28 define generally planar top surfaces which extend in generally co-planar relation to each other. The top surfaces of the base, prong and connector portions 24, 26, 28 also extend in generally co-planar relation to the top surfaces of the base, die pad and connector portions 18, 20, 22 of the first section 14 in the fully formed module 10. The base, prong and connector portions 24, 26, 28 also define generally planar bottom surfaces which extend in generally co-planar relation to each other, and in generally co-planar relation to the bottom surfaces of the base and connector portions 18, 22 of the first section 14 in the fully formed module 10.


The module 10 constructed in accordance with the present invention further comprises a receiver die 34, the back or bottom surface of which is mounted and electrically connected to the top surface of the die pad portion 20 of the first section 14 of the leadframe 12. The receiver die 34 has a generally quadrangular (e.g., square) configuration, and includes two contact strips 36 disposed on the front or top surface thereof. As seen in FIG. 6, the contact strips 36 extend in spaced, generally parallel relation to each other along respective ones of an opposed pair of side edges of the receiver die 34. As further seen in FIG. 6, in the module 10, each of the contact strips 36 is electrically connected to a respective one of the prong portions 26 of the second section 16 of the leadframe 12 by a plurality of conductive wires 38.


In addition to the receiver die 34, the module 10 includes an electronic device 40 such as a packaged diode or a rectifier die attached to the top surface of the base portion 18 of the first section 14. The electronic device 40 is itself electrically connected to one of the prong portions 26 of the second section 16 through the use of at least one conductive wire 42.


In the module 10, the receiver die 34, the electronic device 40, the conductive wires 38, 42, and portions of the first and second sections 14, 16 of the leadframe 12 are covered by an encapsulant material which, upon hardening, defines a molded body 44 of the module 10. As seen in FIGS. 1-5, the body 44 has a generally square, frame-like configuration. More particularly, the body 44 is formed such that virtually the entire leadframe 12 is covered thereby, except for the connector portions 22, 28 and the bottom surface of the die pad portion 20. In this regard, the connector portions 22, 28 protrude from respective ones of an opposed pair of side surfaces defined by the body 44, with the bottom surface of the die pad portion 20 extending in substantially flush relation to a generally planar bottom surface defined by the body 44. In the completed module 10, the exposed connector portions 22, 28 define cabling flanges, and may optionally include apertures therein for the screw fastening of electrical wires. The top surface of the receiver die 34, except for a peripheral portion thereof, is exposed in a generally quadrangular window 46 defined by the body 44 and formed within the approximate center of the generally planar top surface thereof. As best seen in FIGS. 4 and 5, the window 46 has a tapered profile, i.e., those surfaces of the body 44 defining the window 46 extend angularly from the top surface of the body 44 to the top surface of the receiver die 34. As indicated above, the entirety of the electronic device 40 is covered by the body 44, as are the wires 38, 42. Though not shown in FIGS. 1-5, it is contemplated that the body 44 may alternatively be formed such that portions of the prong portions 26 of the second section 16 of the leadframe 12 protrude slightly from respective ones of an opposed pair of side surfaces of the body 44. The body 44 also covers the shelf 32 to create a firm mechanical interlock between the body 44 and the die pad portion 20 (and hence the first section 14 of the leadframe 12).


Referring now to FIG. 4, there is shown an exemplary operative environment for the module 10 having the above described structural attributes. As shown in FIG. 4, it is contemplated that the fully formed module 10 may be attached to an underlying heat sink 48 through the use of a layer 50 of a thermal interface material. Additionally, it is contemplated that a light concentrating device such as a light guide or optical rod 52 may be cooperatively engaged to the module 10. More particularly, one end of the optical rod 52 may be secured to that portion of the top surface of the receiver die 34 exposed in the window 46 through the use of a layer 54 of an index matching glue. As is also apparent from FIG. 4, the window 46 included in the body 44, and in particular the tapered or angled side walls of the body 44 defining the window 46, define an alignment feature which properly aligns the optical rod 52 over the receiver die 34. Advantageously, the exposed bottom surface of the die pad portion 20 within the body 44 acts as a heat sink and creates a thermal dissipation benefit in the module 10. More particularly, heat transferred from the receiver die 34 into the die pad portion 20 can in turn be transferred from the exposed bottom surface of the die pad portion 20 into the underlying heat sink 48 via the layer 50. Though the side walls of the body 44 defining the window 46 are described above as being tapered or angled to create an alignment feature for the optical rod 52, those of ordinary skill in the art will recognize that such side walls may alternatively be stepped or otherwise mechanically adapted in a manner adapted to facilitate the alignment of the optical rod 52 (or other light concentrating device) with the portion of the receiver die 34 exposed in the window 46.


Due to the structural attributes of the leadframe 12 within the module 10, it is contemplated that multiple leadframes 12 may be provided in a common leadframe strip 56, an example of which is shown in FIG. 7. In this regard, since the module 10 is well suited to strip based assembly and test capability, the assembly and testing thereof can be fully automated, thus substantially reducing the fabrication costs associated with the module 10.


Referring now to FIG. 5A, there is provided a cross-sectional view similar to FIG. 5, but depicting a CPV module 10a which constitutes a variant of the CPV module 10 described above. More particularly, the distinction between the modules 10a, 10 lies in the substitution of the above-described leadframe 12 of the module 10 with the leadframe 12a included in the module 10a. The leadframe 12a includes the above-described second section 16. However, in the leadframe 12a, the above-described first section 14 is replaced with the first section 14a which is of uniform thickness, and does not include the half-etched features described above in relation to the first section 14 of the leadframe 12. In this regard, in order for the generally planar bottom surface of the die pad portion 20a of the first section 14a to be exposed in the generally planar bottom surface of the body 44 in the manner shown in FIG. 5A, the base portion of the first section 14a is preferably formed to include a downset therein. As a result, the generally planar top surface of the die pad portion 20a does not extend in generally co-planar relation to the top surfaces of the base, prong and connector portions 24, 26, 28 of the second section 16, but rather is recessed relative thereto as shown in FIG. 5A.


Referring now to FIGS. 8 and 9, there is shown a CPV module 100 constructed in accordance with a second embodiment of the present invention. The module 100 comprises a leadframe 112 which is preferably fabricated from a conductive metal material, such as copper. The leadframe 112 includes a first (bottom) section 114 and a separate second (top) section 116. The first section 114 includes a generally quadrangular die pad portion 120 which defines opposed, generally planar top and bottom surfaces. In addition to the die pad portion 120, the first section 114 includes a flange portion 118 which extends generally perpendicularly relative to the top surface of the die pad portion 120 along one of the side edges thereof. Extending perpendicularly from the approximate center of the distal edge of the flange portion 118 is a generally quadrangular connector portion 122 of the first section 114. Thus, in the first section 114, the die pad portion 120 and the connector portion 122 extend along respective ones of a spaced, generally parallel pair of planes, with the connector portion 122 being elevated above the die pad portion 120 when viewed from the perspective shown in FIG. 9. In the first section 114, the thickness of the die pad portion 120 exceeds the thicknesses of the flange and connector portions 118, 122 which are substantially equal to each other.


In the module 100, the back or bottom surface of a generally quadrangular (e.g., square) receiver die 134 is mounted and electrically connected to the top surface of the die pad portion 120 of the first section 114. Like the receiver die 34 described above, the receiver die 134 includes two contact strips 136 disposed on the front or top surface thereof, the contact strips 136 extending in spaced, generally parallel relation to each other along respective ones of an opposed pair of side edges of the receiver die 134.


The second section 116 of the leadframe 112 in the module 100 includes a generally rectangular base portion 124 defining opposed pairs of longitudinally and laterally extending side edges. In addition to the base portion 124, the second section 116 includes an identically configured pair of prong portions 126 which extend in spaced, generally parallel relation to each other from a common longitudinally extending side edge of the base portion 124. Additionally, extending from the longitudinally extending side edge of the base portion 124 opposite the side edge having the prong portions 126 extending therefrom is a generally quadrangular connector portion 128 of the second section 116, the connector portion 128 being identically configured to the connector portion 122 of the first section 114. As seen in FIG. 9, in contrast to the first section 114 wherein the die pad portion 120 and connector portion 122 extend along respective ones of two different planes as described above, the base, prong and connector portions 124, 126, 128 of the second section 16 each extend along a common plane, and are of substantially uniform thicknesses.


In the module 100, the generally planar bottom surfaces of the prong portions 126 of the second section 116 are electrically connected to respective ones of the contact strips 136 of the receiver die 134 through the use of respective layers or strips 158 of a conductive bonding material. Thus, the strips 158 effectively place the receiver die 134 into electrical communication with the second section 116 of the leadframe 112. Thus, the module 100 is devoid of any conductive wires. As seen in FIG. 9, in the fully assembled module 100, the thicknesses of the receiver die 134 and second section 116 are preferably such that the co-planar top surfaces of the base, prong and connector portions 124, 126, 128 of the second section 116 extend in generally co-planar relation to the generally planar top surface of the connector portion 122 of the first section 114. As is also apparent from FIG. 8, the central portion of the top surface of the receiver die 134 is exposed between the prong portions 126 of the second section 116, and further between the base portion 124 of the second section 116 and the flange portion 118 of the first section 114. Though not shown in FIGS. 8 and 9, it is contemplated that the connector portions 122, 128, which define cabling flanges, may also optionally include apertures therein for the screw fastening of electrical wires.


Referring now to FIG. 9A, there is shown a CPV module 100a which comprises a first relatively minor variant of the above-described CPV module 100. In this regard, only the distinctions between the modules 100, 100a are described below. The sole distinction between the modules 100, 100a lies in the orientations of the connector portions 122a, 128a in the module 100a, in comparison to the orientations of the connector portions 122, 128 in the module 100. More particularly, in the module 100a, the connector portion 122a does not extend generally perpendicularly relative to the flange portion 118 of the first section 114 of the leadframe 112. Rather, like the flange portion 118, the connector portion 122a extends generally perpendicularly relative to the top surface of the die pad portion 120. Additionally, in the module 100a, the connector portion 128a of the second section 116 extends generally perpendicularly relative to the base portion 124 thereof, rather than in generally co-planar relation thereto.


Referring now to FIGS. 10 and 11, there is shown a CPV module 100b which comprises a second variant of the above-described CPV module 100. Only the distinctions between the modules 100, 100b are described below. The primary distinction between the modules 100, 100b lies in the first section 114 of the leadframe 112 in the module 100b being pre-molded, i.e., having an encapsulant material applied thereto which, upon hardening, forms a molded body 144 on the first section 114. As seen in FIG. 10, the molded body 144 has a generally quadrangular, frame-like configuration. The body 144 is formed such that it extends about and covers the peripheral side surfaces of the die pad portion 120 of the first section 114. The body 144 also covers a peripheral portion of the top surface of the die pad portion 120. However, as seen in FIG. 11, the bottom surface of the die pad portion 120 is exposed in and substantially flush with the generally planar bottom surface defined by the body 144. In addition, the body 144 covers the entirety of the flange portion 118 of the first section 114, and a portion of the generally planar bottom surface of the connector portion 122 thereof. However, the generally planar top surface of the connector portion 122 extends in substantially flush relation to the generally planar top surface defined by the body 144. In FIG. 10, the connector portion 122 of the first section 114 is depicted as including one of the above-described apertures for the screw fastening of electrical wires.


As further seen in FIG. 10, the body 144 is formed to include a three-sided shelf 160 which is perpendicularly recessed relative to the top surface thereof. In this regard, the shelf 160 extends along those sides of the frame-like body 144 other for than that side which extends along and covers the flange portion 118 of the first section 114. Additionally, formed within the top surface of that side of the body 144 opposite the side covering the flange portion 118 is a generally quadrangular recess 162 which extends to the shelf 160. As seen in FIG. 11, in the fully assembled module 100b, the second section 116 of the leadframe 112 is nested within the body 144 such that outer, peripheral portions of both the base portion 124 and prong portions 126 rests upon the shelf 160. In this respect, the recess 162 accommodates a portion of the connector portion 128 of the second section 116 when the base and prong portions 124, 126 thereof are rested on the shelf 160 in the aforementioned manner. As indicated above, the depth of the shelf 160 and the recess 162 relative to the top surface of the body 144 are equal to each other, with such depth being selected such that the generally planar top surfaces of the base, prong and connector portions 124, 126, 128 of the second section 116 extend in substantially flush, co-planar relation to the top surface of the body 144 when the second section 116 is nested therein. In the module 100b, those inner portions of the prong portions 126 not resting on the shelf 160 are electrically connected to the receiver die 134 in the above-described manner through the use of the aforementioned strips 158 of conductive bonding material.


A further distinction between the modules 100, 100b lies in the structural attributes of the die pad portion 120 in the first section 114 of the leadframe 112 included in the module 100b, in comparison to the die pad portion 120 included in the first section 114 of the leadframe 112 included in the module 100. More particularly, the die pad portion 120 of the module 100b is preferably partially etched so as to define a shoulder or shelf 132 which extends along three of the four side surfaces thereof. In this regard, the shelf 132 does not extend along that side surface of the die pad portion 120 to which the flange portion 118 is integrally connected. The shelf 132 is perpendicularly recessed relative to the bottom surface of the die pad portion 120, and extends in opposed relation to the top surface thereof. The shelf 132 is covered by the fully formed body 144, thus creating a firm mechanical interlock between the body 144 and the die pad portion 120 (and hence the first section 114 of the leadframe 112).


Referring now to FIG. 12, there is shown a CPV module 200 constructed in accordance with a third embodiment of the present invention. The CPV module 200 is substantially similar to the above-described CPV module 100, with only the distinctions between the CPV modules 200, 100 being described below.


The sole distinction between the CPV modules 200, 100 lies in the second section 116 of the leadframe 112 included in the module 200 further defining a raised lip or edge 164. As seen in FIGS. 12 and 13, the edge 164 has a three-sided configuration, and extends along the inner edges of the prong portions 136 of the second section 116, as well as a portion of the inner edge of the base portion 124 thereof. The raised edge 164 included with the first section 116 of the leadframe 112 of the module 200 is used to define an alignment feature which properly aligns a light concentrating device such as a light guide or optical rod over the receiver die 134 of the module 200. Additionally, in the module 200, the connector portions 122, 128 are each depicted as including the above-described apertures for the screw fastening of electrical wires.


Referring now to FIG. 13A, there is shown a CPV module 200a which comprises a first relatively minor variant of the above-described CPV module 200. In this regard, only the distinctions between the modules 200, 200a are described below. The sole distinction between the modules 200, 200a lies in the orientations of the connector portions 122a, 128a in the module 200a, in comparison to the orientations of the connector portions 122, 128 in the module 200. More particularly, in the module 200a, the connector portion 122a does not extend generally perpendicularly relative to the flange portion 118 of the first section 114 of the leadframe 112. Rather, like the flange portion 118, the connector portion 122a extends generally perpendicularly relative to the top surface of the die pad portion 120. Additionally, in the module 200a, the connector portion 128a of the second section 116 extends generally perpendicularly relative to the base portion 124 thereof, rather than in generally co-planar relation thereto.


Referring now to FIG. 14, there is shown a CPV module 200b which comprises a second variant of the above-described CPV module 200. Only the distinctions between the modules 200, 200b are described below. The sole distinction between the modules 200, 200b lies in the second section 116 of the leadframe 112 in the module 200b further including a cross member portion 166 which extends between and interconnects the distal ends of the prong portions 126. Additionally, in the first section 116 of the leadframe 112 included in the module 200b, the raised edge 164 has a generally quadrangular, four-sided configuration, and extends along the inner edge of the cross member portion 166, in addition to the inner edges of the prong portions 136 and the inner edge of the base portion 124.


In FIG. 14, the module 200b is shown in an exemplary operative environment. More particularly, the module 200b is shown as being attached to an underlying heat sink 148 though the use of a layer 150 of a thermal interface material. Additionally, a light concentrating device such a light guide or optical rod 152 is cooperatively engaged to the module 200b. More particularly, one end of the optical rod 152 is secured to that portion of the front or top surface of the receiver die 134 exposed within the raised edge 164 through the use of a layer 154 of an index matching glue. The raised edge 164 included with the second section 116 of the leadframe 112 creates an alignment feature which properly aligns the optical rod 152 over the receiver die 134. Additionally, the die pad portion 120 of the first section 114 of the leadframe 112, and in particular the bottom surface thereof, acts as a heat sink and creates a thermal dissipation benefit in the module 200b. More particularly, heat transferred from the receiver die 134 into the die pad portion 120 can in turn be transferred from the bottom surface of the die pad portion 120 into the underlying heat sink 148 via the layer 150.


Referring now to FIGS. 15 and 16, there is shown a CPV module 300 constructed in accordance with a fourth embodiment of the present invention. The module 300 comprises a leadframe 312 which is preferably fabricated from a conductive metal material, such as copper. The leadframe 312 includes a first (bottom) section 314 and a separate second (top) section 316. The first section 314 includes a generally quadrangular die pad portion 320 which defines opposed, generally planar top and bottom surfaces. In addition to the die pad portion 320, the first section 314 includes a flange portion 318 which extends generally perpendicularly relative to the top surface of the die pad portion 320 along approximately half the length of one of the side edges thereof. Extending perpendicularly from the distal edge of the flange portion 318 is a generally quadrangular connector portion 322 of the first section 314. Thus, in the first section 314, the die pad portion 320 and the connector portion 322 extend along respective ones of a spaced, generally parallel pair of planes, with the connector portion 322 being elevated above the die pad portion 320 when viewed from the perspective shown in FIG. 16. In the first section 314, the thickness of the die pad portion 320 exceeds the thicknesses of the flange and connector portions 318, 322 which are substantially equal to each other.


In the module 300, the back or bottom surface of a generally quadrangular (e.g., square) receiver die 334 is mounted and electrically connected to the top surface of the die pad portion 320 of the first section 314. Like the receiver die 34 described above, the receiver die 334 includes two contact strips 336 disposed on the front or top surface thereof, the contact strips 336 extending in spaced, generally parallel relation to each other along respective ones of an opposed pair of side edges of the receiver die 334.


The second section 316 of the leadframe 312 in the module 300 includes a four-sided frame portion 368 defining opposed pairs of spaced, generally parallel sides. Extending from one side of the frame portion 368 is a generally quadrangular connector portion 328 of the second section 316, the connector portion 328 being identically configured to the connector portion 322 of the first section 314. In contrast to the first section 314 wherein the die pad portion 320 and connector portion 322 extend along respective ones of two different planes as described above, the frame and connector portions 368, 328 of the second section 316 each extend along a common plane, and are of substantially uniform thicknesses.


In the module 300, the generally planar bottom surfaces of an opposed pair of sides of the frame portion 368 are electrically connected to respective ones of the contact strips 336 of the receiver die 334 through the use of respective layers or strips 358 of a conductive bonding material. Thus, the strips 358 effectively place the receiver die 334 into electrical communication with the second section 316 of the leadframe 312. Thus, the module 300 is devoid of any conductive wires. As seen in FIG. 16, in the fully assembled module 300, the thicknesses of the receiver die 334 and second section 316 are preferably such that the co-planar top surfaces of the frame and connector portions 368, 328 of the second section 316 extend in generally co-planar relation to the generally planar top surface of the connector portion 322 of the first section 314. Additionally, as is seen in FIG. 15, the first and second sections 314, 316 of the leadframe 312 are oriented such that the connector portions 322, 328 extend in side-by-side relation to each other. Though not shown in FIGS. 15 and 16, it is contemplated that the connector portions 322, 328, which define cabling flanges, may also optionally include apertures therein for the screw fastening of electrical wires.


As is further seen in FIG. 16, it is contemplated that the die pad portion 320 of the first section 314 of the leadframe 312 may be partially etched so as to define a shoulder or shelf 332 which extends along three of the four sides thereof. In this regard, the shelf 332 does not extend along that side surface of the die pad portion 320 to which the flange portion 318 is integrally connected. The shelf 332 is perpendicularly recessed relative to the bottom surface of the die pad portion 320, and extends in opposed relation to the top surface thereof. The use of the shelf 332 will be described in more detail below in relation to a variant of the module 300.


Referring now to FIGS. 17 and 18, there is shown a CPV module 300a which comprises a variant of the above-described CPV module 300. Only the distinctions between the modules 300, 300a are described below. The primary distinction between the modules 300, 300a lies in the leadframe 312 in the module 300a having an encapsulant material applied thereto which, upon hardening, forms a molded body 344 on the leadframe 312. As seen in FIG. 17, the molded body 344 has a generally quadrangular, frame-like configuration. The body 344 is formed such that it extends about and covers the peripheral side surfaces of the die pad portion 320 of the first section 314. The body 344 also covers a peripheral portion of the top surface of the die pad portion 320. However, as seen in FIG. 18, the bottom surface of the die pad portion 320 is exposed in and substantially flush with the generally planar bottom surface defined by the body 344. In addition, the body 344 covers the entirety of the flange portion 318 of the first section 314, and a portion of the generally planar bottom surface of the connector portion 322 thereof. However, the majority of the connector portion 322 protrudes from a side surface of the body 344. The shelf 332 is also covered by the body 344, thus creating a firm mechanical interlock between the body 344 and the die pad portion 320 (and hence the first section 314 of the leadframe 312). The body 344 also covers the entirety of the frame portion 368 of the second section 316 of the leadframe 312, and a portion of the connector portion 328 thereof. However, the majority of the connector portion 328 protrudes from the same side surface of the body 344 from which the connector portion 322 protrudes. Importantly, as is also seen in FIG. 17, the fully formed body 344 defines a window 346 in which a portion of the front or top surface of the receiver die 334 is exposed. Advantageously, the body 344 creates an alignment feature which may be used to properly align a light concentrating device such as a light guide or optical rod with the exposed surface of the receiver die 334.


Referring now to FIG. 19, there is shown a CPV module 400 constructed in accordance with a fourth embodiment of the present invention. The module 400 is substantially similar to the above-described module 300, with only the distinctions between the modules 300, 400 being described below.


The sole distinction between the modules 300, 400 lies in the second section 316 of the leadframe 312 included in the module 400 being rotated approximately 180° relative to the orientation thereof in the module 300, as depicted in FIG. 15. Thus, in the module 400, the connector portions 322, 328 do not extend in side-by-side relation to each other. Rather, the connector portions 322, 328 are disposed in opposed relation to each other, i.e., extend in opposite directions. Additionally, in the module 400 shown in FIG. 19, the connector portions 322, 328 are each depicted as including one of the above-described apertures for the screw fastening of electrical wires. Though not shown in FIG. 19, it is contemplated that the leadframe 312 of the module 400 may be partially encapsulated with the above described body 344.


This disclosure provides exemplary embodiments of the present invention. The scope of the present invention is not limited by these exemplary embodiments. Numerous variations, whether explicitly provided for by the specification or implied by the specification, such as variations in structure, dimension, type of material and manufacturing process may be implemented by one of skill in the art in view of this disclosure.

Claims
  • 1. A CPV module, comprising: a leadframe including a first section and a second section disposed in spaced relation to each other, the first section including a connector portion and a die pad portion that is attached to the connector portion and defines opposed top and bottom surfaces, the second section including a base portion, a connector portion extending from the base portion, and at least two prong portions extending from the base portion in spaced, generally parallel relation to each other, wherein the connector portions of the first and second sections of the leadframe extend in generally co-planar relation to each other along a common first plane, and the die pad portion of the first section extend along a second plane that is disposed in spaced, generally parallel relation to the first plane; anda receiver die mounted and electrically connected to the first section, and electrically connected to each of the prong portions of the second section by respective ones of at least first and second electrical connectors.
  • 2. The CPV module of claim 1 wherein the first and second electrical connectors each comprise a plurality of conductive wires.
  • 3. The CPV module of claim 2 further comprising a molded body which covers the conductive wires, a portion of the receiver die, and portions of the first and second sections of the leadframe, the body defining a window in which a portion of the receiver die is exposed.
  • 4. The CPV module of claim 3 wherein the window is defined by a surface of the body which is mechanically adapted to facilitate the alignment of a light concentrating device with the portion of the receiver die exposed in the window.
  • 5. The CPV module of claim 3 wherein the receiver die is mounted and electrically connected to the top surface of the die pad portion, with the bottom surface of the die pad portion being exposed in the body.
  • 6. The CPV module of claim 5 wherein the die pad portion includes a recessed shelf extending at least partially thereabout and covered by the body to form a mechanical interlock between the first section of the leadframe and the body.
  • 7. The CPV module of claim 1 wherein a surface of each of the at least two prong portions is attached to the upper surface of the receiver die with a strip of a conductive bonding material.
  • 8. The CPV module of claim 1, further comprising a molded body that partially covers the leadframe such that the bottom surface of the die pad portion of the first section is exposed in the molded body and the first and second connector portions protrude from the body, the molded body defining a window in which a portion of the receiver die is exposed.
  • 9. The CPV module of claim 1, further comprising a light concentrating device cooperatively engaged with the receiver die.
  • 10. The CPV module of claim 1 wherein the at least two prong portions of the second section extend in spaced, generally parallel relation to the die pad portion of the first section, the connector portion of the first section extends generally perpendicularly relative to the die pad portion thereof, and the connector portion of the second section extends generally perpendicularly relative to the prong portions thereof and in spaced generally parallel relation to the connector portion of the first section.
  • 11. The CPV module of claim 1 wherein the second section of the leadframe further comprises a raised edge which extends along the base and prong portions thereof.
  • 12. The CPV module of claim 11 wherein the second section of the leadframe further includes a cross member portion which extends between and interconnects the prong portions thereof, the raised edge further extending along the cross member portion.
  • 13. A CPV module, comprising: a leadframe including: a first section defining a die pad portion having opposed top and bottom surfaces and a connector portion attached to the die pad portion; anda second section disposed in spaced relation to the first section, the second section including a base portion, a connector portion attached to the base portion, and a pair of prong portions attached to and extending from the base portion in spaced, generally parallel relation to each other;a receiver die mounted and electrically connected to the die pad portion of the first section, and electrically connected to the prong portions of the second section; anda molded body which covers a portion of the receiver die, and portions of the first and second sections of the leadframe such that at least the bottom surface of the die pad portion of the first section, the connector portions of the first and second sections, and a portion of the receiver die are exposed in the body.
  • 14. The CPV module of claim 13, wherein the pair of prong portions is attached to an upper surface of the receiver die with conductive bonding material.
  • 15. The CPV module of claim 13, wherein the receiver die is electrically connected to the prong portions of the second section with a plurality of conductive wires.
  • 16. A CPV module, comprising: a leadframe including: a first section defining a die pad portion having opposed top and bottom surfaces and a connector portion attached to the die pad portion; anda second section disposed in spaced relation to the first section, the second section including a base portion, a connector portion attached to the base portion, and a pair of prong portions attached to and extending from the base portion in spaced relation to each other; anda receiver die having a first major surface and an opposed second major surface, the second major surface mounted and electrically connected to the die pad portion of the first section, wherein surfaces of the prong portions are attached and electrically connected to the first major surface of the receiver die with a conductive bonding material.
  • 17. The CPV module of claim 16 further comprising a molded body that covers a portion of the receiver die, and portions of the first and second sections of the leadframe such that at least a portion of the bottom surface of the die pad portion of the first section, the connector portions of the first and second sections, and a portion of the receiver die are exposed in the molded body.
  • 18. The CPV module of claim 17, wherein the molded body defines a window in which the portion of the receiver die is exposed, and wherein the window is defined by a surface of the molded body that is mechanically adapted to facilitate the alignment of a light concentrating device with the portion of the receiver die exposed in the window.
  • 19. A CPV module, comprising: a leadframe including a first section and a second section disposed in spaced relation to each other, the first section including a first connector portion and a die pad portion that is attached to the first connector portion and defines opposed top and bottom surfaces, the second section including a frame portion and a second connector portion extending from the frame portion, the frame portion comprising at least two prong portions;a receiver die mounted and electrically connected to the top surface of the die pad portion, the at least two prong portions attached and electrically connected to the receiver die; anda molded body that partially covers the leadframe such that the bottom surface of the die pad portion of the first section is exposed in the molded body and the first connector portion and the second connector portion protrude from the body, the molded body defining a window in which a portion of the receiver die is exposed.
  • 20. The CPV module of claim 19, wherein the first and second connector portions of the leadframe extend in side-by-side relation to each other.
US Referenced Citations (383)
Number Name Date Kind
2596993 Gookin May 1952 A
3435815 Forcier Apr 1969 A
3734660 Davies et al. May 1973 A
3838984 Crane et al. Oct 1974 A
4054238 Lloyd et al. Oct 1977 A
4189342 Kock Feb 1980 A
4221925 Finley et al. Sep 1980 A
4258381 Inaba Mar 1981 A
4289922 Devlin Sep 1981 A
4301464 Otsuki et al. Nov 1981 A
4332537 Slepcevic Jun 1982 A
4417266 Grabbe Nov 1983 A
4451224 Harding May 1984 A
4530152 Roche et al. Jul 1985 A
4541003 Otsuka et al. Sep 1985 A
4646710 Schmid et al. Mar 1987 A
4707724 Suzuki et al. Nov 1987 A
4727633 Herrick Mar 1988 A
4737839 Burt Apr 1988 A
4756080 Thorp, Jr. et al. Jul 1988 A
4812896 Rothgery et al. Mar 1989 A
4862245 Pashby et al. Aug 1989 A
4862246 Masuda et al. Aug 1989 A
4907067 Derryberry Mar 1990 A
4920074 Shimizu et al. Apr 1990 A
4935803 Kalfus et al. Jun 1990 A
4942454 Mori et al. Jul 1990 A
4987475 Sclesinger et al. Jan 1991 A
5018003 Yasunaga May 1991 A
5029386 Chao et al. Jul 1991 A
5041902 McShane Aug 1991 A
5057805 Kadowaki Oct 1991 A
5057900 Yamazaki Oct 1991 A
5059379 Tsutsumi et al. Oct 1991 A
5065223 Matsuki et al. Nov 1991 A
5070039 Johnson et al. Dec 1991 A
5079190 Mihara Jan 1992 A
5087961 Long et al. Feb 1992 A
5091341 Asada et al. Feb 1992 A
5096852 Hobson et al. Mar 1992 A
5118298 Murphy Jun 1992 A
5122860 Kikuchi et al. Jun 1992 A
5134773 LeMaire et al. Aug 1992 A
5151039 Murphy Sep 1992 A
5157475 Yamaguchi Oct 1992 A
5157480 McShane et al. Oct 1992 A
5168368 Gow, 3rd et al. Dec 1992 A
5172213 Zimmerman Dec 1992 A
5172214 Casto Dec 1992 A
5175060 Enomoto et al. Dec 1992 A
5200362 Lin et al. Apr 1993 A
5200809 Kwon Apr 1993 A
5214845 King et al. Jun 1993 A
5216278 Lin et al. Jun 1993 A
5218231 Kudo Jun 1993 A
5221642 Burns Jun 1993 A
5250841 Sloan et al. Oct 1993 A
5252853 Michii Oct 1993 A
5258094 Furui et al. Nov 1993 A
5266834 Nishi et al. Nov 1993 A
5273938 Lin et al. Dec 1993 A
5277972 Sakumoto et al. Jan 1994 A
5278446 Nagaraj et al. Jan 1994 A
5279029 Burns Jan 1994 A
5281849 Singh Deo et al. Jan 1994 A
5285352 Pastore et al. Feb 1994 A
5294897 Notani et al. Mar 1994 A
5307362 Tanaka et al. Apr 1994 A
5327008 Djennas et al. Jul 1994 A
5332864 Liang et al. Jul 1994 A
5335771 Murphy Aug 1994 A
5336931 Juskey et al. Aug 1994 A
5343076 Katayama et al. Aug 1994 A
5358905 Chiu Oct 1994 A
5365106 Watanabe Nov 1994 A
5381042 Lerner et al. Jan 1995 A
5391439 Tomita et al. Feb 1995 A
5406124 Morita et al. Apr 1995 A
5410180 Fujii et al. Apr 1995 A
5414299 Wang et al. May 1995 A
5417905 LeMaire et al. May 1995 A
5424576 Djennas et al. Jun 1995 A
5428248 Cha Jun 1995 A
5435057 Bindra et al. Jul 1995 A
5444301 Song et al. Aug 1995 A
5452511 Chang Sep 1995 A
5454905 Fogelson Oct 1995 A
5467032 Lee Nov 1995 A
5474958 Djennas et al. Dec 1995 A
5484274 Neu Jan 1996 A
5493151 Asada et al. Feb 1996 A
5508556 Lin Apr 1996 A
5517056 Bigler et al. May 1996 A
5521429 Aono et al. May 1996 A
5528076 Pavio Jun 1996 A
5534467 Rostoker Jul 1996 A
5539251 Iverson et al. Jul 1996 A
5543657 Diffenderfer et al. Aug 1996 A
5544412 Romero et al. Aug 1996 A
5545923 Barber Aug 1996 A
5581122 Chao et al. Dec 1996 A
5592019 Ueda et al. Jan 1997 A
5592025 Clark et al. Jan 1997 A
5594274 Suetaki Jan 1997 A
5595934 Kim Jan 1997 A
5604376 Hamburgen et al. Feb 1997 A
5608265 Kitano et al. Mar 1997 A
5608267 Mahulikar et al. Mar 1997 A
5622873 Kim et al. Apr 1997 A
5625222 Yoneda et al. Apr 1997 A
5631191 Durand et al. May 1997 A
5633528 Abbott et al. May 1997 A
5637922 Fillion et al. Jun 1997 A
5639990 Nishihara et al. Jun 1997 A
5640047 Nakashima Jun 1997 A
5641997 Ohta et al. Jun 1997 A
5643433 Fukase et al. Jul 1997 A
5644169 Chun Jul 1997 A
5646831 Manteghi Jul 1997 A
5650663 Parthasarathi Jul 1997 A
5661088 Tessier et al. Aug 1997 A
5665996 Williams et al. Sep 1997 A
5673479 Hawthorne Oct 1997 A
5683806 Sakumoto et al. Nov 1997 A
5683943 Yamada Nov 1997 A
5689135 Ball Nov 1997 A
5696666 Miles et al. Dec 1997 A
5701034 Marrs Dec 1997 A
5703407 Hori Dec 1997 A
5710064 Song et al. Jan 1998 A
5723899 Shin Mar 1998 A
5724233 Honda et al. Mar 1998 A
5726493 Yamashita Mar 1998 A
5736432 Mackessy Apr 1998 A
5745984 Cole, Jr. et al. May 1998 A
5748658 Nakanishi et al. May 1998 A
5753532 Sim May 1998 A
5753977 Kusaka et al. May 1998 A
5766972 Takahashi et al. Jun 1998 A
5767566 Suda Jun 1998 A
5770888 Song et al. Jun 1998 A
5776798 Quan et al. Jul 1998 A
5783861 Son Jul 1998 A
5801440 Chu et al. Sep 1998 A
5814877 Diffenderfer et al. Sep 1998 A
5814881 Alagaratnam et al. Sep 1998 A
5814883 Sawai et al. Sep 1998 A
5814884 Davies et al. Sep 1998 A
5817540 Wark Oct 1998 A
5818105 Kouda Oct 1998 A
5821457 Mosley et al. Oct 1998 A
5821615 Lee Oct 1998 A
5834830 Cho Nov 1998 A
5835988 Ishii Nov 1998 A
5844306 Fujita et al. Dec 1998 A
5854511 Shin et al. Dec 1998 A
5854512 Manteghi Dec 1998 A
5856911 Riley Jan 1999 A
5859471 Kuraishi et al. Jan 1999 A
5866939 Shin et al. Feb 1999 A
5866942 Suzuki et al. Feb 1999 A
5871782 Choi Feb 1999 A
5874784 Aoki et al. Feb 1999 A
5877043 Alcoe et al. Mar 1999 A
5886397 Ewer Mar 1999 A
5973935 Schoenfeld et al. Oct 1999 A
5977630 Woodworth et al. Nov 1999 A
5998867 Jensen et al. Dec 1999 A
6005287 Kaiya et al. Dec 1999 A
6040626 Cheah et al. Mar 2000 A
RE36773 Nomi et al. Jul 2000 E
6107679 Noguchi Aug 2000 A
6143981 Glenn Nov 2000 A
6150709 Shin et al. Nov 2000 A
6166430 Yamaguchi Dec 2000 A
6169329 Farnworth et al. Jan 2001 B1
6177718 Kozono Jan 2001 B1
6181002 Juso et al. Jan 2001 B1
6184465 Corisis Feb 2001 B1
6184573 Pu Feb 2001 B1
6194777 Abbott et al. Feb 2001 B1
6197615 Song et al. Mar 2001 B1
6198171 Huang et al. Mar 2001 B1
6201186 Daniels et al. Mar 2001 B1
6201292 Yagi et al. Mar 2001 B1
6204554 Ewer et al. Mar 2001 B1
6208020 Minamio et al. Mar 2001 B1
6208021 Ohuchi et al. Mar 2001 B1
6208023 Nakayama et al. Mar 2001 B1
6211462 Carter, Jr. et al. Apr 2001 B1
6218731 Huang et al. Apr 2001 B1
6222258 Asano et al. Apr 2001 B1
6222259 Park et al. Apr 2001 B1
6225146 Yamaguchi et al. May 2001 B1
6229200 McClellan et al. May 2001 B1
6229205 Jeong et al. May 2001 B1
6238952 Lin et al. May 2001 B1
6239367 Hsuan et al. May 2001 B1
6239384 Smith et al. May 2001 B1
6242281 McClellan et al. Jun 2001 B1
6256200 Lam et al. Jul 2001 B1
6258629 Niones et al. Jul 2001 B1
6261864 Jung et al. Jul 2001 B1
6281566 Magni Aug 2001 B1
6281568 Glenn et al. Aug 2001 B1
6282094 Lo et al. Aug 2001 B1
6282095 Houghton et al. Aug 2001 B1
6285075 Combs et al. Sep 2001 B1
6291271 Lee et al. Sep 2001 B1
6291273 Miyaki et al. Sep 2001 B1
6294100 Fan et al. Sep 2001 B1
6294830 Fjelstad Sep 2001 B1
6295977 Ripper et al. Oct 2001 B1
6297548 Moden et al. Oct 2001 B1
6303984 Corisis Oct 2001 B1
6303997 Lee Oct 2001 B1
6306685 Liu et al. Oct 2001 B1
6307272 Takahashi et al. Oct 2001 B1
6309909 Ohgiyama Oct 2001 B1
6316822 Venkateshwaran et al. Nov 2001 B1
6316838 Ozawa et al. Nov 2001 B1
6323550 Martin et al. Nov 2001 B1
6326243 Suzuya et al. Dec 2001 B1
6326244 Brooks et al. Dec 2001 B1
6326678 Karnezos et al. Dec 2001 B1
6335564 Pour Jan 2002 B1
6337510 Chun-Jen et al. Jan 2002 B1
6339252 Niones et al. Jan 2002 B1
6339255 Shin Jan 2002 B1
6342730 Jung et al. Jan 2002 B1
6348726 Bayan et al. Feb 2002 B1
6355502 Kang et al. Mar 2002 B1
6359221 Yamada et al. Mar 2002 B1
6362525 Rahim Mar 2002 B1
6369447 Mori Apr 2002 B2
6369454 Chung Apr 2002 B1
6373127 Baudouin et al. Apr 2002 B1
6377464 Hashemi et al. Apr 2002 B1
6380048 Boon et al. Apr 2002 B1
6384472 Huang May 2002 B1
6388336 Venkateshwaran et al. May 2002 B1
6395578 Shin et al. May 2002 B1
6395972 Tran et al. May 2002 B1
6399415 Bayan et al. Jun 2002 B1
6400004 Fan et al. Jun 2002 B1
6410979 Abe Jun 2002 B2
6414385 Huang et al. Jul 2002 B1
6420779 Sharma et al. Jul 2002 B1
6421013 Chung Jul 2002 B1
6423643 Furuhata et al. Jul 2002 B1
6429508 Gang Aug 2002 B1
6437429 Su et al. Aug 2002 B1
6444499 Swiss et al. Sep 2002 B1
6448633 Yee et al. Sep 2002 B1
6452279 Shimoda Sep 2002 B2
6459148 Chun-Jen et al. Oct 2002 B1
6464121 Reijinders Oct 2002 B2
6465883 Olofsson Oct 2002 B2
6472735 Isaak Oct 2002 B2
6475646 Park et al. Nov 2002 B2
6476469 Huang et al. Nov 2002 B2
6476474 Hung Nov 2002 B1
6482680 Khor et al. Nov 2002 B1
6483178 Chuang Nov 2002 B1
6492718 Ohmori Dec 2002 B2
6495909 Jung et al. Dec 2002 B2
6498099 McClellan et al. Dec 2002 B1
6498392 Azuma Dec 2002 B2
6507096 Gang Jan 2003 B2
6507120 Lo et al. Jan 2003 B2
6518089 Coyle Feb 2003 B2
6525942 Huang et al. Feb 2003 B2
6528893 Jung et al. Mar 2003 B2
6534849 Gang Mar 2003 B1
6545332 Huang Apr 2003 B2
6545345 Glenn et al. Apr 2003 B1
6552421 Kishimoto et al. Apr 2003 B2
6559525 Huang May 2003 B2
6566168 Gang May 2003 B2
6576986 Kobayakawa Jun 2003 B2
6580161 Kobayakawa Jun 2003 B2
6583503 Akram et al. Jun 2003 B2
6585905 Fan et al. Jul 2003 B1
6603196 Lee et al. Aug 2003 B2
6624005 DiCaprio et al. Sep 2003 B1
6627977 Foster Sep 2003 B1
6646339 Ku Nov 2003 B1
6650004 Horie Nov 2003 B1
6667546 Huang et al. Dec 2003 B2
6677663 Ku et al. Jan 2004 B1
6686649 Mathews et al. Feb 2004 B1
6696752 Su et al. Feb 2004 B2
6700189 Shibata Mar 2004 B2
6707138 Crowley et al. Mar 2004 B2
6713375 Shenoy Mar 2004 B2
6756658 Gillett Jun 2004 B1
6757178 Okabe et al. Jun 2004 B2
6794740 Edwards et al. Sep 2004 B1
6800936 Kosemura et al. Oct 2004 B2
6812552 Islam et al. Nov 2004 B2
6818973 Foster Nov 2004 B1
6844615 Edwards et al. Jan 2005 B1
6858919 Seo et al. Feb 2005 B2
6867492 Auburger et al. Mar 2005 B2
6876068 Lee et al. Apr 2005 B1
6878571 Isaak et al. Apr 2005 B2
6897552 Nakao May 2005 B2
6897567 Horie May 2005 B2
6927478 Paek Aug 2005 B2
6967125 Fee et al. Nov 2005 B2
6995459 Lee et al. Feb 2006 B2
7001799 Edwards et al. Feb 2006 B1
7002241 Mostafazadeh Feb 2006 B1
7002805 Lee et al. Feb 2006 B2
7005327 Kung et al. Feb 2006 B2
7015571 Chang et al. Mar 2006 B2
7045396 Crowley et al. May 2006 B2
7053469 Koh et al. May 2006 B2
7075816 Fee et al. Jul 2006 B2
7102209 Bayan et al. Sep 2006 B1
7109572 Fee et al. Sep 2006 B2
7185426 Hiner Mar 2007 B1
7193298 Hong et al. Mar 2007 B2
7211471 Foster May 2007 B1
7245007 Foster Jul 2007 B1
7253503 Fusaro et al. Aug 2007 B1
20010008305 McLellan et al. Jul 2001 A1
20010014538 Kwan et al. Aug 2001 A1
20020011654 Kimura Jan 2002 A1
20020024122 Jung et al. Feb 2002 A1
20020027297 Ikenaga et al. Mar 2002 A1
20020038873 Hiyoshi Apr 2002 A1
20020072147 Sayanagi et al. Jun 2002 A1
20020111009 Huang et al. Aug 2002 A1
20020140061 Lee Oct 2002 A1
20020140068 Lee et al. Oct 2002 A1
20020140081 Chou et al. Oct 2002 A1
20020158318 Chen Oct 2002 A1
20020163015 Lee et al. Nov 2002 A1
20020167060 Buijsman et al. Nov 2002 A1
20030006055 Chien-Hung et al. Jan 2003 A1
20030030131 Lee et al. Feb 2003 A1
20030059644 Datta et al. Mar 2003 A1
20030064548 Isaak Apr 2003 A1
20030073265 Hu et al. Apr 2003 A1
20030102537 McLellan et al. Jun 2003 A1
20030164554 Fee et al. Sep 2003 A1
20030168719 Cheng et al. Sep 2003 A1
20030198032 Collander et al. Oct 2003 A1
20040027788 Chiu et al. Feb 2004 A1
20040056277 Karnezos Mar 2004 A1
20040061212 Karnezos Apr 2004 A1
20040061213 Karnezos Apr 2004 A1
20040063242 Karnezos Apr 2004 A1
20040063246 Karnezos Apr 2004 A1
20040065963 Karnezos Apr 2004 A1
20040080025 Kasahara et al. Apr 2004 A1
20040089926 Hsu et al. May 2004 A1
20040164387 Ikenaga et al. Aug 2004 A1
20040222484 Saxelby et al. Nov 2004 A1
20040253803 Tomono et al. Dec 2004 A1
20050133878 Huang Jun 2005 A1
20050161777 Horie Jul 2005 A1
20050194538 Kurz Sep 2005 A1
20060006506 Watanabe et al. Jan 2006 A1
20060087020 Hirano et al. Apr 2006 A1
20060108669 Matsumoto et al. May 2006 A1
20060157843 Hwang Jul 2006 A1
20060231939 Kawabata et al. Oct 2006 A1
20070023202 Shibata Feb 2007 A1
20070096160 Beroz et al. May 2007 A1
20070178630 Huang Aug 2007 A1
20070187629 Matsuyama Aug 2007 A1
20070252246 Ng et al. Nov 2007 A1
20070296077 Moline Dec 2007 A1
20080123328 Lai et al. May 2008 A1
20080230887 Sun Sep 2008 A1
20080295888 Lai et al. Dec 2008 A1
20090085051 Hsieh et al. Apr 2009 A1
20090114265 Milbourne et al. May 2009 A1
20090120499 Prather et al. May 2009 A1
20090159128 Shook et al. Jun 2009 A1
20100259909 Ho et al. Oct 2010 A1
Foreign Referenced Citations (88)
Number Date Country
19734794 Aug 1997 DE
0393997 Oct 1990 EP
0459493 Dec 1991 EP
0720225 Mar 1996 EP
0720234 Mar 1996 EP
0794572 Oct 1997 EP
0844665 May 1998 EP
0936671 Aug 1999 EP
0989608 Mar 2000 EP
1032037 Aug 2000 EP
55163868 Dec 1980 JP
5745959 Mar 1982 JP
58160096 Aug 1983 JP
59208756 Nov 1984 JP
59227143 Dec 1984 JP
60010756 Jan 1985 JP
60116239 Aug 1985 JP
60195957 Oct 1985 JP
60231349 Nov 1985 JP
6139555 Feb 1986 JP
61248541 Nov 1986 JP
629639 Jan 1987 JP
6333854 Feb 1988 JP
63067762 Mar 1988 JP
63188964 Aug 1988 JP
63205935 Aug 1988 JP
63233555 Sep 1988 JP
63249345 Oct 1988 JP
63289951 Nov 1988 JP
63316470 Dec 1988 JP
64054749 Mar 1989 JP
1106456 Apr 1989 JP
1175250 Jul 1989 JP
1205544 Aug 1989 JP
1251747 Oct 1989 JP
2129948 May 1990 JP
369248 Jul 1991 JP
3177060 Aug 1991 JP
3289162 Dec 1991 JP
4098864 Mar 1992 JP
5129473 May 1993 JP
5166992 Jul 1993 JP
5283460 Oct 1993 JP
6061401 Mar 1994 JP
692076 Apr 1994 JP
6140563 May 1994 JP
652333 Sep 1994 JP
6252333 Sep 1994 JP
6260532 Sep 1994 JP
7297344 Nov 1995 JP
7312405 Nov 1995 JP
8064364 Mar 1996 JP
8083877 Mar 1996 JP
8125066 May 1996 JP
964284 Jun 1996 JP
8222682 Aug 1996 JP
8306853 Nov 1996 JP
98205 Jan 1997 JP
98206 Jan 1997 JP
98207 Jan 1997 JP
992775 Apr 1997 JP
9260568 Oct 1997 JP
9293822 Nov 1997 JP
10022447 Jan 1998 JP
10199934 Jul 1998 JP
10256240 Sep 1998 JP
11307675 Nov 1999 JP
2000150765 May 2000 JP
20010600648 Mar 2001 JP
2002519848 Jul 2002 JP
200203497 Aug 2002 JP
2003243595 Aug 2003 JP
2004158753 Jun 2004 JP
2008-294219 Dec 2008 JP
941979 Jan 1994 KR
19940010938 May 1994 KR
19950018924 Jun 1995 KR
19950041844 Nov 1995 KR
19950044554 Nov 1995 KR
19950052621 Dec 1995 KR
1996074111 Dec 1996 KR
9772358 Nov 1997 KR
100220154 Jun 1999 KR
20000072714 Dec 2000 KR
20000086238 Dec 2000 KR
20020049944 Jun 2002 KR
9956316 Nov 1999 WO
9967821 Dec 1999 WO
Non-Patent Literature Citations (3)
Entry
National Semiconductor Corporation, “Leadless Leadframe Package,” Informational Pamphlet from webpage, 21 pages, Oct. 2002, www.national.com.
Vishay, “4 Milliohms in the So-8: Vishay Siliconix Sets New Record for Power MOSFET On-Resistance,” Press Release from webpage, 3 pages, www.vishay.com/news/releases, Nov. 7, 2002.
Patrick Mannion, “MOSFETs Break out of the Shackles of Wire Bonding,” Informational Packet, 5 pages, Electronic Design, Mar. 22, 1999 vol. 47, No. 6, www.elecdesign.com/1999/mar2299/ti/0322ti1.shtml.