The present invention relates to semiconductor devices, and more particularly to light emitting diodes mounted to a submount in a junction-down configuration.
GaN-based light emitting diodes (LEDs) typically comprise an insulating or semiconducting substrate such as SiC or sapphire on which a plurality of GaN-based epitaxial layers are deposited. The epitaxial layers comprise an active region having a p-n junction that emits light when energized. A typical LED is mounted substrate side down onto a submount, also called a package or lead frame (hereinafter referred to as a “submount”).
Junction-down (or “flip-chip”) mounting of LEDs involves mounting the LED onto the submount substrate side up. Light is then extracted and emitted through the transparent substrate. Junction-down mounting may be an especially desirable technique for mounting SiC-based LEDs. Since SiC has a higher index of refraction than GaN, light generated in the active region does not internally reflect (i.e. reflect back into the GaN-based layers) at the GaN/SiC interface. Junction-down mounting of SiC-based LEDs may improve the effect of certain chip-shaping techniques known in the art. Junction-down packaging of SiC LEDs may have other benefits as well, such as improved heat dissipation, which may be desirable depending on the particular application for the chip.
One problem with junction-down mounting is illustrated in
Thermocompression bonding is a technique whereby a device is mounted to a substrate or submount using heat and pressure, thereby creating a conductive bond between the device and the submount. Typically, a vacuum collet is used to pick up the device and physically place it in contact with a submount that is formed of a material with which the solder used may form an alloy. Once the device is in contact with the submount, force is applied to the device through the collet. Through a combination of heat and pressure, the solder becomes alloyed with the submount and the device is welded in place. In order to form such a bond, the device must include a metal pad layer made of a metal such as Sn that will form an alloy bond with the submount when heat and pressure are applied. Other metals and alloys having a sufficiently low melting point are Au/Sn, Pb/Sn, and Ag/Sn may be used. Some suitable submount materials are silver and gold.
Typical thermocompression processes utilize a minimum force of about 30 to 50 g to cause the die to become bonded to the submount. However, this force may cause some of the molten bond metal to squeeze out and form a shunt circuit between the n-type substrate and the submount around the p-n junction, degrading the device operation.
Accordingly, as illustrated in
An LED chip includes a bond pad suitable for thermosonic or thermocompression bonding such as Sn, AuSn or other metals. The physical dimensions of the bond pad are selected to discourage or prevent solder squeeze-out during thermocompression or thermosonic bonding with or without flux. In some embodiments, an AuSn bond pad is designed to accept 30 g to 70 g of force or more without squeeze-out.
Particular embodiments of the invention provide an LED chip having a bond pad wherein the bond pad has a total volume less than about 3×10−5 mm3. Other embodiments of the invention provide an LED chip having a bond pad wherein the bond pad has a total volume less than about 2.5×10−5 mm3.
In particular embodiments of the invention, the bond pad may be formed in the shape of a parallelepiped having a generally square or rectangular periphery, a cylinder having a generally circular periphery, or a polyhedron having opposing parallel faces and a generally star-shaped periphery. Other peripheral shapes are also possible and may be desirable depending on the shape of the LED chip.
Method embodiments of the invention include the steps of fabricating an LED chip having a first surface, an epitaxial mesa region on the first surface and a metal ohmic contact on the epitaxial region; forming a bond pad on the metal ohmic contact, such that the bond pad has a total volume less than about 3×10−5 mm3; and bonding the LED chip to a metal submount using thermosonic or thermocompression bonding. Further method embodiments of the invention include the steps of fabricating an LED chip having a first surface, an epitaxial mesa region on the first surface and a metal ohmic contact on the epitaxial region; forming a bond pad on the metal ohmic contact, such that the bond pad has a total volume less than about 2.5×10−5 mm3; and bonding the LED chip to a metal submount using thermosonic or thermocompression bonding.
The present invention now will be described more fully hereinafter with reference to the accompanying drawings, in which embodiments of the invention are shown. This invention should not be construed as limited to the embodiments set forth herein; rather, these embodiments are provided so that this disclosure will be thorough and complete, and will fully convey the scope of the invention to those skilled in the art. Like numbers refer to like elements throughout. Furthermore, the various layers and regions illustrated in the figures are illustrated schematically. As will also be appreciated by those of skill in the art, while the present invention is described with respect to semiconductor wafers and diced chips, such chips may be diced into arbitrary sizes. Accordingly, the present invention is not limited to the relative size and spacing illustrated in the accompanying figures. In addition, certain features of the drawings are illustrated in exaggerated dimensions for clarity of drawing and ease of explanation.
It will be understood that when an element such as a layer, region or substrate is referred to as being “on” or extending “onto” another element, it can be directly on or extend directly onto the other element or intervening elements may also be present. In contrast, when an element is referred to as being “directly on” or extending “directly onto” another element, there are no intervening elements present. It will also be understood that when an element is referred to as being “connected” or “coupled” to another element, it can be directly connected or coupled to the other element or intervening elements may be present. In contrast, when an element is referred to as being “directly connected” or “directly coupled” to another element, there are no intervening elements present. In particular, a metallic layer such as a bond pad may be described as being formed “on” an ohmic contact. It will be understood by those skilled in the art that intervening layers, such as for example barrier layers, adhesion layers and/or reflective layers, may be positioned between the bond pad and the ohmic contact.
It will be understood that, although the terms first, second, etc. may be used herein to describe various elements, components, regions, layers and/or sections, these elements, components, regions, layers and/or sections should not be limited by these terms. These terms are only used to distinguish one element, component, region, layer or section from another region, layer or section. Thus, a first element, component, region, layer or section discussed below could be termed a second element, component, region, layer or section without departing from the teachings of the present invention.
Furthermore, relative terms, such as “lower” or “bottom” and “upper” or “top,” may be used herein to describe one element's relationship to another elements as illustrated in the Figures. It will be understood that relative terms are intended to encompass different orientations of the device in addition to the orientation depicted in the Figures. For example, if the device in the Figures is turned over, elements described as being on the “lower” side of other elements would then be oriented on “upper” sides of the other elements. The exemplary term “lower”, therefore, encompasses both an orientation of “lower” and “upper,” depending of the particular orientation of the figure. Similarly, if the device in one of the figures is turned over, elements described as “below” or “beneath” other elements would then be oriented “above” the other elements. The exemplary terms “below” or “beneath” can, therefore, encompass both an orientation of above and below.
Embodiments of the present invention are described herein with reference to cross-section illustrations that are schematic illustrations of idealized embodiments of the present invention. As such, variations from the shapes of the illustrations as a result, for example, of manufacturing techniques and/or tolerances, are to be expected. Thus, embodiments of the present invention should not be construed as limited to the particular shapes of regions illustrated herein but are to include deviations in shapes that result, for example, from manufacturing. For example, an etched region illustrated as a rectangle will, typically, have tapered, rounded or curved features. Thus, the regions illustrated in the figures are schematic in nature and their shapes are not intended to illustrate the precise shape of a region of a device and are not intended to limit the scope of the present invention.
Unless otherwise defined, all terms (including technical and scientific terms) used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. It will be further understood that terms, such as those defined in commonly used dictionaries, should be interpreted as having a meaning that is consistent with their meaning in the context of the relevant art and will not be interpreted in an idealized or overly formal sense unless expressly so defined herein.
It will also be appreciated by those of skill in the art that references to a structure or feature that is disposed “adjacent” another feature may have portions that overlap or underlie the adjacent feature.
Embodiments of the invention now will be described, generally with reference to gallium nitride-based light emitting diodes on silicon carbide-based substrates. However, it will be understood by those having skill in the art that many embodiments of the invention may be employed with many different combinations of substrate and epitaxial layers. For example, combinations can include AlGaInP diodes on GaP substrates; InGaAs diodes on GaAs substrates; AlGaAs diodes on GaAs substrates; SiC diode on SiC or sapphire (Al2O3) substrate; and/or a nitride-based diodes on gallium nitride, silicon carbide, aluminum nitride, sapphire, zinc oxide and/or other substrates.
In some embodiments, the width of first surface 21 of the LED chip may be approximately 300 μm or greater. In some embodiments, the width of the mesa structure 25 may be approximately 250 μm or greater.
LED chip 30 further includes a metal pad 31 through which chip 30 may be thermosonically or thermocompressively bonded to a submount 24. Pad 31 preferably comprises Au or a suitable metal alloy such as Au/Sn, Pb/Sn, Sn, Sn/Ag. Thermosonic bonding utilizes a combination of heat, pressure and ultrasonic vibration to bond the chip to the submount.
In one embodiment illustrated in
In other embodiments illustrated in
In other embodiments illustrated in
In yet other embodiments illustrated in
When the chip is welded to the substrate, the bond pad melts partially and deforms to a new size as illustrated in
In thermocompression or thermosonic bonding, the force applied to the chip affects the bond strength between the chip and the submount. While a lower applied force may result in less squeeze-out of solder, a lower force may also result in lower bond strength. Typically, bond strength is measured by the lateral shear strength of the bond between the chip and the submount. In some applications, a shear strength of 140 g may be acceptable. Greater shear strength may be desirable. For example, for mounting a chip having lateral dimensions on the order of 300 μm×300 μm, a shear strength of 300-600 g may be desired.
In the drawings and specification there have been disclosed embodiments of the invention, and, although specific terms have been employed, they have been used in a generic and descriptive sense only and not for purposes of limitation.
This application claims the benefit of Provisional Application Ser. No. 60/565,960, filed Apr. 28, 2004 entitled “LED with Reduced Volume Bond Pad,” the disclosure of which is hereby incorporated herein by reference in its entirety as if set forth fully herein.
Number | Name | Date | Kind |
---|---|---|---|
6169294 | Biing-Jye et al. | Jan 2001 | B1 |
6483196 | Wojnarowski et al. | Nov 2002 | B1 |
6486499 | Krames et al. | Nov 2002 | B1 |
6747298 | Slater, Jr. et al. | Jun 2004 | B2 |
6812502 | Chien et al. | Nov 2004 | B1 |
6861677 | Chen | Mar 2005 | B2 |
6897489 | Peng et al. | May 2005 | B1 |
6914268 | Shei et al. | Jul 2005 | B2 |
6927425 | Harle et al. | Aug 2005 | B2 |
6949773 | Shin | Sep 2005 | B2 |
6958498 | Shelton et al. | Oct 2005 | B2 |
20020068373 | Lo et al. | Jun 2002 | A1 |
20020179914 | Sheu | Dec 2002 | A1 |
20030010975 | Gibb et al. | Jan 2003 | A1 |
20030042507 | Slater, Jr. et al. | Mar 2003 | A1 |
20030045015 | Slater, Jr. et al. | Mar 2003 | A1 |
20030057421 | Chen | Mar 2003 | A1 |
20040026708 | Chen | Feb 2004 | A1 |
20040173808 | Wu | Sep 2004 | A1 |
20040182914 | Venugopalan | Sep 2004 | A1 |
20040200082 | Slater, Jr. et al. | Oct 2004 | A1 |
20040201110 | Venugopalan et al. | Oct 2004 | A1 |
20040211972 | Du et al. | Oct 2004 | A1 |
20050023550 | Eliashevich et al. | Feb 2005 | A1 |
20050087884 | Stokes et al. | Apr 2005 | A1 |
20050133797 | Seong et al. | Jun 2005 | A1 |
20050194605 | Shelton et al. | Sep 2005 | A1 |
20050205887 | Shei et al. | Sep 2005 | A1 |
Number | Date | Country |
---|---|---|
58 207682 | Mar 1984 | JP |
2002280415 | Sep 2002 | JP |
WO 0205350 | Jan 2002 | WO |
Number | Date | Country | |
---|---|---|---|
20050253154 A1 | Nov 2005 | US |
Number | Date | Country | |
---|---|---|---|
60565960 | Apr 2004 | US |