Leptin receptor having a WSX motif

Information

  • Patent Grant
  • 6541604
  • Patent Number
    6,541,604
  • Date Filed
    Wednesday, January 8, 1997
    27 years ago
  • Date Issued
    Tuesday, April 1, 2003
    21 years ago
Abstract
The WSX receptor, WSX receptor extracellular domain (ECD), WSX receptor variants, chimeric WSX receptor (e.g., WSX receptor immunoadhesin), and antibodies which bind thereto (including agonist and neutralizing antibodies) are disclosed. Various uses for these molecules are described.
Description




BACKGROUND OF THE INVENTION




1. Field of the Invention




The present invention pertains generally to the WSX receptor. In particular, the invention relates to native sequence WSX receptor, WSX receptor variants, WSX receptor extracellular domain, chimeric WSX receptor and antibodies which bind to the WSX receptor (including agonist and neutralizing antibodies), as well as the various uses for these molecules.




2. Description of Related Art




Hematopoietic growth factors (reviewed in D'Andrea,


NEJM


330(12): 839-846 (1994)) have been shown to enhance growth and/or differentiation of blood cells via activation of receptors present on the surface of blood progenitor cells of the bone marrow. While some of these growth factors stimulate proliferation of restricted lineages of blood cells, others enhance proliferation of multiple lineages of blood cells. For example, erythropoietin (EPO) supports the proliferation of erythroid cells, whereas interleukin-3 (IL-3) induces proliferation of erythroid and myeloid lineages and is therefore considered a multi-lineage factor.




In recent years, several hematopoietic growth factor receptors have been isolated. Due to their low abundance and their existence in both high-affinity and low-affinity forms, biochemical characterization of these receptors has been hampered.




Cytokine receptors frequently assemble into multi-subunit complexes. Sometimes, the subunit of this complex is involved in binding the cognate growth factor and the β-subunit may contain an ability to transduce a signal to the cell. These receptors have been assigned to three subfamilies depending on the complexes formed. Subfamily 1 includes the receptors for EPO, granulocyte colony-stimulating factor (G-CSF), interleukin-4 (IL-4), interleukin-7 (IL-7), growth hormone (GH) and prolactin (PRL). Ligand binding to receptors belonging to this subfamily is thought to result in homodimerization of the receptor. Subfamily 2 includes receptors for IL-3, granulocyte-macrophage colony-stimulating factor (GM-CSF), interleukin-5 (IL-5), interleukin-6 (IL-6), leukemia inhibitory factor (LIF), oncostatin M (OSM) and ciliary neurotrophic factor (CNTF). Subfamily 2 receptors are heterodimers having an α-subunit for ligand binding and β-subunit (either the shared β-subunit of the IL-3, GM-CSF and IL-5 receptors or the gp 130 subunit of the IL-6, LIF, OSM and CNTF receptors) for signal transduction. Subfamily 3 contains only the interleukin-2 (IL-2) receptor. The β and γ subunits of the IL-2 receptor complex are cytokine-receptor polypeptides which associate with the α-subunit of the unrelated Tac antigen.




SUMMARY OF THE INVENTION




According to a first aspect, the invention is concerned with the WSX cytokine receptor and a soluble form of the receptor which is the WSX receptor extracellular domain (ECD). The WSX receptor polypeptides are optionally conjugated with, or fused to, molecules which increase the serum half-lives thereof and can be formulated as pharmaceutical compositions comprising the polypeptide and a physiologically acceptable carrier.




In certain embodiments, the WSX receptor ECD may be used as an antagonist insofar as it may bind to WSX ligand and thereby reduce activation of endogenous WSX receptor. This may be useful in conditions characterized by excess levels of WSX ligand and/or excess WSX receptor activation in a mammal. WSX receptor ECD may, for example, be used to treat metabolic disorders (e.g., anorexia or steroid-induced truncalobesity), stem cell tumors and other tumors which express WSX receptor.




Pharmaceutical compositions of the WSX receptor ECD may further include a WSX ligand. Such dual compositions may be beneficial where it is therapeutically useful to prolong the half-life of WSX ligand and/or activate endogenous WSX receptor directly as a heterotrimeric complex.




The invention also relates to chimeric WSX receptor molecules, such as WSX receptor immunoadhesins (having long half-lives in the serum of a patient treated therewith) and epitope tagged WSX receptor. Immunoadhesins may be employed as WSX receptor antagonists in conditions or disorders in which neutralization of WSX receptor biological activity may be beneficial. Bispecific immunoadhesins (combining a WSX receptor ECD with a domain of another cytokine receptor) may form high affinity binding complexes for WSX ligand.




The invention further provides methods for identifying a molecule which binds to and/or activates the WSX receptor. This is useful for discovering molecules (such as peptides, antibodies, and small molecules) which are agonists or antagonists of the WSX receptor. Such methods generally involve exposing an immobilized WSX receptor to a molecule suspected of binding thereto and determining binding of the molecule to the immobilized WSX receptor and/or evaluating whether or not the molecule activates (or blocks activation on the WSX receptor. In order to identify such WSX ligands, the WSX receptor may be expressed on the surface of a cell and used to screen libraries of synthetic compounds and naturally occurring compounds (e.g., endogenous sources of such naturally occurring compounds, such as serum). The WSX receptor can also be used as a diagnostic tool for measuring serum levels of endogenous WSX ligand.




In a further embodiment, a method for purifying a molecule which binds to the WSX receptor is provided. This can be used in the commercial production and purification of therapeutically active molecules which bind to this receptor. In the method, the molecule of interest (generally a composition comprising one or more contaminants) is adsorbed to immobilized WSX receptor (e.g., WSX receptor immunoadhesin immobilized on a protein A column). The contaminants, by virtue of their inability to bind to the WSX receptor, will generally flow through the column. Accordingly, it is then possible to recover the molecule of interest from the column by changing the elution conditions, such that the molecule no longer binds to the immobilized receptor.




In further embodiments, the invention provides antibodies that specifically bind to the WSX receptor. Preferred antibodies are monoclonal antibodies which are non-immunogenic in a human and bind to an epitope in the extracellular domain of the receptor. Preferred antibodies bind the WSX receptor with an affinity of at least about 10


6


L/mole, more preferably 10


7


L/mole.




Antibodies which bind to the WSX receptor may optionally be fused to a heterologous polypeptide and the antibody or fusion thereof may be used to isolate and purify WSX receptor from a source of the receptor.




In a further aspect, the invention provides a method for detecting the WSX receptor in vitro or in vivo comprising contacting the antibody with a sample suspected of containing the receptor and detecting if binding has occurred. Based on the observation herein that CD34+ cells possess WSX receptor, use of WSX antibodies for identification and/or enrichment of stem cell populations (in a similar manner to that in which CD34 antibodies are presently used) is envisaged.




For certain applications, it is desirable to have an agonist antibody which can be screened for as described herein. Such agonist antibodies are useful for activating the WSX receptor for in vitro uses whereby enhancement of proliferation and/or differentiation of a cell comprising the receptor is desired. Furthermore, these antibodies may be used to treat conditions in which an effective amount of WSX receptor activation leads to a therapeutic benefit in the mammal treated therewith. For example, the agonist antibody can be used to enhance survival, proliferation and/or differentiation of a cell comprising the WSX receptor. In particular, agonist antibodies and other WSX ligands may be used to stimulate proliferation of stem cells/progenitor cells either in vitro or in vivo. Other potential therapeutic applications include the use of agonist antibodies to treat metabolic disorders (such as obesity and diabetes) and to promote kidney, liver or lung growth and/or repair (e.g., in renal failure).




For therapeutic applications it is desirable to prepare a composition comprising the agonist antibody and a physiologically acceptable carrier. Optionally, such a composition may further comprise one or more cytokines.




In other embodiments, the antibody is a neutralizing antibody. Such molecules can be used to treat conditions characterized by unwanted or excessive activation of the WSX receptor.




In addition to the above, the invention provides isolated nucleic acid molecules, expression vectors and host cells encoding the WSX receptor which can be used in the recombinant production of WSX receptor as described herein. The isolated nucleic acid molecules and vectors are also useful for gene therapy applications to treat patients with WSX receptor defects and/or to increase responsiveness of cells to WSX ligand.











BRIEF DESCRIPTION OF THE DRAWINGS





FIGS. 1A-J

together depict the double stranded nucleotide (SEQ ID NO:1) and deduced amino acid sequence (SEQ ID NO:2) encoding full length human WSX receptor variant 13.2. Nucleotides are numbered at the beginning of the sense strand. Amino acid residues are numbered at the beginning of the amino acid sequence. Restriction enzyme sites are depicted above the nucleotide sequence.





FIGS. 2A-D

together depict an amino acid sequence alignment of full length human WSX receptor variants 6.4 (SEQ ID NO:3), 12.1 (SEQ ID NO:4) and 13.2 (SEQ ID NO:2), respectively. Homologous residues are boxed. WSX receptor variants 6.4, 12.1 and 13.2 are native sequence human WSX receptor variants which, without being bound to any one theory, appear to be generated by alternate splicing of WSX receptor mRNA. The putative signal peptide, transmembrane, Box 1, Box 2, and Box 3 domains are indicated. The extracellular and cytoplasmic domains are amino- and carboxy-terminal, respectively, to the transmembrane domain. The Box 1-3 domains shown correspond to the box 1-3 motifs described in Baumann et al.,


Mol. Cell. Biol


. 14(1):138-146 (1994).





FIGS. 3A-L

together depict an alignment of the nucleotide sequences encoding human WSX receptor variants 6.4 (SEQ ID NO:5), 12.1 (SEQ ID NO:6) and 13.2 (SEQ ID NO:1), respectively.





FIGS. 4A-D

depict an alignment of the full length human WSX receptor variant 13.2 amino acid sequence (top) with that of partial murine WSX receptor extracellular domain sequence (bottom) (SEQ ID NO:7) obtained as described in Example 7. The putative murine signal peptide is marked with an arrow.





FIGS. 5A-M

represent an alignment of the nucleotide sequences encoding human WSX receptor variant 13.2 (SEQ ID NO:1) (bottom) and partial murine WSX receptor extracellular domain (top) (SEQ ID NO:8), respectively.





FIG. 6

is a bar graph depicting results of the thymidine incorporation assay described in Example 5.


3


H-thymidine incorporation (counts per minute, CPM) in parental Baf3 cells or Baf3 cells electroporated with GH/WSX chimera in the presence of varying concentrations of human growth hormone (GH) is shown.





FIG. 7

shows the human and murine oligonucleotides (SEQ ID NOS:9-38, respectively) used for the antisense experiment described in Example 8.











DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS




I. Definitions




In describing the present invention, the following terms will be employed, and are intended to be defined as indicated below.




The terms “WSX receptor” or “WSX receptor polypeptide” when used herein encompass native sequence WSX receptor; WSX receptor variants; WSX extracellular domain; and chimeric WSX receptor (each of which is defined herein). Optionally, the WSX receptor is not associated with native glycosylation. “Native glycosylation” refers to the carbohydrate moieties which are covalently attached to WSX receptor when it is produced in the mammalian cell from which it is derived in nature. Accordingly, human WSX receptor produced in a non-human cell is an example of a WSX receptor which is “not associated with native glycosylation”. Sometimes, the WSX receptor is unglycosylated (e.g., as a result of being produced recombinantly in a prokaryote).




A “native sequence WSX receptor” comprises a polypeptide having the same amino acid sequence as a WSX receptor derived from nature. Thus, a native sequence WSX receptor can have the amino acid sequence of naturally occurring human WSX receptor, murine WSX receptor, or WSX receptor from any other mammalian species. Such native sequence WSX receptor polypeptides can be isolated from nature or can be produced by recombinant or synthetic means. The term “native sequence WSX receptor” specifically encompasses naturally-occurring truncated forms of the WSX receptor, naturally-occurring variant forms (e.g., alternatively spliced forms such as human WSX receptor variants 6.4, 12.1 and 13.2 described herein) and naturally-occurring allelic variants of the WSX receptor. The preferred native sequence WSX receptor is a mature native sequence human WSX receptor, such as human WSX receptor variant 6.4, human WSX receptor variant 12.1 or human WSX receptor variant 13.2 (each shown in FIGS.


2


A-D). Most preferred is mature human WSX receptor variant 13.2.




The “WSX receptor extracellular domain” (ECD) is a form of the WSX receptor which is essentially free of the transmembrane and cytoplasmic domains of WSX receptor, i.e., has less than 1% of such domains, preferably 0.5 to 0% of such domains, and more preferably 0.1 to 0% of such domains. Ordinarily, the WSX receptor ECD will have an amino acid sequence having at least about 95% amino acid sequence identity with the amino acid sequence of the ECD of WSX receptor indicated in

FIGS. 2A-D

for human WSX receptor variants 6.4, 12.1 and 13.2, preferably at least about 98%, more preferably at least about 99% amino acid sequence identity, and thus includes WSX receptor variants as defined below.




“WSX receptor variant” means a biologically active WSX receptor as defined below having less than 100% sequence identity with WSX receptor having the deduced amino acid sequence shown in

FIGS. 1A-J

for human WSX receptor variant 13.2. Such WSX receptor variants include WSX receptor polypeptides wherein one or more amino acid residues are added at the N- or C-terminus of, or within, the human WSX receptor sequence; from about one to thirty amino acid residues are deleted, and optionally substituted by one or more amino acid residues; and derivatives of the above polypeptides, wherein an amino acid residue has been covalently modified so that the resulting product has a non-naturally occurring amino acid. Ordinarily, a biologically active WSX receptor variant will have an amino acid sequence having at least about 90% amino acid sequence identity with human WSX receptor variant 13.2 shown in

FIGS. 1A-J

, preferably at least about 95%, more preferably at least about 99%.




A “chimeric WSX receptor” is a polypeptide comprising full-length WSX receptor or one or more domains thereof (e.g., the extracellular domain) fused or bonded to heterologous polypeptide. The chimeric WSX receptor will generally share at least one biological property in common with human WSX receptor variant 13.2. Examples of chimeric WSX receptors include immunoadhesins and epitope tagged WSX receptor.




The term “immunoadhesin” is used interchangeably with the expression “WSX receptor-immunoglobulin chimera” and refers to a chimeric molecule that combines a portion of the WSX receptor (generally the extracellular domain thereof) with an immunoglobulin sequence. The immunoglobulin sequence preferably, but not necessarily, is an immunoglobulin constant domain. The immunoglobulin moiety in the chimeras of the present invention may be obtained from IgG1, IgG2, IgG3 or IgG4 subtypes, IgA, IgE, IgD or IgM, but preferably IgG1 or IgG3.




The term “epitope tagged” when used herein refers to a chimeric polypeptide comprising WSX receptor fused to a “tag polypeptide”. The tag polypeptide has enough residues to provide an epitope against which an antibody thereagainst can be made, yet is short enough such that it does not interfere with biological activity of the WSX receptor. The tag polypeptide preferably also is fairly unique so that the antibody thereagainst does not substantially cross-react with other epitopes. Suitable tag polypeptides generally have at least six amino acid residues and usually between about 8-50 amino acid residues (preferably between about 9-30 residues).




“Isolated WSX receptor” means WSX receptor that has been purified from a WSX receptor source or has been prepared by recombinant or synthetic methods and is sufficiently free of other peptides or proteins (1) to obtain at least 15 and preferably 20 amino acid residues of the N-terminal or of an internal amino acid sequence by using a spinning cup sequenator or the best commercially available amino acid sequenator marketed or as modified by published methods as of the filing date of this application, or (2) to homogeneity by SDS-PAGE under non-reducing or reducing conditions using Coomassie blue or, preferably, silver stain. Homogeneity here means less than about 5% contamination with other source proteins.




“Essentially pure” protein means a composition comprising at least about 90% by weight of the protein, based on total weight of the composition, preferably at least about 95% by weight. “Essentially homogeneous” protein means a composition comprising at least about 99% by weight of protein, based on total weight of the composition.




“Biological property” when used in conjunction with either “WSX receptor” or “isolated WSX receptor” means having an effector or antigenic function or activity that is directly or indirectly caused or performed by native sequence WSX receptor (whether in its native or denatured conformation). Effector functions include ligand binding; and enhancement of survival, differentiation and/or proliferation of cells (especially proliferation of cells). However, effector functions do not include possession of an epitope or antigenic site that is capable of cross-reacting with antibodies raised against native sequence WSX receptor.




An “antigenic function” means possession of an epitope or antigenic site that is capable of cross-reacting with antibodies raised against native sequence WSX receptor. The principal antigenic function of a WSX receptor polypeptide is that it binds with an affinity of at least about 10


6


L/mole to an antibody raised against native sequence WSX receptor. Ordinarily, the polypeptide binds with an affinity of at least about 10


7


L/mole. The antibodies used to define “antigenic function” are rabbit polyclonal antibodies raised by formulating the WSX receptor in Freund's complete adjuvant, subcutaneously injecting the formulation, and boosting the immune response by intraperitoneal injection of the formulation until the titer of the anti-WSX receptor antibody plateaus.




“Biologically active” when used in conjunction with either “WSX receptor” or “isolated WSX receptor” means a WSX receptor polypeptide that exhibits or shares an effector function of native sequence WSX receptor and that may (but need not) in addition possess an antigenic function. A principal effector function of the WSX receptor is its ability to induce proliferation of CD34+ human umbilical cord blood cells in the colony assay described in Example 8.




“Antigenically active” WSX receptor is defined as a polypeptide that possesses an antigenic function of WSX receptor and that may (but need not) in addition possess an effector function.




“Percent amino acid sequence identity” with respect to the WSX receptor sequence is defined herein as the percentage of amino acid residues in the candidate sequence that are identical with the residues in the WSX receptor sequence, after aligning the sequences and introducing gaps, if necessary, to achieve the maximum percent sequence identity, and not considering any conservative substitutions as part of the sequence identity. None of N-terminal, C-terminal, or internal extensions, deletions, or insertions into the candidate WSX receptor sequence shall be construed as affecting sequence identity or homology.




“WSX ligand” is a molecule which binds to and preferably activates native sequence WSX receptor. The ability of a molecule to bind to WSX receptor can be determined by the ability of a putative WSX ligand to bind to WSX receptor immunoadhesin (see Example 2) coated on an assay plate, for example. The thymidine incorporation assay provides a means for screening for WSX ligands which activate the WSX receptor. Exemplary WSX ligands include anti-WSX receptor agonist antibodies and the protein described in Zhang et al.


Nature


372:425-431 (1994).




A “thymidine incorporation assay” can be used to screen for molecules which activate the WSX receptor. In order to perform this assay, IL-3 dependent Baf3 cells (Palacios et al.,


Cell


, 41:727-734 (1985)) are stably transfected with full length native sequence WSX receptor as described in Example 4. The WSX receptor/Baf3 cells so generated are starved of IL-3 for 24 hours in a humidified incubator at 37° C. in 5% CO


2


and air. Following IL-3 starvation, the cells are plated out in 96 well culture dishes with, or without, a test sample containing a potential agonist (such test samples are optionally diluted) and cultured for 24 hours in a cell culture incubator. 20 μl of serum free RPMI media containing 1 μCi of


3


H thymidine is added to each well for the last 6-8 hours. The cells are then harvested in 96 well filter plates and washed with water. The filters are then counted using a Packard Top Count Microplate Scintillation Counter, for example. Agonists are expected to induce a statistically significant increase (to a P value of 0.05) in


3


H uptake, relative to control. Preferred agonists leads to an increase in


3


H uptake which is at least two fold of that of the control.




An “isolated” WSX receptor nucleic acid molecule is a nucleic acid molecule that is identified and separated from at least one contaminant nucleic acid molecule with which it is ordinarily associated in the natural source of the WSX receptor nucleic acid. An isolated WSX receptor nucleic acid molecule is other than in the form or setting in which it is found in nature. Isolated WSX receptor nucleic acid molecules therefore are distinguished from the WSX receptor nucleic acid molecule as it exists in natural cells. However, an isolated WSX receptor nucleic acid molecule includes WSX receptor nucleic acid molecules contained in cells that ordinarily express WSX receptor where, for example, the nucleic acid molecule is in a chromosomal location different from that of natural cells.




The expression “control sequences” refers to DNA sequences necessary for the expression of an operably linked coding sequence in a particular host organism. The control sequences that are suitable for prokaryotes, for example, include a promoter, optionally an operator sequence, a ribosome binding site, and possibly, other as yet poorly understood sequences. Eukaryotic cells are known to utilize promoters, polyadenylation signals, and enhancers.




Nucleic acid is “operably linked” when it is placed into a functional relationship with another nucleic acid sequence. For example, DNA for a presequence or secretory leader is operably linked to DNA for a polypeptide if it is expressed as a preprotein that participates in the secretion of the polypeptide; a promoter or enhancer is operably linked to a coding sequence if it affects the transcription of the sequence; or a ribosome binding site is operably linked to a coding sequence if it is positioned so as to facilitate translation. Generally, “operably linked” means that the DNA sequences being linked are contiguous, and, in the case of a secretory leader, contiguous and in reading phase. However, enhancers do not have to be contiguous. Linking is accomplished by ligation at convenient restriction sites. If such sites do not exist, the synthetic oligonucleotide adaptors or linkers are used in accordance with conventional practice.




As used herein, the expressions “cell,” “cell line,” and “cell culture” are used interchangeably and all such designations include progeny. Thus, the words “transformants” and “transformed cells” include the primary subject cell and cultures derived therefrom without regard for the number of transfers. It is also understood that all progeny may not be precisely identical in DNA content, due to deliberate or inadvertent mutations. Mutant progeny that have the same function or biological activity as screened for in the originally transformed cell are included. Where distinct designations are intended, it will be clear from the context.




The term “antibody” is used in the broadest sense and specifically covers monoclonal antibodies, antibody compositions with polyepitopic specificity, bispecific antibodies, diabodies, and single-chain molecules, as well as antibody fragments (e.g., Fab, F(ab′)


2


, and Fv), so long as they exhibit the desired biological activity.




The term “monoclonal antibody” as used herein refers to an antibody obtained from a population of substantially homogeneous antibodies, i.e., the individual antibodies comprising the population are identical except for possible naturally occurring mutations that may be present in minor amounts. Monoclonal antibodies are highly specific, being directed against a single antigenic site. Furthermore, in contrast to conventional (polyclonal) antibody preparations which typically include different antibodies directed against different determinants (epitopes), each monoclonal antibody is directed against a single determinant on the antigen. In addition to their specificity, the monoclonal antibodies are advantageous in that they are synthesized by the hybridoma culture, uncontaminated by other immunoglobulins. The modifier “monoclonal” indicates the character of the antibody as being obtained from a substantially homogeneous population of antibodies, and is not to be construed as requiring production of the antibody by any particular method. For example, the monoclonal antibodies to be used in accordance with the present invention may be made by the hybridoma method first described by Kohler et al.,


Nature


, 256: 495 (1975), or may be made by recombinant DNA methods (see, e.g., U.S. Pat. No. 4,816,567 (Cabilly et al.)). The “monoclonal antibodies” may also be isolated from phage antibody libraries using the techniques described in Clackson et al., Nature, 352: 624-628 (1991) and Marks et al.,


J. Mol. Biol


., 222:581-597 (1991), for example.




The monoclonal antibodies herein specifically include “chimeric” antibodies (immunoglobulins) in which a portion of the heavy and/or light chain is identical with or homologous to corresponding sequences in antibodies derived from a particular species or belonging to a particular antibody class or subclass, while the remainder of the chain(s) is identical with or homologous to corresponding sequences in antibodies derived from another species or belonging to another antibody class or subclass, as well as fragments of such antibodies, so long as they exhibit the desired biological activity (Cabilly et al., supra; Morrison et al.,


Proc. Natl. Acad. Sci. USA


, 81:6851-6855 (1984)).




“Humanized” forms of non-human (e.g., murine) antibodies are chimeric immunoglobulins, immunoglobulin chains or fragments thereof (such as Fv, Fab, Fab′, F(ab′)


2


or other antigen-binding subsequences of antibodies) which contain minimal sequence derived from non-human immunoglobulin. For the most part, humanized antibodies are human immunoglobulins (recipient antibody) in which residues from a complementary-determining region (CDR) of the recipient are replaced by residues from a CDR of a non-human species (donor antibody) such as mouse, rat or rabbit having the desired specificity, affinity, and capacity. In some instances, Fv framework region (FR) residues of the human immunoglobulin are replaced by corresponding non-human residues. Furthermore, humanized antibodies may comprise residues which are found neither in the recipient antibody nor in the imported CDR or framework sequences. These modifications are made to further refine and optimize antibody performance. In general, the humanized antibody will comprise substantially all of at least one, and typically two, variable domains, in which all or substantially all of the CDR regions correspond to those of a non-human immunoglobulin and all or substantially all of the FR regions are those of a human immunoglobulin sequence. The humanized antibody optimally also will comprise at least a portion of an immunoglobulin constant region (Fc), typically that of a human immunoglobulin. For further details, see Jones et al.,


Nature


, 321:522-525 (1986); Reichmann et al.,


Nature


, 332:323-329 (1988); and Presta,


Curr. Op. Struct. Biol


., 2:593-596 (1992). The humanized antibody includes a Primatized™ antibody wherein the antigen-binding region of the antibody is derived from an antibody produced by immunizing macaque monkeys with the antigen of interest.




“Non-immunogenic in a human” means that upon contacting the polypeptide of interest in a physiologically acceptable carrier and in a therapeutically effective amount with the appropriate tissue of a human, no state of sensitivity or resistance to the polypeptide of interest is demonstrable upon the second administration of the polypeptide of interest after an appropriate latent period (e.g., 8 to 14 days).




By “agonist antibody” is meant an antibody which is able to activate native sequence WSX receptor. WSX receptor activation can be determined using the thymidine incorporation assay described above.




A “neutralizing antibody” is one which is able to block or significantly reduce an effector function of native sequence WSX receptor. For example, a neutralizing antibody may inhibit or reduce WSX receptor activation by a WSX ligand as determined in the thymidine incorporation assay.




The phrase “enhancing proliferation of a cell” encompasses the step of increasing the extent of growth and/or reproduction of the cell relative to an untreated cell either in vitro or in vivo. An increase in cell proliferation in cell culture can be detected by counting the number of cells before and after exposure to a molecule of interest. The extent of proliferation can be quantified via microscopic examination of the degree of confluency. Cell proliferation can also be quantified using the thymidine incorporation assay described herein.




By “enhancing differentiation of a cell” is meant the act of increasing the extent of the acquisition or possession of one or more characteristics or functions which differ from that of the original cell (i.e. cell specialization). This can be detected by screening for a change in the phenotype of the cell (e.g., identifying morphological changes in the cell).




A “CD34+ cell population” is enriched for hematopoietic stem cells. A CD34+ cell population can be obtained from umbilical cord blood or bone marrow, for example. Human umbilical cord blood CD34+ cells can be selected for using immunomagnetic beads sold by Miltenyi (California), following the manufacturer's directions.




“Physiologically acceptable” carriers, excipients, or stabilizers are ones which are nontoxic to the cell or mammal being exposed thereto at the dosages and concentrations employed. Often the physiologically acceptable carrier is an aqueous pH buffered solution. Examples of physiologically acceptable carriers include buffers such as phosphate, citrate, and other organic acids; antioxidants including ascorbic acid; low molecular weight (less than about 10 residues) polypeptides; proteins, such as serum albumin, gelatin, or immunoglobulins; hydrophilic polymers such as polyvinylpyrrolidone; amino acids such as glycine, glutamine, asparagine, arginine or lysine; monosaccharides, disaccharides, and other carbohydrates including glucose, mannose, or dextrins; chelating agents such as EDTA; sugar alcohols such as mannitol or sorbitol; salt-forming counterions such as sodium; and/or nonionic surfactants such as Tween, Pluronics or polyethylene glycol (PEG).




As used herein, the term “salvage receptor binding epitope” refers to an epitope of the Fc region of an IgG molecule (e.g., IgG1, IgG2, IgG3, and IgG4) that is responsible for increasing the in vivo serum half-life of the IgG molecule. Exemplary salvage receptor binding epitope sequences include HQNLSDGK (SEQ ID NO:39); HQNISDGK (SEQ ID NO:40); HQSLGTQ (SEQ ID NO:41); VISSHLGQ (SEQ ID NO:42); and PKNSSMISNTP (SEQ ID NO:43).




The term “cytokine” is a generic term for proteins released by one cell population which act on another cell as intercellular mediators. Examples of such cytokines are lymphokines, monokines, and traditional polypeptide hormones. Included among the cytokines are growth hormone such as human growth hormone, N-methionyl human growth hormone, and bovine growth hormone; parathyroid hormone; thyroxine; insulin; proinsulin; relaxin; prorelaxin; glycoprotein hormones such as follicle stimulating hormone (FSH), thyroid stimulating hormone (TSH), and luteinizing hormone (LH); hepatic growth factor; fibroblast growth factor; prolactin; placental lactogen; tumor necrosis factor-α and -β; mullerian-inhibiting substance; mouse gonadotropin-associated peptide; inhibin; activin; vascular endothelial growth factor; integrin; thrombopoietin (TPO); nerve growth factors such as NGF-β; platelet-growth factor; transforming growth factors (TGFs) such as TGF-α and TGF-β; insulin-like growth factor-I and -II; erythropoietin (EPO); osteoinductive factors; interferons such as interferon-α, -β, and -γ; colony stimulating factors (CSFs) such as macrophage-CSF (M-CSF); granulocyte-macrophage-CSF (GM-CSF); and granulocyte-CSF (G-CSF); interleukins (ILs) such as IL-1, IL-1α, IL-2, IL-3, IL-4, IL-5, IL-6, IL-7, IL-8, IL-9, IL-11, IL-12; and other polypeptide factors including LIF and kit ligand (KL). As used herein, the term cytokine includes proteins from natural sources or from recombinant cell culture and biologically active equivalents of the native sequence cytokines.




“Treatment” refers to both therapeutic treatment and prophylactic or preventative measures. Those in need of treatment include those already with the disorder as well as those in which the disorder is to be prevented.




“Mammal” for purposes of treatment refers to any animal classified as a mammal, including humans, domestic and farm animals, and zoo, sports, or pet animals, such as dogs, horses, cats, cows, etc. Preferably, the mammal is human.




By “solid phase” is meant a non-aqueous matrix to which a reagent of interest (e.g., the WSX receptor or an antibody thereto) can adhere. Examples of solid phases encompassed herein include those formed partially or entirely of glass (e.g., controlled pore glass), polysaccharides (e.g., agarose), polyacrylamides, polystyrene, polyvinyl alcohol and silicones. In certain embodiments, depending on the context, the solid phase can comprise the well of an assay plate; in others it is a purification column (e.g., an affinity chromatography column). This term also includes a discontinuous solid phase of discrete particles, such as those described in U.S. Pat. No. 4,275,149.




II. Modes for Carrying Out the Invention




The present invention is based on the discovery of the WSX receptor. The experiments described herein demonstrate that this molecule is a cytokine receptor which appears to play a role in enhancing proliferation and/or differentiation of hematopoietic cells. In particular, this receptor has been found to be present in enriched human stem cell populations, thus indicating that WSX ligands, such as agonist antibodies, may be used to stimulate proliferation of hematopoietic stem cells/progenitor cells. Other uses for this receptor will be apparent from the following discussion.




A description follows as to how WSX receptor may be prepared.




A. Preparation of WSX Receptor




Techniques suitable for the production of WSX receptor are well known in the art and include isolating WSX receptor from an endogenous source of the polypeptide, peptide synthesis (using a peptide synthesizer) and recombinant techniques (or any combination of these techniques). The preferred technique for production of WSX receptor is a recombinant technique to be described below.




Most of the discussion below pertains to recombinant production of WSX receptor by culturing cells transformed with a vector containing WSX receptor nucleic acid and recovering the polypeptide from the cell culture. It is further envisioned that the WSX receptor of this invention may be produced by homologous recombination, as provided for in WO 91/06667, published May 16, 1991.




Briefly, this method involves transforming primary human cells containing a WSX receptor-encoding gene with a construct (i.e., vector) comprising an amplifiable gene (such as dihydrofolate reductase (DHFR) or others discussed below) and at least one flanking region of a length of at least about 150 bp that is homologous with a DNA sequence at the locus of the coding region of the WSX receptor gene to provide amplification of the WSX receptor gene. The amplifiable gene must be at a site that does not interfere with expression of the WSX receptor gene. The transformation is conducted such that the construct becomes homologously integrated into the genome of the primary cells to define an amplifiable region.




Primary cells comprising the construct are then selected for by means of the amplifiable gene or other marker present in the construct. The presence of the marker gene establishes the presence and integration of the construct into the host genome. No further selection of the primary cells need be made, since selection will be made in the second host. If desired, the occurrence of the homologous recombination event can be determined by employing PCR and either sequencing the resulting amplified DNA sequences or determining the appropriate length of the PCR fragment when DNA from correct homologous integrants is present and expanding only those cells containing such fragments. Also if desired, the selected cells may be amplified at this point by stressing the cells with the appropriate amplifying agent (such as methotrexate if the amplifiable gene is DHFR), so that multiple copies of the target gene are obtained. Preferably, however, the amplification step is not conducted until after the second transformation described below.




After the selection step, DNA portions of the genome, sufficiently large to include the entire amplifiable region, are isolated from the selected primary cells. Secondary mammalian expression host cells are then transformed with these genomic DNA portions and cloned, and clones are selected that contain the amplifiable region. The amplifiable region is then amplified by means of an amplifying agent if not already amplified in the primary cells. Finally, the secondary expression host cells now comprising multiple copies of the amplifiable region containing WSX receptor are grown so as to express the gene and produce the protein.




1. Isolation of DNA Encoding WSX Receptor




The DNA encoding WSX receptor may be obtained from any cDNA library prepared from tissue believed to possess the WSX receptor mRNA and to express it at a detectable level. Accordingly, WSX receptor DNA can be conveniently obtained from a cDNA library prepared from mammalian fetal liver. The WSX receptor-encoding gene may also be obtained from a genomic library or by oligonucleotide synthesis.




Libraries are screened with probes (such as antibodies to the WSX receptor or oligonucleotides of about 20-80 bases) designed to identify the gene of interest or the protein encoded by it. Screening the cDNA or genomic library with the selected probe may be conducted using standard procedures as described in chapters 10-12 of Sambrook et al.,


Molecular Cloning: A Laboratory Manual


(New York: Cold Spring Harbor Laboratory Press, 1989). An alternative means to isolate the gene encoding WSX receptor is to use PCR methodology as described in section 14 of Sambrook et al., supra.




A preferred method of practicing this invention is to use carefully selected oligonucleotide sequences to screen cDNA libraries from various human tissues, preferably human fetal liver. The oligonucleotide sequences selected as probes should be of sufficient length and sufficiently unambiguous that false positives are minimized.




The oligonucleotide must be labeled such that it can be detected upon hybridization to DNA in the library being screened. The preferred method of labeling is to use


32


P-labeled ATP with polynucleotide kinase, as is well known in the art, to radiolabel the oligonucleotide. However, other methods may be used to label the oligonucleotide, including, but not limited to, biotinylation or enzyme labeling.




Amino acid sequence variants of WSX receptor are prepared by introducing appropriate nucleotide changes into the WSX receptor DNA, or by synthesis of the desired WSX receptor polypeptide. Such variants represent insertions, substitutions, and/or specified deletions of, residues within or at one or both of the ends of the amino acid sequence of a naturally occurring human WSX receptor, such as the WSX receptor variants shown in

FIGS. 2A-D

. Preferably, these variants represent insertions and/or substitutions within or at one or both ends of the mature sequence, and/or insertions, substitutions and/or specificed deletions within or at one or both of the ends of the signal sequence of the WSX receptor. Any combination of insertion, substitution, and/or specified deletion is made to arrive at the final construct, provided that the final construct possesses the desired biological activity as defined herein. The amino acid changes also may alter post-translational processes of the WSX receptor, such as changing the number or position of glycosylation sites, altering the membrane anchoring characteristics, and/or altering the intracellular location of the WSX receptor by inserting, deleting, or otherwise affecting the leader sequence of the WSX receptor.




Variations in the native sequence as described above can be made using any of the techniques and guidelines for conservative and non-conservative mutations set forth in U.S. Pat. No. 5,364,934. These include oligonucleotide-mediated (site-directed) mutagenesis, alanine scanning, and PCR mutagenesis. See also, for example, Table I therein and the discussion surrounding this table for guidance on selecting amino acids to change, add, or delete.




2. Insertion of Nucleic Acid into Replicable Vector




The nucleic acid (e.g., cDNA or genomic DNA) encoding the WSX receptor is inserted into a replicable vector for further cloning (amplification of the DNA) or for expression. Many vectors are available. The vector components generally include, but are not limited to, one or more of the following: a signal sequence, an origin of replication, one or more marker genes, an enhancer element, a promoter, and a transcription termination sequence.




a. Signal Sequence Component




The WSX receptors of this invention may be produced recombinantly not only directly, but also as a fusion polypeptide with a heterologous polypeptide, which is preferably a signal sequence or other polypeptide having a specific cleavage site at the N-terminus of the mature protein or polypeptide. In general, the signal sequence may be a component of the vector, or it may be a part of the WSX receptor DNA that is inserted into the vector. The heterologous signal sequence selected preferably is one that is recognized and processed (i.e., cleaved by a signal peptidase) by the host cell. For prokaryotic host cells that do not recognize and process the native WSX receptor signal sequence, the signal sequence is substituted by a prokaryotic signal sequence selected, for example, from the group of the alkaline phosphatase, penicillinase, Ipp, or heat-stable enterotoxin II leaders. For yeast secretion the native signal sequence may be substituted by, e.g., the yeast invertase leader, α factor leader (including Saccharomyces and Kluyveromyces α-factor leaders, the latter described in U.S. Pat. No. 5,010,182 issued Apr. 23, 1991), or acid phosphatase leader, the


C. albicans


glucoamylase leader (EP 362,179 published Apr. 4, 1990), or the signal described in WO 90/13646 published Nov. 15, 1990. In mammalian cell expression the native signal sequence (e.g., the WSX receptor presequence that normally directs secretion of WSX receptor from human cells in vivo) is satisfactory, although other mammalian signal sequences may be suitable, such as signal sequences from other animal WSX receptors, and signal sequences from secreted polypeptides of the same or related species, as well as viral secretory leaders, for example, the herpes simplex gD signal.




The DNA for such precursor region is ligated in reading frame to DNA encoding the mature WSX receptor.




b. Origin of Replication Component




Both expression and cloning vectors contain a nucleic acid sequence that enables the vector to replicate in one or more selected host cells. Generally, in cloning vectors this sequence is one that enables the vector to replicate independently of the host chromosomal DNA, and includes origins of replication or autonomously replicating sequences. Such sequences are well known for a variety of bacteria, yeast, and viruses. The origin of replication from the plasmid pBR322 is suitable for most Gram-negative bacteria, the 2μ plasmid origin is suitable for yeast, and various viral origins (SV40, polyoma, adenovirus, VSV or BPV) are useful for cloning vectors in mammalian cells. Generally, the origin of replication component is not needed for mammalian expression vectors (the SV40 origin may typically be used only because it contains the early promoter).




Most expression vectors are “shuttle” vectors, i.e., they are capable of replication in at least one class of organisms but can be transfected into another organism for expression. For example, a vector is cloned in


E. coli


and then the same vector is transfected into yeast or mammalian cells for expression even though it is not capable of replicating independently of the host cell chromosome.




DNA may also be amplified by insertion into the host genome. This is readily accomplished using Bacillus species as hosts, for example, by including in the vector a DNA sequence that is complementary to a sequence found in Bacillus genomic DNA. Transfection of Bacillus with this vector results in homologous recombination with the genome and insertion of WSX receptor DNA. However, the recovery of genomic DNA encoding WSX receptor is more complex than that of an exogenously replicated vector because restriction enzyme digestion is required to excise the WSX receptor DNA.




c. Selection Gene Component




Expression and cloning vectors should contain a selection gene, also termed a selectable marker. This gene encodes a protein necessary for the survival or growth of transformed host cells grown in a selective culture medium. Host cells not transformed with the vector containing the selection gene will not survive in the culture medium. Typical selection genes encode proteins that (a) confer resistance to antibiotics or other toxins, e.g., ampicillin, neomycin, methotrexate, or tetracycline, (b) complement auxotrophic deficiencies, or (c) supply critical nutrients not available from complex media, e.g., the gene encoding D-alanine racemase for Bacilli.




One example of a selection scheme utilizes a drug to arrest growth of a host cell. Those cells that are successfully transformed with a heterologous gene produce a protein conferring drug resistance and thus survive the selection regimen. Examples of such dominant selection use the drugs neomycin, mycophenolic acid and hygromycin.




Another example of suitable selectable markers for mammalian cells are those that enable the identification of cells competent to take up the WSX receptor nucleic acid, such as DHFR or thymidine kinase. The mammalian cell transformants are placed under selection pressure that only the transformants are uniquely adapted to survive by virtue of having taken up the marker. Selection pressure is imposed by culturing the transformants under conditions in which the concentration of selection agent in the medium is successively changed, thereby leading to amplification of both the selection gene and the DNA that encodes WSX receptor. Amplification is the process by which genes in greater demand for the production of a protein critical for growth are reiterated in tandem within the chromosomes of successive generations of recombinant cells. Increased quantities of WSX receptor are synthesized from the amplified DNA. Other examples of amplifiable genes include metallothionein-I and -II, preferably primate metallothionein genes, adenosine deaminase, ornithine decarboxylase, etc.




For example, cells transformed with the DHFR selection gene are first identified by culturing all of the transformants in a culture medium that contains methotrexate (Mtx), a competitive antagonist of DHFR. An appropriate host cell when wild-type DHFR is employed is the Chinese hamster ovary (CHO) cell line deficient in DHFR activity, prepared and propagated as described by Urlaub et al.,


Proc. Natl. Acad. Sci. USA


, 77:4216 (1980). The transformed cells are then exposed to increased levels of methotrexate. This leads to the synthesis of multiple copies of the DHFR gene, and, concomitantly, multiple copies of other DNA comprising the expression vectors, such as the DNA encoding WSX receptor. This amplification technique can be used with any otherwise suitable host, e.g., ATCC No. CCL61 CHO-K1, notwithstanding the presence of endogenous DHFR if, for example, a mutant DHFR gene that is highly resistant to Mtx is employed (EP 117,060).




Alternatively, host cells (particularly wild-type hosts that contain endogenous DHFR) transformed or co-transformed with DNA sequences encoding WSX receptor, wild-type DHFR protein, and another selectable marker such as aminoglycoside 3′-phosphotransferase (APH) can be selected by cell growth in medium containing a selection agent for the selectable marker such as an aminoglycosidic antibiotic, e.g., kanamycin, neomycin, or G418. See U.S. Pat. No. 4,965,199.




A suitable selection gene for use in yeast is the trp1 gene present in the yeast plasmid YRp7 (Stinchcomb et al.,


Nature


, 282:39 (1979)). The trp1 gene provides a selection marker for a mutant strain of yeast lacking the ability to grow in tryptophan, for example, ATCC No. 44076 or PEP4-1. Jones,


Genetics


, 85:12 (1977). The presence of the trp1 lesion in the yeast host cell genome then provides an effective environment for detecting transformation by growth in the absence of tryptophan. Similarly, Leu2-deficient yeast strains (ATCC 20,622 or 38,626) are complemented by known plasmids bearing the Leu2 gene.




In addition, vectors derived from the 1.6 μm circular plasmid pKD1 can be used for transformation of Kluyveromyces yeasts. Bianchi et al.,


Curr. Genet


., 12:185 (1987). More recently, an expression system for large-scale production of recombinant calf chymosin was reported for


K. lactis


. Van den Berg,


Bio/Technology


, 8:135 (1990). Stable multi-copy expression vectors for secretion of mature recombinant human serum albumin by industrial strains of Kluyveromyces have also been disclosed. Fleer et al.,


Bio/Technology


, 9:968-975 (1991).




d. Promoter Component




Expression and cloning vectors usually contain a promoter that is recognized by the host organism and is operably linked to the WSX receptor nucleic acid. Promoters are untranslated sequences located upstream (5′) to the start codon of a structural gene (generally within about 100 to 1000 bp) that control the transcription and translation of particular nucleic acid sequence, such as the WSX receptor nucleic acid sequence, to which they are operably linked. Such promoters typically fall into two classes, inducible and constitutive. Inducible promoters are promoters that initiate increased levels of transcription from DNA under their control in response to some change in culture conditions, e.g., the presence or absence of a nutrient or a change in temperature. At this time a large number of promoters recognized by a variety of potential host cells are well known. These promoters are operably linked to WSX receptor-encoding DNA by removing the promoter from the source DNA by restriction enzyme digestion and inserting the isolated promoter sequence into the vector. Both the native WSX receptor promoter sequence and many heterologous promoters may be used to direct amplification and/or expression of the WSX receptor DNA. However, heterologous promoters are preferred, as they generally permit greater transcription and higher yields of WSX receptor as compared to the native WSX receptor promoter.




Promoters suitable for use with prokaryotic hosts include the β-lactamase and lactose promoter systems (Chang et al.,


Nature


, 275:615 (1978); Goeddel et al.,


Nature


, 281:544 (1979)), alkaline phosphatase, a tryptophan (trp) promoter system (Goeddel,


Nucleic Acids Res


., 8:4057 (1980); EP 36,776), and hybrid promoters such as the tac promoter. deBoer et al.,


Proc. Natl. Acad. Sci. USA


, 80:21-25 (1983). However, other known bacterial promoters are suitable. Their nucleotide sequences have been published, thereby enabling a skilled worker operably to ligate them to DNA encoding WSX receptor (Siebenlist et al.,


Cell


, 20:269 (1980)) using linkers or adaptors to supply any required restriction sites. Promoters for use in bacterial systems also will contain a Shine-Dalgarno (S.D.) sequence operably linked to the DNA encoding WSX receptor.




Promoter sequences are known for eukaryotes. Virtually all eukaryotic genes have an AT-rich region located approximately 25 to 30 bases upstream from the site where transcription is initiated. Another sequence found 70 to 80 bases upstream from the start of transcription of many genes is a CXCAAT region where X may be any nucleotide. At the 3′ end of most eukaryotic genes is an AATAAA sequence that may be the signal for addition of the poly A tail to the 3′ end of the coding sequence. All of these sequences are suitably inserted into eukaryotic expression vectors.




Examples of suitable promoting sequences for use with yeast hosts include the promoters for 3-phosphoglycerate kinase (Hitzeman et al.,


J. Biol. Chem


., 255:2073 (1980)) or other glycolytic enzymes (Hess et al.,


J. Adv. Enzyme Reg


., 7:149 (1968); Holland,


Biochemistry


, 17:4900 (1978)), such as enolase, glyceraldehyde-3-phosphate dehydrogenase, hexokinase, pyruvate decarboxylase, phosphofructokinase, glucose-6-phosphate isomerase, 3-phosphoglycerate mutase, pyruvate kinase, triosephosphate isomerase, phosphoglucose isomerase, and glucokinase.




Other yeast promoters, which are inducible promoters having the additional advantage of transcription controlled by growth conditions, are the promoter regions for alcohol dehydrogenase 2, isocytochrome C, acid phosphatase, degradative enzymes associated with nitrogen metabolism, metallothionein, glyceraldehyde-3-phosphate dehydrogenase, and enzymes responsible for maltose and galactose utilization. Suitable vectors and promoters for use in yeast expression are further described in EP 73,657. Yeast enhancers also are advantageously used with yeast promoters.




WSX receptor transcription from vectors in mammalian host cells is controlled, for example, by promoters obtained from the genomes of viruses such as polyoma virus, fowlpox virus (UK 2,211,504 published Jul. 5, 1989), adenovirus (such as Adenovirus 2), bovine papilloma virus, avian sarcoma virus, cytomegalovirus, a retrovirus, hepatitis-B virus and most preferably Simian Virus 40 (SV40), from heterologous mammalian promoters, e.g., the actin promoter or an immunoglobulin promoter, from heat-shock promoters, and from the promoter normally associated with the WSX receptor sequence, provided such promoters are compatible with the host cell systems.




The early and late promoters of the SV40 virus are conveniently obtained as an SV40 restriction fragment that also contains the SV40 viral origin of replication. Fiers et al.,


Nature


, 273:113 (1978); Mulligan et al.,


Science


, 209:1422-1427 (1980); Pavlakis et al.,


Proc. Natl. Acad. Sci. USA


, 78:7398-7402 (1981). The immediate early promoter of the human cytomegalovirus is conveniently obtained as a HindIII E restriction fragment. Greenaway et al.,


Gene


, 18:355-360 (1982). A system for expressing DNA in mammalian hosts using the bovine papilloma virus as a vector is disclosed in U.S. Pat. No. 4,419,446. A modification of this system is described in U.S. Pat. No. 4,601,978. See also Gray et al.,


Nature


, 295:503-508 (1982) on expressing cDNA encoding immune interferon in monkey cells; Reyes et al.,


Nature


, 297:598-601 (1982) on expression of human β-interferon cDNA in mouse cells under the control of a thymidine kinase promoter from herpes simplex virus; Canaani et al.,


Proc. Natl. Acad. Sci. USA


, 79:5166-5170 (1982) on expression of the human interferon β1 gene in cultured mouse and rabbit cells; and Gorman et al.,


Proc. Natl. Acad. Sci. USA


, 79:6777-6781 (1982) on expression of bacterial CAT sequences in CV-1 monkey kidney cells, chicken embryo fibroblasts, Chinese hamster ovary cells, HeLa cells, and mouse NIH-3T3 cells using the Rous sarcoma virus long terminal repeat as a promoter.




e. Enhancer Element Component




Transcription of a DNA encoding the WSX receptor of this invention by higher eukaryotes is often increased by inserting an enhancer sequence into the vector. Enhancers are cis-acting elements of DNA, usually about from 10 to 300 bp, that act on a promoter to increase its transcription. Enhancers are relatively orientation and position independent, having been found 5′ (Laimins et al.,


Proc. Natl. Acad. Sci. USA


, 78:993 (1981)) and 3′ (Lusky et al.,


Mol. Cell Bio


., 3:1108 (1983)) to the transcription unit, within an intron (Banerji et al.,


Cell


, 33:729 (1983)), as well as within the coding sequence itself. Osborne et al.,


Mol. Cell Bio


., 4:1293 (1984). Many enhancer sequences are now known from mammalian genes (globin, elastase, albumin, α-fetoprotein, and insulin). Typically, however, one will use an enhancer from a eukaryotic cell virus. Examples include the SV40 enhancer on the late side of the replication origin (bp 100-270), the cytomegalovirus early promoter enhancer, the polyoma enhancer on the late side of the replication origin, and adenovirus enhancers. See also Yaniv,


Nature


, 297:17-18 (1982) on enhancing elements for activation of eukaryotic promoters. The enhancer may be spliced into the vector at a position 5′ or 3′ to the WSX receptor-encoding sequence, but is preferably located at a site 5′ from the promoter.




f. Transcription Termination Component




Expression vectors used in eukaryotic host cells (yeast, fungi, insect, plant, animal, human, or nucleated cells from other multicellular organisms) will also contain sequences necessary for the termination of transcription and for stabilizing the mRNA. Such sequences are commonly available from the 5′ and, occasionally 3′, untranslated regions of eukaryotic or viral DNAs or cDNAs. These regions contain nucleotide segments transcribed as polyadenylated fragments in the untranslated portion of the mRNA encoding WSX receptor.




g. Construction and Analysis of Vectors




Construction of suitable vectors containing one or more of the above-listed components employs standard ligation techniques. Isolated plasmids or DNA fragments are cleaved, tailored, and re-ligated in the form desired to generate the plasmids required.




For analysis to confirm correct sequences in plasmids constructed, the ligation mixtures are used to transform


E. coli


K12 strain 294 (ATCC 31,446) and successful transformants selected by ampicillin or tetracycline resistance where appropriate. Plasmids from the transformants are prepared, analyzed by restriction endonuclease digestion, and/or sequenced by the method of Messing et al.,


Nucleic Acids Res


., 9:309 (1981) or by the method of Maxam et al.,


Methods in Enzymology


, 65:499 (1980).




h. Transient Expression Vectors




Particularly useful in the practice of this invention are expression vectors that provide for the transient expression in mammalian cells of DNA encoding WSX receptor. In general, transient expression involves the use of an expression vector that is able to replicate efficiently in a host cell, such that the host cell accumulates many copies of the expression vector and, in turn, synthesizes high levels of a desired polypeptide encoded by the expression vector. Sambrook et al., supra, pp. 16.17-16.22. Transient expression systems, comprising a suitable expression vector and a host cell, allow for the convenient positive identification of polypeptides encoded by cloned DNAs, as well as for the rapid screening of such polypeptides for desired biological or physiological properties. Thus, transient expression systems are particularly useful in the invention for purposes of identifying analogs and variants of WSX receptor that are biologically active WSX receptor.




i. Suitable Exemplary Vertebrate Cell Vectors




Other methods, vectors, and host cells suitable for adaptation to the synthesis of WSX receptor in recombinant vertebrate cell culture are described in Gething et al.,


Nature


, 293:620-625 (1981); Mantei et al.,


Nature


, 281:40-46 (1979); EP 117,060; and EP 117,058. A particularly useful plasmid for mammalian cell culture expression of WSX receptor is pRK5 (EP 307,247) or pSVI6 B. WO 91/08291 published Jun. 13, 1991.




3. Selection and Transformation of Host Cells




Suitable host cells for cloning or expressing the DNA in the vectors herein are the prokaryote, yeast, or higher eukaryote cells described above. Suitable prokaryotes for this purpose include eubacteria, such as Gram-negative or Gram-positive organisms, for example, Enterobacteriaceae such as Eschedchia, e.g.,


E. coli


, Enterobacter, Erwinia, Klebsiella, Proteus, Salmonella, e.g.,


Salmonella typhimurum


, Serratia, e.g.,


Serratia marcescans


, and Shigella, as well as Bacilli such as


B. subtilis


and


B. licheniformis


(e.g.,


B. licheniformis


41P disclosed in DD 266,710 published Apr. 12, 1989), Pseudomonas such as


P. aeruginosa


, and Streptomyces. One preferred


E. coli


cloning host is


E. coli


294 (ATCC 31,446), although other strains such as


E. coli


B,


E. coli


X1776 (ATCC 31,537), and


E. coli


W3110 (ATCC 27,325) are suitable. These examples are illustrative rather than limiting. Strain W3110 is a particularly preferred host or parent host because it is a common host strain for recombinant DNA product fermentations. Preferably, the host cell should secrete minimal amounts of proteolytic enzymes. For example, strain W3110 may be modified to effect a genetic mutation in the genes encoding proteins, with examples of such hosts including


E. coli


W3110 strain 27C7. The complete genotype of 27C7 is tonAΔ ptr3 phoAΔE15 Δ(argF-lac)169 ompTΔ degP41kan


r


. Strain 27C7 was deposited on Oct. 30, 1991 in the American Type Culture Collection as ATCC No. 55,244. Alternatively, the strain of


E. coli


having mutant periplasmic protease disclosed in U.S. Pat. No. 4,946,783 issued Aug.


7


, 1990 may be employed. Alternatively still, methods of cloning, e.g., PCR or other nucleic acid polymerase reactions, are suitable.




In addition to prokaryotes, eukaryotic microbes such as filamentous fungi or yeast are suitable cloning or expression hosts for WSX receptor-encoding vectors.


Saccharomyces cerevisiae


, or common baker's yeast, is the most commonly used among lower eukaryotic host microorganisms. However, a number of other genera, species, and strains are commonly available and useful herein, such as


Schizosaccharomyces pombe


(Beach et al.,


Nature


, 290:140 (1981); EP 139,383 published May 2, 1985); Kluyveromyces hosts (U.S. Pat. No. 4,943,529; Fleer et al., supra) such as, e.g.,


K. lactis


(MW98-8C, CBS683, CBS4574; Louvencourt et al.,


J. Bacteriol


., 737 (1983)),


K. fragilis


(ATCC 12,424),


K. bulgarcus


(ATCC 16,045),


K. wickeramii


(ATCC 24,178),


K. waltii


(ATCC 56,500),


K. drosophilarum


(ATCC 36,906; Van den Berg et al., supra),


K. thermotolerans


, and


K. marxianus


; yarrowia (EP 402,226);


Pichia pastods


(EP 183,070; Sreekrishna et al.,


J. Basic Microbiol


., 28:265-278 (1988)); Candida;


Trichoderma reesia


(EP 244,234);


Neurospora crassa


(Case et al.,


Proc. Natl. Acad. Sci. USA


, 76:5259-5263 (1979)); Schwanniomyces such as


Schwanniomyces occidentalis


(EP 394,538 published Oct. 31, 1990); and filamentous fungi such as, e.g., Neurospora, Penicillium, Tolypocladium (WO 91/00357 published Jan. 10, 1991), and Aspergillus hosts such as


A. nidulans


(Ballance et al.,


Biochem. Biophys. Res. Commun


., 112:284-289 (1983); Tilbum et al.,


Gene


, 26:205-221 (1983); Yelton et al.,


Proc. Natl. Acad. Sci. USA


, 81:1470-1474 (1984)) and


A. niger


Kelly et al.,


EMBO J


., 4:475-479 (1985).




Suitable host cells for the expression of glycosylated WSX receptor are derived from multicellular organisms. Such host cells are capable of complex processing and glycosylation activities. In principle, any higher eukaryotic cell culture is workable, whether from vertebrate or invertebrate culture. Examples of invertebrate cells include plant and insect cells. Numerous baculoviral strains and variants and corresponding permissive insect host cells from hosts such as


Spodoptera frugiperda


(caterpillar),


Aedes aegypti


(mosquito),


Aedes albopictus


(mosquito),


Drosophila melanogaster


(fruitfly), and


Bombyx mori


have been identified. See, e.g., Luckow et al.,


Bio/Technology


, 6:47-55 (1988); Miller et al., in


Genetic Engineering


, Setlow et al., eds., Vol. 8 (Plenum Publishing, 1986), pp. 277-279; and Maeda et al.,


Nature


, 315:592-594 (1985). A variety of viral strains for transfection are publicly available, e.g., the L-1 variant of


Autographa californica


NPV and the Bm-5 strain of


Bombyx mori


NPV, and such viruses may be used as the virus herein according to the present invention, particularly for transfection of


Spodoptera frugiperda


cells.




Plant cell cultures of cotton, corn, potato, soybean, petunia, tomato, and tobacco can be utilized as hosts. Typically, plant cells are transfected by incubation with certain strains of the bacterium


Agrobacterium tumefaciens


, which has been previously manipulated to contain the WSX receptor-encoding DNA. During incubation of the plant cell culture with


A. tumefaciens


, the DNA encoding the WSX receptor is transferred to the plant cell host such that it is transfected, and will, under appropriate conditions, express the WSX receptor-encoding DNA. In addition, regulatory and signal sequences compatible with plant cells are available, such as the nopaline synthase promoter and polyadenylation signal sequences. Depicker et al.,


J. Mol. Appl. Gen


., 1:561 (1982). In addition, DNA segments isolated from the upstream region of the T-DNA 780 gene are capable of activating or increasing transcription levels of plant-expressible genes in recombinant DNA-containing plant tissue. EP 321,196 published Jun. 21, 1989.




However, interest has been greatest in vertebrate cells, and propagation of vertebrate cells in culture (tissue culture) has become a routine procedure. See, e.g.,


Tissue Culture


, Academic Press, Kruse and Patterson, editors (1973). Examples of useful mammalian host cell lines are monkey kidney CV1 line transformed by SV40 (COS-7, ATCC CRL 1651); human embryonic kidney line (293 or 293 cells subcloned for growth in suspension culture, Graham et al.,


J. Gen Virol


., 36:59 (1977)); baby hamster kidney cells (BHK, ATCC CCL 10); Chinese hamster ovary cells/-DHFR (CHO, Urlaub et al.,


Proc. Natl. Acad. Sci. USA


, 77:4216 (1980)); mouse sertoli cells (TM4, Mather,


Biol. Reprod


., 23:243-251 (1980)); monkey kidney cells (CV1 ATCC CCL 70); African green monkey kidney cells (VERO-76, ATCC CRL-1587); human cervical carcinoma cells (HELA, ATCC CCL 2); canine kidney cells (MDCK, ATCC CCL 34); buffalo rat liver cells (BRL 3A, ATCC CRL 1442); human lung cells (W138, ATCC CCL 75); human liver cells (Hep G2, HB 8065); mouse mammary tumor (MMT 060562, ATCC CCL51); TRI cells (Mather et al.,


Annals N.Y. Acad. Sci


., 383:44-68 (1982)); MRC 5 cells; FS4 cells; and a human hepatoma line (Hep G2).




Host cells are transfected and preferably transformed with the above-described expression or cloning vectors for WSX receptor production and cultured in conventional nutrient media modified as appropriate for inducing promoters, selecting transformants, or amplifying the genes encoding the desired sequences.




Transfection refers to the taking up of an expression vector by a host cell whether or not any coding sequences are in fact expressed. Numerous methods of transfection are known to the ordinarily skilled artisan, for example, CaPO


4


and electroporation. Successful transfection is generally recognized when any indication of the operation of this vector occurs within the host cell.




Transformation means introducing DNA into an organism so that the DNA is replicable, either as an extrachromosomal element or by chromosomal integrant. Depending on the host cell used, transformation is done using standard techniques appropriate to such cells. The calcium treatment employing calcium chloride, as described in section 1.82 of Sambrook et al., supra, or electroporation is generally used for prokaryotes or other cells that contain substantial cell-wall barriers. Infection with


Agrobacterum tumefaciens


is used for transformation of certain plant cells, as described by Shaw et al.,


Gene


, 23:315 (1983) and WO 89/05859 published Jun. 29, 1989. In addition, plants may be transfected using ultrasound treatment as described in WO 91/00358 published Jan. 10, 1991.




For mammalian cells without such cell walls, the calcium phosphate precipitation method of Graham et al.,


Virology


, 52:456-457 (1978) is preferred. General aspects of mammalian cell host system transformations have been described in U.S. Pat. No. 4,399,216 issued Aug. 16, 1983. Transformations into yeast are typically carried out according to the method of Van Solingen et al.,


J. Bact


., 130:946 (1977) and Hsiao et al.,


Proc. Natl. Acad. Sci. USA


, 76:3829 (1979). However, other methods for introducing DNA into cells, such as by nuclear microinjection, electroporation, bacterial protoplast fusion with intact cells, or polycations, e.g., polybrene, polyomithine, etc., may also be used. For various techniques for transforming mammalian cells, see Keown et al.,


Methods in Enzymology


, 185:527-537 (1990) and Mansour et al.,


Nature


, 336:348-352 (1988).




4. Culturing the Host Cells




Prokaryotic cells used to produce the WSX receptor polypeptide of this invention are cultured in suitable media as described generally in Sambrook et al., supra.




The mammalian host cells used to produce the WSX receptor of this invention may be cultured in a variety of media. Commercially available media such as Ham's F10 (Sigma), Minimal Essential Medium ((MEM), Sigma), RPMI-1640 (Sigma), and Dulbecco's Modified Eagle's Medium ((DMEM), Sigma) are suitable for culturing the host cells. In addition, any of the media described in Ham et al.


Meth. Enz


., 58:44 (1979), Bames et al.,


Anal. Biochem


., 102:255 (1980), U.S. Pat. Nos. 4,767,704; 4,657,866; 4,927,762; 4,560,655; or U.S. Pat. No. 5,122,469; WO 90/03430; WO 87/00195; or U.S. Patent Re. 30,985 may be used as culture media for the host cells. Any of these media may be supplemented as necessary with hormones and/or other growth factors (such as insulin, transferrin, or epidermal growth factor), salts (such as sodium chloride, calcium, magnesium, and phosphate), buffers (such as HEPES), nucleosides (such as adenosine and thymidine), antibiotics (such as GENTAMYCIN™ drug), trace elements (defined as inorganic compounds usually present at final concentrations in the micromolar range), and glucose or an equivalent energy source. Any other necessary supplements may also be included at appropriate concentrations that would be known to those skilled in the art. The culture conditions, such as temperature, pH, and the like, are those previously used with the host cell selected for expression, and will be apparent to the ordinarily skilled artisan.




In general, principles, protocols, and practical techniques for maximizing the productivity of mammalian cell cultures can be found in


Mammalian Cell Biotechnology: a Practical Approach


, M. Butler, ed. (IRL Press, 1991).




The host cells referred to in this disclosure encompass cells in culture as well as cells that are within a host animal.




5. Detecting Gene Amplification/Expression




Gene amplification and/or expression may be measured in a sample directly, for example, by conventional Southern blotting, Northern blotting to quantitate the transcription of mRNA (Thomas,


Proc. Natl. Acad. Sci. USA


, 77:5201-5205 (1980)), dot blotting (DNA analysis), or in situ hybridization, using an appropriately labeled probe, based on the sequences provided herein. Various labels may be employed, most commonly radioisotopes, particularly


32


p. However, other techniques may also be employed, such as using biotin-modified nucleotides for introduction into a polynucleotide. The biotin then serves as the site for binding to avidin or antibodies, which may be labeled with a wide variety of labels, such as radionuclides, fluorescens, enzymes, or the like. Alternatively, antibodies may be employed that can recognize specific duplexes, including DNA duplexes, RNA duplexes, and DNA-RNA hybrid duplexes or DNA-protein duplexes. The antibodies in turn may be labeled and the assay may be carried out where the duplex is bound to a surface, so that upon the formation of duplex on the surface, the presence of antibody bound to the duplex can be detected.




Gene expression, alternatively, may be measured by immunological methods, such as immunohistochemical staining of tissue sections and assay of cell culture or body fluids, to quantitate directly the expression of gene product. With immunohistochemical staining techniques, a cell sample is prepared, typically by dehydration and fixation, followed by reaction with labeled antibodies specific for the gene product coupled, where the labels are usually visually detectable, such as enzymatic labels, fluorescent labels, luminescent labels, and the like. A particularly sensitive staining technique suitable for use in the present invention is described by Hsu et al.,


Am. J. Clin. Path


., 75:734-738 (1980).




Antibodies useful for immunohistochemical staining and/or assay of sample fluids may be either monoclonal or polyclonal, and may be prepared as described herein.




6. Purification of WSX Receptor Polypeptide




WSX receptor (e.g., WSX receptor ECD) preferably is recovered from the culture medium as a secreted polypeptide, although it also may be recovered from host cell lysates. If the WSX receptor is membrane-bound, it can be released from the membrane using a suitable detergent solution (e.g. Triton-X 100)




When WSX receptor.is produced in a recombinant cell other than one of human origin, the WSX receptor is completely free of proteins or polypeptides of human origin. However, it is necessary to purify WSX receptor from recombinant cell proteins or polypeptides to obtain preparations that are substantially homogeneous as to WSX receptor. As a first step, the culture medium or lysate is centrifuged to remove particulate cell debris. WSX receptor thereafter is purified from contaminant soluble proteins and polypeptides, with the following procedures being exemplary of suitable purification procedures: by fractionation on an ion-exchange column; ethanol precipitation; reverse phase HPLC; chromatography on silica or on a cation-exchange resin such as DEAE; chromatofocusing; SDS-PAGE; ammonium sulfate precipitation; gel filtration using, for example, SEPHADEX G-75; and protein A SEPHAROSE columns to remove contaminants such as IgG.




WSX receptor variants in which residues have been deleted, inserted, or substituted are recovered in the same fashion as native sequence WSX receptor, taking account of any substantial changes in properties occasioned by the variation. Immunoaffinity columns such as a rabbit polyclonal anti-WSX receptor column can be employed to absorb the WSX receptor variant by binding it to at least one remaining immune epitope.




A protease inhibitor such as phenyl methyl sulfonyl fluoride (PMSF) also may be useful to inhibit proteolytic degradation during purification, and antibiotics may be included to prevent the growth of adventitious contaminants.




7. Covalent Modifications of WSX Receptor Polypeptides




Covalent modifications of WSX receptor polypeptides are included within the scope of this invention. Both native sequence WSX receptor and amino acid sequence variants of the WSX receptor may be covalently modified. One type of covalent modification of the WSX receptor is introduced into the molecule by reacting targeted amino acid residues of the WSX receptor with an organic derivatizing agent that is capable of reacting with selected side chains or the N- or C-terminal residues of the WSX receptor.




Cysteinyl residues most commonly are reacted with α-haloacetates (and corresponding amines), such as chloroacetic acid or chloroacetamide, to give carboxymethyl or carboxyamidomethyl derivatives. Cysteinyl residues also are derivatized by reaction with bromotrifluoroacetone, α-bromo-β-(5-imidozoyl)propionic acid, chloroacetyl phosphate, N-alkylmaleimides, 3-nitro-2-pyridyl disulfide, methyl 2-pyridyl disulfide, p-chloromercuribenzoate, 2-chloromercuri-4-nitrophenol, or chloro-7-nitrobenzo-2-oxa-1,3-diazole.




Histidyl residues are derivatized by reaction with diethylpyrocarbonate at pH 5.5-7.0 because this agent is relatively specific for the histidyl side chain. Para-bromophenacyl bromide also is useful; the reaction is preferably performed in 0.1M sodium cacodylate at pH 6.0.




Lysinyl and amino terminal residues are reacted with succinic or other carboxylic acid anhydrides. Derivatization with these agents has the effect of reversing the charge of the lysinyl residues. Other suitable reagents for derivatizing α-amino-containing residues include imidoesters such as methyl picolinimidate, pyridoxal phosphate, pyridoxal, chloroborohydride, trinitrobenzenesulfonic acid, O-methylisourea, 2,4-pentanedione, and transaminase-catalyzed reaction with glyoxylate.




Arginyl residues are modified by reaction with one or several conventional reagents, among them phenylglyoxal, 2,3-butanedione, 1,2-cyclohexanedione, and ninhydrin. Derivatization of arginine residues requires that the reaction be performed under alkaline conditions because of the high pK


a


of the guanidine functional group. Furthermore, these reagents may react with the groups of lysine as well as with the arginine epsilon-amino group.




The specific modification of tyrosyl residues may be made, with particular interest in introducing spectral labels into tyrosyl residues by reaction with aromatic diazonium compounds or tetranitromethane. Most commonly, N-acetylimidizole and tetranitromethane are used to form O-acetyl tyrosyl species and 3-nitro derivatives, respectively. Tyrosyl residues are iodinated using


125


I or


131


I to prepare labeled proteins for use in radioimmunoassay, the chloramine T method being suitable.




Carboxyl side groups (aspartyl or glutamyl) are selectively modified by reaction with carbodiimides (R—N═C═N—R′), where R and R′ are different alkyl groups, such as 1-cyclohexyl-3-(2-morpholinyl-4-ethyl) carbodiimide or 1-ethyl-3-(4-azonia-4,4-dimethylpentyl) carbodiimide. Furthermore, aspartyl and glutamyl residues are converted to asparaginyl and glutaminyl residues by reaction with ammonium ions.




Derivatization with bifunctional agents is useful for crosslinking WSX receptor to a water-insoluble support matrix or surface for use in the method for purifying anti-WSX receptor antibodies, and vice-versa. Commonly used crosslinking agents include, e.g., 1,1-bis(diazoacetyl)-2-phenylethane, glutaraldehyde, N-hydroxysuccinimide esters, for example, esters with 4-azidosalicylic acid, homobifunctional imidoesters, including disuccinimidyl esters such as 3,3′-dithiobis-(succinimidylpropionate), and bifunctional maleimides such as bis-N-maleimido-1,8-octane. Derivatizing agents such as methyl-3-((p-azidophenyl)dithio)propioimidate yield photoactivatable intermediates that are capable of forming crosslinks in the presence of light. Alternatively, reactive water-insoluble matrices such as cyanogen bromide-activated carbohydrates and the reactive substrates described in U.S. Pat. Nos. 3,969,287; 3,691,016; 4,195,128; 4,247,642; 4,229,537; and U.S. Pat. No. 4,330,440 are employed for protein immobilization.




Glutaminyl and asparaginyl residues are frequently deamidated to the corresponding glutamyl and aspartyl residues, respectively. These residues are deamidated under neutral or basic conditions. The deamidated form of these residues falls within the scope of this invention.




Other modifications include hydroxylation of proline and lysine, phosphorylation of hydroxyl groups of seryl or threonyl residues, methylation of the α-amino groups of lysine, arginine, and histidine side chains (T. E. Creighton,


Proteins: Structure and Molecular Properties


, W.H. Freeman & Co., San Francisco, pp. 79-86 (1983)), acetylation of the N-terminal amine, and amidation of any C-terminal carboxyl group.




Another type of covalent modification of the WSX receptor polypeptide included within the scope of this invention comprises altering the native glycosylation pattern of the polypeptide. By altering is meant deleting one or more carbohydrate moieties found in native WSX receptor, and/or adding one or more glycosylation sites that are not present in the native WSX receptor.




Glycosylation of polypeptides is typically either N-linked or O-linked. N-linked refers to the attachment of the carbohydrate moiety to the side chain of an asparagine residue. The tripeptide sequences asparagine-X-serine and asparagine-X-threonine, where X is any amino acid except proline, are the recognition sequences for enzymatic attachment of the carbohydrate moiety to the asparagine side chain. Thus, the presence of either of these tripeptide sequences in a polypeptide creates a potential glycosylation site. O-linked glycosylation refers to the attachment of one of the sugars N-aceylgalactosamine, galactose, or xylose to a hydroxylamino acid, most commonly serine or threonine, although 5-hydroxyproline or 5-hydroxylysine may also be used.




Addition of glycosylation sites to the WSX receptor polypeptide is conveniently accomplished by altering the amino acid sequence such that it contains one or more of the above-described tripeptide sequences (for N-linked glycosylation sites). The alteration may also be made by the addition of, or substitution by, one or more serine or threonine residues to the native WSX receptor sequence (for O-linked glycosylation sites). For ease, the WSX receptor amino acid sequence is preferably altered through changes at the DNA level, particularly by mutating the DNA encoding the WSX receptor polypeptide at preselected bases such that codons are generated that will translate into the desired amino acids. The DNA mutation(s) may be made using methods described above and in U.S. Pat. No. 5,364,934, supra.




Another means of increasing the number of carbohydrate moieties on the WSX receptor polypeptide is by chemical or enzymatic coupling of glycosides to the polypeptide. These procedures are advantageous in that they do not require production of the polypeptide in a host cell that has glycosylation capabilities for N- or O-linked glycosylation. Depending on the coupling mode used, the sugar(s) may be attached to (a) arginine and histidine, (b) free carboxyl groups, (c) free sulfhydryl groups such as those of cysteine, (d) free hydroxyl groups such as those of serine, threonine, or hydroxyproline, (e) aromatic residues such as those of phenylalanine, tyrosine, or tryptophan, or (f) the amide group of glutamine. These methods are described in WO 87/05330 published Sep. 11, 1987, and in Aplin et al.,


CRC Crit. Rev. Biochem


., 259-306 (1981).




Removal of carbohydrate moieties present on the WSX receptor polypeptide may be accomplished chemically or enzymatically. Chemical deglycosylation requires exposure of the polypeptide to the compound trifluoromethanesulfonic acid, or an equivalent compound. This treatment results in the cleavage of most or all sugars except the linking sugar (N-acetylglucosamine or N-acetylgalactosamine), while leaving the polypeptide intact. Chemical deglycosylation is described by Hakimuddin, et al.,


Arch. Biochem. Biophys


., 259:52 (1987) and by Edge et al.,


Anal. Biochem


., 118:131 (1981). Enzymatic cleavage of carbohydrate moieties on polypeptides can be achieved by the use of a variety of endo- and exo-glycosidases as described by Thotakura et al.,


Meth. Enzymol


., 138:350 (1987).




Glycosylation at potential glycosylation sites may be prevented by the use of the compound tunicamycin as described by Duskin et al.,


J. Biol. Chem


., 257:3105 (1982). Tunicamycin blocks the formation of protein-N-glycoside linkages.




Another type of covalent modification of WSX receptor comprises linking the WSX receptor polypeptide to one of a variety of nonproteinaceous polymers, e.g., polyethylene glycol, polypropylene glycol, or polyoxyalkylenes, in the manner set forth in U.S. Pat. Nos. 4,640,835; 4,496,689; 4,301,144; 4,670,417; 4,791,192 or U.S. Pat. No. 4,179,337.




Since it is often difficult to predict in advance the characteristics of a variant WSX receptor, it will be appreciated that some screening of the recovered variant will be needed to select the optimal variant. A change in the immunological character of the WSX receptor molecule, such as affinity for a given antibody, is also able to be measured by a competitive-type immunoassay. The variant is assayed for changes in the ability of the protein to induce cell proliferation in the colony assay of Example 8. Other potential modifications of protein or polypeptide properties such as redox or thermal stability, hydrophobicity, susceptibility to proteolytic degradation, or the tendency to aggregate with carriers or into multimers are assayed by methods well known in the art.




8. Epitope-Tagged WSX Receptor




This invention encompasses chimeric polypeptides comprising WSX receptor fused to a heterologous polypeptide. A chimeric WSX receptor is one type of WSX receptor variant as defined herein. In one preferred embodiment, the chimeric polypeptide comprises a fusion of the WSX receptor with a tag polypeptide which provides an epitope to which an anti-tag antibody can selectively bind. The epitope tag is generally provided at the amino- or carboxyl-terminus of the WSX receptor. Such epitope-tagged forms of the WSX receptor are desirable as the presence thereof can be detected using a labeled antibody against the tag polypeptide. Also, provision of the epitope tag enables the WSX receptor to be readily purified by affinity purification using the anti-tag antibody. Affinity purification techniques and diagnostic assays involving antibodies are described later herein.




Tag polypeptides and their respective antibodies are well known in the art. Examples include the flu HA tag polypeptide and its antibody 12CA5 (Field et al.,


Mol. Cell. Biol


., 8:2159-2165 (1988)); the c-myc tag and the 8F9, 3C7, 6E10, G4, B7 and 9E10 antibodies thereto (Evan et al.,


Molecular and Cellular Biology


, 5:3610-3616 (1985)); and the Herpes Simplex virus glycoprotein D (gD) tag and its antibody. Paborsky et al.,


Protein Engineering


, 3(6):547-553 (1990). Other tag polypeptides have been disclosed. Examples include the Flag-peptide (Hopp et al.,


BioTechnology


, 6:1204-1210 (1988)); the KT3 epitope peptide (Martin et al.,


Science


, 255:192-194 (1992)); an α-tubulin epitope peptide (Skinner et al.,


J. Biol. Chem


., 266:15163-15166 (1991)); and the T7 gene 10 protein peptide tag. Lutz-Freyermuth et al.,


Proc. Natl. Acad. Sci. USA


, 87:6393-6397 (1990). Once the tag polypeptide has been selected, an antibody thereto can be generated using the techniques disclosed herein.




The general methods suitable for the construction and production of epitope-tagged WSX receptor are the same as those disclosed hereinabove. WSX receptor-tag polypeptide fusions are most conveniently constructed by fusing the cDNA sequence encoding the WSX receptor portion in-frame to the tag polypeptide DNA sequence and expressing the resultant DNA fusion construct in appropriate host cells. Ordinarily, when preparing the WSX receptor-tag polypeptide chimeras of the present invention, nucleic acid encoding the WSX receptor will be fused at its 3′ end to nucleic acid encoding the N-terminus of the tag polypeptide, however 5′ fusions are also possible.




Epitope-tagged WSX receptor can be conveniently purified by affinity chromatography using the anti-tag antibody. The matrix to which the affinity antibody is attached is most often agarose, but other matrices are available (e.g. controlled pore glass or poly(styrenedivinyl)benzene). The epitope-tagged WSX receptor can be eluted from the affinity column by varying the buffer pH or ionic strength or adding chaotropic agents, for example.




9. WSX Receptor Immunoadhesins




Chimeras constructed from a receptor sequence linked to an appropriate immunoglobulin constant domain sequence (immunoadhesins) are known in the art. Immunoadhesins reported in the literature include fusions of the T cell receptor* (Gascoigne et al.,


Proc. Natl. Acad. Sci. USA


, 84: 2936-2940 (1987)); CD4* (Capon et al.,


Nature


337: 525-531 (1989); Traunecker et al.,


Nature


, 339: 68-70 (1989); Zettmeissl et al.,


DNA Cell Biol. USA


, 9: 347-353 (1990); Byrn et al.,


Nature


, 344: 667-670 (1990)); L-selectin (homing receptor) ((Watson et al.,


J. Cell. Biol


., 110:2221-2229 (1990); Watson et al.,


Nature


, 349: 164-167 (1991)); CD44* (Aruffo et al.,


Cell


, 61: 1303-1313 (1990)); CD28* and B7* (Linsley et al.,


J. Exp. Med


., 173: 721-730 (1991)); CTLA-4* (Lisley et al.,


J. Exp. Med


. 174: 561-569 (1991)); CD22* (Stamenkovic et al.,


Cell


, 66:1133-1144 (1991)); TNF receptor (Ashkenazi et al.,


Proc. Natl. Acad. Sci. USA


, 88: 10535-10539 (1991); Lesslauer et al.,


Eur. J. Immunol


., 27: 2883-2886 (1991); Peppel et al.,


J. Exp. Med


., 174:1483-1489 (1991)); NP receptors (Bennett et al.,


J. Biol. Chem


. 266:23060-23067 (1991)); and IgE receptor α* (Ridgway et al.,


J. Cell. Biol


., 115:abstr. 1448 (1991)), where the asterisk (*) indicates that the receptor is member of the immunoglobulin superfamily.




The simplest and most straightforward immunoadhesin design combines the binding region(s) of the “adhesin” protein with the hinge and Fc regions of an immunoglobulin heavy chain. Ordinarily, when preparing the WSX receptor-immunoglobulin chimeras of the present invention, nucleic acid encoding the extracellular domain of the WSX receptor will be fused C-terminally to nucleic acid encoding the N-terminus of an immunoglobulin constant domain sequence, however N-terminal fusions are also possible.




Typically, in such fusions the encoded chimeric polypeptide will retain at least functionally active hinge, CH2 and CH3 domains of the constant region of an immunoglobulin heavy chain. Fusions are also made to the C-terminus of the Fc portion of a constant domain, or immediately N-terminal to the CH1 of the heavy chain or the corresponding region of the light chain.




The precise site at which the fusion is made is not critical; particular sites are well known and may be selected in order to optimize the biological activity, secretion or binding characteristics of the WSX receptor-immunoglobulin chimeras.




In some embodiments, the WSX receptor-immunoglobulin chimeras are assembled as monomers, or hetero- or homo-multimers, and particularly as dimers or tetramers, essentially as illustrated in WO 91/08298.




In a preferred embodiment, the WSX receptor extracellular domain sequence is fused to the N-terminus of the C-terminal portion of an antibody (in particular the Fc domain), containing the effector functions of an immunoglobulin, e.g. immunoglobulin G


1


(IgG1). It is possible to fuse the entire heavy chain constant region to the WSX receptor extracellular domain sequence. However, more preferably, a sequence beginning in the hinge region just upstream of the papain cleavage site (which defines IgG Fc chemically; residue 216, taking the first residue of heavy chain constant region to be 114, or analogous sites of other immunoglobulins) is used in the fusion. In a particularly preferred embodiment, the WSX receptor amino acid sequence is fused to the hinge region, CH2 and CH3, or the CH1, hinge, CH2 and CH3 domains of an IgG1, IgG2, or IgG3 heavy chain. The precise site at which the fusion is made is not critical, and the optimal site can be determined by routine experimentation.




In some embodiments, the WSX receptor-immunoglobulin chimeras are assembled as multimers, and particularly as homo-dimers or -tetramers. Generally, these assembled immunoglobulins will have known unit structures. A basic four chain structural unit is the form in which IgG, IgD, and IgE exist. A four unit is repeated in the higher molecular weight immunoglobulins; IgM generally exists as a pentamer of basic four units held together by disulfide bonds. IgA globulin, and occasionally IgG globulin, may also exist in multimeric form in serum. In the case of multimer, each four unit may be the same or different.




Various exemplary assembled WSX receptor-immunoglobulin chimeras within the scope herein are schematically diagrammed below:




(a) AC


L


-AC


L


;




(b) AC


H


-(AC


H


, AC


L


-AC


H


, AC


L


-V


H


C


H


, or V


L


C


L


-AC


H


);




(c) AC


L


-AC


H


-(AC


L


-AC


H


, AC


L


-V


H


C


H


, V


L


C


L


-AC


H


, or V


L


C


L


-V


H


C


H


);




(d) AC


L


-V


H


C


H


-(AC


H


, or AC


L


-V


H


C


H


, or V


L


C


L


-AC


H


);




(e) V


L


C


L


-AC


H


-(AC


L


-V


H


C


H


, or V


L


C


L


-AC


H


); and




(f) (A-Y)


n


-(V


L


C


L


-V


H


C


H


)


2


,




wherein




each A represents identical or different WSX receptor amino acid sequences;




V


L


is an immunoglobulin light chain variable domain;




V


H


is an immunoglobulin heavy chain variable domain;




C


L


is an immunoglobulin light chain constant domain;




C


H


is an immunoglobulin heavy chain constant domain;




n is an integer greater than 1;




Y designates the residue of a covalent cross-linking agent.




In the interests of brevity, the foregoing structures only show key features; they do not indicate joining (J) or other domains of the immunoglobulins, nor are disulfide bonds shown. However, where such domains are required for binding activity, they shall be constructed as being present in the ordinary locations which they occupy in the immunoglobulin molecules.




Alternatively, the WSX receptor extracellular domain sequence can be inserted between immunoglobulin heavy chain and light chain sequences such that an immunoglobulin comprising a chimeric heavy chain is obtained. In this embodiment, the WSX receptor sequence is fused to the 3′ end of an immunoglobulin heavy chain in each arm of an immunoglobulin, either between the hinge and the CH2 domain, or between the CH2 and CH3 domains. Similar constructs have been reported by Hoogenboom et al.,


Mol. Immunol


., 28:1027-1037 (1991).




Although the presence of an immunoglobulin light chain is not required in the immunoadhesins of the present invention, an immunoglobulin light chain might be present either covalently associated to an WSX receptor-immunoglobulin heavy chain fusion polypeptide, or directly fused to the WSX receptor extracellular domain. In the former case, DNA encoding an immunoglobulin light chain is typically coexpressed with the DNA encoding the WSX receptor-immunoglobulin heavy chain fusion protein. Upon secretion, the hybrid heavy chain and the light chain will be covalently associated to provide an immunoglobulin-like structure comprising two disulfide-linked immunoglobulin heavy chain-light chain pairs. Methods suitable for the preparation of such structures are, for example, disclosed in U.S. Pat. No. 4,816,567 issued Mar. 28, 1989.




In a preferred embodiment, the immunoglobulin sequences used in the construction of the immunoadhesins of the present invention are from an IgG immunoglobulin heavy chain constant domain. For human immunoadhesins, the use of human IgG1 and IgG3 immunoglobulin sequences is preferred. A major advantage of using IgG1 is that IgG1 immunoadhesins can be purified efficiently on immobilized protein A. In contrast, purification of IgG3 requires protein G, a significantly less versatile medium. However, other structural and functional properties of immunoglobulins should be considered when choosing the Ig fusion partner for a particular immunoadhesin construction. For example, the IgG3 hinge is longer and more flexible, so it can accommodate larger adhesin domains that may not fold or function properly when fused to IgG1. Another consideration may be valency; IgG immunoadhesins are bivalent homodimers, whereas Ig subtypes like IgA and IgM may give rise to dimeric or pentameric structures, respectively, of the basic Ig homodimer unit. For WSX receptor immunoadhesins designed for in vivo application, the pharmacokinetic properties and the effector functions specified by the Fc region are important as well. Although IgG1, IgG2 and IgG4 all have in vivo half-lives of 21 days, their relative potencies at activating the complement system are different. IgG4 does not activate complement, and IgG2 is significantly weaker at complement activation than IgG1. Moreover, unlike IgG1, IgG2 does not bind to Fc receptors on mononuclear cells or neutrophils. While IgG3 is optimal for complement activation, its in vivo half-life is approximately one third of the other IgG isotypes. Another important consideration for immunoadhesins designed to be used as human therapeutics is the number of allotypic variants of the particular isotype. In general, IgG isotypes with fewer serologically-defined allotypes are preferred. For example, IgG1 has only four serologically-defined allotypic sites, two of which (G1m and 2) are located in the Fc region; and one of these sites G1m1, is non-immunogenic. In contrast, there are 12 serologically-defined allotypes in IgG3, all of which are in the Fc region; only three of these sites (G3m5, 11 and 21) have one allotype which is nonimmunogenic. Thus, the potential immunogenicity of a γ3 immunoadhesin is greater than that of a γ1 immunoadhesin.




With respect to the parental immunoglobulin, a useful joining point is just upstream of the cysteines of the hinge that form the disulfide bonds between the two heavy chains. In a frequently used design, the codon for the C-terminal residue of the WSX receptor part of the molecule is placed directly upstream of the codons for the sequence DKTHTCPPCP (SEQ ID NO:44) of the IgG1 hinge region.




The general methods suitable for the construction and expression of immunoadhesins are the same as those disclosed hereinabove with regard to WSX receptor. WSX receptor immunoadhesins are most conveniently constructed by fusing the cDNA sequence encoding the WSX receptor portion in-frame to an Ig cDNA sequence. However, fusion to genomic Ig fragments can also be used (see, e.g., Gascoigne et al.,


Proc. Natl. Acad. Sci. USA


, 84:2936-2940 (1987); Aruffo et al.,


Cell


, 61:1303-1313 (1990); Stamenkovic et al.,


Cell


, 66:1133-1144 (1991)). The latter type of fusion requires the presence of Ig regulatory sequences for expression. cDNAs encoding IgG heavy-chain constant regions can be isolated based on published sequence from cDNA libraries derived from spleen or peripheral blood lymphocytes, by hybridization or by polymerase chain reaction (PCR) techniques. The cDNAs encoding the WSX receptor and Ig parts of the immunoadhesin are inserted in tandem into a plasmid vector that directs efficient expression in the chosen host cells. For expression in mammalian cells, pRK5-based vectors (Schall et al.,


Cell


, 61:361-370 (1990)) and CDM8-based vectors (Seed,


Nature


, 329:840 (1989)) can be used. The exact junction can be created by removing the extra sequences between the designed junction codons using oligonucleotide-directed deletional mutagenesis (Zoller et al.,


Nucleic Acids Res


., 10:6487 (1982); Capon et al.,


Nature


, 337:525-531 (1989)). Synthetic oligonucleotides can be used, in which each half is complementary to the sequence on either side of the desired junction; ideally, these are 36 to 48-mers. Alternatively, PCR techniques can be used to join the two parts of the molecule in-frame with an appropriate vector.




The choice of host cell line for the expression of WSX receptor immunoadhesins depends mainly on the expression vector. Another consideration is the amount of protein that is required. Milligram quantities often can be produced by transient transfections. For example, the adenovirus EIA-transformed 293 human embryonic kidney cell line can be transfected transiently with pRK5-based vectors by a modification of the calcium phosphate method to allow efficient immunoadhesin expression. CDM8-based vectors can be used to transfect COS cells by the DEAE-dextran method (Aruffo et al.,


Cell


, 61:1303-1313 (1990); Zettmeissl et al.,


DNA Cell Biol. US


, 9:347-353 (1990)). If larger amounts of protein are desired, the immunoadhesin can be expressed after stable transfection of a host cell line. For example, a pRK5-based vector can be introduced into Chinese hamster ovary (CHO) cells in the presence of an additional plasmid encoding dihydrofolate reductase (DHFR) and conferring resistance to G418. Clones resistant to G418 can be selected in culture; these clones are grown in the presence of increasing levels of DHFR inhibitor methotrexate; clones are selected, in which the number of gene copies encoding the DHFR and immunoadhesin sequences is co-amplified. If the immunoadhesin contains a hydrophobic leader sequence at its N-terminus, it is likely to be processed and secreted by the transfected cells. The expression of immunoadhesins with more complex structures may require uniquely suited host cells; for example, components such as light chain or J chain may be provided by certain myeloma or hybridoma cell hosts (Gascoigne et al., 1987, supra, Martin et al.,


J. Virol


., 67:3561-3568 (1993)).




Immunoadhesins can be conveniently purified by affinity chromatography. The suitability of protein A as an affinity ligand depends on the species and isotype of the immunoglobulin Fc domain that is used in the chimera. Protein A can be used to purify immunoadhesins that are based on human γ1, γ2, or γ4 heavy chains (Lindmark et al.,


J. Immunol. Meth


., 62:1-13 (1983)). Protein G is recommended for all mouse isotypes and for human γ3 (Guss et al.,


EMBO J


., 5:1567-1575 (1986)). The matrix to which the affinity ligand is attached is most often agarose, but other matrices are available. Mechanically stable matrices such as controlled pore glass or poly(styrenedivinyl)benzene allow for faster flow rates and shorter processing times than can be achieved with agarose. The conditions for binding an immunoadhesin to the protein A or G affinity column are dictated entirely by the characteristics of the Fc domain; that is, its species and isotype. Generally, when the proper ligand is chosen, efficient binding occurs directly from unconditioned culture fluid. One distinguishing feature of immunoadhesins is that, for human γ1 molecules, the binding capacity for protein A is somewhat diminished relative to an antibody of the same Fc type. Bound immunoadhesin can be efficiently eluted either at acidic pH (at or above 3.0), or in a neutral pH buffer containing a mildly chaotropic salt. This affinity chromatography step can result in an immunoadhesin preparation that is >95% pure.




Other methods known in the art can be used in place of, or in addition to, affinity chromatography on protein A or G to purify immunoadhesins. Immunoadhesins behave similarly to antibodies in thiophilic gel chromatography (Hutchens et al.,


Anal. Biochem


., 159:217-226 (1986)) and immobilized metal chelate chromatography (Al-Mashikhi et al.,


J. Dairy Sci


., 71:1756-1763 (1988)). In contrast to antibodies, however, their behavior on ion exchange columns is dictated not only by their isoelectric points, but also by a charge dipole that may exist in the molecules due to their chimeric nature.




If desired, the immunoadhesins can be made bispecific. Thus, the immunoadhesins of the present invention may combine a WSX receptor extracellular domain and a domain, such as the extracellular domain, of another cytokine receptor subunit. Exemplary cytokine receptors from which such bispecific immunoadhesin molecules can be made include TPO (or mpl ligand), EPO, G-CSF, IL-4, IL-7, GH, PRL, IL-3, GM-CSF, IL-5, IL-6, LIF, OSM, CNTF and IL-2 receptors. For bispecific molecules, trimeric molecules, composed of a chimeric antibody heavy chain in one arm and a chimeric antibody heavy chain-light chain pair in the other arm of their antibody-like structure are advantageous, due to ease of purification. In contrast to antibody-producing quadromas traditionally used for the production of bispecific immunoadhesins, which produce a mixture of ten tetramers, cells transfected with nucleic acid encoding the three chains of a trimeric immunoadhesin structure produce a mixture of only three molecules, and purification of the desired product from this mixture is correspondingly easier.




B. Therapeutic Uses for the WSX Receptor




The WSX receptor and WSX receptor gene are believed to find therapeutic use for administration to a mammal in the treatment of diseases characterized by a decrease in hematopoietic cells. Examples of these diseases include: anemia (including macrocytic and aplastic anemia); thrombocytopenia; hypoplasia; disseminated intravascular coagulation (DIC); myelodysplasia; immune (autoimmune) thrombocytopenic purpura (ITP); and HIV induced ITP. Additionally, these WSX receptor molecules may be useful in treating myeloproliferative thrombocytotic diseases as well as thrombocytosis from inflammatory conditions and in iron deficiency. WSX receptor polypeptide and WSX receptor gene which lead to an increase in hematopoietic cell proliferation may also be used to enhance repopulation of mature blood cell lineages in cells having undergone chemo- or radiation therapy or bone marrow transplantation therapy. Generally, the WSX receptor molecules are expected to lead to an enhancement of the proliferation and/or differentiation (but especially proliferation) of primitive hematopoietic cells.




Other potential therapeutic applications for WSX receptor and WSX receptor gene include the treatment of obesity and diabetes and for promoting kidney, liver and lung growth and/or repair (e.g. in renal failure).




Administration of WSX receptor to a mammal having depressed levels of endogenous WSX receptor or a defective WSX receptor gene is contemplated, preferably in the situation where such depressed levels lead to a pathological disorder, or where there is lack of activation of the WSX receptor. In these embodiments where the full length WSX receptor is to be administered to the patient, it is contemplated that the gene encoding the receptor may be administered to the patient via gene therapy technology.




In gene therapy applications, genes are introduced into cells in order to achieve in vivo synthesis of a therapeutically effective genetic product, for example for replacement of a defective gene. “Gene therapy” includes both conventional gene therapy where a lasting effect is achieved by a single treatment, and the administration of gene therapeutic agents, which involves the one time or repeated administration of a therapeutically effective DNA or mRNA. Antisense RNAs and DNAs can be used as therapeutic agents for blocking the expression of certain genes in vivo. It has already been shown that short antisense oligonucleotides can be imported into cells where they act as inhibitors, despite their low intracellular concentrations caused by their restricted uptake by the cell membrane. (Zamecnik et al.,


Proc. Natl. Acad. Sci. USA


, 83:4143-4146 (1986)). The oligonucleotides can be modified to enhance their uptake, e.g., by substituting their negatively charged phosphodiester groups by uncharged groups.




There are a variety of techniques available for introducing nudeic acids into viable cells. The techniques vary depending upon whether the nucleic acid is transferred into cultured cells in vitro, or in vivo in the cells of the intended host. Techniques suitable for the transfer of nucleic acid into mammalian cells in vitro include the use of liposomes, electroporation, microinjection, cell fusion, DEAE-dextran, the calcium phosphate precipitation method, etc. The currently preferred in vivo gene transfer techniques include transfection with viral (typically retroviral) vectors and viral coat protein-liposome mediated transfection (Dzau et al.,


Trends in Biotechnology


, 11:205-210 (1993)). In some situations it is desirable to provide the nucleic acid source with an agent that targets the target cells, such as an antibody specific for a cell surface membrane protein or the target cell, a ligand for a receptor on the target cell, etc. Where liposomes are employed, proteins which bind to a cell surface membrane protein associated with endocytosis may be used for targeting and/or to facilitate uptake, e.g. capsid proteins or fragments thereof tropic for a particular cell type, antibodies for proteins which undergo internalization in cycling, and proteins that target intracellular localization and enhance intracellular half-life. The technique of receptor-mediated endocytosis is described, for example, by Wu et al.,


J. Biol. Chem


., 262:4429-4432 (1987); and Wagner et al.,


Proc. Natl. Acad. Sci. USA


, 87:3410-3414 (1990). For review of the currently known gene marking and gene therapy protocols see Anderson et al.,


Science


, 256:808-813 (1992).




The invention also provides antagonists of WSX receptor activation (e.g. WSX receptor ECD, WSX receptor immunoadhesins and WSX receptor antisense nucleic acid; neutralizing antibodies and uses thereof are discussed in section E below). Administration of WSX receptor antagonist to a mammal having increased or excessive levels of endogenous WSX receptor activation is contemplated, preferably in the situation where such levels of WSX receptor activation lead to a pathological disorder.




In one embodiment, WSX receptor antagonist molecules may be used to bind endogenous ligand in the body, thereby causing desensitized WSX receptors to become responsive to WSX ligand, especially when the levels of WSX ligand in the serum exceed normal physiological levels. Also, it may be beneficial to bind endogenous WSX ligand which is activating undesired cellular responses (such as proliferation of tumor cells). Potential therapeutic applications for WSX antagonists include for example, treatment of metabolic disorders (e.g., anorexia and steroid-induced truncalobesity), stem cell tumors and other tumors which express WSX receptor.




Pharmaceutical compositions of the WSX receptor ECD may further include a WSX ligand. Such dual compositions may be beneficial where it is therapeutically useful to prolong half-life of WSX ligand, and/or activate endogenous WSX receptor directly as a heterotrimeric complex.




Therapeutic formulations of WSX receptor are prepared for storage by mixing WSX receptor having the desired degree of purity with optional physiologically acceptable carriers, excipients, or stabilizers (


Remington's Pharmaceutical Sciences


, 16th edition, Osol, A., Ed., (1980)), in the form of lyophilized cake or aqueous solutions. Acceptable carriers, excipients, or stabilizers are nontoxic to recipients at the dosages and concentrations employed, and include buffers such as phosphate, citrate, and other organic acids; antioxidants including ascorbic acid; low molecular weight (less than about 10 residues) polypeptides; proteins, such as serum albumin, gelatin, or immunoglobulins; hydrophilic polymers such as polyvinylpyrrolidone; amino acids such as glycine, glutamine, asparagine, arginine, or lysine; monosaccharides, disaccharides, and other carbohydrates including glucose, mannose, or dextrins; chelating agents such as EDTA; sugar alcohols such as mannitol or sorbitol; salt-forming counter-ions such as sodium; and/or non-ionic surfactants such as Tween, Pluronics or polyethylene glycol (PEG).




The WSX receptor also may be entrapped in microcapsules prepared, for example, by coacervation techniques or by interfacial polymerization (for example, hydroxymethylcellulose or gelatin-microcapsules and poly-(methylmethacylate) microcapsules, respectively), in colloidal drug delivery systems (for example, liposomes, albumin microspheres, microemulsions, nano-particles, and nanocapsules), or in macroemulsions. Such techniques are disclosed in


Remington's Pharmaceutical Sciences


, supra.




WSX receptor to be used for in vivo administration must be sterile. This is readily accomplished by filtration through sterile filtration membranes, prior to or following lyophilization and reconstitution. WSX receptor ordinarily will be stored in lyophilized form or in solution.




Therapeutic WSX receptor compositions generally are placed into a container having a sterile access port, for example, an intravenous solution bag or vial having a stopper pierceable by a hypodermic injection needle.




The route of WSX receptor administration is in accord with known methods, e.g., those routes set forth above for specific indications, as well as the general routes of injection or infusion by intravenous, intraperitoneal, intracerebral, intramuscular, intraocular, intraarterial, or intralesional means, or sustained release systems as noted below. WSX receptor is administered continuously by infusion or by bolus injection. Generally, where the disorder permits, one should formulate and dose the WSX receptor for site-specific delivery.




Suitable examples of sustained-release preparations include semipermeable matrices of solid hydrophobic polymers containing the protein, which matrices are in the form of shaped articles, e.g., films, or microcapsules. Examples of sustained-release matrices include polyesters, hydrogels (e.g., poly(2-hydroxyethyl-methacrylate) as described by Langer et al.,


J. Biomed. Mater. Res


., 15:167-277 (1981) and Langer,


Chem. Tech


., 12:98-105 (1982) or poly(vinylalcohol)), polylactides (U.S. Pat. No. 3,773,919, EP 58,481), copolymers of L-glutamic acid and γ ethyl-L-glutamate (Sidman et al.,


Biopolymers


, 22:547-556 (1983)), non-degradable ethylene-vinyl acetate (Langer et al., supra), degradable lactic acid-glycolic acid copolymers such as the Lupron Depot™ (injectable microspheres composed of lactic acid-glycolic acid copolymer and leuprolide acetate), and poly-D(−)-3-hydroxybutyric acid (EP 133,988).




While polymers such as ethylene-vinyl acetate and lactic acid-glycolic acid enable release of molecules for over 100 days, certain hydrogels release proteins for shorter time periods. When encapsulated proteins remain in the body for a long time, they may denature or aggregate as a result of exposure to moisture at 37° C., resulting in a loss of biological activity and possible changes in immunogenicity. Rational strategies can be devised for protein stabilization depending on the mechanism involved. For example, if the aggregation mechanism is discovered to be intermolecular S—S bond formation through thio-disulfide interchange, stabilization may be achieved by modifying sulfhydryl residues, lyophilizing from acidic solutions, controlling moisture content, using appropriate additives, and developing specific polymer matrix compositions.




Sustained-release WSX receptor compositions also include liposomally entrapped WSX receptor. Liposomes containing WSX receptor are prepared by methods known per se: DE 3,218,121; Epstein et al.,


Proc. Natl. Acad. Sci. USA


, 82:3688-3692 (1985); Hwang et al.,


Proc. Natl. Acad. Sci. USA


, 77:4030-4034 (1980); EP 52,322; EP 36,676; EP 88,046; EP 143,949; EP 142,641; Japanese patent application 83-118008; U.S. Pat. Nos. 4,485,045 and 4,544,545; and EP 102,324. Ordinarily the liposomes are of the small (about 200-800 Angstroms) unilamellar type in which the lipid content is greater than about 30 mol. % cholesterol, the selected proportion being adjusted for the optimal WSX receptor therapy.




When applied topically, the WSX receptor is suitably combined with other ingredients, such as carriers and/or adjuvants. There are no limitations on the nature of such other ingredients, except that they must be physiologically acceptable and efficacious for their intended administration, and cannot degrade the activity of the active ingredients of the composition. Examples of suitable vehicles include ointments, creams, gels, or suspensions, with or without purified collagen. The compositions also may be impregnated into transdermal patches, plasters, and bandages, preferably in liquid or semi-liquid form.




For obtaining a gel formulation, the WSX receptor formulated in a liquid composition may be mixed with an effective amount of a water-soluble polysaccharide or synthetic polymer such as PEG to form a gel of the proper viscosity to be applied topically. The polysaccharide that may be used includes, for example, cellulose derivatives such as etherified cellulose derivatives, including alkyl celluloses, hydroxyalkyl celluloses, and alkylhydroxyalkyl celluloses, for example, methylcellulose, hydroxyethyl cellulose, carboxymethyl cellulose, hydroxypropyl methylcellulose, and hydroxypropyl cellulose; starch and fractionated starch; agar; alginic acid and alginates; gum arabic; pullullan; agarose; carrageenan; dextrans; dextrins; fructans; inulin; mannans; xylans; arabinans; chitosans; glycogens; glucans; and synthetic biopolymers; as well as gums such as xanthan gum; guar gum; locust bean gum; gum arabic; tragacanth gum; and karaya gum; and derivatives and mixtures thereof. The preferred gelling agent herein is one that is inert to biological systems, nontoxic, simple to prepare, and not too runny or viscous, and will not destabilize the WSX receptor held within it.




Preferably the polysaccharide is an etherified cellulose derivative, more preferably one that is well defined, purified, and listed in U.S. Patent, e.g., methylcellulose and the hydroxyalkyl cellulose derivatives, such as hydroxypropyl cellulose, hydroxyethyl cellulose, and hydroxypropyl methylcellulose. Most preferred herein is methylcellulose.




The polyethylene glycol useful for gelling is typically a mixture of low and high molecular weight PEGs to obtain the proper viscosity. For example, a mixture of a PEG of molecular weight 400-600 with one of molecular weight 1500 would be effective for this purpose when mixed in the proper ratio to obtain a paste.




The term “water soluble” as applied to the polysaccharides and PEGs is meant to include colloidal solutions and dispersions. In general, the solubility of the cellulose derivatives is determined by the degree of substitution of ether groups, and the stabilizing derivatives useful herein should have a sufficient quantity of such ether groups per anhydroglucose unit in the cellulose chain to render the derivatives water soluble. A degree of ether substitution of at least 0.35 ether groups per anhydroglucose unit is generally sufficient. Additionally, the cellulose derivatives may be in the form of alkali metal salts, for example, the Li, Na, K, or Cs salts.




If methylcellulose is employed in the gel, preferably it comprises about 2-5%, more preferably about 3%, of the gel and the WSX receptor is present in an amount of about 300-1000 mg per ml of gel.




An effective amount of WSX receptor to be employed therapeutically will depend, for example, upon the therapeutic objectives, the route of administration, and the condition of the patient. Accordingly, it will be necessary for the therapist to titer the dosage and modify the route of administration as required to obtain the optimal therapeutic effect. Typically, the clinician will administer the WSX receptor until a dosage is reached that achieves the desired effect. A typical daily dosage for systemic treatment might range from about 1 μg/kg to up to 10 mg/kg or more, depending on the factors mentioned above. As an alternative general proposition, the WSX receptor is formulated and delivered to the target site or tissue at a dosage capable of establishing in the tissue a WSX receptor level greater than about 0.1 ng/cc up to a maximum dose that is efficacious but not unduly toxic. This intra-tissue concentration should be maintained if possible by continuous infusion, sustained release, topical application, or injection at empirically determined frequencies. The progress of this therapy is easily monitored by conventional assays.




C. Non-Therapeutic Uses for the WSX Receptor




WSX receptor nucleic acid is useful for the preparation of WSX receptor polypeptide by recombinant techniques exemplified herein which can then be used for production of anti-WSX receptor antibodies having various utilities described below.




The WSX receptor (polypeptide or nucleic acid) can be used to induce proliferation and/or differentiation of cells in vitro. In particular, it is contemplated that this molecule may be used to induce proliferation of stem cellprogenitor cell populations (e.g. CD34+ cell populations obtained as described in Example 8 below). These cells which are to be grown ex vivo may simultaneously be exposed to other known growth factors or cytokines, such as those described herein. This results in proliferation and/or differentiation of the cells having the WSX receptor.




In yet another aspect of the invention, the WSX receptor may be used for affinity purification of WSX ligand. Briefly, this technique involves: (a) contacting a source of WSX ligand with an immobilized WSX receptor under conditions whereby the WSX ligand to be purified is selectively adsorbed onto the immobilized receptor; (b) washing the immobilized WSX receptor and its support to remove non-adsorbed material; and (c) eluting the WSX ligand molecules from the immobilized WSX receptor to which they are adsorbed with an elution buffer. In a particularly preferred embodiment of affinity purification, WSX receptor is covalently attaching to an inert and porous matrix (e.g., agarose reacted with cyanogen bromide). Especially preferred is a WSX receptor immunoadhesin immobilized on a protein A column. A solution containing WSX ligand is then passed through the chromatographic material. The WSX ligand adsorbs to the column and is subsequently released by changing the elution conditions (e.g. by changing pH or ionic strength).




The WSX receptor may be used for competitive screening of potential agonists or antagonists for binding to the WSX receptor. Such agonists or antagonists may constitute potential therapeutics for treating conditions characterized by insufficient or excessive WSX receptor activation, respectively.




The preferred technique for identifying molecules which bind to the WSX receptor utilizes a chimeric receptor (e.g., epitope tagged WSX receptor or WSX receptor immunoadhesin) attached to a solid phase, such as the well of an assay plate. Binding of molecules which are optionally labelled (e.g., radiolabelled) to the immobilized receptor can be evaluated.




To identify WSX receptor agonists or antagonists, the thymidine incorporation assay can be used. For screening for antagonists, the WSX receptor can be exposed to a WSX ligand followed by the putative antagonist, or the WSX ligand and antagonist can be added to the WSX receptor simultaneously, and the ability of the antagonist to block receptor activation can be evaluated.




The WSX receptor polypeptides are also useful as molecular weight markers. To use a WSX receptor polypeptide as a molecular weight marker, gel filtration chromatography or SDS-PAGE, for example, will be used to separate protein(s) for which it is desired to determine their molecular weight(s) in substantially the normal way. The WSX receptor and other molecular weight markers will be used as standards to provide a range of molecular weights. For example, phosphorylase b (mw=97,400), bovine serum albumin (mw=68,000), ovalbumin (mw=46,000), WSX receptor (mw=44,800), trypsin inhibitor (mw=20,100), and lysozyme (mw=14,400) can be used as mw markers. The other molecular weight markers mentioned here can be purchased commercially from Amersham Corporation, Arlington Heights, Ill. The molecular weight markers are generally labeled to facilitate detection thereof. For example, the markers may be biotinylated and following separation can be incubated with streptavidin-horseradish peroxidase so that the various markers can be detected by light detection.




The purified WSX receptor, and the nucleic acid encoding it, may also be sold as reagents for mechanism studies of WSX receptor and its ligands, to study the role of the WSX receptor and WSX ligand in normal growth and development, as well as abnormal growth and development, e.g., in malignancies.




WSX receptor variants are useful as standards or controls in assays for the WSX receptor for example ELISA, RIA, or RRA, provided that they are recognized by the analytical system employed, e.g., an anti-WSX receptor antibody.




D. WSX Receptor Antibody Preparation




1. Polyclonal Antibodies




Polyclonal antibodies are generally raised in animals by multiple subcutaneous (sc) or intraperitoneal (ip) injections of the relevant antigen and an adjuvant. In that the preferred epitope is in the ECD of the WSX receptor, it is desirable to use WSX receptor ECD or a molecule comprising the ECD (e.g., WSX receptor immunoadhesin) as the antigen for generation of polyclonal and monoclonal antibodies. It may be useful to conjugate the relevant antigen to a protein that is immunogenic in the species to be immunized, e.g., keyhole limpet hemocyanin, serum albumin, bovine thyroglobulin, or soybean trypsin inhibitor using a bifunctional or derivatizing agent, for example, maleimidobenzoyl sulfosuccinimide ester (conjugation through cysteine residues), N-hydroxysuccinimide (through lysine residues), glutaraldehyde, succinic anhydride, SOCl


2


, or R


1


N═C═NR, where R and R


1


are different alkyl groups.




Animals are immunized against the antigen, immunogenic conjugates, or derivatives by combining 1 mg or 1 μg of the peptide or conjugate (for rabbits or mice, respectively) with 3 volumes of Freund's complete adjuvant and injecting the solution intradermally at multiple sites. One month later the animals are boosted with ⅕ to {fraction (1/10)} the original amount of peptide or conjugate in Freund's complete adjuvant by subcutaneous injection at multiple sites. Seven to 14 days later the animals are bled and the serum is assayed for antibody titer. Animals are boosted until the titer plateaus. Preferably, the animal is boosted with the conjugate of the same antigen, but conjugated to a different protein and/or through a different cross-linking reagent. Conjugates also can be made in recombinant cell culture as protein fusions. Also, aggregating agents such as alum are suitably used to enhance the immune response.




2. Monoclonal Antibodies




Monoclonal antibodies are obtained from a population of substantially homogeneous antibodies, i.e., the individual antibodies comprising the population are identical except for possible naturally occurring mutations that may be present in minor amounts. Thus, the modifier “monoclonal” indicates the character of the antibody as not being a mixture of discrete antibodies.




For example, the monoclonal antibodies may be made using the hybriddma method first described by Kohler et al.,


Nature


, 256:495 (1975), or may be made by recombinant DNA methods (Cabilly et al., supra).




In the hybridoma method, a mouse or other appropriate host animal, such as a hamster, is immunized as hereinabove described to elicit lymphocytes that produce or are capable of producing antibodies that will specifically bind to the protein used for immunization. Alternatively, lymphocytes may be immunized in vitro. Lymphocytes then are fused with myeloma cells using a suitable fusing agent, such as polyethylene glycol, to form a hybridoma cell (Goding,


Monoclonal Antibodies: Principles and Practice


, pp. 59-103 (Academic Press, 1986)).




The hybridoma cells thus prepared are seeded and grown in a suitable culture medium that preferably contains one or more substances that inhibit the growth or survival of the unfused, parental myeloma cells. For example, if the parental myeloma cells lack the enzyme hypoxanthine guanine phosphoribosyl transferase (HGPRT or HPRT), the culture medium for the hybridomas typically will include hypoxanthine, aminopterin, and thymidine (HAT medium), which substances prevent the growth of HGPRT-deficient cells.




Preferred myeloma cells are those that fuse efficiently, support stable high-level production of antibody by the selected antibody-producing cells, and are sensitive to a medium such as HAT medium. Among these, preferred myeloma cell lines are murine myeloma lines, such as those derived from MOPC-21 and MPC11 mouse tumors available from the Salk Institute Cell Distribution Center, San Diego, Calif. USA, and SP-2 cells available from the American Type Culture Collection, Rockville, Md. USA. Human myeloma and mouse-human heteromyeloma cell lines also have been described for the production of human monoclonal antibodies (Kozbor,


J. Immunol


., 133:3001 (1984); Brodeur et al.,


Monoclonal Antibody Production Techniques and Applications


, pp. 51-63 (Marcel Dekker, Inc., New York, 1987)).




Culture medium in which hybridoma cells are growing is assayed for production of monoclonal antibodies directed against the antigen. Preferably, the binding specificity of monoclonal antibodies produced by hybridoma cells is determined by immunoprecipitation or by an in vitro binding assay, such as radioimmunoassay (RIA) or enzymelinked immunoabsorbent assay (ELISA).




The binding affinity of the monoclonal antibody can, for example, be determined by the Scatchard analysis of Munson et al.,


Anal. Biochem


., 107:220 (1980).




After hybridoma cells are identified that produce antibodies of the desired specificity, affinity, and/or activity, the clones may be subcloned by limiting dilution procedures and grown by standard methods (Goding, supra). Suitable culture media for this purpose include, for example, D-MEM or RPMI-1640 medium. In addition, the hybridoma cells may be grown in vivo as ascites tumors in an animal.




The monoclonal antibodies secreted by the subclones are suitably separated from the culture medium, ascites fluid, or serum by conventional immunoglobulin purification procedures such as, for example, protein A-Sepharose, hydroxylapatite chromatography, gel electrophoresis, dialysis, or affinity chromatography.




DNA encoding the monoclonal antibodies is readily isolated and sequenced using conventional procedures (e.g., by using oligonucleotide probes that are capable of binding specifically to genes encoding the heavy and light chains of murine antibodies). The hybridoma cells serve as a preferred source of such DNA. Once isolated, the DNA may be placed into expression vectors, which are then transfected into host cells such as


E. coli


cells, simian COS cells, Chinese hamster ovary (CHO) cells, or myeloma cells that do not otherwise produce immunoglobulin protein, to obtain the synthesis of monoclonal antibodies in the recombinant host cells. Review articles on recombinant expression in bacteria of DNA encoding the antibody include Skerra et al.,


Curr. Opinion in Immunol


., 5:256-262 (1993) and Pluckthun,


Immunol. Revs


., 130:151-188 (1992).




In a further embodiment, antibodies or antibody fragments can be isolated from antibody phage libraries generated using the techniques described in McCafferty et a.,


Nature


, 348:552-554 (1990). Clackson et al.,


Nature


, 352:624-628 (1991) and Marks et al.,


J. Mol. Biol


., 222:581-597 (1991) describe the isolation of murine and human antibodies, respectively, using phage libraries. Subsequent publications describe the production of high affinity (nM range) human antibodies by chain shuffling (Mark et al.,


Bio/Technology


, 10:779-783 (1992)), as well as combinatorial infection and in vivo recombination as a strategy for constructing very large phage libraries (Waterhouse et al.,


Nuc. Acids. Res


., 21:2265-2266 (1993)). Thus, these techniques are viable alternatives to traditional monoclonal antibody hybridoma techniques for isolation of monoclonal antibodies.




The DNA also may be modified, for example, by substituting the coding sequence for human heavy- and light-chain constant domains in place of the homologous murine sequences (Cabilly et al., supra; Morrison, et al.,


Proc. Nat. Acad. Sci. USA


, 81:6851 (1984)), or by covalently joining to the immunoglobulin coding sequence all or part of the coding sequence for a non-immunoglobulin polypeptide.




Typically such non-immunoglobulin polypeptides are substituted for the constant domains of an antibody, or they are substituted for the variable domains of one antigen-combining site of an antibody to create a chimeric bivalent antibody comprising one antigen-combining site having specificity for an antigen and another antigen-combining site having specificity for a different antigen.




Chimeric or hybrid antibodies also may be prepared in vitro using known methods in synthetic protein chemistry, including those involving crosslinking agents. For example, immunotoxins may be constructed using a disulfide-exchange reaction or by forming a thioether bond. Examples of suitable reagents for this purpose include iminothiolate and methyl-4-mercaptobutyrimidate.




3. Humanized and Human Antibodies




Methods for humanizing non-human antibodies are well known in the art. Generally, a humanized antibody has one or more amino acid residues introduced into it from a source which is non-human. These non-human amino acid residues are often referred to as “import” residues, which are typically taken from an “import” variable domain. Humanization can be essentially performed following the method of Winter and co-workers (Jones et al.,


Nature


, 321:522-525 (1986); Riechmann et al.,


Nature


, 332:323-327 (1988); Verhoeyen et al.,


Science


, 239:1534-1536 (1988)), by substituting rodent CDRs or CDR sequences for the corresponding sequences of a human antibody. Accordingly, such “humanized” antibodies are chimeric antibodies (Cabilly et al., supra), wherein substantially less than an intact human variable domain has been substituted by the corresponding sequence from a non-human species. In practice, humanized antibodies are typically human antibodies in which some CDR residues and possibly some FR residues are substituted by residues from analogous sites in rodent antibodies.




The choice of human variable domains, both light and heavy, to be used in making the humanized antibodies is very important to reduce antigenicity. According to the so-called “best-fit” method, the sequence of the variable domain of a rodent antibody is screened against the entire library of known human variable-domain sequences. The human sequence which is closest to that of the rodent is then accepted as the human framework (FR) for the humanized antibody (Sims et al.,


J. Immunol


, 151:2296 (1993); Chothia et al.,


J. Mol. Biol


., 196:901 (1987)). Another method uses a particular framework derived from the consensus sequence of all human antibodies of a particular subgroup of light or heavy chains. The same framework may be used for several different humanized antibodies (Carter et al.,


Proc. Natl. Acad. Sci. USA


, 89:4285 (1992); Presta et al.,


J. Immnol


., 151:2623 (1993)).




It is further important that antibodies be humanized with retention of high affinity for the antigen and other favorable biological properties. To achieve this goal, according to a preferred method, humanized antibodies are prepared by a process of analysis of the parental sequences and various conceptual humanized products using three-dimensional models of the parental and humanized sequences. Three-dimensional immunoglobulin models are commonly available and are familiar to those skilled in the art. Computer programs are available which illustrate and display probable three-dimensional conformational structures of selected candidate immunoglobulin sequences. Inspection of these displays permits analysis of the likely role of the residues in the functioning of the candidate immunoglobulin sequence, i.e., the analysis of residues that influence the ability of the candidate immunoglobulin to bind its antigen. In this way, FR residues can be selected and combined from the consensus and import sequences so that the desired antibody characteristic, such as increased affinity for the target antigen(s), is achieved. In general, the CDR residues are directly and most substantially involved in influencing antigen binding.




Alternatively, it is now possible to produce transgenic animals (e.g., mice) that are capable, upon immunization, of producing a full repertoire of human antibodies in the absence of endogenous immunoglobulin production. For example, it has been described that the homozygous deletion of the antibody heavy-chain joining region (J


H


) gene in chimeric and germ-line mutant mice results in complete inhibition of endogenous antibody production. Transfer of the human germ-line immunoglobulin gene array in such germ-line mutant mice will result in the production of human antibodies upon antigen challenge. See, e.g., Jakobovits et al.,


Proc. Natl. Acad. Sci. USA


, 90:2551 (1993); Jakobovits et al.,


Nature


, 362:255-258 (1993); Bruggermann et al.,


Year in Immuno


., 7:33 (1993). Human antibodies can also be produced in phage-display libraries (Hoogenboom et al.,


J. Mol. Biol


., 227:381 (1991); Marks et al.,


J. Mol. Biol


., 222:581 (1991)).




4. Bispecific Antibodies




Bispecific antibodies (BsAbs) are antibodies that have binding specificities for at least two different antigens. BsAbs can be used as tumor targeting or imaging agents and can be used to target enzymes or toxins to a cell possessing the WSX receptor. Such antibodies can be derived from full length antibodies or antibody fragments (e.g. F(ab′)


2


bispecific antibodies). In accordance with the present invention, the BsAb may possess one arm which binds the WSX receptor and another arm which binds to a cytokine or another cytokine receptor (or a subunit thereof) such as the receptors for TPO, EPO, G-CSF, IL-4, IL-7, GH, PRL; the α or β subunits of the IL-3, GM-CSF, IL-5, IL-6, LIF, OSM and CNTF receptors; or the α, β or γ subunits of the IL-2 receptor complex. For example, the BsAb may bind both WSX receptor and gp130.




Methods for making bispecific antibodies are known in the art. Traditional production of full length bispecific antibodies is based on the coexpression of two immunoglobulin heavy chain-light chain pairs, where the two chains have different specificities (Millstein et al.,


Nature


, 305:537-539 (1983)). Because of the random assortment of immunoglobulin heavy and light chains, these hybridomas (quadromas) produce a potential mixture of 10 different antibody molecules, of which only one has the correct bispecific structure. Purification of the correct molecule, which is usually done by affinity chromatography steps, is rather cumbersome, and the product yields are low. Similar procedures are disclosed in WO 93/08829, published May 13, 1993, and in Traunecker et al.,


EMBO J


., 10:3655-3659 (1991).




According to a different and more preferred approach, antibody variable domains with the desired binding specificities (antibodyantigen combining sites) are fused to immunoglobulin constant domain sequences. The fusion preferably is with an immunoglobulin heavy chain constant domain, comprising at least part of the hinge, CH2, and CH3 regions. It is preferred to have the first heavy-chain constant region (CH1) containing the site necessary for light chain binding, present in at least one of the fusions. DNAs encoding the immunoglobulin heavy chain fusions and, if desired, the immunoglobulin light chain, are inserted into separate expression vectors, and are co-transfected into a suitable host organism. This provides for great flexibility in adjusting the mutual proportions of the three polypeptide fragments in embodiments when unequal ratios of the three polypeptide chains used in the construction provide the optimum yields. It is, however, possible to insert the coding sequences for two or all three polypeptide chains in one expression vector when the expression of at least two polypeptide chains in equal ratios results in high yields or when the ratios are of no particular significance.




In a preferred embodiment of this approach, the bispecific antibodies are composed of a hybrid immunoglobulin heavy chain with a first binding specificity in one arm, and a hybrid immunoglobulin heavy chain-light chain pair (providing a second binding specificity) in the other arm. It was found that this asymmetric structure facilitates the separation of the desired bispecific compound from unwanted immunoglobulin chain combinations, as the presence of an immunoglobulin light chain in only one half of the bispecific molecule provides for a facile way of separation. This approach is disclosed in WO 94/04690 published Mar. 3, 1994. For further details of generating bispecific antibodies see, for example, Suresh et al.,


Methods in Enzymology


, 121:210 (1986).




Bispecific antibodies include cross-linked or “heteroconjugate” antibodies. For example, one of the antibodies in the heteroconjugate can be coupled to avidin, the other to biotin. Such antibodies have, for example, been proposed to target immune system cells to unwanted cells (U.S. Pat. No. 4,676,980), and for treatment of HIV infection (WO 91/00360, WO 92/200373, and EP 03089). Heteroconjugate antibodies may be made using any convenient cross-linking methods. Suitable cross-linking agents are well known in the art, and are disclosed in U.S. Pat. No. 4,676,980, along with a number of cross-linking techniques.




Techniques for generating bispecific antibodies from antibody fragments have also been described in the literature. The following techniques can also be used for the production of bivalent antibody fragments which are not necessarily bispecific. According to these techniques, Fab′-SH fragments can be recovered from


E. coli


, which can be chemically coupled to form bivalent antibodies. Shalaby et al.,


J. Exp. Med


., 175:217-225 (1992) describe the production of a fully humanized BsAb F(ab′)


2


molecule. Each Fab′ fragment was separately secreted from


E. coli


and subjected to directed chemical coupling in vitro to form the BsAb. The BsAb thus formed was able to bind to cells overexpressing the HER2 receptor and normal human T cells, as well as trigger the lytic activity of human cytotoxic lymphocytes against human breast tumor targets. See also Rodrigues et al.,


Int. J. Cancers


, (Suppl.) 7:45-50 (1992).




Various techniques for making and isolating bivalent antibody fragments directly from recombinant cell culture have also been described. For example, bivalent heterodimers have been produced using leucine zippers. Kostelny et al.,


J. Immunol


., 148(5):1547-1553 (1992). The leucine zipper peptides from the Fos and Jun proteins were linked to the Fab′ portions of two different antibodies by gene fusion. The antibody homodimers were reduced at the hinge region to form monomers and then re-oxidized to form the antibody heterodimers. The “diabody” technology described by Hollinger et al.,


Proc. Natl. Acad. Sci. USA


, 90:6444-6448 (1993) has provided an alternative mechanism for making BsAb fragments. The fragments comprise a heavy-chain variable domain (V


H


) connected to a light-chain variable domain (V


L


) by a linker which is too short to allow pairing between the two domains on the same chain. Accordingly, the V


H


and V


L


domains of one fragment are forced to pair with the complementary V


L


and V


H


domains of another fragment, thereby forming two antigen-binding sites, Another strategy for making BsAb fragments by the use of single-chain Fv (sFv) dimers has also been reported. See. Gruber et al.,


J. Immunol


, 152:5368 (1994).




E. Therapeutic Uses for WSX Receptor Antibodies




The agonist WSX receptor antibodies of the present invention can be used to enhance repopulation of mature blood cell lineages in cells having undergone chemo- or radiation therapy or bone marrow transplantation therapy. Generally, the antibodies will act via an enhancement of the proliferation and/or differentiation (but especially proliferation) of primitive hematopoietic cells. The agonist antibodies may similarly be useful for treating diseases characterized by a decrease in blood cells. Examples of these diseases include: anemia (including macrocytic and aplastic anemia); thrombocytopenia; hypoplasia; immune (autoimmune) thrombocytopenic purpura (ITP); and HIV induced ITP. Also, the agonist antibodies may be used to treat a patient having suffered a hemorrhage. Agonist antibodies may also be used to treat metabolic disorders such as obesity and diabetes mellitus, or to promote kidney, liver or lung growth and/or repair (e.g., in renal failure).




Potential therapeutic applications for WSX receptor neutralizing antibodies include the treatment of metabolic disorders (such as cachexia, anorexia and bulimia), stem cell tumors and other tumors at sites of WSX receptor expression, especially those tumors characterized by overexpression of WSX receptor.




For therapeutic applications, the WSX receptor antibodies of the invention are administered to a mammal, preferably a human, in a physiologically acceptable dosage form, including those that may be administered to a human intravenously as a bolus or by continuous infusion over a period of time, by intramuscular, intraperitoneal, intra-cerobrospinal, subcutaneous, intra-articular, intrasynovial, intrathecal, oral, topical, or inhalation routes. The WSX receptor antibodies also are suitably administered by intratumoral, peritumoral, intralesional, or perilesional routes or to the lymph, to exert local as well as systemic therapeutic effects.




Such dosage forms encompass physiologically acceptable carriers that are inherently non-toxic and non-therapeutic. Examples of such carriers include ion exchangers, alumina, aluminum stearate, lecithin, serum proteins, such as human serum albumin, buffer substances such as phosphates, glycine, sorbic acid, potassium sorbate, partial glyceride mixtures of saturated vegetable fatty acids, water, salts, or electrolytes such as protamine sulfate, disodium hydrogen phosphate, potassium hydrogen phosphate, sodium chloride, zinc salts, colloidal silica, magnesium trisilicate, polyvinyl pyrrolidone, cellulose-based substances, and PEG. Carriers for topical or gel-based forms of WSX receptor antibodies include polysaccharides such as sodium carboxymethylcellulose or methylcellulose, polyvinylpyrrolidone, polyacrylates, polyoxyethylene-polyoxypropylene-block polymers, PEG, and wood wax alcohols. For all administrations, conventional depot forms are suitably used. Such forms include, for example, microcapsules, nano-capsules, liposomes, plasters, inhalation forms, nose sprays, sublingual tablets, and sustained-release preparations. The WSX receptor antibody will typically be formulated in such vehicles at a concentration of about 0.1 mg/ml to 100 mg/ml.




Suitable examples of sustained-release preparations include semipermeable matrices of solid hydrophobic polymers containing the WSX receptor antibody, which matrices are in the form of shaped articles, e.g. films, or microcapsules. Examples of sustained-release matrices include polyesters, hydrogels (for example, poly(2-hydroxyethyl-methacrylate) as described by Langer et al., supra and Langer, supra, or poly(vinylalcohol), polylactides (U.S. Pat. No. 3,773,919), copolymers of L-glutamic acid and γ ethyl-L-glutamate (Sidman et al., supra), non-degradable ethylene-vinyl acetate (Langer et al., supra), degradable lactic acid-glycolic acid copolymers such as the Lupron Depot™ (injectable microspheres composed of lactic acid-glycolic acid copolymer and leuprolide acetate), and poly-D-(−)-3-hydroxybutyric acid. While polymers such as ethylene-vinyl acetate and lactic acid-glycolic acid enable release of molecules for over 100 days, certain hydrogels release proteins for shorter time periods. When encapsulated WSX receptor antibodies remain in the body for a long time, they may denature or aggregate as a result of exposure to moisture at 37° C., resulting in a loss of biological activity and possible changes in immunogenicity. Rational strategies can be devised for stabilization depending on the mechanism involved. For example, if the aggregation mechanism is discovered to be intermolecular S—S bond formation through thio-disulfide interchange, stabilization may be achieved by modifying sulfhydryl residues, lyophilizing from acidic solutions, controlling moisture content, using appropriate additives, and developing specific polymer matrix compositions.




Sustained-release WSX receptor antibody compositions also include liposomally entrapped antibodies. Liposomes containing the WSX receptor antibodies are prepared by methods known in the art, such as described in Epstein et al.,


Proc. Natl. Acad. Sci. USA


, 82:3688 (1985); Hwang et al.,


Proc. Natl. Acad. Sci. USA


, 77:4030 (1980); and U.S. Pat. Nos. 4,485,045 and 4,544,545. Ordinarily, the liposomes are the small (about 200-800 Angstroms) unilamelar type in which the lipid content is greater than about 30 mol. % cholesterol, the selected proportion being adjusted for the optimal WSX receptor antibody therapy. Liposomes with enhanced circulation time are disclosed in U.S. Pat. No. 5,013,556.




For the prevention or treatment of disease, the appropriate dosage of WSX receptor antibody will depend on the type of disease to be treated, as defined above, the severity and course of the disease, whether the antibodies are administered for preventive or therapeutic purposes, previous therapy, the patient's clinical history and response to the WSX receptor antibody, and the discretion of the attending physician. The WSX receptor antibody is suitably administered to the patient at one time or over a series of treatments.




Depending on the type and severity of the disease, about 1 μg/kg to 15 mg/kg of WSX receptor antibody is an initial candidate dosage for administration to the patient, whether, for example, by one or more separate administrations, or by continuous infusion. A typical daily dosage might range from about 1 μg/kg to 100 mg/kg or more, depending on the factors mentioned above. For repeated administrations over several days or longer, depending on the condition, the treatment is sustained until a desired suppression of disease symptoms occurs. However, other dosage regimens may be useful. The progress of this therapy is easily monitored by conventional techniques and assays.




F. Non-Therapeutic Uses for WSX Receptor Antibodies




WSX receptor antibodies may be used for detection of and/or enrichment of hematopoietic stem cell/progenitor cell populations in a similar manner to that in which CD34 antibodies are presently used. For stem cell enrichment, the WSX receptor antibodies may be utilized in the techniques known in the art such as immune panning, flow cytometry or immunomagnetic beads.




The WSX receptor antibodies of the invention are also useful as affinity purification agents. In this process, the antibodies against WSX receptor are immobilized on a suitable support, such a Sephadex resin or filter paper, using methods well known in the art. The immobilized antibody then is contacted with a sample containing the WSX receptor to be purified, and thereafter the support is washed with a suitable solvent that will remove substantially all the material in the sample except the WSX receptor, which is bound to the immobilized antibody. Finally, the support is washed with another suitable solvent, such as glycine buffer, pH 5.0, that will release the WSX receptor from the antibody.




WSX receptor antibodies may also be useful in diagnostic assays for WSX receptor, e.g., detecting its expression in specific cells, tissues, or serum. For diagnostic applications, antibodies typically will be labeled with a detectable moiety. The detectable moiety can be any one which is capable of producing, either directly or indirectly, a detectable signal. For example, the detectable moiety may be a radioisotope, such as


3


H,


14


C,


32


p,


35


S, or


125


I; a fluorescent or chemiluminescent compound, such as fluorescein isothiocyanate, rhodamine, or luciferin; radioactive isotopic labels, such as, e.g.,


125


I,


32


P,


14


C, or


3


H; or an enzyme, such as alkaline phosphatase, beta-galactosidase, or horseradish peroxidase.




Any method known in the art for separately conjugating the polypeptide variant to the detectable moiety may be employed, including those methods described by Hunter et al.,


Nature


, 144:945 (1962); David et al.,


Biochemistry


, 13:1014 (1974); Pain et al.,


J. Immunol. Meth


., 40:219 (1981); and Nygren,


J. Histochem. and Cytochem


., 30:407 (1982).




The antibodies of the present invention may be employed in any known assay method, such as competitive binding assays, direct and indirect sandwich assays, and immunoprecipitation assays. Zola,


Monoclonal Antibodies: A Manual of Techniques


, pp. 147-158 (CRC Press, Inc., 1987).




Competitive binding assays rely on the ability of a labeled standard to compete with the test sample analyte for binding with a limited amount of antibody. The amount of WSX receptor in the test sample is inversely proportional to the amount of standard that becomes bound to the antibodies. To facilitate determining the amount of standard that becomes bound, the antibodies generally are insolubilized before or after the competition, so that the standard and analyte that are bound to the antibodies may conveniently be separated from the standard and analyte which remain unbound.




Sandwich assays involve the use of two antibodies, each capable of binding to a different immunogenic portion, or epitope, of the protein to be detected. In a sandwich assay, the test sample analyte is bound by a first antibody which is immobilized on a solid support, and thereafter a second antibody binds to the analyte, thus forming an insoluble three-part complex. See, e.g., U.S. Pat No. 4,376,110. The second antibody may itself be labeled with a detectable moiety (direct sandwich assays) or may be measured using an anti-immunoglobulin antibody that is labeled with a detectable moiety (indirect sandwich assay). For example, one type of sandwich assay is an ELISA assay, in which case the detectable moiety is an enzyme.




III. Experimental




Below are examples of specific embodiments for carrying out the present invention. The examples are offered for illustrative purposes only, and are not intended to limit the scope of the present invention in any way.




The disclosures of all publications, patents and patent applications cited herein, whether supra or infra, are hereby incorporated by reference in their entirety.




EXAMPLE 1




Cloning of Human WSX Receptor




An oligonucleotide probe designated WSX.6 #1 was synthesized based upon the T73849 EST sequence. The WSX.6 #1 probe was a 51mer having the following sequence: 5′ GTCAGTCTCCCAGTTCCAGACTTGTGTGCAGTCTATGCTGTTCAGGTGCGC-3′ (SEQ ID NO:45).




The radiolabeled WSX.6 #1 probe was used to probe 1.2×10


6


clones from a random and oligo dT primed λgt10 fetal liver library (Clontech, Palo Alto, Calif.). Following hybridization at 42° C. ovemight, the filters were washed at 50° C. in 0.5×SSC and 0.1% NaDodSO


4


(SDS). From the initial screen, 10 clones were selected and upon subsequent screening 5 individual plaque pure clones were isolated. Of these 5 individual clones, four clones designated 1, 5, 6 and 9 were subcloned into pBSSK





(Stratagene) following EcoRI digestion. Sequence analysis revealed clone 5 and clone 9 contained the putative initiation methionine and signal peptide. Clone 6 (designated 6.4) contained the most 3′ end sequence and subsequently was used for further screening.




To obtain the full length gene, clone 6.4 (fragment Nsi-Hind III) was radiolabeled and used to screen 1.2×10


6


clones from a λgt 10 library constructed from a hepatoma Hep3B cell line. This screen resulted in 24 positive clones. Following PCR analysis of the clones using λgt10 primers (F and R), the four longest clones 12.1, 13.2, 22.3, and 24.3 were isolated. These clones were subcloned into pBSSK





using the EcoRI site, and following examination by restriction enzyme digest, clones 12.1 and 13.2 were submitted for sequencing. DNA sequencing was performed with the Taq dye deoxynucleotide terminator cycle sequencing kit on an automated Applied Biosystems DNA sequencer.




The assembled contiguous sequence from all the isolated clones encoded a consensus amino terminus for the newly identified polypeptide designated the WSX receptor. However, sequence analysis revealed that at least three naturally occurring variants of the WSX receptor exist which have different cytoplasmic regions. These variants appear to be differentially spliced at the lysine residue at position 891. Clone 6.4 stops 5 amino acids after Lys 891. Clone 12.1 is different from 13.2 and 6.4 following Lys 891 and encodes a putative box 2 region which is distinct from that encoded by clone 13.2. Clone 13.2 contains a potential box 1 region and following Lys 891 encodes putative box 2 and box 3 motifs. See, Baumann et al.,


Mol. Cell. Biol


., 14(1): 138-146 (1994).




The full length WSX gene based on the clone 13.2 cytoplasmic region putatively encodes an 1165 amino acid transmembrane protein. The 841 amino acid extracellular domain (ECD) contains two WSXWS domains. The ECD is followed by a 24 amino acid transmembrane domain and a 300 amino acid cytoplasmic region.




EXAMPLE 2




WSX Receptor Immunoadhesin




Using polymerase chain amplification, a WSX receptor immunoadhesin was created by engineering an in-frame fusion of the WSX receptor gene extracellular domain (WSX.ECD) with human CH2CH3(Fc)IgG (Bennett et al.,


J. Biol. Chem.


266(34):23060-23067 (1991)) at the C terminus of the ECD and cloned into pBSSK





(Stratagene). For expression, the WSX-Fc was excised with ClaI and BstEII and ligated into the pRK5.HulF.grbhIgG Genenase I vector (Beck et al., 31(17):1335-1344 (1994)), to create the plasmid pRK5.WSX-IgG Genenase I. This plasmid was transiently transfected into 293 cells using standard calcium phosphate transfection techniques. The transfected cells were cultured at 37° C. in 5% CO


2


in DMEM F12 50:50 supplemented with 10% FBS, 100 mM HEPES (pH 7.2) and 1 mM glutamine. The WSX receptor immunoadhesin was purified using a ProSepA™ protein A column.




EXAMPLE 3




Antibody Production




In order to raise antibodies against the WSX receptor, the WSX receptor immunoadhesin of Example 2 was used to inoculate rabbits to raise polyclonal antibodies and mice to raise monoclonal antibodies using conventional technology.




EXAMPLE 4




Generation of a Cell Line Expressing WSX Receptor




The nucleic acid encoding full length WSX receptor variant 13.2 was inserted in the pRKtkNeo plasmid (Holmes et al.,


Science


, 253:1278-1280 (1991)). 100 μgs of the pRKtkNeo.WSX plasmid thus generated was linearized, ethanol precipitated and resuspended in 100 μL of RPMI 1640. 7×10


6


Baf3 cells (5×10


5


/ml) were suspended in 900 μL of RPMI and added to the linearized plasmid. Following electroporation at 325V, 1180 μF using a BRL electroporation apparatus, the cells were plated into 15 mis of RPMI 1640 containing 5% WEHI3B conditioned media and 15% serum. 48 hours later cells were selected in 2 mg/ml G418.




To obtain the Baf3/WSX cell line expressing WSX receptor variant 13.2, the G418 selected clones were analyzed by FACS using the rabbit polyclonal antisera raised against the WSX-Fc chimeric protein as described above. The highest expressing clone (designated E6) was sorted by FACS to maintain a population with a high level of WSX receptor expression.




EXAMPLE 5




Role of WSX Receptor in Cellular Proliferation




The proliferative potential of the WSX receptor was tested by constructing a human growth hormone receptor-WSX receptor (GH-WSX) fusion encoding for a chimeric protein consisting of the GH receptor extracellular and transmembrane domains and the WSX receptor variant 13.2 intracellular domain. This chimeric gene fusion was transfected into the IL-3 dependent cell line Baf3. The ability of the GH-WSX transfected Baf3 cells to respond to exogenous growth hormone (GH) was tested in a thymidine incorporation assay. As can be seen in

FIG. 6

, the GH-WSX receptor chimera was capable of increasing thymidine uptake in the transfected Baf3 cells, thus indicating the proliferative potential of the WSX receptor.




Materials and Methods




The GH-WSX chimera was constructed by first using PCR to generate the extracellular and transmembrane domain of the human GH receptor. The 3′ end primer used for this PCR contained 20 nucleotides at the 5′ end of the primer corresponding to the first 20 nucleotides of the WSX cytoplasmic domain. The 3′ end of the chimera was generated using PCR where the 5′ end primer contained the last 19 nucleotides of the human GH receptor transmembrane domain. To generate the full length chimera, the 5′ end of the human GH receptor product was combined with the 3′ end WSX receptor cytoplasmic PCR product and subsequently amplified to create a fusion of the two products.




This chimeric fusion was digested with ClaI and XbaI and ligated to pRKtkNeo (Holmes et al.,


Science


, 253:1278-1280 (1991)) to create the chimeric expression vector. The IL-3 dependent cell line Baf3 was then electroporated with this hGH/WSX chimeric expression vector.




Briefly, 100 μg of the pRKtkNeo/GH.WSX plasmid was linearized, ethanol precipitated and resuspended in 100 μL of RPMI 1640. 7×10


6


Baf3 cells (5×10


5


/ml) were suspended in 900 μL of RPMI and added to the linearized plasmid. Following electroporation at 325V, 1180 μF using a BRL electroporation apparatus, the cells were plated into 15 mls of RPMI 1640 containing 5% wehi conditioned media and 15% serum. 48 hours later, cells were selected in 2 mg/ml G418.




To obtain the Baf3/GH.WSX cell lines, the G418 selected cells were FACS sorted using an anti-human GH Mab (3B7) at 1 μg/ml. The top 10% expressing cells were selected and expanded.




EXAMPLE 6




Expression Analysis of the WSX Receptor




The expression profile of the WSX receptor was initially examined by Northern analysis. Northern blots of human fetal or adult tissue mRNA were obtained from Clontech (Palo Alto, Calif.). A transcript of approximately 6 kb was detected in human fetal lung, liver and kidney. In the adult, low level expression was detected in a variety of tissues including liver, placenta, lung skeletal muscle, kidney, ovary, prostate and small intestine.




PCR analysis of human cord blood identified transcripts in CD34


+


subfraction. The CD34





subfraction appeared negative by this same PCR analysis.




EXAMPLE 7




Cloning of Murine WSX Receptor




The human WSX receptor was used as a probe to isolate murine WSX receptor. The pRKtkNeo.WSX plasmid of Example 4 was digested using Ssp1. This Ssp1 fragment (1624 bps) was isolated, and radiolabelled, and used to screen a murine liver λgt10 library (Clontech). This resulted in 4 positive clones which were isolated and sequenced after sub-cloning into pBSSK





via EcoRI digestion. The resultant clones, designated 1, 2, 3, 4 showed homology to the extracellular domain of the human WSX receptor; the contiguous sequences resulting from these clones extended from the initiation methionine to tryptophan at position 783. The overall similarity of human WSX receptor and murine WSX receptor is 73% over this region of the respective extracellular domains (see FIGS.


4


A-D).




EXAMPLE 8




The Role of WSX Receptor in Hematopoietic Cell Proliferation




The presence of the WSX receptor in the enriched human stem cell population CD34+ from cord blood is indicative of a potential role for this receptor in stem cell/progenitor cell proliferation.




The proliferation of CD34+ human blood cells in methylcellulose media (Stem Cell Technologies) was determined in the presence or absence of WSX receptor antisense oligonucleotides. These experiments were also repeated in the murine hematopoietic system using AA4


+


Sca


+


Kit


+


stem cells from the murine fetal liver. In both instances, the antisense oligonudeotides statistically significantly inhibited colony formation from the hematopoietic progenitor cells. See Table 1 below. The anti-proliferative effects were most pronounced using the −20 antisense and the +85 antisense oligonudeotide constructs. This inhibition was not lineage specific to any particular myeloid lineage that resulted from the progenitor expansion. The principal effect of the antisense oligonucleotides was a reduction of overall colony numbers. The size of the individual colonies was also reduced.















TABLE 1











AVG.







EXPERIMENT




OLIGO




COLONY #




% INHIBITION


























Human Cord Blood (KL)




(−20)AS




32








(−20)S




100




70







(−20)SCR




114







(+85)AS




80







(+85)S




123




38







(+85)SCR




138







Control




158






Human Cord Blood




(−20)AS




78






(IL−3, IL−6, KL)




(−20)S




188




54







(−20)SCR




151







(+85)AS




167







(+85)S




195




18







(+85)SCR




213







Control




266






Human Cord Blood (KL)




(−20)AS




42







(−20)S




146




69







(−20)SCR




121







(+85)AS




123







(+85)S




162




23







(+85)SCR




156







Control




145






Murine Fetal Liver (KL)




(+84)AS




33







(+84)S




86




54







(+84)SCR




57







(−20)AS




27







(−20)S




126




71







(−20)SCR




60







(−99)AS




109







(−99)S




93




0







(−99)SCR




109







Control




121






Murine Fetal Liver (KL)




(−213)AS




51







(−213)S




60




10







(−213)SCR




53







(+211)AS




58







(+211)S




54




3







(+211)SCR




66







Control




59














Materials and Methods




Human stem cells: Human umbilical cord blood was collected in PBS/Heparin (1000 u/ml). The mononuclear fraction was separated using a dextran gradient and any remaining red blood cells lysed in 20 mM NH


4


Cl. CD34


+


cells were isolated using CD34


+


immunomagnetic beads (Miltenyi, Calif.). These isolated CD34


+


cells were found to be 90-97% CD34


+


by FACS analysis.




Murine stem cells: Midgestation fetal liver were harvested and positively selected for the AA4





antigen by immune panning. The AA4





positive fraction was then further enriched for stem cell content by FACS isolation of the AA4


+


Sca


+


Kit


+


fraction.




Antisense expedments: Oligodeoxynucleotides were synthesized against regions of the human or murine WSX receptors. For each oligonucleotide chosen, antisense (AS), sense (S) and scrambled (SCR) versions were synthesized (see FIG.


7


). + or − indicates position relative the initiation methionine of the WSX receptor. CD34


+


or AA4


+


Sca


+


Kit


+


cells were incubated at a concentration of 10


3


/ml in 50:50 DMEM/F12 media supplemented with 10% FBS, L-glutamine, and GIBCO™ lipid concentrate containing either sense, antisense or scrambled oligonucleotides at a concentration of 70 μg/ml. After 16 hours, a second aliquot of the respective oligonucleotide was added (35 μg/ml) and the cells incubated for a further 6 hours.




Colony assays: 5000 cells from each of the above conditions were aliquoted into 5 ml of methylcellulose (Stem Cell Technologies) containing kit ligand (KL) (25 ng/ml), interleukin-3 (IL-3) (25 ng/ml) and interleukin-6 (IL-6) (50 ng/ml). The methylcellulose cultures were then incubated at 37° C. for 14 days and the resultant colonies counted and phenotyped. All assays were performed in triplicate.







45





4102 base pairs


Nucleic Acid


Double


Linear



1
GAATTCTCGA GTCGACGGCG GGCGTTAAAG CTCTCGTGGC ATTATCCTTC 50
AGTGGGGCTA TTGGACTGAC TTTTCTTATG CTGGGATGTG CCTTAGAGGA 100
TTATGGGTGT ACTTCTCTGA AGTAAGATGA TTTGTCAAAA ATTCTGTGTG 150
GTTTTGTTAC ATTGGGAATT TATTTATGTG ATAACTGCGT TTAACTTGTC 200
ATATCCAATT ACTCCTTGGA GATTTAAGTT GTCTTGCATG CCACCAAATT 250
CAACCTATGA CTACTTCCTT TTGCCTGCTG GACTCTCAAA GAATACTTCA 300
AATTCGAATG GACATTATGA GACAGCTGTT GAACCTAAGT TTAATTCAAG 350
TGGTACTCAC TTTTCTAACT TATCCAAAAC AACTTTCCAC TGTTGCTTTC 400
GGAGTGAGCA AGATAGAAAC TGCTCCTTAT GTGCAGACAA CATTGAAGGA 450
AAGACATTTG TTTCAACAGT AAATTCTTTA GTTTTTCAAC AAATAGATGC 500
AAACTGGAAC ATACAGTGCT GGCTAAAAGG AGACTTAAAA TTATTCATCT 550
GTTATGTGGA GTCATTATTT AAGAATCTAT TCAGGAATTA TAACTATAAG 600
GTCCATCTTT TATATGTTCT GCCTGAAGTG TTAGAAGATT CACCTCTGGT 650
TCCCCAAAAA GGCAGTTTTC AGATGGTTCA CTGCAATTGC AGTGTTCATG 700
AATGTTGTGA ATGTCTTGTG CCTGTGCCAA CAGCCAAACT CAACGACACT 750
CTCCTTATGT GTTTGAAAAT CACATCTGGT GGAGTAATTT TCCAGTCACC 800
TCTAATGTCA GTTCAGCCCA TAAATATGGT GAAGCCTGAT CCACCATTAG 850
GTTTGCATAT GGAAATCACA GATGATGGTA ATTTAAAGAT TTCTTGGTCC 900
AGCCCACCAT TGGTACCATT TCCACTTCAA TATCAAGTGA AATATTCAGA 950
GAATTCTACA ACAGTTATCA GAGAAGCTGA CAAGATTGTC TCAGCTACAT 1000
CCCTGCTAGT AGACAGTATA CTTCCTGGGT CTTCGTATGA GGTTCAGGTG 1050
AGGGGCAAGA GACTGGATGG CCCAGGAATC TGGAGTGACT GGAGTACTCC 1100
TCGTGTCTTT ACCACACAAG ATGTCATATA CTTTCCACCT AAAATTCTGA 1150
CAAGTGTTGG GTCTAATGTT TCTTTTCACT GCATCTATAA GAAGGAAAAC 1200
AAGATTGTTC CCTCAAAAGA GATTGTTTGG TGGATGAATT TAGCTGAGAA 1250
AATTCCTCAA AGCCAGTATG ATGTTGTGAG TGATCATGTT AGCAAAGTTA 1300
CTTTTTTCAA TCTGAATGAA ACCAAACCTC GAGGAAAGTT TACCTATGAT 1350
GCAGTGTACT GCTGCAATGA ACATGAATGC CATCATCGCT ATGCTGAATT 1400
ATATGTGATT GATGTCAATA TCAATATCTC ATGTGAAACT GATGGGTACT 1450
TAACTAAAAT GACTTGCAGA TGGTCAACCA GTACAATCCA GTCACTTGCG 1500
GAAAGCACTT TGCAATTGAG GTATCATAGG AGCAGCCTTT ACTGTTCTGA 1550
TATTCCATCT ATTCATCCCA TATCTGAGCC CAAAGATTGC TATTTGCAGA 1600
GTGATGGTTT TTATGAATGC ATTTTCCAGC CAATCTTCCT ATTATCTGGC 1650
TACACAATGT GGATTAGGAT CAATCACTCT CTAGGTTCAC TTGACTCTCC 1700
ACCAACATGT GTCCTTCCTG ATTCTGTGGT GAAGCCACTG CCTCCATCCA 1750
GTGTGAAAGC AGAAATTACT ATAAACATTG GATTATTGAA AATATCTTGG 1800
GAAAAGCCAG TCTTTCCAGA GAATAACCTT CAATTCCAGA TTCGCTATGG 1850
TTTAAGTGGA AAAGAAGTAC AATGGAAGAT GTATGAGGTT TATGATGCAA 1900
AATCAAAATC TGTCAGTCTC CCAGTTCCAG ACTTGTGTGC AGTCTATGCT 1950
GTTCAGGTGC GCTGTAAGAG GCTAGATGGA CTGGGATATT GGAGTAATTG 2000
GAGCAATCCA GCCTACACAG TTGTCATGGA TATAAAAGTT CCTATGAGAG 2050
GACCTGAATT TTGGAGAATA ATTAATGGAG ATACTATGAA AAAGGAGAAA 2100
AATGTCACTT TACTTTGGAA GCCCCTGATG AAAAATGACT CATTGTGCAG 2150
TGTTCAGAGA TATGTGATAA ACCATCATAC TTCCTGCAAT GGAACATGGT 2200
CAGAAGATGT GGGAAATCAC ACGAAATTCA CTTTCCTGTG GACAGAGCAA 2250
GCACATACTG TTACGGTTCT GGCCATCAAT TCAATTGGTG CTTCTGTTGC 2300
AAATTTTAAT TTAACCTTTT CATGGCCTAT GAGCAAAGTA AATATCGTGC 2350
AGTCACTCAG TGCTTATCCT TTAAACAGCA GTTGTGTGAT TGTTTCCTGG 2400
ATACTATCAC CCAGTGATTA CAAGCTAATG TATTTTATTA TTGAGTGGAA 2450
AAATCTTAAT GAAGATGGTG AAATAAAATG GCTTAGAATC TCTTCATCTG 2500
TTAAGAAGTA TTATATCCAT GATCATTTTA TCCCCATTGA GAAGTACCAG 2550
TTCAGTCTTT ACCCAATATT TATGGAAGGA GTGGGAAAAC CAAAGATAAT 2600
TAATAGTTTC ACTCAAGATG ATATTGAAAA ACACCAGAGT GATGCAGGTT 2650
TATATGTAAT TGTGCCAGTA ATTATTTCCT CTTCCATCTT ATTGCTTGGA 2700
ACATTATTAA TATCACACCA AAGAATGAAA AAGCTATTTT GGGAAGATGT 2750
TCCGAACCCC AAGAATTGTT CCTGGGCACA AGGACTTAAT TTTCAGAAGC 2800
CAGAAACGTT TGAGCATCTT TTTATCAAGC ATACAGCATC AGTGACATGT 2850
GGTCCTCTTC TTTTGGAGCC TGAAACAATT TCAGAAGATA TCAGTGTTGA 2900
TACATCATGG AAAAATAAAG ATGAGATGAT GCCAACAACT GTGGTCTCTC 2950
TACTTTCAAC AACAGATCTT GAAAAGGGTT CTGTTTGTAT TAGTGACCAG 3000
TTCAACAGTG TTAACTTCTC TGAGGCTGAG GGTACTGAGG TAACCTATGA 3050
GGACGAAAGC CAGAGACAAC CCTTTGTTAA ATACGCCACG CTGATCAGCA 3100
ACTCTAAACC AAGTGAAACT GGTGAAGAAC AAGGGCTTAT AAATAGTTCA 3150
GTCACCAAGT GCTTCTCTAG CAAAAATTCT CCGTTGAAGG ATTCTTTCTC 3200
TAATAGCTCA TGGGAGATAG AGGCCCAGGC ATTTTTTATA TTATCAGATC 3250
AGCATCCCAA CATAATTTCA CCACACCTCA CATTCTCAGA AGGATTGGAT 3300
GAACTTTTGA AATTGGAGGG AAATTTCCCT GAAGAAAATA ATGATAAAAA 3350
GTCTATCTAT TATTTAGGGG TCACCTCAAT CAAAAAGAGA GAGAGTGGTG 3400
TGCTTTTGAC TGACAAGTCA AGGGTATCGT GCCCATTCCC AGCCCCCTGT 3450
TTATTCACGG ACATCAGAGT TCTCCAGGAC AGTTGCTCAC ACTTTGTAGA 3500
AAATAATATC AACTTAGGAA CTTCTAGTAA GAAGACTTTT GCATCTTACA 3550
TGCCTCAATT CCAAACTTGT TCTACTCAGA CTCATAAGAT CATGGAAAAC 3600
AAGATGTGTG ACCTAACTGT GTAATTTCAC TGAAGAAACC TTCAGATTTG 3650
TGTTATAATG GGTAATATAA AGTGTAATAG ATTATAGTTG TGGGTGGGAG 3700
AGAGAAAAGA AACCAGAGTC AAATTTGAAA ATAATTGTTC CAAATGAATG 3750
TTGTCTGTTT GTTCTCTCTT AGTAACATAG ACAAAAAATT TGAGAAAGCC 3800
TTCATAAGCC TACCAATGTA GACACGCTCT TCTATTTTAT TCCCAAGCTC 3850
TAGTGGGAAG GTCCCTTGTT TCCAGCTAGA AATAAGCCCA ACAGACACCA 3900
TCTTTTGTGA GATGTAATTG TTTTTTCAGA GGGCGTGTTG TTTTACCTCA 3950
AGTTTTTGTT TTGTACCAAC ACACACACAC ACACACATTC TTAACACATG 4000
TCCTTGTGTG TTTTGAGAGT ATATTATGTA TTTATATTTT GTGCTATCAG 4050
ACTGTAGGAT TTGAAGTAGG ACTTTCCTAA ATGTTTAAGA TAAACAGAAT 4100
TC 4102






1165 amino acids


Amino Acid


Linear



2
Met Ile Cys Gln Lys Phe Cys Val Val Leu Leu His Trp Glu Phe
1 5 10 15
Ile Tyr Val Ile Thr Ala Phe Asn Leu Ser Tyr Pro Ile Thr Pro
20 25 30
Trp Arg Phe Lys Leu Ser Cys Met Pro Pro Asn Ser Thr Tyr Asp
35 40 45
Tyr Phe Leu Leu Pro Ala Gly Leu Ser Lys Asn Thr Ser Asn Ser
50 55 60
Asn Gly His Tyr Glu Thr Ala Val Glu Pro Lys Phe Asn Ser Ser
65 70 75
Gly Thr His Phe Ser Asn Leu Ser Lys Thr Thr Phe His Cys Cys
80 85 90
Phe Arg Ser Glu Gln Asp Arg Asn Cys Ser Leu Cys Ala Asp Asn
95 100 105
Ile Glu Gly Lys Thr Phe Val Ser Thr Val Asn Ser Leu Val Phe
110 115 120
Gln Gln Ile Asp Ala Asn Trp Asn Ile Gln Cys Trp Leu Lys Gly
125 130 135
Asp Leu Lys Leu Phe Ile Cys Tyr Val Glu Ser Leu Phe Lys Asn
140 145 150
Leu Phe Arg Asn Tyr Asn Tyr Lys Val His Leu Leu Tyr Val Leu
155 160 165
Pro Glu Val Leu Glu Asp Ser Pro Leu Val Pro Gln Lys Gly Ser
170 175 180
Phe Gln Met Val His Cys Asn Cys Ser Val His Glu Cys Cys Glu
185 190 195
Cys Leu Val Pro Val Pro Thr Ala Lys Leu Asn Asp Thr Leu Leu
200 205 210
Met Cys Leu Lys Ile Thr Ser Gly Gly Val Ile Phe Gln Ser Pro
215 220 225
Leu Met Ser Val Gln Pro Ile Asn Met Val Lys Pro Asp Pro Pro
230 235 240
Leu Gly Leu His Met Glu Ile Thr Asp Asp Gly Asn Leu Lys Ile
245 250 255
Ser Trp Ser Ser Pro Pro Leu Val Pro Phe Pro Leu Gln Tyr Gln
260 265 270
Val Lys Tyr Ser Glu Asn Ser Thr Thr Val Ile Arg Glu Ala Asp
275 280 285
Lys Ile Val Ser Ala Thr Ser Leu Leu Val Asp Ser Ile Leu Pro
290 295 300
Gly Ser Ser Tyr Glu Val Gln Val Arg Gly Lys Arg Leu Asp Gly
305 310 315
Pro Gly Ile Trp Ser Asp Trp Ser Thr Pro Arg Val Phe Thr Thr
320 325 330
Gln Asp Val Ile Tyr Phe Pro Pro Lys Ile Leu Thr Ser Val Gly
335 340 345
Ser Asn Val Ser Phe His Cys Ile Tyr Lys Lys Glu Asn Lys Ile
350 355 360
Val Pro Ser Lys Glu Ile Val Trp Trp Met Asn Leu Ala Glu Lys
365 370 375
Ile Pro Gln Ser Gln Tyr Asp Val Val Ser Asp His Val Ser Lys
380 385 390
Val Thr Phe Phe Asn Leu Asn Glu Thr Lys Pro Arg Gly Lys Phe
395 400 405
Thr Tyr Asp Ala Val Tyr Cys Cys Asn Glu His Glu Cys His His
410 415 420
Arg Tyr Ala Glu Leu Tyr Val Ile Asp Val Asn Ile Asn Ile Ser
425 430 435
Cys Glu Thr Asp Gly Tyr Leu Thr Lys Met Thr Cys Arg Trp Ser
440 445 450
Thr Ser Thr Ile Gln Ser Leu Ala Glu Ser Thr Leu Gln Leu Arg
455 460 465
Tyr His Arg Ser Ser Leu Tyr Cys Ser Asp Ile Pro Ser Ile His
470 475 480
Pro Ile Ser Glu Pro Lys Asp Cys Tyr Leu Gln Ser Asp Gly Phe
485 490 495
Tyr Glu Cys Ile Phe Gln Pro Ile Phe Leu Leu Ser Gly Tyr Thr
500 505 510
Met Trp Ile Arg Ile Asn His Ser Leu Gly Ser Leu Asp Ser Pro
515 520 525
Pro Thr Cys Val Leu Pro Asp Ser Val Val Lys Pro Leu Pro Pro
530 535 540
Ser Ser Val Lys Ala Glu Ile Thr Ile Asn Ile Gly Leu Leu Lys
545 550 555
Ile Ser Trp Glu Lys Pro Val Phe Pro Glu Asn Asn Leu Gln Phe
560 565 570
Gln Ile Arg Tyr Gly Leu Ser Gly Lys Glu Val Gln Trp Lys Met
575 580 585
Tyr Glu Val Tyr Asp Ala Lys Ser Lys Ser Val Ser Leu Pro Val
590 595 600
Pro Asp Leu Cys Ala Val Tyr Ala Val Gln Val Arg Cys Lys Arg
605 610 615
Leu Asp Gly Leu Gly Tyr Trp Ser Asn Trp Ser Asn Pro Ala Tyr
620 625 630
Thr Val Val Met Asp Ile Lys Val Pro Met Arg Gly Pro Glu Phe
635 640 645
Trp Arg Ile Ile Asn Gly Asp Thr Met Lys Lys Glu Lys Asn Val
650 655 660
Thr Leu Leu Trp Lys Pro Leu Met Lys Asn Asp Ser Leu Cys Ser
665 670 675
Val Gln Arg Tyr Val Ile Asn His His Thr Ser Cys Asn Gly Thr
680 685 690
Trp Ser Glu Asp Val Gly Asn His Thr Lys Phe Thr Phe Leu Trp
695 700 705
Thr Glu Gln Ala His Thr Val Thr Val Leu Ala Ile Asn Ser Ile
710 715 720
Gly Ala Ser Val Ala Asn Phe Asn Leu Thr Phe Ser Trp Pro Met
725 730 735
Ser Lys Val Asn Ile Val Gln Ser Leu Ser Ala Tyr Pro Leu Asn
740 745 750
Ser Ser Cys Val Ile Val Ser Trp Ile Leu Ser Pro Ser Asp Tyr
755 760 765
Lys Leu Met Tyr Phe Ile Ile Glu Trp Lys Asn Leu Asn Glu Asp
770 775 780
Gly Glu Ile Lys Trp Leu Arg Ile Ser Ser Ser Val Lys Lys Tyr
785 790 795
Tyr Ile His Asp His Phe Ile Pro Ile Glu Lys Tyr Gln Phe Ser
800 805 810
Leu Tyr Pro Ile Phe Met Glu Gly Val Gly Lys Pro Lys Ile Ile
815 820 825
Asn Ser Phe Thr Gln Asp Asp Ile Glu Lys His Gln Ser Asp Ala
830 835 840
Gly Leu Tyr Val Ile Val Pro Val Ile Ile Ser Ser Ser Ile Leu
845 850 855
Leu Leu Gly Thr Leu Leu Ile Ser His Gln Arg Met Lys Lys Leu
860 865 870
Phe Trp Glu Asp Val Pro Asn Pro Lys Asn Cys Ser Trp Ala Gln
875 880 885
Gly Leu Asn Phe Gln Lys Pro Glu Thr Phe Glu His Leu Phe Ile
890 895 900
Lys His Thr Ala Ser Val Thr Cys Gly Pro Leu Leu Leu Glu Pro
905 910 915
Glu Thr Ile Ser Glu Asp Ile Ser Val Asp Thr Ser Trp Lys Asn
920 925 930
Lys Asp Glu Met Met Pro Thr Thr Val Val Ser Leu Leu Ser Thr
935 940 945
Thr Asp Leu Glu Lys Gly Ser Val Cys Ile Ser Asp Gln Phe Asn
950 955 960
Ser Val Asn Phe Ser Glu Ala Glu Gly Thr Glu Val Thr Tyr Glu
965 970 975
Asp Glu Ser Gln Arg Gln Pro Phe Val Lys Tyr Ala Thr Leu Ile
980 985 990
Ser Asn Ser Lys Pro Ser Glu Thr Gly Glu Glu Gln Gly Leu Ile
995 1000 1005
Asn Ser Ser Val Thr Lys Cys Phe Ser Ser Lys Asn Ser Pro Leu
1010 1015 1020
Lys Asp Ser Phe Ser Asn Ser Ser Trp Glu Ile Glu Ala Gln Ala
1025 1030 1035
Phe Phe Ile Leu Ser Asp Gln His Pro Asn Ile Ile Ser Pro His
1040 1045 1050
Leu Thr Phe Ser Glu Gly Leu Asp Glu Leu Leu Lys Leu Glu Gly
1055 1060 1065
Asn Phe Pro Glu Glu Asn Asn Asp Lys Lys Ser Ile Tyr Tyr Leu
1070 1075 1080
Gly Val Thr Ser Ile Lys Lys Arg Glu Ser Gly Val Leu Leu Thr
1085 1090 1095
Asp Lys Ser Arg Val Ser Cys Pro Phe Pro Ala Pro Cys Leu Phe
1100 1105 1110
Thr Asp Ile Arg Val Leu Gln Asp Ser Cys Ser His Phe Val Glu
1115 1120 1125
Asn Asn Ile Asn Leu Gly Thr Ser Ser Lys Lys Thr Phe Ala Ser
1130 1135 1140
Tyr Met Pro Gln Phe Gln Thr Cys Ser Thr Gln Thr His Lys Ile
1145 1150 1155
Met Glu Asn Lys Met Cys Asp Leu Thr Val
1160 1165






896 amino acids


Amino Acid


Linear



3
Met Ile Cys Gln Lys Phe Cys Val Val Leu Leu His Trp Glu Phe
1 5 10 15
Ile Tyr Val Ile Thr Ala Phe Asn Leu Ser Tyr Pro Ile Thr Pro
20 25 30
Trp Arg Phe Lys Leu Ser Cys Met Pro Pro Asn Ser Thr Tyr Asp
35 40 45
Tyr Phe Leu Leu Pro Ala Gly Leu Ser Lys Asn Thr Ser Asn Ser
50 55 60
Asn Gly His Tyr Glu Thr Ala Val Glu Pro Lys Phe Asn Ser Ser
65 70 75
Gly Thr His Phe Ser Asn Leu Ser Lys Thr Thr Phe His Cys Cys
80 85 90
Phe Arg Ser Glu Gln Asp Arg Asn Cys Ser Leu Cys Ala Asp Asn
95 100 105
Ile Glu Gly Lys Thr Phe Val Ser Thr Val Asn Ser Leu Val Phe
110 115 120
Gln Gln Ile Asp Ala Asn Trp Asn Ile Gln Cys Trp Leu Lys Gly
125 130 135
Asp Leu Lys Leu Phe Ile Cys Tyr Val Glu Ser Leu Phe Lys Asn
140 145 150
Leu Phe Arg Asn Tyr Asn Tyr Lys Val His Leu Leu Tyr Val Leu
155 160 165
Pro Glu Val Leu Glu Asp Ser Pro Leu Val Pro Gln Lys Gly Ser
170 175 180
Phe Gln Met Val His Cys Asn Cys Ser Val His Glu Cys Cys Glu
185 190 195
Cys Leu Val Pro Val Pro Thr Ala Lys Leu Asn Asp Thr Leu Leu
200 205 210
Met Cys Leu Lys Ile Thr Ser Gly Gly Val Ile Phe Gln Ser Pro
215 220 225
Leu Met Ser Val Gln Pro Ile Asn Met Val Lys Pro Asp Pro Pro
230 235 240
Leu Gly Leu His Met Glu Ile Thr Asp Asp Gly Asn Leu Lys Ile
245 250 255
Ser Trp Ser Ser Pro Pro Leu Val Pro Phe Pro Leu Gln Tyr Gln
260 265 270
Val Lys Tyr Ser Glu Asn Ser Thr Thr Val Ile Arg Glu Ala Asp
275 280 285
Lys Ile Val Ser Ala Thr Ser Leu Leu Val Asp Ser Ile Leu Pro
290 295 300
Gly Ser Ser Tyr Glu Val Gln Val Arg Gly Lys Arg Leu Asp Gly
305 310 315
Pro Gly Ile Trp Ser Asp Trp Ser Thr Pro Arg Val Phe Thr Thr
320 325 330
Gln Asp Val Ile Tyr Phe Pro Pro Lys Ile Leu Thr Ser Val Gly
335 340 345
Ser Asn Val Ser Phe His Cys Ile Tyr Lys Lys Glu Asn Lys Ile
350 355 360
Val Pro Ser Lys Glu Ile Val Trp Trp Met Asn Leu Ala Glu Lys
365 370 375
Ile Pro Gln Ser Gln Tyr Asp Val Val Ser Asp His Val Ser Lys
380 385 390
Val Thr Phe Phe Asn Leu Asn Glu Thr Lys Pro Arg Gly Lys Phe
395 400 405
Thr Tyr Asp Ala Val Tyr Cys Cys Asn Glu His Glu Cys His His
410 415 420
Arg Tyr Ala Glu Leu Tyr Val Ile Asp Val Asn Ile Asn Ile Ser
425 430 435
Cys Glu Thr Asp Gly Tyr Leu Thr Lys Met Thr Cys Arg Trp Ser
440 445 450
Thr Ser Thr Ile Gln Ser Leu Ala Glu Ser Thr Leu Gln Leu Arg
455 460 465
Tyr His Arg Ser Ser Leu Tyr Cys Ser Asp Ile Pro Ser Ile His
470 475 480
Pro Ile Ser Glu Pro Lys Asp Cys Tyr Leu Gln Ser Asp Gly Phe
485 490 495
Tyr Glu Cys Ile Phe Gln Pro Ile Phe Leu Leu Ser Gly Tyr Thr
500 505 510
Met Trp Ile Arg Ile Asn His Ser Leu Gly Ser Leu Asp Ser Pro
515 520 525
Pro Thr Cys Val Leu Pro Asp Ser Val Val Lys Pro Leu Pro Pro
530 535 540
Ser Ser Val Lys Ala Glu Ile Thr Ile Asn Ile Gly Leu Leu Lys
545 550 555
Ile Ser Trp Glu Lys Pro Val Phe Pro Glu Asn Asn Leu Gln Phe
560 565 570
Gln Ile Arg Tyr Gly Leu Ser Gly Lys Glu Val Gln Trp Lys Met
575 580 585
Tyr Glu Val Tyr Asp Ala Lys Ser Lys Ser Val Ser Leu Pro Val
590 595 600
Pro Asp Leu Cys Ala Val Tyr Ala Val Gln Val Arg Cys Lys Arg
605 610 615
Leu Asp Gly Leu Gly Tyr Trp Ser Asn Trp Ser Asn Pro Ala Tyr
620 625 630
Thr Val Val Met Asp Ile Lys Val Pro Met Arg Gly Pro Glu Phe
635 640 645
Trp Arg Ile Ile Asn Gly Asp Thr Met Lys Lys Glu Lys Asn Val
650 655 660
Thr Leu Leu Trp Lys Pro Leu Met Lys Asn Asp Ser Leu Cys Ser
665 670 675
Val Gln Arg Tyr Val Ile Asn His His Thr Ser Cys Asn Gly Thr
680 685 690
Trp Ser Glu Asp Val Gly Asn His Thr Lys Phe Thr Phe Leu Trp
695 700 705
Thr Glu Gln Ala His Thr Val Thr Val Leu Ala Ile Asn Ser Ile
710 715 720
Gly Ala Ser Val Ala Asn Phe Asn Leu Thr Phe Ser Trp Pro Met
725 730 735
Ser Lys Val Asn Ile Val Gln Ser Leu Ser Ala Tyr Pro Leu Asn
740 745 750
Ser Ser Cys Val Ile Val Ser Trp Ile Leu Ser Pro Ser Asp Tyr
755 760 765
Lys Leu Met Tyr Phe Ile Ile Glu Trp Lys Asn Leu Asn Glu Asp
770 775 780
Gly Glu Ile Lys Trp Leu Arg Ile Ser Ser Ser Val Lys Lys Tyr
785 790 795
Tyr Ile His Asp His Phe Ile Pro Ile Glu Lys Tyr Gln Phe Ser
800 805 810
Leu Tyr Pro Ile Phe Met Glu Gly Val Gly Lys Pro Lys Ile Ile
815 820 825
Asn Ser Phe Thr Gln Asp Asp Ile Glu Lys His Gln Ser Asp Ala
830 835 840
Gly Leu Tyr Val Ile Val Pro Val Ile Ile Ser Ser Ser Ile Leu
845 850 855
Leu Leu Gly Thr Leu Leu Ile Ser His Gln Arg Met Lys Lys Leu
860 865 870
Phe Trp Glu Asp Val Pro Asn Pro Lys Asn Cys Ser Trp Ala Gln
875 880 885
Gly Leu Asn Phe Gln Lys Arg Thr Asp Ile Leu
890 895 896






923 amino acids


Amino Acid


Linear



4
Met Ile Cys Gln Lys Phe Cys Val Val Leu Leu His Trp Glu Phe
1 5 10 15
Ile Tyr Val Ile Thr Ala Phe Asn Leu Ser Tyr Pro Ile Thr Pro
20 25 30
Trp Arg Phe Lys Leu Ser Cys Met Pro Pro Asn Ser Thr Tyr Asp
35 40 45
Tyr Phe Leu Leu Pro Ala Gly Leu Ser Lys Asn Thr Ser Asn Ser
50 55 60
Asn Gly His Tyr Glu Thr Ala Val Glu Pro Lys Phe Asn Ser Ser
65 70 75
Gly Thr His Phe Ser Asn Leu Ser Lys Thr Thr Phe His Cys Cys
80 85 90
Phe Arg Ser Glu Gln Asp Arg Asn Cys Ser Leu Cys Ala Asp Asn
95 100 105
Ile Glu Gly Lys Thr Phe Val Ser Thr Val Asn Ser Leu Val Phe
110 115 120
Gln Gln Ile Asp Ala Asn Trp Asn Ile Gln Cys Trp Leu Lys Gly
125 130 135
Asp Leu Lys Leu Phe Ile Cys Tyr Val Glu Ser Leu Phe Lys Asn
140 145 150
Leu Phe Arg Asn Tyr Asn Tyr Lys Val His Leu Leu Tyr Val Leu
155 160 165
Pro Glu Val Leu Glu Asp Ser Pro Leu Val Pro Gln Lys Gly Ser
170 175 180
Phe Gln Met Val His Cys Asn Cys Ser Val His Glu Cys Cys Glu
185 190 195
Cys Leu Val Pro Val Pro Thr Ala Lys Leu Asn Asp Thr Leu Leu
200 205 210
Met Cys Leu Lys Ile Thr Ser Gly Gly Val Ile Phe Gln Ser Pro
215 220 225
Leu Met Ser Val Gln Pro Ile Asn Met Val Lys Pro Asp Pro Pro
230 235 240
Leu Gly Leu His Met Glu Ile Thr Asp Asp Gly Asn Leu Lys Ile
245 250 255
Ser Trp Ser Ser Pro Pro Leu Val Pro Phe Pro Leu Gln Tyr Gln
260 265 270
Val Lys Tyr Ser Glu Asn Ser Thr Thr Val Ile Arg Glu Ala Asp
275 280 285
Lys Ile Val Ser Ala Thr Ser Leu Leu Val Asp Ser Ile Leu Pro
290 295 300
Gly Ser Ser Tyr Glu Val Gln Val Arg Gly Lys Arg Leu Asp Gly
305 310 315
Pro Gly Ile Trp Ser Asp Trp Ser Thr Pro Arg Val Phe Thr Thr
320 325 330
Gln Asp Val Ile Tyr Phe Pro Pro Lys Ile Leu Thr Ser Val Gly
335 340 345
Ser Asn Val Ser Phe His Cys Ile Tyr Lys Lys Glu Asn Lys Ile
350 355 360
Val Pro Ser Lys Glu Ile Val Trp Trp Met Asn Leu Ala Glu Lys
365 370 375
Ile Pro Gln Ser Gln Tyr Asp Val Val Ser Asp His Val Ser Lys
380 385 390
Val Thr Phe Phe Asn Leu Asn Glu Thr Lys Pro Arg Gly Lys Phe
395 400 405
Thr Tyr Asp Ala Val Tyr Cys Cys Asn Glu His Glu Cys His His
410 415 420
Arg Tyr Ala Glu Leu Tyr Val Ile Asp Val Asn Ile Asn Ile Ser
425 430 435
Cys Glu Thr Asp Gly Tyr Leu Thr Lys Met Thr Cys Arg Trp Ser
440 445 450
Thr Ser Thr Ile Gln Ser Leu Ala Glu Ser Thr Leu Gln Leu Arg
455 460 465
Tyr His Arg Ser Ser Leu Tyr Cys Ser Asp Ile Pro Ser Ile His
470 475 480
Pro Ile Ser Glu Pro Lys Asp Cys Tyr Leu Gln Ser Asp Gly Phe
485 490 495
Tyr Glu Cys Ile Phe Gln Pro Ile Phe Leu Leu Ser Gly Tyr Thr
500 505 510
Met Trp Ile Arg Ile Asn His Ser Leu Gly Ser Leu Asp Ser Pro
515 520 525
Pro Thr Cys Val Leu Pro Asp Ser Val Val Lys Pro Leu Pro Pro
530 535 540
Ser Ser Val Lys Ala Glu Ile Thr Ile Asn Ile Gly Leu Leu Lys
545 550 555
Ile Ser Trp Glu Lys Pro Val Phe Pro Glu Asn Asn Leu Gln Phe
560 565 570
Gln Ile Arg Tyr Gly Leu Ser Gly Lys Glu Val Gln Trp Lys Met
575 580 585
Tyr Glu Val Tyr Asp Ala Lys Ser Lys Ser Val Ser Leu Pro Val
590 595 600
Pro Asp Leu Cys Ala Val Tyr Ala Val Gln Val Arg Cys Lys Arg
605 610 615
Leu Asp Gly Leu Gly Tyr Trp Ser Asn Trp Ser Asn Pro Ala Tyr
620 625 630
Thr Val Val Met Asp Ile Lys Val Pro Met Arg Gly Pro Glu Phe
635 640 645
Trp Arg Ile Ile Asn Gly Asp Thr Met Lys Lys Glu Lys Asn Val
650 655 660
Thr Leu Leu Trp Lys Pro Leu Met Lys Asn Asp Ser Leu Cys Ser
665 670 675
Val Gln Arg Tyr Val Ile Asn His His Thr Ser Cys Asn Gly Thr
680 685 690
Trp Ser Glu Asp Val Gly Asn His Thr Lys Phe Thr Phe Leu Trp
695 700 705
Thr Glu Gln Ala His Thr Val Thr Val Leu Ala Ile Asn Ser Ile
710 715 720
Gly Ala Ser Val Ala Asn Phe Asn Leu Thr Phe Ser Trp Pro Met
725 730 735
Ser Lys Val Asn Ile Val Gln Ser Leu Ser Ala Tyr Pro Leu Asn
740 745 750
Ser Ser Cys Val Ile Val Ser Trp Ile Leu Ser Pro Ser Asp Tyr
755 760 765
Lys Leu Met Tyr Phe Ile Ile Glu Trp Lys Asn Leu Asn Glu Asp
770 775 780
Gly Glu Ile Lys Trp Leu Arg Ile Ser Ser Ser Val Lys Lys Tyr
785 790 795
Tyr Ile His Asp His Phe Ile Pro Ile Glu Lys Tyr Gln Phe Ser
800 805 810
Leu Tyr Pro Ile Phe Met Glu Gly Val Gly Lys Pro Lys Ile Ile
815 820 825
Asn Ser Phe Thr Gln Asp Asp Ile Glu Lys His Gln Ser Asp Ala
830 835 840
Gly Leu Tyr Val Ile Val Pro Val Ile Ile Ser Ser Ser Ile Leu
845 850 855
Leu Leu Gly Thr Leu Leu Ile Ser His Gln Arg Met Lys Lys Leu
860 865 870
Phe Trp Glu Asp Val Pro Asn Pro Lys Asn Cys Ser Trp Ala Gln
875 880 885
Gly Leu Asn Phe Gln Lys Met Phe Arg Thr Pro Arg Ile Val Pro
890 895 900
Gly His Lys Asp Leu Ile Phe Arg Arg Cys Leu Lys Ala Ala Cys
905 910 915
Ser Leu Arg Val Ile Thr Thr Pro
920 923






3004 base pairs


Nucleic Acid


Single


Linear



5
GAATTCCGGG TTAAAGCTCT CGTGGCATTA TCCTTCAGTG GGGCTATTGG 50
ACTGACTTTT CTTATGCTGG GATGTGCCTT AGAGGATTAT GGATTTGCCA 100
GTTCACCCTG ACCATCTTGA AAATAAGTTA TCTCTGATCT CTGTCTGTAT 150
GTTACTTCTC TCCCCTCACC AATGGAGAAC AAATGTGGGC AAAGTGTACT 200
TCTCTGAAGT AAGATGATTT GTCAAAAATT CTGTGTGGTT TTGTTACATT 250
GGGAATTTAT TTATGTGATA ACTGCGTTTA ACTTGTCATA TCCAATTACT 300
CCTTGGAGAT TTAAGTTGTC TTGCATGCCA CCAAATTCAA CCTATGACTA 350
CTTCCTTTTG CCTGCTGGAC TCTCAAAGAA TACTTCAAAT TCGAATGGAC 400
ATTATGAGAC AGCTGTTGAA CCTAAGTTTA ATTCAAGTGG TACTCACTTT 450
TCTAACTTAT CCAAAACAAC TTTCCACTGT TGCTTTCGGA GTGAGCAAGA 500
TAGAAACTGC TCCTTATGTG CAGACAACAT TGAAGGAAAG ACATTTGTTT 550
CNACAGTAAA TTCTTTAGTT TTTCAACAAA TAGATGCAAA CTGGAACATA 600
CAGTGCTGGC TAAAAGGAGA CTTAAAATTA TTCATCTGTT ATGTGGAGTC 650
ATTATTTAAG AATCTATTCA GGAATTATAA CTATAAGGTC CATCTTTTAT 700
ATGTTCTGCC TGAAGTGTTA GAAGATTCAC CTCTGGTTCC CCAAAAAGGC 750
AGTTTTCAGA TGGTTCACTG CAATTGCAGT GTTCATGAAT GTTGTGAATG 800
TCTTGTGCCT GTGCCAACAG CCAAACTCAA CGACACTCTC CTTATGTGTT 850
TGAAAATCAC ATCTGGTGGA GTAATTTTCC AGTCACCTCT AATGTCAGTT 900
CAGCCCATAA ATATGGTGAA GCCTGATCCA CCATTAGGTT TGCATATGGA 950
AATCACAGAT GATGGTAATT TAAAGATTTC TTGGTCCAGC CCACCATTGG 1000
TACCATTTCC ACTTCAATAT CAAGTGAAAT ATTCAGAGAA TTCTACAACA 1050
GTTATCAGAG AAGCTGACAA GATTGTCTCA GCTACATCCC TGCTAGTAGA 1100
CAGTATACTT CCTGGGTCTT CGTATGAGGT TCAGGTGAGG GGCAAGAGAC 1150
TGGATGGCCC AGGAATCTGG AGTGACTGGA GTACTCCTCG TGTCTTTACC 1200
ACACAAGATG TCATATACTT TCCACCTAAA ATTCTGACAA GTGTTGGGTC 1250
TAATGTTTCT TTTCACTGCA TCTATAAGAA GGAAAACAAG ATTGTTCCCT 1300
CAAAAGAGAT TGTTTGGTGG ATGAATTTAG CTGAGAAAAT TCCTCAAAGC 1350
CAGTATGATG TTGTGAGTGA TCATGTTAGC AAAGTTACTT TTTTCAATCT 1400
GAATGAAACC AAACCTCGAG GAAAGTTTAC CTATGATGCA GTGTACTGCT 1450
GCAATGAACA TGAATGCCAT CATCGCTATG CTGAATTATA TGTGATTGAT 1500
GTCAATATCA ATATCTCATG TGAAACTGAT GGGTACTTAA CTAAAATGAC 1550
TTGCAGATGG TCAACCAGTA CAATCCAGTC ACTTGCGGAA AGCACTTTGC 1600
AATTGAGGTA TCATAGGAGC AGCCTTTACT GTTCTGATAT TCCATCTATT 1650
CATCCCATAT CTGAGCCCAA AGATTGCTAT TTGCAGAGTG ATGGTTTTTA 1700
TGAATGCATT TTCCAGCCAA TCTTCCTATT ATCTGGCTAC ACAATGTGGA 1750
TTAGGATCAA TCACTCTCTA GGTTCACTTG ACTCTCCACC AACATGTGTC 1800
CTTCCTGATT CTGTGGTGAA GCCACTGCCT CCATCCAGTG TGAAAGCAGA 1850
AATTACTATA AACATTGGAT TATTGAAAAT ATCTTGGGAA AAGCCAGTCT 1900
TTCCAGAGAA TAACCTTCAA TTCCAGATTC GCTATGGTTT AAGTGGAAAA 1950
GAAGTACAAT GGAAGATGTA TGAGGTTTAT GATGCAAAAT CAAAATCTGT 2000
CAGTCTCCCA GTTCCAGACT TGTGTGCAGT CTATGCTGTT CAGGTGCGCT 2050
GTAAGAGGCT AGATGGACTG GGATATTGGA GTAATTGGAG CAATCCAGCC 2100
TACACAGTTG TCATGGATAT AAAAGTTCCT ATGAGAGGAC CTGAATTTTG 2150
GAGAATAATT AATGGAGATA CTATGAAAAA GGAGAAAAAT GTCACTTTAC 2200
TTTGGAAGCC CCTGATGAAA AATGACTCAT TGTGCAGTGT TCAGAGATAT 2250
GTGATAAACC ATCATACTTC CTGCAATGGA ACATGGTCAG AAGATGTGGG 2300
AAATCACACG AAATTCACTT TCCTGTGGAC AGAGCAAGCA CATACTGTTA 2350
CGGTTCTGGC CATCAATTCA ATTGGTGCTT CTGTTGCAAA TTTTAATTTA 2400
ACCTTTTCAT GGCCTATGAG CAAAGTAAAT ATCGTGCAGT CACTCAGTGC 2450
TTATCCTTTA AACAGCAGTT GTGTGATTGT TTCCTGGATA CTATCACCCA 2500
GTGATTACAA GCTAATGTAT TTTATTATTG AGTGGAAAAA TCTTAATGAA 2550
GATGGTGAAA TAAAATGGCT TAGAATCTCT TCATCTGTTA AGAAGTATTA 2600
TATCCATGAT CATTTTATCC CCATTGAGAA GTACCAGTTC AGTCTTTACC 2650
CAATATTTAT GGAAGGAGTG GGAAAACCAA AGATAATTAA TAGTTTCACT 2700
CAAGATGATA TTGAAAAACA CCAGAGTGAT GCAGGTTTAT ATGTAATTGT 2750
GCCAGTAATT ATTTCCTCTT CCATCTTATT GCTTGGAACA TTATTAATAT 2800
CACACCAAAG AATGAAAAAG CTATTTTGGG AAGATGTTCC GAACCCCAAG 2850
AATTGTTCCT GGGCACAAGG ACTTAATTTT CAGAAGAGAA CGGACATTCT 2900
TTGAAGTCTA ATCATGATCA CTACAGATGA ACCCAATGTG CCAACTTCCC 2950
AACAGTCTAT AGAGTATTAG AAGATTTTTA CATTTTGAAG AAGGGCCGGA 3000
ATTC 3004






3102 base pairs


Nucleic Acid


Single


Linear



6
GAATTCTCGA GTCGACGGCG GGCGTTAAAG CTCTCGTGGC ATTATCCTTC 50
AGTGGGGCTA TTGGACTGAC TTTTCTTATG CTGGGATGTG CCTTAGAGGA 100
TTATGGGTGT ACTTCTCTGA AGTAAGATGA TTTGTCAAAA ATTCTGTGTG 150
GTTTTGTTAC ATTGGGAATT TATTTATGTG ATAACTGCGT TTAACTTGTC 200
ATATCCAATT ACTCCTTGGA GATTTAAGTT GTCTTGCATG CCACCAAATT 250
CAACCTATGA CTACTTCCTT TTGCCTGCTG GACTCTCAAA GAATACTTCA 300
AATTCGAATG GACATTATGA GACAGCTGTT GAACCTAAGT TTAATTCAAG 350
TGGTACTCAC TTTTCTAACT TATCCAAAAC AACTTTCCAC TGTTGCTTTC 400
GGAGTGAGCA AGATAGAAAC TGCTCCTTAT GTGCAGACAA CATTGAAGGA 450
AAGACATTTG TTTCAACAGT AAATTCTTTA GTTTTTCAAC AAATAGATGC 500
AAACTGGAAC ATACAGTGCT GGCTAAAAGG AGACTTAAAA TTATTCATCT 550
GTTATGTGGA GTCATTATTT AAGAATCTAT TCAGGAATTA TAACTATAAG 600
GTCCATCTTT TATATGTTCT GCCTGAAGTG TTAGAAGATT CACCTCTGGT 650
TCCCCAAAAA GGCAGTTTTC AGATGGTTCA CTGCAATTGC AGTGTTCATG 700
AATGTTGTGA ATGTCTTGTG CCTGTGCCAA CAGCCAAACT CAACGACACT 750
CTCCTTATGT GTTTGAAAAT CACATCTGGT GGAGTAATTT TCCAGTCACC 800
TCTAATGTCA GTTCAGCCCA TAAATATGGT GAAGCCTGAT CCACCATTAG 850
GTTTGCATAT GGAAATCACA GATGATGGTA ATTTAAAGAT TTCTTGGTCC 900
AGCCCACCAT TGGTACCATT TCCACTTCAA TATCAAGTGA AATATTCAGA 950
GAATTCTACA ACAGTTATCA GAGAAGCTGA CAAGATTGTC TCAGCTACAT 1000
CCCTGCTAGT AGACAGTATA CTTCCTGGGT CTTCGTATGA GGTTCAGGTG 1050
AGGGGCAAGA GACTGGATGG CCCAGGAATC TGGAGTGACT GGAGTACTCC 1100
TCGTGTCTTT ACCACACAAG ATGTCATATA CTTTCCACCT AAAATTCTGA 1150
CAAGTGTTGG GTCTAATGTT TCTTTTCACT GCATCTATAA GAAGGAAAAC 1200
AAGATTGTTC CCTCAAAAGA GATTGTTTGG TGGATGAATT TAGCTGAGAA 1250
AATTCCTCAA AGCCAGTATG ATGTTGTGAG TGATCATGTT AGCAAAGTTA 1300
CTTTTTTCAA TCTGAATGAA ACCAAACCTC GAGGAAAGTT TACCTATGAT 1350
GCAGTGTACT GCTGCAATGA ACATGAATGC CATCATCGCT ATGCTGAATT 1400
ATATGTGATT GATGTCAATA TCAATATCTC ATGTGAAACT GATGGGTACT 1450
TAACTAAAAT GACTTGCAGA TGGTCAACCA GTACAATCCA GTCACTTGCG 1500
GAAAGCACTT TGCAATTGAG GTATCATAGG AGCAGCCTTT ACTGTTCTGA 1550
TATTCCATCT ATTCATCCCA TATCTGAGCC CAAAGATTGC TATTTGCAGA 1600
GTGATGGTTT TTATGAATGC ATTTTCCAGC CAATCTTCCT ATTATCTGGC 1650
TACACAATGT GGATTAGGAT CAATCACTCT CTAGGTTCAC TTGACTCTCC 1700
ACCAACATGT GTCCTTCCTG ATTCTGTGGT GAAGCCACTG CCTCCATCCA 1750
GTGTGAAAGC AGAAATTACT ATAAACATTG GATTATTGAA AATATCTTGG 1800
GAAAAGCCAG TCTTTCCAGA GAATAACCTT CAATTCCAGA TTCGCTATGG 1850
TTTAAGTGGA AAAGAAGTAC AATGGAAGAT GTATGAGGTT TATGATGCAA 1900
AATCAAAATC TGTCAGTCTC CCAGTTCCAG ACTTGTGTGC AGTCTATGCT 1950
GTTCAGGTGC GCTGTAAGAG GCTAGATGGA CTGGGATATT GGAGTAATTG 2000
GAGCAATCCA GCCTACACAG TTGTCATGGA TATAAAAGTT CCTATGAGAG 2050
GACCTGAATT TTGGAGAATA ATTAATGGAG ATACTATGAA AAAGGAGAAA 2100
AATGTCACTT TACTTTGGAA GCCCCTGATG AAAAATGACT CATTGTGCAG 2150
TGTTCAGAGA TATGTGATAA ACCATCATAC TTCCTGCAAT GGAACATGGT 2200
CAGAAGATGT GGGAAATCAC ACGAAATTCA CTTTCCTGTG GACAGAGCAA 2250
GCACATACTG TTACGGTTCT GGCCATCAAT TCAATTGGTG CTTCTGTTGC 2300
AAATTTTAAT TTAACCTTTT CATGGCCTAT GAGCAAAGTA AATATCGTGC 2350
AGTCACTCAG TGCTTATCCT TTAAACAGCA GTTGTGTGAT TGTTTCCTGG 2400
ATACTATCAC CCAGTGATTA CAAGCTAATG TATTTTATTA TTGAGTGGAA 2450
AAATCTTAAT GAAGATGGTG AAATAAAATG GCTTAGAATC TCTTCATCTG 2500
TTAAGAAGTA TTATATCCAT GATCATTTTA TCCCCATTGA GAAGTACCAG 2550
TTCAGTCTTT ACCCAATATT TATGGAAGGA GTGGGAAAAC CAAAGATAAT 2600
TAATAGTTTC ACTCAAGATG ATATTGAAAA ACACCAGAGT GATGCAGGTT 2650
TATATGTAAT TGTGCCAGTA ATTATTTCCT CTTCCATCTT ATTGCTTGGA 2700
ACATTATTAA TATCACACCA AAGAATGAAA AAGCTATTTT GGGAAGATGT 2750
TCCGAACCCC AAGAATTGTT CCTGGGCACA AGGACTTAAT TTTCAGAAGA 2800
TGTTCCGAAC CCCAAGAATT GTTCCTGGGC ACAAGGACTT AATTTTCAGA 2850
AGATGCTTGA AGGCAGCATG TTCGTTAAGA GTCATCACCA CTCCCTAATC 2900
TCAAGTACCC AGGGACACAA ACACTGCGGA AGGCCACAGG GTCCTCTGCA 2950
TAGGAAAACC AGAGACCTTT GTTCACTTGT TTATCTGCTG ACCCTCCCTC 3000
CACTATTGTC CTATGACCCT GCCAAATCCC CCTCTGTGAG AAACACCCAA 3050
GAATGATCAA TAAAAAAAAA AAAAAAAAAA AAAAAAGTCG ACTCGAGAAT 3100
TC 3102






783 amino acids


Amino Acid


Linear



7
Met Met Cys Gln Lys Phe Tyr Val Val Leu Leu His Trp Glu Phe
1 5 10 15
Leu Tyr Val Ile Ala Ala Leu Asn Leu Ala Tyr Pro Ile Ser Pro
20 25 30
Trp Lys Phe Lys Leu Phe Cys Gly Pro Pro Asn Thr Thr Asp Asp
35 40 45
Ser Phe Leu Ser Pro Ala Gly Ala Pro Asn Asn Ala Ser Ala Leu
50 55 60
Lys Gly Ala Ser Glu Ala Ile Val Glu Ala Lys Phe Asn Ser Ser
65 70 75
Gly Ile Tyr Val Pro Glu Leu Ser Lys Thr Val Phe His Cys Cys
80 85 90
Phe Gly Asn Glu Gln Gly Gln Asn Cys Ser Ala Leu Thr Asp Asn
95 100 105
Thr Glu Gly Lys Thr Leu Ala Ser Val Val Lys Ala Ser Val Phe
110 115 120
Arg Gln Leu Gly Val Asn Trp Asp Ile Glu Cys Trp Met Lys Gly
125 130 135
Asp Leu Thr Leu Phe Ile Cys His Met Glu Pro Leu Pro Lys Asn
140 145 150
Pro Phe Lys Asn Tyr Asp Ser Lys Val His Leu Leu Tyr Asp Leu
155 160 165
Pro Glu Val Ile Asp Asp Ser Pro Leu Pro Pro Leu Lys Asp Ser
170 175 180
Phe Gln Thr Val Gln Cys Asn Cys Ser Leu Arg Gly Cys Glu Cys
185 190 195
His Val Pro Val Pro Arg Ala Lys Leu Asn Tyr Ala Leu Leu Met
200 205 210
Tyr Leu Glu Ile Thr Ser Ala Gly Val Ser Phe Gln Ser Pro Leu
215 220 225
Met Ser Leu Gln Pro Met Leu Val Val Lys Pro Asp Pro Pro Leu
230 235 240
Gly Leu His Met Glu Val Thr Asp Asp Gly Asn Leu Lys Ile Ser
245 250 255
Trp Asp Ser Gln Thr Met Ala Pro Phe Pro Leu Gln Tyr Gln Val
260 265 270
Lys Tyr Leu Glu Asn Ser Thr Ile Val Arg Glu Ala Ala Glu Ile
275 280 285
Val Ser Ala Thr Ser Leu Leu Val Asp Ser Val Leu Pro Gly Ser
290 295 300
Ser Tyr Glu Val Gln Val Arg Ser Lys Arg Leu Asp Gly Ser Gly
305 310 315
Val Trp Ser Asp Trp Ser Ser Pro Gln Val Phe Thr Thr Gln Asp
320 325 330
Val Val Tyr Phe Pro Pro Lys Ile Leu Thr Ser Val Gly Ser Asn
335 340 345
Ala Ser Phe His Cys Ile Tyr Lys Asn Glu Asn Gln Ile Val Ser
350 355 360
Ser Lys Gln Ile Val Trp Trp Arg Asn Leu Ala Glu Lys Ile Pro
365 370 375
Glu Ile Gln Tyr Ser Ile Val Ser Asp Arg Val Ser Lys Val Thr
380 385 390
Phe Ser Asn Leu Lys Ala Thr Arg Pro Arg Gly Lys Phe Thr Tyr
395 400 405
Asp Ala Val Tyr Cys Cys Asn Glu Gln Ala Cys His His Arg Tyr
410 415 420
Ala Glu Leu Tyr Val Ile Asp Val Asn Ile Asn Ile Ser Cys Glu
425 430 435
Thr Asp Gly Tyr Leu Thr Lys Met Thr Cys Arg Trp Ser Pro Ser
440 445 450
Thr Ile Gln Ser Leu Val Gly Ser Thr Val Gln Leu Arg Tyr His
455 460 465
Arg Cys Ser Leu Tyr Cys Pro Asp Ser Pro Ser Ile His Pro Thr
470 475 480
Ser Glu Pro Lys Thr Ala Ser Tyr Arg Glu Thr Ala Phe Met Asn
485 490 495
Val Phe Ser Ser Gln Ser Phe Tyr Tyr Leu Ala Ile Gln Cys Gly
500 505 510
Phe Arg Ile Asn His Ser Leu Gly Ser Leu Asp Ser Pro Pro Thr
515 520 525
Cys Val Leu Pro Asp Ser Val Val Lys Pro Leu Pro Pro Ser Asn
530 535 540
Val Lys Ala Glu Ile Thr Val Asn Thr Gly Leu Leu Lys Val Ser
545 550 555
Trp Glu Lys Pro Val Phe Pro Glu Asn Asn Leu Gln Phe Gln Ile
560 565 570
Arg Tyr Gly Leu Ser Gly Lys Glu Ile Gln Trp Lys Thr His Glu
575 580 585
Val Phe Asp Ala Lys Ser Lys Ser Ala Ser Leu Leu Val Ser Asp
590 595 600
Leu Cys Ala Val Tyr Val Val Gln Val Arg Cys Arg Arg Leu Asp
605 610 615
Gly Leu Gly Tyr Trp Ser Asn Trp Ser Ser Pro Ala Tyr Thr Leu
620 625 630
Val Met Asp Val Lys Val Pro Met Arg Gly Pro Glu Phe Trp Arg
635 640 645
Lys Met Asp Gly Asp Val Thr Lys Lys Glu Arg Asn Val Thr Leu
650 655 660
Leu Trp Lys Pro Leu Thr Lys Asn Asp Ser Leu Cys Ser Val Arg
665 670 675
Arg Tyr Val Val Lys His Arg Thr Ala His Asn Gly Thr Trp Ser
680 685 690
Glu Asp Val Gly Asn Arg Thr Asn Leu Thr Phe Leu Trp Thr Glu
695 700 705
Pro Ala His Thr Val Thr Val Leu Ala Val Asn Ser Leu Gly Ala
710 715 720
Ser Leu Val Asn Phe Asn Leu Thr Phe Ser Trp Pro Met Ser Lys
725 730 735
Val Ser Ala Val Glu Ser Leu Ser Ala Tyr Pro Leu Ser Ser Ser
740 745 750
Cys Val Ile Leu Ser Trp Thr Leu Ser Pro Asp Asp Tyr Ser Leu
755 760 765
Leu Tyr Leu Val Ile Glu Trp Lys Ile Leu Asn Glu Asp Asp Gly
770 775 780
Met Lys Trp
783






2868 base pairs


Nucleic Acid


Single


Linear



8
GGGCCCCCCC TCGAAGTCGA CGGTATCGAT AAGCTTGATA TCGAATTCCG 50
GCCGGGACAC AGGTGGGACA CTCTTTTAGT CCTCAATCCC TGGCGCGAGG 100
CCACCCAAGG CAACGCAGGA CGCAGGGCGT TTGGGGACCA GGCAGCAGAC 150
TGGGGCGGTA CCTGCGGAGA GCCACGCAAC TTCTCCAGGC CTCTGACTAC 200
TTTGGAAACT GCCCGGGGCT GCGACATCAA CCCCTTAAGT CCCGGAGGCG 250
GAAAGAGGGT GGGTTGGTTT GAAAGACACA AGGAAGAAAA ATGTGCTGTG 300
GGGCGGGTTA AGTTTCCCAC CCTCTTCCCC CTTCCCGAGC AAATTAGAAA 350
CAAAACAAAT AGAAAAGCCA GCCCTCCGGC CAACCAAAGC CCCAAGCGGA 400
GCCCCAAGCG GAGCCCCAGC CGGAGCACTC CTTTAAAAGG ATTTGCAGCG 450
GTGAGGAAAA AACCAGACCC GACCGAGGAA TCGTTCTGCA AATCCAGGTG 500
TACACCTCTG AAGAAAGATG ATGTGTCAGA AATTCTATGT GGTTTTGTTA 550
CACTGGGAAT TTCTTTATGT GATAGCTGCA CTTAACCTGG CATATCCAAT 600
CTCTCCCTGG AAATTTAAGT TGTTTTGTGG ACCACCGAAC ACAACCGATG 650
ACTCCTTTCT CTCACCTGCT GGAGCCCCAA ACAATGCCTC GGCTTTGAAG 700
GGGGCTTCTG AAGCAATTGT TGAAGCTAAA TTTAATTCAA GTGGTATCTA 750
CGTTCCTGAG TTATCCAAAA CAGTCTTCCA CTGTTGCTTT GGGAATGAGC 800
AAGGTCAAAA CTGCTCTGCA CTCACAGACA ACACTGAAGG GAAGACACTG 850
GCTTCAGTAG TGAAGGCTTC AGTTTTTCGC CAGCTAGGTG TAAACTGGGA 900
CATAGAGTGC TGGATGAAAG GGGACTTGAC ATTATTCATC TGTCATATGG 950
AGCCATTACC TAAGAACCCC TTCAAGAATT ATGACTCTAA GGTCCATCTT 1000
TTATATGATC TGCCTGAAGT CATAGATGAT TCGCCTCTGC CCCCACTGAA 1050
AGACAGCTTT CAGACTGTCC AATGCAACTG CAGTCTTCGG GGATGTGAAT 1100
GTCATGTGCC AGTACCCAGA GCCAAACTCA ACTACGCTCT TCTGATGTAT 1150
TTGGAAATCA CATCTGCCGG TGTGAGTTTT CAGTCACCTC TGATGTCACT 1200
GCAGCCCATG CTTGTTGTGA AACCCGATCC ACCCTTAGGT TTGCATATGG 1250
AAGTCACAGA TGATGGTAAT TTAAAGATTT CTTGGGACAG CCAAACAATG 1300
GCACCATTTC CGCTTCAATA TCAGGTGAAA TATTTAGAGA ATTCTACAAT 1350
TGTAAGAGAG GCTGCTGAAA TTGTCTCAGC TACATCTCTG CTGGTAGACA 1400
GTGTGCTTCC TGGATCTTCA TATGAGGTCC AGGTGAGGAG CAAGAGACTG 1450
GATGGTTCAG GAGTCTGGAG TGACTGGAGT TCACCTCAAG TCTTTACCAC 1500
ACAAGATGTT GTGTATTTTC CACCCAAAAT TCTGACTAGT GTTGGATCGA 1550
ATGCTTCCTT TCATTGCATC TACAAAAACG AAAACCAGAT TGTCTCCTCA 1600
AAACAGATAG TTTGGTGGAG GAATCTAGCT GAGAAAATCC CTGAGATACA 1650
GTACAGCATT GTGAGTGACC GAGTTAGCAA AGTTACCTTC TCCAACCTGA 1700
AAGCCACCAG ACCTCGAGGG AAGTTTACCT ATGACGCAGT GTACTGCTGC 1750
AATGAGCAGG CGTGCCATCA CCGCTATGCT GAATTATACG TGATCGATGT 1800
CAATATCAAT ATATCATGTG AAACTGACGG GTACTTAACT AAAATGACTT 1850
GCAGATGGTC ACCCAGCACA ATCCAATCAC TAGTGGGAAG CACTGTGCAG 1900
CTGAGGTATC ACAGGTGCAG CCTGTATTGT CCTGATAGTC CATCTATTCA 1950
TCCTACGTCT GAGCCCAAAA CTGCGTCTTA CAGAGAGACG GCTTTTATGA 2000
ATGTGTTTTC CAGCCAATCT TTCTATTATC TGGCTATACA ATGTGGATTC 2050
AGGATCAACC ATTCTTTAGG TTCACTTGAC TCGCCACCAA CGTGTGTCCT 2100
TCCTGACTCC GTAGTAAAAC CACTACCTCC ATCTAACGTA AAAGCAGAGA 2150
TTACTGTAAA CACTGGATTA TTGAAAGTAT CTTGGGAAAA GCCAGTCTTT 2200
CCGGAGAATA ACCTTCAATT CCAGATTCGA TATGGCTTAA GTGGAAAAGA 2250
AATACAATGG AAGACACATG AGGTATTCGA TGCAAAGTCA AAGTCTGCCA 2300
GCCTGCTGGT GTCAGACCTC TGTGCAGTCT ATGTGGTCCA GGTTCGCTGC 2350
CGGCGGTTGG ATGGACTAGG ATATTGGAGT AATTGGAGCA GTCCAGCCTA 2400
TACGCTTGTC ATGGATGTAA AAGTTCCTAT GAGAGGGCCT GAATTTTGGA 2450
GAAAAATGGA TGGGGACGTT ACTAAAAAGG AGAGAAATGT CACCTTGCTT 2500
TGGAAGCCCC TGACGAAAAA TGACTCACTG TGTAGTGTGA GGAGGTACGT 2550
GGTGAAGCAT CGTACTGCCC ACAATGGGAC GTGGTCAGAA GATGTGGGAA 2600
ATCGGACCAA TCTCACTTTC CTGTGGACAG AACCAGCGCA CACTGTTACA 2650
GTTCTGGCTG TCAATTCCCT CGGCGCTTCC CTTGTGAATT TTAACCTTAC 2700
CTTCTCATGG CCCATGAGTA AAGTGAGTGC TGTGGAGTCA CTCAGTGCTT 2750
ATCCCCTGAG CAGCAGCTGT GTCATCCTTT CCTGGACACT GTCACCTGAT 2800
GATTATAGTC TGTTATATCT GGTTATTGAA TGGAAGATCC TTAATGAAGA 2850
TGATGGAATG AAGTGGCT 2868






18 base pairs


Nucleic Acid


Single


Linear



9
GGGTTAAGTT TCCCACCC 18






18 base pairs


Nucleic Acid


Single


Linear



10
GGGTGGGAAA CTTAACCC 18






18 base pairs


Nucleic Acid


Single


Linear



11
AGGATACAGT GGGATCCC 18






18 base pairs


Nucleic Acid


Single


Linear



12
GCCCGAGCAC TCCTTTAA 18






18 base pairs


Nucleic Acid


Single


Linear



13
TTAAAGGAGT GCTCCCGC 18






18 base pairs


Nucleic Acid


Single


Linear



14
GAGCGGCCCT GTTAGATA 18






18 base pairs


Nucleic Acid


Single


Linear



15
GTATACACCT CTGAAGAA 18






18 base pairs


Nucleic Acid


Single


Linear



16
TTCTTCAGAG GTGTACAC 18






18 base pairs


Nucleic Acid


Single


Linear



17
ATGCGAGGCT ACTTCTAT 18






18 base pairs


Nucleic Acid


Single


Linear



18
CTCTCCCTGG AAATTTAA 18






18 base pairs


Nucleic Acid


Single


Linear



19
TTAAATTTCC AGGGAGAG 18






18 base pairs


Nucleic Acid


Single


Linear



20
ATTTGAAGGA GTTAAGCC 18






18 base pairs


Nucleic Acid


Single


Linear



21
AATTTAATTC AAGTGGTA 18






18 base pairs


Nucleic Acid


Single


Linear



22
TACCAGTTGA ATTAAATT 18






18 base pairs


Nucleic Acid


Single


Linear



23
GTATCACTTC ATAATATA 18






18 base pairs


Nucleic Acid


Single


Linear



24
GATGGTCAGG GTGAACTG 18






18 base pairs


Nucleic Acid


Single


Linear



25
CAGTTCACCC TGACCATC 18






18 base pairs


Nucleic Acid


Single


Linear



26
GAGGCGAATG TGCGGATT 18






18 base pairs


Nucleic Acid


Single


Linear



27
CTTAAATCTC CAAGGAGT 18






18 base pairs


Nucleic Acid


Single


Linear



28
ACTCCTTGGA GATTTAAG 18






18 base pairs


Nucleic Acid


Single


Linear



29
AAGTCTTAAG CCAGACTT 18






18 base pairs


Nucleic Acid


Single


Linear



30
TCTAAGGCAC ATCCCAGC 18






18 base pairs


Nucleic Acid


Single


Linear



31
GCTGGGATGT GCCTTAGA 18






18 base pairs


Nucleic Acid


Single


Linear



32
CGCAATGAAT TGACCCCC 18






18 base pairs


Nucleic Acid


Single


Linear



33
TACTTCAGAG AAGTACAC 18






18 base pairs


Nucleic Acid


Single


Linear



34
GTGTACTTCT CTGAAGTA 18






18 base pairs


Nucleic Acid


Single


Linear



35
GAATCACGGT AACTATCA 18






18 base pairs


Nucleic Acid


Single


Linear



36
CAGCTGTCTC ATAATGTC 18






18 base pairs


Nucleic Acid


Single


Linear



37
GACATTATGA GACAGCTG 18






18 base pairs


Nucleic Acid


Single


Linear



38
TTCGTCAAGC CATCTGAT 18






8 amino acids


Amino Acid


Linear



39
His Gln Asn Leu Ser Asp Gly Lys
1 5 8






8 amino acids


Amino Acid


Linear



40
His Gln Asn Ile Ser Asp Gly Lys
1 5 8






7 amino acids


Amino Acid


Linear



41
His Gln Ser Leu Gly Thr Gln
1 5 7






8 amino acids


Amino Acid


Linear



42
Val Ile Ser Ser His Leu Gly Gln
1 5 8






11 amino acids


Amino Acid


Linear



43
Pro Lys Asn Ser Ser Met Ile Ser Asn Thr Pro
1 5 10 11






10 amino acids


Amino Acid


Linear



44
Asp Lys Thr His Thr Cys Pro Pro Cys Pro
1 5 10






51 base pairs


Nucleic Acid


Single


Linear



45
GTCAGTCTCC CAGTTCCAGA CTTGTGTGCA GTCTATGCTG TTCAGGTGCG 50
C 51







Claims
  • 1. Isolated WSX receptor comprising the amino acid sequence of mature human WSX receptor variant 12.1 as in SEQ ID NO:4.
Parent Case Info

This is a non-provisional application filed under 37 CFR §1.53(b) claiming priority under 35 USC §119(e) to provisional application Ser. No. 60/064,855 filed Jan. 8, 1996.

US Referenced Citations (33)
Number Name Date Kind
5116951 Druez et al. May 1992 A
5264416 Park et al. Nov 1993 A
5349053 Landolfi Sep 1994 A
5378808 D'Andrea et al. Jan 1995 A
5453491 Takatsu et al. Sep 1995 A
5521283 DiMarchi et al. May 1996 A
5532336 DiMarchi et al. Jul 1996 A
5543320 Park et al. Aug 1996 A
5569744 Basinski et al. Oct 1996 A
5571513 Burstein Nov 1996 A
5580954 DiMarchi et al. Dec 1996 A
5599905 Masley et al. Feb 1997 A
5605886 Basinski et al. Feb 1997 A
5635177 Bennett et al. Jun 1997 A
5635388 Bennett et al. Jun 1997 A
5639605 Kitamurn et al. Jun 1997 A
5643748 Snodgrass et al. Jul 1997 A
5670373 Kishimoto et al. Sep 1997 A
5698389 de la Brousse et al. Dec 1997 A
5763211 Snodgrass et al. Jun 1998 A
5827734 Weigle et al. Oct 1998 A
5856098 Snodgrass et al. Jan 1999 A
5858967 Weigle et al. Jan 1999 A
5869610 Snodgrass et al. Feb 1999 A
5882860 Snodgrass et al. Mar 1999 A
5912123 Snodgrass et al. Jun 1999 A
5935810 Friedman et al. Aug 1999 A
5968779 Campfield et al. Oct 1999 A
5972621 Tartaglia et al. Oct 1999 A
6001968 Friedman et al. Dec 1999 A
6005080 Snodgrass et al. Dec 1999 A
6124439 Friedman et al. Sep 2000 A
20020037553 Al-Barazanji et al. Mar 2002 A1
Foreign Referenced Citations (35)
Number Date Country
372752 Jun 1990 EP
0396 387 Nov 1990 EP
0 396 387 Nov 1990 EP
0 741 187 Nov 1996 EP
0 956 862 Nov 1999 EP
WO 9101004 Jan 1991 WO
WO 9101743 Feb 1991 WO
WO 9405332 Mar 1994 WO
WO 9411404 May 1994 WO
WO 9514930 Jun 1995 WO
PCTGB9601388 Jun 1995 WO
WO 9521864 Aug 1995 WO
WO 9603438 Feb 1996 WO
WO 9605309 Feb 1996 WO
WO 9608510 Mar 1996 WO
WO 9623517 Aug 1996 WO
WO 9624670 Aug 1996 WO
WO 9631526 Oct 1996 WO
WO 9634885 Nov 1996 WO
WO 9634885 Nov 1996 WO
WO 9700319 Jan 1997 WO
WO 9712037 Apr 1997 WO
WO 9719952 Jun 1997 WO
WO 9725424 Jul 1997 WO
WO 9726272 Jul 1997 WO
WO 9726335 Jul 1997 WO
WO 9726370 Jul 1997 WO
WO 9726523 Jul 1997 WO
WO 9727286 Jul 1997 WO
WO 9741217 Nov 1997 WO
WO 9741263 Nov 1997 WO
WO 9748419 Dec 1997 WO
WO 9748806 Dec 1997 WO
9818486 May 1998 WO
WO 9828427 Jul 1998 WO
Non-Patent Literature Citations (78)
Entry
H. Baumann et al., “The full-length leptin receptor has signaling capabilities of interleukin 6-type cytokine receptors,” Proc. Natl. Acad. Sci. USA, vol. 93, pp. 8374-8378 (Aug. 1996).
B. D. Bennett et al., “A role for leptin and its cognate receptor in hematopoiesis,” Current Biology, vol. 6, No. 9, pp. 1170-1180 (1996).
B. Burguera et al., “The Long Form of the Leptin Receptor (OB-Rb) is Widely Expressed in the Human Brain,” Neuroendocrinology, vol. 61, pp. 187-195 (2000).
S. C. Chua Jr. et al., “Phenotypes of Mouse diabetes and Rat fatty Due to Mutations in the OB (Leptin) Receptor,” Science, vol. 271, pp. 994-996 (Feb. 16, 1996).
N. Hoggard et al., “Ontogeny of the expression of leptin and its receptor in the murine fetus and placenta,” British Journal of Nutrtion, vol. 83, pp. 317-326 (2000).
S-M Luoh et al., “Cloning and characterization of a human leptin receptor using a biologically ctive leptin immunoadhesin,” Journal of Molecular Endocrinology, vol. 18, pp. 77-85 (1997).
Shin et al., Hybrid Antibodies, Intern. Rev. Immunol. vol. 10, pp. 177-186 (1993).
U.S. patent application Ser. No. 08/895,626, Avraham et al., filed Jul. 17, 1997.
Arai et al., “Molecular Biology of T-Cell-derived Lymphokines: A Model system for Proliferation and Differentiation of Hemopoietic Cells” BioEssay 5(4):166-71 (Oct. 1986).
Bruno et al., “Effect of Recombinant and Purified Hematopoietic Growth Factors on Human Megakaryocyte Colony Formation” Exp. Hematol. 16:371-377 (1988).
Cosman, D. et al., “A New Cytokine Receptor Superfamily” Trends Biochem. Sci. 15:265-270 (1990).
Francis, G., “Protein modification and fusion proteins” Focus on Growth Growth Factors 3:4-10 (1997).
Gainsford et al., “Leptin can induce proliferation, differentiation, and functional activation of hemopoietic cells” Proc. Natl. Acad. Sci. USA 93:14564-14568 (Dec. 1996).
Ishizaka et al., “Preferential Differntiation of Inflammatory Cells by Recombinant Human Interleukins” Int. Arch Allergy Appl Immunol 88:46-49 (1989).
Koike et al., “Synergism of BSF-2/Interleukin 6 and Interleukin 3 on Development of Multipotential Hemopoietic Progenitors in Serum-Free Culture” Journal of Experimental Medicine 168:879-890 (1988).
Migliaccio et al., “Effect of Recombinant Hematopoietic Growth Factors on Proliferation of Human Marrow Progenitor Cells in Serum-Deprived Liquid Culture” Blood 72(3):1387-1392 (1988).
Shin et al., “Hybrid Antibodies” Intern. Rev. Immunol. 10:177-186 (1993).
Ashkenazi et al., “Protection Against Endotoxic Shock by a Tumor Necrosis Factor Receptor Immunoadhesion” Proc. Natl. Acad. Sci. 88:10535-10539 (1991).
Barinaga, M., “Obesity: Leptin Receptor Weighs In” Science 271:29 (Jan. 5, 1996).
Bennet et al., “A role for Leptin and its cognate receptor in hematopoiesis” Current Biology 6(9):1170-1180 (Sep. 1, 1996).
Genbank, “Release 100” Homo sapiens cDNA clone 84708 5′ (Mar. 2, 1995).
Kaczmarski Blood Review 5(3) 1991, p 193-203.*
Casman Cytokine 5(2) 1993, p 95-106.*
Shields et al Cytokine 7(7) 1995, p 679-88.*
Antibodies, A Laboratory Manual, Harlow and Lane, Cold Spring Harbor Laboratory pps. 341 (1988).
“Polyethylene glycol and derivatives” Catalog Shearwater Polymers, Inc., Functionalized Biocompatible Polymers for Research (Jan. 1994).
Ashkenazi and Chamow, “Immunoadhesins: An Alternative to Human Monoclonal Antibodies” Methods: A Companion to Methods in Enzymology 8:104-115 (1995).
Barin, Marcia, ““Obese” protein slims mice” Science 269:475-476 (1995).
Baumann et al., “Multiple regions within the cytoplasmic domains of the leukemia inhibitory factor receptor and gp130 cooperate in signal transduction in hepatic and neuronal cells” Molecular & Cellular Biology 14(1):138-146 (1994).
Beck et al., “Generation of soluble interleukin-1 receptor from an immunoadhesin by specific cleavage” Molecular Immunology 31(17):1335-1344 (1994).
Bennett et al., “Extracellular Domain-IgG Fusion Proteins for Three Human Natriuretic Peptide Receptors. Hormone Pharmacology and Application to Solid Phase Screening of Synthetic Peptide Antisera” The Journal of Biological Chemistry 266(34):23060-23067 (Dec. 5, 1991).
Campfield et al., “Recombinant mouse ob protein: evidence for a peripheral signal linking adiposity and central neural networks” Science 269:546-549 (1995).
Carter et al. Mutagenesis, A Practical Approach, Mcpherson,ed., Oxford, UK:IRL Press vol. Chapter 1:1-25 (1991).
Carter et al., “Engineering Subtilisin BPN′ for Site-Specific Proteolysis” Proteins: Struct. Funct., Genet. 6:240-248 (1989).
Carter et al., “Humanization of an anti-p185HER2 antibody for human cancer therapy” Proc. Natl. Acad. Sci. 89:4285-4289 (1992).
Chen et al., “Evidence that the diabetes gene encodes the leptin receptor: identification of a mutation in the leptin receptor gene in db/db mice” Cell 84:491-495 (1996).
Cioffi et al., “Novel B219/OB receptor isoforms: possible role of leptin in hematopoiesis and reproduction” Nature 2(5):585-589 (1996).
Colditz, G.A., “Economic costs of obesity” Am. J. Clin. Nutr. 55:503S-507S (1992).
Coleman and Hummal, “Effects of parabiosis of normal with genetically diabetic mice” Am. J. Physiol. 217:1298-1304 (1969).
Coleman et al., “Obese and Diabetes: Two Mutant Genes Causing Diabetes-Obesity Syndromes in Mice” Diebetologia 14:141-148 (1978).
Coleman, D.L., “Effects of parabiosis of obese with diabetes and normal mice” Diabetol 9:294-298 (1973).
Considine, R. et al., “Serum immunoreactive-leptin concentrations in normal-weight and obese humans” The New England Journal of Medicine pps. 292-295 (Feb. 1, 1996).
D'Andrea, A.D., “Cytokine receptors in congenital hematopoietic disease” New England J. of Medicine 330(12):839-846 (1994).
Dexter et al., “Growth and Differentiation in the Hemopoietic System” Ann. Rev. Cell Biol. 3:423-441 (1987).
Eisenberg, R., “Structure and Function in Gene Patenting” Nature Genetics 15:125-129 (1997).
Friedman et al., “Molecular mapping of the mouse ob mutation” Genomics 11:1054-1062 (1991).
Fukunaga R. et al., “Functional domains of the granulocyte colony-stimulating factor receptor” EMBO Journal 10(10):2855-2865 (1991).
Griffiths et al., “Isolation of High Affinity Human Antibodies Directly From Large Synthetic Repertoires” EMBO Journal 13:3245-3260 (1994).
Grupe et al., “Transgenic Knockouts Reveal a Critical Requirement for Pancreatic β Cell Glucokinase in Maintaining Glucose Homeostasis” Cell 83:69-78 (1995).
Halaas et al., “Weight-reducing effects of the plasma protein encoded by the obese gene” Science 269:543-546 (1995).
Hardy et al., “Resolution and characterization of pro-B and pre-pro-B cell stages in normal mouse bone marrow” Journal of Experimental Medicine 173:1213-1225 (1991).
Hillier et al., “WashU-Merck EST Project” GenBank (1995).
Holmes et al., “Structure and Functional Expression of a Human Interleukin-8 Receptor” Science253(5025):1278-1280 (Sep. 13, 1991).
Humphries et al., “Self-Renewal of Hemopoietic Stem Cells During Mixed Colony Formation in Vitro” Proc. Natl. Acad. Sci. 78:3629-3633 (1981).
Kim et al., “Detection of Human Leukemia Inhibitory Factor by Monoclonal Antibody Based ELISA” Journal of Immunological Methods 156:9-17 (1992).
Kishimoto, “Cytokine Signal Transduction” Cell 76:253-262 (Jan. 28, 1994).
Kuczmarski et al., “Increasing prevalence of overweight among US adults” J. Am. Med. Assoc. 272(3):205-211 (1994).
Laskov et al., “Extinction of B-cell surface differentiation markers in hybrids between murine B-lymphoma and myeloma cells” Cellular Immunology 55(2):251-264 (1980).
Lee, G. et al., “Abnormal splicing of the leptin receptor in diabetic mice” Nature 379:632-635 (Feb. 1996).
Levin et al., “Decreased Food Intake Does Not Completely Account For Adiposity Reduction After ob Protein Infusion” Proc. Natl. Acad. Sci. 93:1726-1730 (1996).
Maffei et al., “Increased expression in adipocytes of ob RNA in mice with lesions of the hypothalamus and with mutations at the db locus” Proc. Natl. Acad. Sci. 92:6957-6960 (1995).
Mark et al., “rse, a Novel Receptor-type Tyrosine Kinase with Homology to Axl/Ufo, Is Expressed at High Levels in the Brain” Journal of Biological Chemistry 269(14):10720-10728 (Apr. 8, 1994).
McNiece et al., “The role of recombinant stem cell factor in early B cell development. Synergistic interaction with IL-7” J. Immunol. 146:3785-3790 (1991).
Miyajima et al., “Receptors for Granulocyte-Macrophage Colony-Stimulating Factor, Interleukin-3, and Interleukin-5” Blood 82(7):1960-1974 (Oct. 1, 1993).
Murakami et al., “Critical cytoplasmic region of the interleukin 6 signal transducer gp130 is conserved in the cytokine receptor family” Proc. Natl. Acad. Sci. USA 88:11349-11353 (Dec. 1991).
Nicola, N., “Cytokine Pleiotrophy and Redundancy: A View From the Receptor” Stem Cells 12(Suppl.1):3-12 (1994).
Pelleymounter et al., “Effects of the obese gene product on body weight regulation in ob/ob mice” Science 269:540-543 (1995).
Pi-Sunyer, F.X., “Medical Hazards of Obesity” Anns. Int. Med. 119:655-660 (1993).
Rink, Timothy J., “In search of a satiety factor” Nature 372:406-407 (1994).
Stewart et al., “Induction of Type 1 Diabetes by Interferon-A in Transgenic Mice” Science 260:1942-1946 (1993).
Suva et al., “A parathyroid hormone-related protein implicated in malignant hypercalcemia: cloning and expression” Science 237(4817):893-896 (Aug. 1987).
Tartaglia et al., “Identification and expression cloning of a leptin receptor, ob-r” Cell 83:1263-1271 (1995).
Tavassoli, M., “Lodgement of haemopoietic cells in the course of haemopoiesis on cellulose ester membrane:an experimental model for haemopoietic cell trapping” Brit. J. Haematology 57:71-80 (1984).
Vaisse et al., “Leptin Activation of Stat3 in the Hypothalamus of Wild-Type and ob/ob Mice But Not db/db Mice” Nature Genetics 14:95-97 (1996).
Vaughan et al., “Human Antibodies With Sub-nanomolar Affinities Isolated From a Large Non-immunized Phage Display Library” Nature Biotechnology 14:309-314 (1996).
Wells, J., “Structural and functional basis for hormone binding and receptor oligomerization” Cell Biology 6:163-173 (1994).
Zeigler et al., “Cellular and Molecular Characterization of the Role of the FLK-2/FLT-3 Receptor Tyrosine Kinase in Hematopoietic Stem Cells” Blood 84(8):2422-2430 (1994).
Zhang et al., “Positional cloning of the mouse obese gene and its human homologue” Nature 372:425-431 (1994).
Provisional Applications (1)
Number Date Country
60/064855 Jan 1996 US