Linker Polypeptides

Abstract
This disclosure relates to linker polypeptides. In some embodiments, the linker polypeptide comprises a first targeting sequence; a second targeting sequence; and a first linker between the first targeting sequence and the second targeting sequence, the linker comprising a protease-cleavable polypeptide sequence. In some embodiments, the linker polypeptide comprises a first active domain; a second active domain; a pharmacokinetic modulator; and a first linker between the pharmacokinetic modulator and the first active domain, the first linker comprising a protease-cleavable polypeptide sequence. In some embodiments, the linker polypeptide comprises a first active domain; an inhibitory polypeptide sequence capable of blocking an activity of the first active domain; a first linker between the first active domain and the inhibitory polypeptide sequence, the linker comprising a protease-cleavable polypeptide sequence; and a first targeting sequence.
Description
INTRODUCTION AND SUMMARY

This disclosure relates to the field of linker polypeptides comprising one or more targeting sequences. The linker polypeptides are useful, e.g., for targeting to certain types of extracellular environments.


It can be beneficial to target protein therapeutics and other polypeptides to particular extracellular environments. It can also be beneficial to modulate the activity and/or pharmacokinetics to limit systemic and/or adverse effects.


For example, various forms of active domains, including but not limited to immunoglobulin antigen-binding domains, such as an Fv, scFv, Fab, or VHH, and cytokines and chemokines, such as IL-2, IL-10, IL-15, TGF-β, CXCL9, CXCL10, and others, play a significant role in targeting diseased cells and/or sustaining an effective immune cell response. In some cases, however, systemic administration of such compounds can activate immune cells throughout the body. Systemic activation can lead to systemic toxicity and indiscriminate activation of immune cells, including immune cells that respond to a variety of epitopes, antigens, and stimuli. The therapeutic potential of such therapy can be affected by these severe toxicities.


Peptide, immunoglobulin, and cytokine therapies can also suffer from a short serum half-life, sometimes on the order of several minutes. Thus, the high doses thereof that can be necessary to achieve an optimal effect can contribute to severe toxicities.


Further, in a traditional antibody, the immunoglobulin antigen-binding domains are fixed to a pharmacokinetic modulator, such as an Fc region. As such, the Fc region's activity is tied to the immunoglobulin antigen-binding domains' activities, and these regions and domains cannot operate independently, even when these activities are needed at different locations and/or at different times, or have differing requirements for Fc function, such as when one region or domain is for target destruction and another region or domain is for immunostimulation.


Accordingly, polypeptides that overcome the hurdles of systemic or untargeted function, severe toxicity, poor pharmacokinetics, and inseparable activities, are needed. Additionally, cancer cells may be stimulated by the presence of certain growth factors. Interfering with such stimulation while also increasing an immune response against the cancer cells would be beneficial. The present disclosure aims to meet one or more of these needs, provide other benefits, or at least provide the public with a useful choice.


In some aspects, linker polypeptides are provided, which can be targeted to certain types of extracellular environments through the use of targeting sequences. In some embodiments, the linker polypeptides can include a first targeting sequence; a second targeting sequence; and a first linker between the first targeting sequence and the second targeting sequence, the linker comprising a protease-cleavable polypeptide sequence. In some embodiments, the linker polypeptide can include a first active domain; a second active domain; a pharmacokinetic modulator; and a first linker between the pharmacokinetic modulator and the first active domain, or between the first active domain and the second active domain, the first linker comprising a protease-cleavable polypeptide sequence. In some embodiments, the linker polypeptide can include a first active domain; an inhibitory polypeptide sequence capable of blocking an activity of the first active domain; a first linker between the first active domain and the inhibitory polypeptide sequence, the linker comprising a protease-cleavable polypeptide sequence; and a first targeting sequence.


In some embodiments, different functions of different components of a linker polypeptide can be decoupled from each other and/or activated when one or more protease-cleavable polypeptide sequences are cleaved by one or more proteases. For example, cleaving a protease-cleavable polypeptide can allow an inhibitory polypeptide sequence to dissociate from a cytokine polypeptide sequence, and/or can allow an active domain (e.g., which may have an immunostimulatory function) to disassociate from the remainder of the linker polypeptide (e.g., which may have a target-destroying function).


Many tumors and tumor microenvironments exhibit aberrant expression and activation of proteases. The present disclosure provides linker polypeptides with components that may be decoupled from each other and/or activated through proteolytic cleavage, such that they become active when they come in contact with proteases in a tumor or tumor microenvironment. In some cases, for example, this can lead to an increase in active domains (e.g., cytokines or immunoglobulin domains) in and around the tumor or tumor microenvironment relative to the rest of a subject's body or healthy tissue. One exemplary advantage that can result is the formation of gradients of the active domain. Such a gradient can form when a linker polypeptide is administered and selectively or preferentially becomes activated in the tumor or tumor microenvironment and subsequently diffuses out of these areas to the rest of the body. These gradients can, e.g., increase the trafficking of immune cells to the tumor and tumor microenvironment. Immune cells that traffic to the tumor can infiltrate the tumor. Infiltrating immune cells can mount an immune response against the cancer. Infiltrating immune cells can also secrete their own chemokines and cytokines. The cytokines can have either or both of autocrine and paracrine effects within the tumor and tumor microenvironment. In some cases, the immune cells include T cells, such as T effector cells or cytotoxic T cells, or NK cells.


Also described herein are methods of treatment and methods of administrating the linker polypeptides described herein. Such administration can be systemic or local. In some embodiments, a linker polypeptide described herein is administered systemically or locally to treat a cancer.


The following embodiments are encompassed.


Embodiment 1 is a linker polypeptide, comprising:

    • a first targeting sequence;
    • a second targeting sequence; and
    • a first linker between the first targeting sequence and the second targeting sequence, the linker comprising a protease-cleavable polypeptide sequence.


Embodiment 2 is the linker polypeptide of the immediately preceding embodiment, further comprising a first active domain, optionally wherein the first active domain is proximal to the first targeting sequence relative to the second targeting sequence.


Embodiment 3 is the linker polypeptide of the immediately preceding embodiment, further comprising an additional domain, optionally wherein the additional domain comprises an inhibitory polypeptide sequence capable of blocking an activity of the first active domain, a pharmacokinetic modulator, and/or a second active domain, and optionally wherein the additional domain is proximal to the second targeting sequence relative to the first targeting sequence.


Embodiment 4 is the linker polypeptide of the immediately preceding embodiment, comprising sequentially, from the N-terminus to the C-terminus or from the C-terminus to the N-terminus, the first active domain, the first targeting sequence, the first linker, the second targeting sequence, and the additional domain.


Embodiment 5 is a linker polypeptide, comprising

    • a first active domain;
    • a second active domain;
    • a pharmacokinetic modulator; and
    • a first linker between the pharmacokinetic modulator and the first active domain, the first linker comprising a protease-cleavable polypeptide sequence.


Embodiment 6 is the linker polypeptide of embodiment 5, further comprising a first targeting sequence.


Embodiment 7 is a linker polypeptide, comprising:

    • a first active domain;
    • an inhibitory polypeptide sequence capable of blocking an activity of the first active domain;
    • a first linker between the first active domain and the inhibitory polypeptide sequence, the linker comprising a protease-cleavable polypeptide sequence; and
    • a first targeting sequence.


Embodiment 8 is the linker polypeptide of the immediately preceding embodiment, comprising a pharmacokinetic modulator.


Embodiment 9 is a linker polypeptide, comprising:

    • a first polypeptide chain comprising a first active domain, a first domain of a pharmacokinetic modulator, and a first linker between the first active domain and the first domain of the pharmacokinetic modulator, wherein the first active domain is C-terminal to the first domain of the pharmacokinetic modulator;
    • a second polypeptide chain, comprising a second domain of the pharmacokinetic modulator, an inhibitory polypeptide sequence capable of blocking an activity of the first active domain, and a second linker between the second domain of the pharmacokinetic modulator and the inhibitory polypeptide sequence;
    • wherein the first linker comprises a protease-cleavable polypeptide sequence; and
    • the first polypeptide chain or the second polypeptide chain further comprises at least one targeting sequence.


Embodiment 10 is a linker polypeptide, comprising:

    • a first polypeptide chain comprising a first active domain, a first domain of a pharmacokinetic modulator, and a first linker between the first active domain and the first domain of the pharmacokinetic modulator, wherein the first active domain is N-terminal to the first domain of the pharmacokinetic modulator;
    • a second polypeptide chain, comprising a second domain of the pharmacokinetic modulator, an inhibitory polypeptide sequence capable of blocking an activity of the first active domain, and a second linker between the second domain of the pharmacokinetic modulator and the inhibitory polypeptide sequence;
    • wherein the first linker comprises a protease-cleavable polypeptide sequence; and the first polypeptide chain or the second polypeptide chain further comprises at least one targeting sequence.


Embodiment 11 is the linker polypeptide of embodiment 9 or 10, wherein the inhibitory polypeptide sequence is C-terminal to the second domain of the pharmacokinetic modulator.


Embodiment 12 is the linker polypeptide of embodiment 9 or 10, wherein the inhibitory polypeptide sequence is N-terminal to the second domain of the pharmacokinetic modulator.


Embodiment 13 is the linker polypeptide of any one of embodiments 9-12, wherein the targeting sequence is between the protease-cleavable polypeptide sequence and the first domain of the pharmacokinetic modulator.


Embodiment 14 is the linker polypeptide of any one of embodiments 9-12, wherein the targeting sequence is between the protease-cleavable polypeptide sequence and the first active domain.


Embodiment 15 is the linker polypeptide of any one of embodiments 9-12, wherein the targeting sequence is C-terminal to the first active domain.


Embodiment 16 is the linker polypeptide of any one of embodiments 9-12, wherein the targeting sequence is N-terminal to the first active domain.


Embodiment 17 is the linker polypeptide of any one of embodiments 9-12, wherein the targeting sequence is C-terminal to the inhibitory polypeptide sequence.


Embodiment 18 is the linker polypeptide of any one of embodiments 9-12, wherein the targeting sequence is N-terminal to the inhibitory polypeptide sequence.


Embodiment 19 is the linker polypeptide of any one of embodiments 9-12, wherein the targeting sequence is between the inhibitory polypeptide sequence and the second domain of the pharmacokinetic modulator.


Embodiment 20 is the linker polypeptide of any one of embodiments 9-19, wherein the targeting sequence binds heparin, optionally wherein the targeting sequence comprises SEQ ID NO: 664.


Embodiment 21 is the linker polypeptide of any one of embodiments 9-19, wherein the targeting sequence binds collagen IV, optionally wherein the targeting sequence comprises SEQ ID NO: 200.


Embodiment 22 is the linker polypeptide of any one of embodiments 9-19, wherein the targeting sequence binds collagen I, optionally wherein the targeting sequence comprises SEQ ID NO: 188.


Embodiment 23 is the linker polypeptide of any one of embodiments 9-19, wherein the targeting sequence binds fibronectin, optionally wherein the targeting sequence comprises SEQ ID NO: 653.


Embodiment 24 is the linker polypeptide of any one of embodiments 9-23, wherein the targeting sequence is a first targeting sequence and the linker polypeptide further comprises a second targeting sequence.


Embodiment 25 is the linker polypeptide of the immediately preceding embodiment, wherein the first targeting sequence is part of the first polypeptide chain and the second targeting sequence is part of the second polypeptide chain.


Embodiment 26 is the linker polypeptide of the immediately preceding embodiment, wherein the first targeting sequence is C-terminal to the first active domain and the second targeting sequence is C-terminal to the inhibitory polypeptide sequence.


Embodiment 27 is the linker polypeptide of any one of embodiments 24-26, wherein the second targeting sequence binds heparin, optionally wherein the targeting sequence comprises SEQ ID NO: 664.


Embodiment 28 is the linker polypeptide of any one of embodiments 24-26, wherein the second targeting sequence binds collagen IV, optionally wherein the targeting sequence comprises SEQ ID NO: 200.


Embodiment 29 is the linker polypeptide of any one of embodiments 24-26, wherein the second targeting sequence binds collagen I, optionally wherein the targeting sequence comprises SEQ ID NO: 188.


Embodiment 30 is the linker polypeptide of any one of embodiments 24-26, wherein the second targeting sequence binds fibronectin, optionally wherein the targeting sequence comprises SEQ ID NO: 653.


Embodiment 31 is the linker polypeptide of any one of embodiments 9-30, further comprising a second active domain, optionally wherein the second active domain is part of the second polypeptide chain.


Embodiment 32 is the linker polypeptide of any one of embodiments 9-31, wherein the inhibitory polypeptide sequence is a first inhibitory polypeptide sequence, and the linker polypeptide further comprises a second inhibitory polypeptide sequence.


Embodiment 33 is the linker polypeptide of the immediately preceding embodiment, wherein the second inhibitory polypeptide sequence is part of the second polypeptide chain.


Embodiment 34 is the linker polypeptide of the immediately preceding embodiment, wherein the second inhibitory polypeptide sequence is C-terminal to the first inhibitory polypeptide sequence.


Embodiment 35 is the linker polypeptide of any one of embodiments 32-34, wherein the second inhibitory polypeptide sequence is an immunoglobulin inhibitory polypeptide sequence.


Embodiment 36 is the linker polypeptide of the immediately preceding embodiment, wherein the first inhibitory polypeptide sequence is an immunoglobulin inhibitory polypeptide sequence.


Embodiment 37 is the linker polypeptide of embodiment 35 or 36, wherein one or each of the immunoglobulin inhibitory polypeptide sequences is a VHH.


Embodiment 38 is the linker polypeptide of any one of embodiments 8-37, wherein the pharmacokinetic modulator comprises a heterodimeric Fc or heterodimeric CH3 domains.


Embodiment 39 is the linker polypeptide of the immediately preceding embodiment, wherein the heterodimeric Fc or heterodimeric CH3 domains comprise a knob CH3 domain and a hole CH3 domain.


Embodiment 40 is the linker polypeptide of the immediately preceding embodiment, wherein the first domain of the pharmacokinetic modulator is a knob CH3 domain and the second domain of the pharmacokinetic modulator is a hole CH3 domain.


Embodiment 41 is the linker polypeptide of embodiment 39, wherein the first domain of the pharmacokinetic modulator is a hole CH3 domain and the second domain of the pharmacokinetic modulator is a knob CH3 domain.


Embodiment 42 is the linker polypeptide of any one of embodiments 38-41, wherein the pharmacokinetic modulator comprises the sequence of SEQ ID NO: 75.


Embodiment 43 is the linker polypeptide of any one of embodiments 38-41, wherein the pharmacokinetic modulator comprises the sequence of SEQ ID NO: 76.


Embodiment 44 is the linker polypeptide of any one of embodiments 38-41, wherein the pharmacokinetic modulator comprises the sequence of SEQ ID NO: 756.


Embodiment 45 is the linker polypeptide of any one of embodiments 38-44, wherein the pharmacokinetic modulator comprises the sequence of SEQ ID NO: 77.


Embodiment 46 is the linker polypeptide of any one of embodiments 38-44, wherein the pharmacokinetic modulator comprises the sequence of SEQ ID NO: 78.


Embodiment 47 is the linker polypeptide of any one of embodiments 38-44, wherein the pharmacokinetic modulator comprises the sequence of SEQ ID NO: 757.


Embodiment 48 is the linker polypeptide of any one of the preceding embodiments, wherein the first active domain comprises a first immunoglobulin antigen-binding domain.


Embodiment 49 is the linker polypeptide of any one of the preceding embodiments, wherein the second active domain comprises a second immunoglobulin antigen-binding domain.


Embodiment 50 is the linker polypeptide of any one of the preceding embodiments, wherein one or each of the first immunoglobulin antigen-binding domain and the second immunoglobulin antigen-binding domain independently comprises a VH region and a VL region.


Embodiment 51 is the linker polypeptide of any one of the preceding embodiments, wherein one or each of the first immunoglobulin antigen-binding domain and the second immunoglobulin antigen-binding domain independently comprises an Fv, scFv, Fab, or VHH.


Embodiment 52 is the linker polypeptide of any one of the preceding embodiments, wherein one or each of the first immunoglobulin antigen-binding domain and the second immunoglobulin antigen-binding domain independently is humanized or fully human.


Embodiment 53 is the linker polypeptide of any one of the preceding embodiments, wherein one or each of the first immunoglobulin antigen-binding domain and the second immunoglobulin antigen-binding domain independently is configured to bind to one or more sequences selected from a cancer cell surface antigen sequence, a growth factor sequence, and a growth factor receptor sequence.


Embodiment 54 is the linker polypeptide of the immediately preceding embodiment, wherein one or each of the first immunoglobulin antigen-binding domain and the second immunoglobulin antigen-binding domain independently is configured to bind to a HER2 sequence, an EGFR extracellular domain sequence, a PD-1 extracellular domain sequence, a PD-L1 extracellular domain sequence, or a CD3 extracellular domain sequence.


Embodiment 55 is the linker polypeptide of any one of the preceding embodiments, wherein one of the first immunoglobulin antigen-binding domain and the second immunoglobulin antigen-binding domain is configured to bind to a HER2 sequence.


Embodiment 56 is the linker polypeptide of the immediately preceding embodiment, wherein one of the first immunoglobulin antigen-binding domain and the second immunoglobulin antigen-binding domain comprises a VH region comprising hypervariable regions (HVRs) HVR-1, HVR-2, and HVR-3 of a VH region comprising the amino acid sequence of SEQ ID NO: 910, and a VL region comprising HVR-1, HVR-2, and HVR-3 of a VL region comprising the amino acid sequence of SEQ ID NO: 909.


Embodiment 57 is the linker polypeptide of the immediately preceding embodiment, wherein one of the first immunoglobulin antigen-binding domain and the second immunoglobulin antigen-binding domain comprises a VH region comprising the amino acid sequence of SEQ ID NO: 910; and a VL region comprising the amino acid sequence of SEQ ID NO: 909.


Embodiment 58 is the linker polypeptide of embodiment 55 or 56, wherein one of the first immunoglobulin antigen-binding domain and the second immunoglobulin antigen-binding domain comprises a sequence that has at least 80, 85, 90, 95, 97, 98, or 99 percent identity to the sequence of SEQ ID NO: 909 or 910.


Embodiment 59 is the linker polypeptide of embodiment 55, wherein one of the first immunoglobulin antigen-binding domain and the second immunoglobulin antigen-binding domain is an antigen-binding domain of trastuzumab.


Embodiment 60 is the linker polypeptide of any one of the preceding embodiments, wherein one of the first immunoglobulin antigen-binding domain and the second immunoglobulin antigen-binding domain is configured to bind to an EGFR extracellular domain sequence.


Embodiment 61 is the linker polypeptide of the immediately preceding embodiment, wherein one of the first immunoglobulin antigen-binding domain and the second immunoglobulin antigen-binding domain comprises a VH region comprising HVR-1, HVR-2, and HVR-3 of a VH region comprising the amino acid sequence of SEQ ID NO: 914, and a VL region comprising HVR-1, HVR-2, and HVR-3 of a VL region comprising the amino acid sequence of SEQ ID NO: 913.


Embodiment 62 is the linker polypeptide of the immediately preceding embodiment, wherein one of the first immunoglobulin antigen-binding domain and the second immunoglobulin antigen-binding domain comprises a VH region comprising the amino acid sequence of SEQ ID NO: 914; and a VL region comprising the amino acid sequence of SEQ ID NO: 913.


Embodiment 63 is the linker polypeptide of embodiment 60 or 61, wherein one of the first immunoglobulin antigen-binding domain and the second immunoglobulin antigen-binding domain comprises a sequence that has at least 80, 85, 90, 95, 97, 98, or 99 percent identity to the sequence of SEQ ID NO: 913 or 914.


Embodiment 64 is the linker polypeptide of embodiment 60, wherein one of the first immunoglobulin antigen-binding domain and the second immunoglobulin antigen-binding domain is an antigen-binding domain of cetuximab.


Embodiment 65 is the linker polypeptide of any one of the preceding embodiments, wherein one of the first immunoglobulin antigen-binding domain and the second immunoglobulin antigen-binding domain is configured to bind to a PD-1 extracellular domain sequence.


Embodiment 66 is the linker polypeptide of the immediately preceding embodiment, wherein one of the first immunoglobulin antigen-binding domain and the second immunoglobulin antigen-binding domain comprises a VH region comprising HVR-1, HVR-2, and HVR-3 of a VH region comprising the amino acid sequence of SEQ ID NO: 917, and a VL region comprising HVR-1, HVR-2, and HVR-3 of a VL region comprising the amino acid sequence of SEQ ID NO: 918.


Embodiment 67 is the linker polypeptide of the immediately preceding embodiment, wherein one of the first immunoglobulin antigen-binding domain and the second immunoglobulin antigen-binding domain comprises a VH region comprising the amino acid sequence of SEQ ID NO: 917; and a VL region comprising the amino acid sequence of SEQ ID NO: 918.


Embodiment 68 is the linker polypeptide of embodiment 65 or 66, wherein one of the first immunoglobulin antigen-binding domain and the second immunoglobulin antigen-binding domain comprises a sequence that has at least 80, 85, 90, 95, 97, 98, or 99 percent identity to the sequence of SEQ ID NO: 917 or 918.


Embodiment 69 is the linker polypeptide of embodiment 65, wherein one of the first immunoglobulin antigen-binding domain and the second immunoglobulin antigen-binding domain is an antigen-binding domain of nivolumab.


Embodiment 70 is the linker polypeptide of any one of the preceding embodiments, wherein one of the first immunoglobulin antigen-binding domain and the second immunoglobulin antigen-binding domain is configured to bind to a PD-L1 extracellular domain sequence.


Embodiment 71 is the linker polypeptide of the immediately preceding embodiment, wherein one of the first immunoglobulin antigen-binding domain and the second immunoglobulin antigen-binding domain comprises a VH region comprising HVR-1, HVR-2, and HVR-3 of a VH region comprising the amino acid sequence of SEQ ID NO: 921, and a VL region comprising HVR-1, HVR-2, and HVR-3 of a VL region comprising the amino acid sequence of SEQ ID NO: 922.


Embodiment 72 is the linker polypeptide of the immediately preceding embodiment, wherein one of the first immunoglobulin antigen-binding domain and the second immunoglobulin antigen-binding domain comprises a VH region comprising the amino acid sequence of SEQ ID NO: 921; and a VL region comprising the amino acid sequence of SEQ ID NO: 922.


Embodiment 73 is the linker polypeptide of embodiment 70 or 71, wherein one of the first immunoglobulin antigen-binding domain and the second immunoglobulin antigen-binding domain comprises a sequence that has at least 80, 85, 90, 95, 97, 98, or 99 percent identity to the sequence of SEQ ID NO: 921 or 922.


Embodiment 74 is the linker polypeptide of embodiment 70, wherein one of the first immunoglobulin antigen-binding domain and the second immunoglobulin antigen-binding domain is an antigen-binding domain of atezolizumab.


Embodiment 75 is the linker polypeptide of any one of the preceding embodiments, wherein one of the first immunoglobulin antigen-binding domain and the second immunoglobulin antigen-binding domain is configured to bind to a CD3 extracellular domain sequence.


Embodiment 76 is the linker polypeptide of the immediately preceding embodiment, wherein one of the first immunoglobulin antigen-binding domain and the second immunoglobulin antigen-binding domain comprises a VH region comprising HVR-1, HVR-2, and HVR-3 of a VH region comprising the amino acid sequence of any one of SEQ ID NOs: 925, 929, 933, and 937, and a VL region comprising HVR-1, HVR-2, and HVR-3 of a VL region comprising the amino acid sequence of any one of SEQ ID NOs: 926, 930, 934, and 938.


Embodiment 77 is the linker polypeptide of the immediately preceding embodiment, wherein one of the first immunoglobulin antigen-binding domain and the second immunoglobulin antigen-binding domain comprises a VH region comprising the amino acid sequence of any one of SEQ ID NOs: 925, 929, 933, and 937; and a VL region comprising the amino acid sequence of any one of SEQ ID NOs: 926, 930, 934, and 938.


Embodiment 78 is the linker polypeptide of embodiment 75 or 76, wherein one of the first immunoglobulin antigen-binding domain and the second immunoglobulin antigen-binding domain comprises a sequence that has at least 80, 85, 90, 95, 97, 98, or 99 percent identity to the sequence of any one of SEQ ID NOs: 925, 926, 929, 930, 933, 934, 937, and 938.


Embodiment 79 is the linker polypeptide of embodiment 75, wherein one of the first immunoglobulin antigen-binding domain and the second immunoglobulin antigen-binding domain is an antigen-binding domain of teplizumab, muromonab, otelixizumab, or visilizumab.


Embodiment 80 is the linker polypeptide of any one of the preceding embodiments, wherein the first active domain comprises a receptor-binding domain.


Embodiment 81 is the linker polypeptide of the immediately preceding embodiment, wherein the receptor-binding domain comprises a cytokine polypeptide sequence.


Embodiment 82 is the linker polypeptide of any one of embodiments 80-81, wherein the receptor-binding domain comprises a modification to prevent disulfide bond formation, and optionally otherwise comprises wild-type sequence.


Embodiment 83 is the linker polypeptide of any one of embodiments 80-82, wherein the receptor-binding domain has at least 80, 85, 90, 95, 97, 98, or 99 percent identity to the sequence of a wild-type receptor-binding domain or to a receptor-binding domain in Table 1.


Embodiment 84 is the linker polypeptide of the immediately preceding embodiment, wherein the receptor-binding domain is a wild-type receptor-binding domain.


Embodiment 85 is the linker polypeptide of any one of embodiments 80-84, wherein the receptor-binding domain is a monomeric cytokine, or wherein the receptor-binding domain is a dimeric receptor-binding domain comprising monomers that are associated covalently (optionally via a polypeptide linker) or noncovalently.


Embodiment 86 is the linker polypeptide of any one of embodiments 80-85, further comprising

    • an inhibitory polypeptide sequence capable of blocking an activity of the receptor-binding domain; and
    • a second linker between the receptor-binding domain and the inhibitory polypeptide sequence, the second linker comprising a protease-cleavable polypeptide sequence.


Embodiment 87 is the linker polypeptide of any one of embodiments 80-86 insofar as they depend from any one of embodiments 9-24, wherein the inhibitory polypeptide sequence comprises a cytokine-binding domain.


Embodiment 88 is the linker polypeptide of any one of embodiments 9-47 or 86-87, wherein the inhibitory polypeptide sequence comprises a cytokine-binding domain.


Embodiment 89 is the linker polypeptide of embodiment 87 or 88, wherein the cytokine-binding domain is a cytokine-binding domain of a cytokine receptor or a cytokine-binding domain of a fibronectin.


Embodiment 90 is the linker polypeptide of the immediately preceding embodiment, wherein the cytokine-binding domain is an immunoglobulin cytokine-binding domain.


Embodiment 91 is the linker polypeptide of the immediately preceding embodiment, wherein the immunoglobulin cytokine-binding domain comprises a VL region and a VH region that bind the cytokine.


Embodiment 92 is the linker polypeptide of embodiment 90 or 91, wherein the immunoglobulin cytokine-binding domain is an Fv, scFv, Fab, or VHH.


Embodiment 93 is the linker polypeptide of any one of embodiments 80-92, comprising a targeting sequence, wherein the targeting sequence is between the receptor-binding domain and the protease-cleavable polypeptide sequence or one of the protease-cleavable polypeptide sequences.


Embodiment 94 is the linker polypeptide of any one of embodiments 80-93, wherein the receptor-binding domain is an interleukin polypeptide sequence.


Embodiment 95 is the linker polypeptide of any one of embodiments 80-94, wherein the receptor-binding domain is capable of binding a receptor comprising CD132.


Embodiment 96 is the linker polypeptide of any one of embodiments 80-95, wherein the receptor-binding domain is capable of binding a receptor comprising CD122.


Embodiment 97 is the linker polypeptide of any one of embodiments 80-96, wherein the receptor-binding domain is capable of binding a receptor comprising CD25.


Embodiment 98 is the linker polypeptide of any one of embodiments 80-97, wherein the receptor-binding domain is capable of binding a receptor comprising IL-10R.


Embodiment 99 is the linker polypeptide of any one of embodiments 80-98, wherein the receptor-binding domain is capable of binding a receptor comprising IL-15R.


Embodiment 100 is the linker polypeptide of any one of embodiments 80-99, wherein the receptor-binding domain is capable of binding a receptor comprising CXCR3.


Embodiment 101 is the linker polypeptide of any one of embodiments 80-100, wherein the receptor-binding domain is an IL-2 polypeptide sequence.


Embodiment 102 is the linker polypeptide of the immediately preceding embodiment, wherein the IL-2 polypeptide sequence has at least 80, 85, 90, 95, 97, 98, or 99 percent identity to the sequence of any one of SEQ ID NOs: 1-4.


Embodiment 103 is the linker polypeptide of the immediately preceding embodiment, wherein the IL-2 polypeptide sequence comprises the sequence of any one of SEQ ID NOs: 1-4.


Embodiment 104 is the linker polypeptide of any one of embodiments 101-103, wherein the IL-2 polypeptide sequence is a human IL-2 polypeptide sequence.


Embodiment 105 is the linker polypeptide of the immediately preceding embodiment, wherein the IL-2 polypeptide sequence comprises the sequence of SEQ ID NO: 1.


Embodiment 106 is the linker polypeptide of any one of embodiments 101-104, wherein the IL-2 polypeptide sequence comprises the sequence of SEQ ID NO: 2.


Embodiment 107 is the linker polypeptide of any one of the preceding embodiments, wherein the inhibitory polypeptide sequence comprises an IL-2 binding domain of an IL-2 receptor (IL-2R).


Embodiment 108 is the linker polypeptide of the immediately preceding embodiment, wherein the inhibitory polypeptide sequence comprises an amino acid sequence having at least 80, 85, 90, 95, 97, 98, or 99 percent identity to the sequence of any one of SEQ ID NOs: 10-29 and 40-51.


Embodiment 109 is the linker polypeptide of embodiment 107 or 108, wherein the IL-2R is a human IL-2R.


Embodiment 110 is the linker polypeptide of any one of the preceding embodiments, wherein the inhibitory polypeptide sequence comprises an IL-2-binding immunoglobulin domain.


Embodiment 111 is the linker polypeptide of the immediately preceding embodiment, wherein the IL-2-binding immunoglobulin domain is a human IL-2-binding immunoglobulin domain.


Embodiment 112 is the linker polypeptide of embodiment 110 or 111, wherein the IL-2-binding immunoglobulin domain comprises a VH region comprising hypervariable regions (HVRs) HVR-1, HVR-2, and HVR-3 having the sequences of SEQ ID NOs: 37, 38, and 39, respectively, and a VL region comprising HVR-1, HVR-2, and HVR-3 having the sequences of SEQ ID NOs: 34, 35, and 36, respectively.


Embodiment 113 is the linker polypeptide of any one of embodiments 110-112, wherein the IL-2-binding immunoglobulin domain comprises a VH region comprising an amino acid sequence having at least 80, 85, 90, 95, 97, 98, or 99 percent identity to the sequence of SEQ ID NO: 33 and a VL region comprising an amino acid sequence having at least 80, 85, 90, 95, 97, 98, or 99 percent identity to the sequence of SEQ ID NO: 32, or a VH region comprising an amino acid sequence having at least 80, 85, 90, 95, 97, 98, or 99 percent identity to the sequence of SEQ ID NO: 749 and a VL region comprising an amino acid sequence having at least 80, 85, 90, 95, 97, 98, or 99 percent identity to the sequence of SEQ ID NO: 748.


Embodiment 114 is the linker polypeptide of the immediately preceding embodiment, wherein the IL-2-binding immunoglobulin domain comprises a VH region comprising the sequence of SEQ ID NO: 33 and a VL region comprising the sequence of SEQ ID NO: 32, or a VH region comprising the sequence of SEQ ID NO: 749 and a VL region comprising the sequence of SEQ ID NO: 748.


Embodiment 115 is the linker polypeptide of any one of embodiments 110-114, wherein the IL-2-binding immunoglobulin domain is an scFv.


Embodiment 116 is the linker polypeptide of embodiment 110, 111, or 114, wherein the IL-2-binding immunoglobulin domain comprises the CDRs of an amino acid sequence of SEQ ID NO: 30, 31, 747, 850-856, or 863-870.


Embodiment 117 is the linker polypeptide of embodiment 110, 111, 114, or 116, wherein the IL-2-binding immunoglobulin domain comprises an amino acid sequence having at least 80, 85, 90, 95, 97, 98, or 99 percent identity to the sequence of SEQ ID NO: 30, 31, 747, 850-856, or 863-870.


Embodiment 118 is the linker polypeptide of the immediately preceding embodiment, wherein the IL-2-binding immunoglobulin domain comprises the sequence of SEQ ID NO: 30, 31, 747, 850-856, or 863-870.


Embodiment 119 is the linker polypeptide of any one of the preceding embodiments, wherein the receptor-binding domain is an IL-10 polypeptide sequence.


Embodiment 120 is the linker polypeptide of the immediately preceding embodiment, wherein the IL-10 polypeptide sequence has at least 80, 85, 90, 95, 97, 98, or 99 percent identity to the sequence of SEQ ID NO: 900.


Embodiment 121 is the linker polypeptide of the immediately preceding embodiment, wherein the IL-10 polypeptide sequence comprises the sequence of SEQ ID NO: 900.


Embodiment 122 is the linker polypeptide of any one of embodiments 119-121, wherein the IL-10 polypeptide sequence is a human IL-10 polypeptide sequence.


Embodiment 123 is the linker polypeptide of any one of embodiments 118-122, wherein the inhibitory polypeptide sequence comprises an IL-10 binding domain of an IL-10 receptor (IL-10R).


Embodiment 124 is the linker polypeptide of the immediately preceding embodiment, wherein the inhibitory polypeptide sequence comprises an amino acid sequence having at least 80, 85, 90, 95, 97, 98, or 99 percent identity to the sequence of SEQ ID NO: 1011 or 1012.


Embodiment 125 is the linker polypeptide of embodiment 123 or 124, wherein the IL-10R is a human IL-10R.


Embodiment 126 is the linker polypeptide of any one of the preceding embodiments, wherein the inhibitory polypeptide sequence comprises an IL-10-binding immunoglobulin domain.


Embodiment 127 is the linker polypeptide of the immediately preceding embodiment, wherein the IL-O-binding immunoglobulin domain is a human IL-O-binding immunoglobulin domain.


Embodiment 128 is the linker polypeptide of embodiment 126 or 127, wherein the IL-10-binding immunoglobulin domain comprises a VH region comprising hypervariable regions (HVRs) HVR-1, HVR-2, and HVR-3 having the sequences of SEQ ID NOs: 946, 947, and 948, respectively, and a VL region comprising HVR-1, HVR-2, and HVR-3 having the sequences of SEQ ID NOs: 942, 943, and 944, respectively.


Embodiment 129 is the linker polypeptide of any one of embodiments 126-128, wherein the IL-10-binding immunoglobulin domain comprises a VH region comprising an amino acid sequence having at least 80, 85, 90, 95, 97, 98, or 99 percent identity to the sequence of SEQ ID NO: 945 and a VL region comprising an amino acid sequence having at least 80, 85, 90, 95, 97, 98, or 99 percent identity to the sequence of SEQ ID NO: 941.


Embodiment 130 is the linker polypeptide of the immediately preceding embodiment, wherein the IL-10-binding immunoglobulin domain comprises a VH region comprising the sequence of SEQ ID NO: 945 and a VL region comprising the sequence of SEQ ID NO: 941.


Embodiment 131 is the linker polypeptide of any one of embodiments 126-130, wherein the IL-10-binding immunoglobulin domain is an scFv.


Embodiment 132 is the linker polypeptide of the immediately preceding embodiment, wherein the IL-10-binding immunoglobulin domain comprises an amino acid sequence having at least 80, 85, 90, 95, 97, 98, or 99 percent identity to the sequence of SEQ ID NO: 939 or 940.


Embodiment 133 is the linker polypeptide of the immediately preceding embodiment, wherein the IL-10-binding immunoglobulin domain comprises the sequence of SEQ ID NO: 939 or 940.


Embodiment 134 is the linker polypeptide of any one of the preceding embodiments, wherein the receptor-binding domain is an IL-15 polypeptide sequence.


Embodiment 135 is the linker polypeptide of the immediately preceding embodiment, wherein the IL-15 polypeptide sequence has at least 80, 85, 90, 95, 97, 98, or 99 percent identity to the sequence of SEQ ID NO: 901.


Embodiment 136 is the linker polypeptide of the immediately preceding embodiment, wherein the IL-15 polypeptide sequence comprises the sequence of SEQ ID NO: 901.


Embodiment 137 is the linker polypeptide of any one of embodiments 134-136, wherein the IL-15 polypeptide sequence is a human IL-15 polypeptide sequence.


Embodiment 138 is the linker polypeptide of any one of embodiments 133-137, wherein the inhibitory polypeptide sequence comprises an IL-15 binding domain of an IL-15 receptor (IL-15R).


Embodiment 139 is the linker polypeptide of the immediately preceding embodiment, wherein the inhibitory polypeptide sequence comprises an amino acid sequence having at least 80, 85, 90, 95, 97, 98, or 99 percent identity to the sequence of any one of SEQ ID NOs: 1016-1019.


Embodiment 140 is the linker polypeptide of embodiment 97 or 98, wherein the IL-15R is a human IL-15R.


Embodiment 141 is the linker polypeptide of any one of the preceding embodiments, wherein the inhibitory polypeptide sequence comprises an IL-15-binding immunoglobulin domain.


Embodiment 142 is the linker polypeptide of the immediately preceding embodiment, wherein the IL-15-binding immunoglobulin domain is a human IL-15-binding immunoglobulin domain.


Embodiment 143 is the linker polypeptide of embodiment 141 or 142, wherein the IL-15-binding immunoglobulin domain comprises a VH region comprising HVR-1, HVR-2, and HVR-3 of a VH region comprising the amino acid sequence of any one of SEQ ID NOs: 950, 955, 957, 960, 963, 966, 969, 972, 975, 978, 981, 985, and 988, and a VL region comprising HVR-1, HVR-2, and HVR-3 of a VL region comprising the amino acid sequence of any one of SEQ ID NOs: 952, 954, 958, 961, 964, 967, 970, 973, 976, 979, 982, 984, and 987.


Embodiment 144 is the linker polypeptide of any one of embodiments 141-143, wherein the IL-15-binding immunoglobulin domain comprises a VH region comprising an amino acid sequence having at least 80, 85, 90, 95, 97, 98, or 99 percent identity to the sequence of any one of SEQ ID NOs: 950, 955, 957, 960, 963, 966, 969, 972, 975, 978, 981, 985, and 988 and a VL region comprising an amino acid sequence having at least 80, 85, 90, 95, 97, 98, or 99 percent identity to the sequence of any one of SEQ ID NOs: 952, 954, 958, 961, 964, 967, 970, 973, 976, 979, 982, 984, and 987.


Embodiment 145 is the linker polypeptide of the immediately preceding embodiment, wherein the IL-15-binding immunoglobulin domain comprises a VH region comprising the sequence of any one of SEQ ID NOs: 950, 955, 957, 960, 963, 966, 969, 972, 975, 978, 981, 985, and 988 and a VL region comprising the sequence of any one of SEQ ID NOs: 952, 954, 958, 961, 964, 967, 970, 973, 976, 979, 982, 984, and 987.


Embodiment 146 is the linker polypeptide of any one of embodiments 141-145, wherein the IL-15-binding immunoglobulin domain is an scFv.


Embodiment 147 is the linker polypeptide of the immediately preceding embodiment, wherein the IL-15-binding immunoglobulin domain comprises an amino acid sequence having at least 80, 85, 90, 95, 97, 98, or 99 percent identity to the sequence of any one of SEQ ID NOs: 953, 956, 959, 962, 965, 968, 971, 974, 977, 980, 983, and 986.


Embodiment 148 is the linker polypeptide of the immediately preceding embodiment, wherein the IL-15-binding immunoglobulin domain comprises the sequence of any one of SEQ ID NOs: 953, 956, 959, 962, 965, 968, 971, 974, 977, 980, 983, and 986.


Embodiment 149 is the linker polypeptide of any one of the preceding embodiments, wherein the receptor-binding domain is an CXCL9 polypeptide sequence.


Embodiment 150 is the linker polypeptide of the immediately preceding embodiment, wherein the CXCL9 polypeptide sequence has at least 80, 85, 90, 95, 97, 98, or 99 percent identity to the sequence of SEQ ID NO: 902.


Embodiment 151 is the linker polypeptide of the immediately preceding embodiment, wherein the CXCL9 polypeptide sequence comprises the sequence of SEQ ID NO: 902.


Embodiment 152 is the linker polypeptide of any one of embodiments 149-150, wherein the CXCL9 polypeptide sequence is a human CXCL9 polypeptide sequence.


Embodiment 153 is the linker polypeptide of any one of embodiments 148-152, wherein the inhibitory polypeptide sequence comprises a CXCL9 binding domain of CXCR3.


Embodiment 154 is the linker polypeptide of the immediately preceding embodiment, wherein the inhibitory polypeptide sequence comprises an amino acid sequence having at least 80, 85, 90, 95, 97, 98, or 99 percent identity to the sequence of SEQ ID NO: 1020 or 1021.


Embodiment 155 is the linker polypeptide of embodiment 153 or 154, wherein the CXCR3 is a human CXCR3.


Embodiment 156 is the linker polypeptide of any one of the preceding embodiments, wherein the inhibitory polypeptide sequence comprises an CXCL9-binding immunoglobulin domain.


Embodiment 157 is the linker polypeptide of the immediately preceding embodiment, wherein the CXCL9-binding immunoglobulin domain is a human CXCL9-binding immunoglobulin domain.


Embodiment 158 is the linker polypeptide of any one of the preceding embodiments, wherein the receptor-binding domain is an CXCL10 polypeptide sequence.


Embodiment 159 is the linker polypeptide of the immediately preceding embodiment, wherein the CXCL10 polypeptide sequence has at least 80, 85, 90, 95, 97, 98, or 99 percent identity to the sequence of SEQ ID NO: 903.


Embodiment 160 is the linker polypeptide of the immediately preceding embodiment, wherein the CXCL10 polypeptide sequence comprises the sequence of SEQ ID NO: 903.


Embodiment 161 is the linker polypeptide of any one of embodiments 158-160, wherein the CXCL10 polypeptide sequence is a human CXCL10 polypeptide sequence.


Embodiment 162 is the linker polypeptide of any one of embodiments 156-161, wherein the inhibitory polypeptide sequence comprises an CXCL10 binding domain of CXCR3.


Embodiment 163 is the linker polypeptide of the immediately preceding embodiment, wherein the inhibitory polypeptide sequence comprises an amino acid sequence having at least 80, 85, 90, 95, 97, 98, or 99 percent identity to the sequence of SEQ ID NO: 1020 or 1021.


Embodiment 164 is the linker polypeptide of embodiment 162 or 163, wherein the CXCR3 is a human CXCR3.


Embodiment 165 is the linker polypeptide of any one of the preceding embodiments, wherein the inhibitory polypeptide sequence comprises an CXCL10-binding immunoglobulin domain.


Embodiment 166 is the linker polypeptide of the immediately preceding embodiment, wherein the CXCL10-binding immunoglobulin domain is a human CXCL10-binding immunoglobulin domain.


Embodiment 167 is the linker polypeptide of embodiment 165 or 166, wherein the CXCL10-binding immunoglobulin domain comprises a VH region comprising hypervariable regions (HVRs) HVR-1, HVR-2, and HVR-3 having the sequences of SEQ ID NOs: 993, 994, and 995, respectively, and a VL region comprising HVR-1, HVR-2, and HVR-3 having the sequences of SEQ ID NOs: 996, 997, and 998, respectively.


Embodiment 168 is the linker polypeptide of any one of embodiments 165-167, wherein the CXCL10-binding immunoglobulin domain comprises a VH region comprising an amino acid sequence having at least 80, 85, 90, 95, 97, 98, or 99 percent identity to the sequence of SEQ ID NO: 991 and a VL region comprising an amino acid sequence having at least 80, 85, 90, 95, 97, 98, or 99 percent identity to the sequence of SEQ ID NO: 992.


Embodiment 169 is the linker polypeptide of the immediately preceding embodiment, wherein the CXCL10-binding immunoglobulin domain comprises a VH region comprising the sequence of SEQ ID NO: 991 and a VL region comprising the sequence of SEQ ID NO: 992.


Embodiment 170 is the linker polypeptide of any one of embodiments 165-169, wherein the CXCL10-binding immunoglobulin domain is an scFv.


Embodiment 171 is the linker polypeptide of the immediately preceding embodiment, wherein the CXCL10-binding immunoglobulin domain comprises an amino acid sequence having at least 80, 85, 90, 95, 97, 98, or 99 percent identity to the sequence of SEQ ID NO: 989 or 990.


Embodiment 172 is the linker polypeptide of the immediately preceding embodiment, wherein the CXCL10-binding immunoglobulin domain comprises the sequence of SEQ ID NO: 989 or 990.


Embodiment 173 is the linker polypeptide of any one of the preceding embodiments, wherein the inhibitory polypeptide sequence interferes with binding between the first active domain and a receptor of the first active domain and/or with binding between the second active domain and a receptor of the second active domain.


Embodiment 174 is the linker polypeptide of any one of the preceding embodiments, wherein the inhibitory polypeptide sequence and the pharmacokinetic modulator are different elements of the linker polypeptide.


Embodiment 175 is the linker polypeptide of any one of the preceding embodiments, wherein the inhibitory polypeptide sequence comprises a steric blocker.


Embodiment 176 is the linker polypeptide of any one of the preceding embodiments, wherein the inhibitory polypeptide sequence comprises at least a portion of the pharmacokinetic modulator.


Embodiment 177 is the linker polypeptide of any one of the preceding embodiments, wherein the pharmacokinetic modulator comprises at least a portion of an immunoglobulin constant domain.


Embodiment 178 is the linker polypeptide of the immediately preceding embodiment, wherein the pharmacokinetic modulator comprises at least a portion of an immunoglobulin Fc region.


Embodiment 179 is the linker polypeptide of the immediately preceding embodiment, wherein the pharmacokinetic modulator comprises an immunoglobulin Fc region.


Embodiment 180 is the linker polypeptide of any one of embodiments 177-179, wherein the immunoglobulin is a human immunoglobulin.


Embodiment 181 is the linker polypeptide of any one of embodiments 177-180, wherein the immunoglobulin is IgG.


Embodiment 182 is the linker polypeptide of the immediately preceding embodiment, wherein the IgG is IgG1, IgG2, IgG3, or IgG4.


Embodiment 183 is the linker polypeptide of any of the preceding embodiments, further comprising a growth factor-binding polypeptide sequence or a growth factor receptor-binding polypeptide sequence.


Embodiment 184 is the linker polypeptide of the immediately preceding embodiment, wherein the growth factor-binding polypeptide sequence comprises a TGF-βR extracellular domain sequence.


Embodiment 185 is the linker polypeptide of the immediately preceding embodiment, wherein the TGF-βR extracellular domain sequence comprises an amino acid sequence having at least 80, 85, 90, 95, 97, 98, or 99 percent identity to the sequence of SEQ ID NO: 1022 or 1023.


Embodiment 186 is the linker polypeptide of the embodiment 142-144, wherein the growth factor-binding polypeptide sequence comprises a growth factor-binding immunoglobulin domain.


Embodiment 187 is the linker polypeptide of the immediately preceding embodiment, wherein the growth factor-binding immunoglobulin domain is configured to bind to a TGF-β.


Embodiment 188 is the linker polypeptide of embodiment 145 or 146, wherein the growth factor-binding immunoglobulin domain comprises a VH region comprising HVR-1, HVR-2, and HVR-3 of a VH region comprising the amino acid sequence of SEQ ID NO: 1008, and a VL region comprising HVR-1, HVR-2, and HVR-3 of a VL region comprising the amino acid sequence of SEQ ID NO: 1010.


Embodiment 189 is the linker polypeptide of the immediately preceding embodiment, wherein the growth factor-binding immunoglobulin domain comprises a VH region comprising the amino acid sequence of SEQ ID NO: 1008; and a VL region comprising the amino acid sequence of SEQ ID NO: 1010.


Embodiment 190 is the linker polypeptide of embodiment 185-189, wherein the growth factor-binding immunoglobulin domain comprises a sequence that has at least 80, 85, 90, 95, 97, 98, or 99 percent identity to the sequence of SEQ ID NO: 1007 or 1009.


Embodiment 191 is the linker polypeptide of embodiment 183-190, wherein the growth factor receptor-binding polypeptide sequence comprises a TGF-β sequence.


Embodiment 192 is the linker polypeptide of the immediately preceding embodiment, wherein the TGF-β sequence comprises an amino acid sequence having at least 80, 85, 90, 95, 97, 98, or 99 percent identity to the sequence of any one of SEQ ID NOs. 904-906.


Embodiment 193 is the linker polypeptide of the embodiment 183-192, wherein the growth factor receptor-binding polypeptide sequence comprises a growth factor receptor-binding immunoglobulin domain.


Embodiment 194 is the linker polypeptide of the immediately preceding embodiment, wherein the growth factor receptor-binding immunoglobulin domain is configured to bind to a TGF-βR extracellular domain sequence.


Embodiment 195 is the linker polypeptide of embodiment 193 or 194, wherein the growth factor receptor-binding immunoglobulin domain comprises a VH region comprising HVR-1, HVR-2, and HVR-3 of a VH region comprising the amino acid sequence of SEQ ID NO: 999 or 1003, and a VL region comprising HVR-1, HVR-2, and HVR-3 of a VL region comprising the amino acid sequence of SEQ ID NO: 1000 or 1004.


Embodiment 196 is the linker polypeptide of the immediately preceding embodiment, wherein the growth factor receptor-binding immunoglobulin domain comprises a VH region comprising the amino acid sequence of SEQ ID NO: 999 or 1003; and a VL region comprising the amino acid sequence of SEQ ID NO: 1000 or 1004.


Embodiment 197 is the linker polypeptide of embodiment 152-155, wherein the growth factor receptor-binding immunoglobulin domain comprises a sequence that has at least 80, 85, 90, 95, 97, 98, or 99 percent identity to the sequence of any one of SEQ ID NOs: 1001, 1002, 1005, and 1006.


Embodiment 198 is the linker polypeptide of any one of the preceding embodiments, comprising a plurality of protease-cleavable polypeptide sequences.


Embodiment 199 is the linker polypeptide of any one of the preceding embodiments, wherein the protease-cleavable polypeptide sequence is C-terminal to a VH region, C-terminal to at least a portion of a CH1 domain, between a CH1 domain and a CH2 domain, N-terminal to at least a portion of a CH2 domain, N-terminal to a disulfide bond between heavy chains, N-terminal to a disulfide bond within a CH2 domain, or N-terminal to a hinge region, or is within a hinge region.


Embodiment 200 is the linker polypeptide of any one of the preceding embodiments, wherein the protease-cleavable polypeptide sequence is C-terminal to the first targeting sequence and to the second targeting sequence.


Embodiment 201 is the linker polypeptide of any one of the preceding embodiments, wherein the protease-cleavable polypeptide sequence is N-terminal to the first targeting sequence and to the second targeting sequence.


Embodiment 202 is the linker polypeptide of any one of the preceding embodiments, wherein the protease-cleavable polypeptide sequence is C-terminal to a first plurality of targeting sequences and is N-terminal to a second plurality of targeting sequences.


Embodiment 203 is the linker polypeptide of any one of the preceding embodiments, wherein the protease-cleavable polypeptide sequence is C-terminal to a plurality of targeting sequences and is N-terminal to at least one targeting sequence.


Embodiment 204 is the linker polypeptide of any one of the preceding embodiments, wherein the protease-cleavable polypeptide sequence is N-terminal to a plurality of targeting sequences and is C-terminal to at least one targeting sequence.


Embodiment 205 is the linker polypeptide of any one of the preceding embodiments, wherein the protease-cleavable polypeptide sequence is C-terminal to the first targeting sequence and to the second targeting sequence and is not N-terminal to a targeting sequence.


Embodiment 206 is the linker polypeptide of any one of the preceding embodiments, wherein the protease-cleavable polypeptide sequence is N-terminal to the first targeting sequence and to the second targeting sequence and is not C-terminal to a targeting sequence.


Embodiment 207 is the linker polypeptide of any one of the preceding embodiments, wherein the linker polypeptide is configured to release the first active domain from a remaining portion of the linker polypeptide upon cleavage of the protease-cleavable polypeptide sequence.


Embodiment 208 is the linker polypeptide of the immediately preceding embodiment, wherein the first active domain is configured to remain connected to one or more of: one of the first targeting sequence and the second targeting sequence, one of the at least one targeting sequence, one of the first plurality of targeting sequences, one of the second plurality of targeting sequences, one of the plurality of targeting sequences, and the pharmacokinetic modulator upon cleavage of the protease-cleavable polypeptide sequence.


Embodiment 209 is the linker polypeptide of any one of the preceding embodiments, wherein the linker polypeptide is configured to release the second active domain from a remaining portion of the linker polypeptide upon cleavage of the protease-cleavable polypeptide sequence.


Embodiment 210 is the linker polypeptide of the immediately preceding embodiment, wherein the second active domain is configured to remain connected to one or more of: one of the first targeting sequence and the second targeting sequence, one of the at least one targeting sequence, one of the first plurality of targeting sequences, one of the second plurality of targeting sequences, one of the plurality of targeting sequences, and the pharmacokinetic modulator upon cleavage of the protease-cleavable polypeptide sequence.


Embodiment 211 is the linker polypeptide of any one of the preceding embodiments, wherein the protease-cleavable polypeptide sequence is recognized by a metalloprotease, a serine protease, a cysteine protease, an aspartate protease, a threonine protease, a glutamate protease, a gelatinase, an asparagine peptide lyase, a cathepsin, a kallikrein, a plasmin, a collagenase, a hK1, a hK10, a hK15, a stromelysin, a Factor Xa, a chymotrypsin-like protease, a trypsin-like protease, a elastase-like protease, a subtilisin-like protease, an actinidain, a bromelain, a calpain, a caspase, a Mir 1-CP, a papain, a HIV-1 protease, a HSV protease, a CMV protease, a chymosin, a renin, a pepsin, a matriptase, a legumain, a plasmepsin, a nepenthesin, a metalloexopeptidase, a metalloendopeptidase, an ADAM 10, an ADAM 17, an ADAM 12, an urokinase plasminogen activator (uPA), an enterokinase, a prostate-specific target (PSA, hK3), an interleukin-1b converting enzyme, a thrombin, a FAP (FAP-a), a dipeptidyl peptidase, or dipeptidyl peptidase IV (DPPIV/CD26), a type II transmembrane serine protease (TTSP), a neutrophil elastase, a proteinase 3, a mast cell chymase, a mast cell tryptase, or a dipeptidyl peptidase.


Embodiment 212 is the linker polypeptide of any one of the preceding embodiments, wherein the protease-cleavable polypeptide sequence comprises the sequence of any one of SEQ ID NOs: 701-742, or a variant having one or two mismatches relative to the sequence of any one of SEQ ID NOs: 701-742.


Embodiment 213 is the linker polypeptide of any one of the preceding embodiments, wherein the protease-cleavable polypeptide sequence is recognized by a matrix metalloprotease.


Embodiment 214 is the linker polypeptide of any one of the preceding embodiments, wherein the protease-cleavable polypeptide sequence is recognized by MMP-1.


Embodiment 215 is the linker polypeptide of any one of the preceding embodiments, wherein the protease-cleavable polypeptide sequence is recognized by MMP-2.


Embodiment 216 is the linker polypeptide of any one of the preceding embodiments, wherein the protease-cleavable polypeptide sequence is recognized by MMP-3.


Embodiment 217 is the linker polypeptide of any one of the preceding embodiments, wherein the protease-cleavable polypeptide sequence is recognized by MMP-7.


Embodiment 218 is the linker polypeptide of any one of the preceding embodiments, wherein the protease-cleavable polypeptide sequence is recognized by MMP-8.


Embodiment 219 is the linker polypeptide of any one of the preceding embodiments, wherein the protease-cleavable polypeptide sequence is recognized by MMP-9.


Embodiment 220 is the linker polypeptide of any one of the preceding embodiments, wherein the protease-cleavable polypeptide sequence is recognized by MMP-12.


Embodiment 221 is the linker polypeptide of any one of the preceding embodiments, wherein the protease-cleavable polypeptide sequence is recognized by MMP-13.


Embodiment 222 is the linker polypeptide of any one of the preceding embodiments, wherein the protease-cleavable polypeptide sequence is recognized by MMP-14.


Embodiment 223 is the linker polypeptide of any one of the preceding embodiments, wherein the protease-cleavable polypeptide sequence is recognized by more than one MMP.


Embodiment 224 is the linker polypeptide of any one of the preceding embodiments, wherein the protease-cleavable polypeptide sequence is recognized by two, three, four, five, six, or seven of MMP-2, MMP-7, MMP-8, MMP-9, MMP-12, MMP-13, and MMP-14.


Embodiment 225 is the linker polypeptide of any one of the preceding embodiments, wherein the protease-cleavable polypeptide sequence comprises the sequence of any one of SEQ ID NOs: 80-94 or a variant sequence having one or two mismatches relative to the sequence of any one of SEQ ID NOs: 80-90.


Embodiment 226 is the linker polypeptide of any one of the preceding embodiments, wherein the protease-cleavable polypeptide sequence comprises the sequence of SEQ ID NO: 80 or a variant sequence having one or two mismatches relative thereto.


Embodiment 227 is the linker polypeptide of any one of embodiments 1-225, wherein the protease-cleavable polypeptide sequence comprises the sequence of SEQ ID NO: 81 or a variant sequence having one or two mismatches relative thereto.


Embodiment 228 is the linker polypeptide of any one of embodiments 1-225, wherein the protease-cleavable polypeptide sequence comprises the sequence of SEQ ID NO: 82 or a variant sequence having one or two mismatches relative thereto.


Embodiment 229 is the linker polypeptide of any one of embodiments 1-225, wherein the protease-cleavable polypeptide sequence comprises the sequence of SEQ ID NO: 83 or a variant sequence having one or two mismatches relative thereto.


Embodiment 230 is the linker polypeptide of any one of embodiments 1-225, wherein the protease-cleavable polypeptide sequence comprises the sequence of SEQ ID NO: 84 or a variant sequence having one or two mismatches relative thereto.


Embodiment 231 is the linker polypeptide of any one of embodiments 1-225, wherein the protease-cleavable polypeptide sequence comprises the sequence of SEQ ID NO: 85 or a variant sequence having one or two mismatches relative thereto.


Embodiment 232 is the linker polypeptide of any one of embodiments 1-225, wherein the protease-cleavable polypeptide sequence comprises the sequence of SEQ ID NO: 86 or a variant sequence having one or two mismatches relative thereto.


Embodiment 233 is the linker polypeptide of any one of embodiments 1-225, wherein the protease-cleavable polypeptide sequence comprises the sequence of SEQ ID NO: 87 or a variant sequence having one or two mismatches relative thereto.


Embodiment 234 is the linker polypeptide of any one of embodiments 1-225, wherein the protease-cleavable polypeptide sequence comprises the sequence of SEQ ID NO: 88 or a variant sequence having one or two mismatches relative thereto.


Embodiment 235 is the linker polypeptide of any one of embodiments 1-225, wherein the protease-cleavable polypeptide sequence comprises the sequence of SEQ ID NO: 89 or a variant sequence having one or two mismatches relative thereto.


Embodiment 236 is the linker polypeptide of any one of embodiments 1-225, wherein the protease-cleavable polypeptide sequence comprises the sequence of SEQ ID NO: 90 or a variant sequence having one or two mismatches relative thereto.


Embodiment 237 is the linker polypeptide of any one of embodiments 1-225, wherein the protease-cleavable polypeptide sequence comprises the sequence of any one of SEQ ID NO: 80-90.


Embodiment 238 is the linker polypeptide of any one of embodiments 1-225, wherein the protease-cleavable polypeptide sequence comprises the sequence of SEQ ID NO: 91.


Embodiment 239 is the linker polypeptide of any one of embodiments 1-225, wherein the protease-cleavable polypeptide sequence comprises the sequence of SEQ ID NO: 92.


Embodiment 240 is the linker polypeptide of any one of embodiments 1-225, wherein the protease-cleavable polypeptide sequence comprises the sequence of SEQ ID NO: 93.


Embodiment 241 is the linker polypeptide of any one of embodiments 1-225, wherein the protease-cleavable polypeptide sequence comprises the sequence of SEQ ID NO: 94.


Embodiment 242 is the linker polypeptide of any one of the preceding embodiments, wherein one or each of the first targeting sequence and the second targeting sequence, one or each of the at least one targeting sequence, one or each of the first plurality of targeting sequences, one or each of the second plurality of targeting sequences, or one or each of the plurality of targeting sequences independently is configured to bind an extracellular matrix component, heparin, an integrin, or a syndecan; or is configured to bind, in a pH-sensitive manner, an extracellular matrix component, heparin, IgB (CD79b), an integrin, a cadherin, a heparan sulfate proteoglycan, a syndecan, or a fibronectin; or the targeting sequence comprises the sequence of any one of SEQ ID NOs: 179-665 or a variant having one or two mismatches relative to the sequence of any one of SEQ ID NOs: 179-665.


Embodiment 243 is the linker polypeptide of any one of the preceding embodiments, wherein one or each of the first targeting sequence and the second targeting sequence, one or each of the at least one targeting sequence, one or each of the first plurality of targeting sequences, one or each of the second plurality of targeting sequences, or one or each of the plurality of targeting sequences independently comprises the sequence of any one of SEQ ID NOs: 179-665, or a variant having one or two mismatches relative to the sequence of any one of SEQ ID NOs: 179-665.


Embodiment 244 is the linker polypeptide of any one of the preceding embodiments, wherein one or each of the first targeting sequence and the second targeting sequence, one or each of the at least one targeting sequence, one or each of the first plurality of targeting sequences, one or each of the second plurality of targeting sequences, or one or each of the plurality of targeting sequences independently comprises the sequence of any one of SEQ ID NOs: 179-665.


Embodiment 245 is the linker polypeptide of any one of the preceding embodiments, wherein one or each of the first targeting sequence and the second targeting sequence, one or each of the at least one targeting sequence, one or each of the first plurality of targeting sequences, one or each of the second plurality of targeting sequences, or one or each of the plurality of targeting sequences independently comprises the sequence of any one of SEQ ID NOs: 200, 330, 619, 653, and 663-665, or a variant having one or two mismatches relative to the sequence of any one of SEQ ID NOs: 200, 330, 619, 653, and 663-665.


Embodiment 246 is the linker polypeptide of any one of the preceding embodiments, wherein one or each of the first targeting sequence and the second targeting sequence, one or each of the at least one targeting sequence, one or each of the first plurality of targeting sequences, one or each of the second plurality of targeting sequences, or one or each of the plurality of targeting sequences independently comprises the sequence of any one of SEQ ID NOs: 200, 330, 619, 653, and 663-665.


Embodiment 247 is the linker polypeptide of any one of the preceding embodiments, wherein one or each of the first targeting sequence and the second targeting sequence, one or each of the at least one targeting sequence, one or each of the first plurality of targeting sequences, one or each of the second plurality of targeting sequences, or one or each of the plurality of targeting sequences independently is configured to bind to denatured collagen.


Embodiment 248 is the linker polypeptide of any one of the preceding embodiments, wherein one or each of the first targeting sequence and the second targeting sequence, one or each of the at least one targeting sequence, one or each of the first plurality of targeting sequences, one or each of the second plurality of targeting sequences, or one or each of the plurality of targeting sequences independently is configured to bind to collagen.


Embodiment 249 is the linker polypeptide of embodiment 247 or 248, wherein the collagen is collagen I.


Embodiment 250 is the linker polypeptide of embodiment 247 or 248, wherein the collagen is collagen II.


Embodiment 251 is the linker polypeptide of embodiment 247 or 248, wherein the collagen is collagen III.


Embodiment 252 is the linker polypeptide of embodiment 247 or 248, wherein the collagen is collagen IV.


Embodiment 253 is the linker polypeptide of any one of the preceding embodiments, wherein one or each of the first targeting sequence and the second targeting sequence, one or each of the at least one targeting sequence, one or each of the first plurality of targeting sequences, one or each of the second plurality of targeting sequences, or one or each of the plurality of targeting sequences independently is configured to bind to integrin.


Embodiment 254 is the linker polypeptide of the immediately preceding embodiment, wherein the integrin is one or more of α1β1 integrin, α2β1 integrin, α3β1 integrin, α4β1 integrin, α5β1 integrin, α6β1 integrin, α7β1 integrin, α9β1 integrin, α4β7 integrin, αvβ integrin, αvβ5 integrin, αIIbβ3 integrin, αIIIbβ3 integrin, αMβ2 integrin, or αIIbβ3 integrin.


Embodiment 255 is the linker polypeptide of any one of the preceding embodiments, wherein one or each of the first targeting sequence and the second targeting sequence, one or each of the at least one targeting sequence, one or each of the first plurality of targeting sequences, one or each of the second plurality of targeting sequences, or one or each of the plurality of targeting sequences independently is configured to bind to von Willebrand factor.


Embodiment 256 is the linker polypeptide of any one of the preceding embodiments, wherein one or each of the first targeting sequence and the second targeting sequence, one or each of the at least one targeting sequence, one or each of the first plurality of targeting sequences, one or each of the second plurality of targeting sequences, or one or each of the plurality of targeting sequences independently is configured to bind to IgB.


Embodiment 257 is the linker polypeptide of any one of the preceding embodiments, wherein one or each of the first targeting sequence and the second targeting sequence, one or each of the at least one targeting sequence, one or each of the first plurality of targeting sequences, one or each of the second plurality of targeting sequences, or one or each of the plurality of targeting sequences independently is configured to bind to heparin.


Embodiment 258 is the linker polypeptide of any one of the preceding embodiments, wherein the first targeting sequence is configured to bind to heparin and the second targeting sequence is configured to bind to heparin, wherein the first targeting sequence is configured to bind to collagen IV and the second targeting sequence is configured to bind to heparin, or wherein the first targeting sequence is configured to bind to heparin and the second targeting sequence is configured to bind to collagen IV.


Embodiment 259 is the linker polypeptide of any one of the preceding embodiments, wherein one or each of the first targeting sequence and the second targeting sequence, one or each of the at least one targeting sequence, one or each of the first plurality of targeting sequences, one or each of the second plurality of targeting sequences, or one or each of the plurality of targeting sequences independently is configured to bind to heparin and a syndecan, a heparan sulfate proteoglycan, or an integrin, optionally wherein the integrin is one or more of α1β1 integrin, α2β1 integrin, α3β1 integrin, α4β1 integrin, α5β1 integrin, α6β1 integrin, α7β1 integrin, α9β1 integrin, α4β7 integrin, αvβ integrin, αvβ5 integrin, αIIbβ3 integrin, αIIIbβ3 integrin, αMβ2 integrin, or αIIbβ3 integrin.


Embodiment 260 is the linker polypeptide of the immediately preceding embodiment, wherein the syndecan is one of more of syndecan-1, syndecan-4, and syndecan-2(w).


Embodiment 261 is the linker polypeptide of any one of the preceding embodiments, wherein one or each of the first targeting sequence and the second targeting sequence, one or each of the at least one targeting sequence, one or each of the first plurality of targeting sequences, one or each of the second plurality of targeting sequences, or one or each of the plurality of targeting sequences independently is configured to bind to a heparan sulfate proteoglycan.


Embodiment 262 is the linker polypeptide of any one of the preceding embodiments, wherein one or each of the first targeting sequence and the second targeting sequence, one or each of the at least one targeting sequence, one or each of the first plurality of targeting sequences, one or each of the second plurality of targeting sequences, or one or each of the plurality of targeting sequences independently is configured to bind to a sulfated glycoprotein.


Embodiment 263 is the linker polypeptide of any one of the preceding embodiments, wherein one or each of the first targeting sequence and the second targeting sequence, one or each of the at least one targeting sequence, one or each of the first plurality of targeting sequences, one or each of the second plurality of targeting sequences, or one or each of the plurality of targeting sequences independently is configured to bind to hyaluronic acid.


Embodiment 264 is the linker polypeptide of any one of the preceding embodiments, wherein one or each of the first targeting sequence and the second targeting sequence, one or each of the at least one targeting sequence, one or each of the first plurality of targeting sequences, one or each of the second plurality of targeting sequences, or one or each of the plurality of targeting sequences independently is configured to bind to fibronectin.


Embodiment 265 is the linker polypeptide of any one of the preceding embodiments, wherein one or each of the first targeting sequence and the second targeting sequence, one or each of the at least one targeting sequence, one or each of the first plurality of targeting sequences, one or each of the second plurality of targeting sequences, or one or each of the plurality of targeting sequences independently is configured to bind to cadherin.


Embodiment 266 is the linker polypeptide of any one of the preceding embodiments, wherein one or each of the first targeting sequence and the second targeting sequence, one or each of the at least one targeting sequence, one or each of the first plurality of targeting sequences, one or each of the second plurality of targeting sequences, or one or each of the plurality of targeting sequences independently is configured to bind its target in a pH-sensitive manner.


Embodiment 267 is the linker polypeptide of any one of the preceding embodiments, wherein one or each of the first targeting sequence and the second targeting sequence, one or each of the at least one targeting sequence, one or each of the first plurality of targeting sequences, one or each of the second plurality of targeting sequences, or one or each of the plurality of targeting sequences independently has a higher affinity for its target at a pH below normal physiological pH than at normal physiological pH, optionally wherein the pH below normal physiological pH is below 7, or below 6.


Embodiment 268 is the linker polypeptide of any one of the preceding embodiments, wherein one or each of the first targeting sequence and the second targeting sequence, one or each of the at least one targeting sequence, one or each of the first plurality of targeting sequences, one or each of the second plurality of targeting sequences, or one or each of the plurality of targeting sequences independently has a higher affinity for its target at a pH in the range of 5-7, e.g., 5-5.5, 5.5-6, 6-6.5, or 6.5-7, than at normal physiological pH.


Embodiment 269 is the linker polypeptide of any one of the preceding embodiments, wherein one or each of the first targeting sequence and the second targeting sequence, one or each of the at least one targeting sequence, one or each of the first plurality of targeting sequences, one or each of the second plurality of targeting sequences, or one or each of the plurality of targeting sequences independently comprises one or more histidines, e.g., 1, 2, 3, 4, 5, 6, 7, 8, 9, or 10 histidines.


Embodiment 270 is the linker polypeptide of any one of the preceding embodiments, wherein one or each of the first targeting sequence and the second targeting sequence, one or each of the at least one targeting sequence, one or each of the first plurality of targeting sequences, one or each of the second plurality of targeting sequences, or one or each of the plurality of targeting sequences independently comprises the sequence of any one of SEQ ID NOs: 641-663, or a variant having one or two mismatches relative to the sequence of any one of SEQ ID NOs: 641-663.


Embodiment 271 is the linker polypeptide of any one of the preceding embodiments, wherein one or each of the first targeting sequence and the second targeting sequence, one or each of the at least one targeting sequence, one or each of the first plurality of targeting sequences, one or each of the second plurality of targeting sequences, or one or each of the plurality of targeting sequences independently comprises the sequence of any one of SEQ ID NOs: 641-665.


Embodiment 272 is the linker polypeptide of any one of the preceding embodiments, wherein one or each of the first targeting sequence and the second targeting sequence, one or each of the at least one targeting sequence, one or each of the first plurality of targeting sequences, one or each of the second plurality of targeting sequences, or one or each of the plurality of targeting sequences independently is configured to bind, in a pH-sensitive manner, an extracellular matrix component, IgB (CD79b), an integrin, a cadherin, a heparan sulfate proteoglycan, a syndecan, or a fibronectin.


Embodiment 273 is the linker polypeptide of the immediately preceding embodiment, wherein the extracellular matrix component is hyaluronic acid, heparin, heparan sulfate, or a sulfated glycoprotein.


Embodiment 274 is the linker polypeptide of any one of the preceding embodiments, wherein one or each of the first targeting sequence and the second targeting sequence, one or each of the at least one targeting sequence, one or each of the first plurality of targeting sequences, one or each of the second plurality of targeting sequences, or one or each of the plurality of targeting sequences independently is configured to bind a fibronectin in a pH-sensitive manner.


Embodiment 275 is the linker polypeptide of any one of the preceding embodiments, wherein one or each of the first targeting sequence and the second targeting sequence, one or each of the at least one targeting sequence, one or each of the first plurality of targeting sequences, one or each of the second plurality of targeting sequences, or one or each of the plurality of targeting sequences independently is configured to bind its target with an affinity from 0.1 nM to 1 nM, from 1 nM to 10 nM, from 10 nM to 100 nM, from 100 nM to 1 μM, from 1 μM to 10 μM, or from 10 μM to 100 μM.


Embodiment 276 is the linker polypeptide of the immediately preceding embodiment, wherein one or each of the first targeting sequence and the second targeting sequence, one or each of the at least one targeting sequence, one or each of the first plurality of targeting sequences, one or each of the second plurality of targeting sequences, or one or each of the plurality of targeting sequences independently is configured to bind its target with an affinity from 0.1 nM to 1 nM.


Embodiment 277 is the linker polypeptide of embodiment 275, wherein one or each of the first targeting sequence and the second targeting sequence, one or each of the at least one targeting sequence, one or each of the first plurality of targeting sequences, one or each of the second plurality of targeting sequences, or one or each of the plurality of targeting sequences independently is configured to bind its target with an affinity from 1 nM to 10 nM.


Embodiment 278 is the linker polypeptide of embodiment 275, wherein one or each of the first targeting sequence and the second targeting sequence, one or each of the at least one targeting sequence, one or each of the first plurality of targeting sequences, one or each of the second plurality of targeting sequences, or one or each of the plurality of targeting sequences independently is configured to bind its target with an affinity from 10 nM to 100 nM.


Embodiment 279 is the linker polypeptide of embodiment 275, wherein one or each of the first targeting sequence and the second targeting sequence, one or each of the at least one targeting sequence, one or each of the first plurality of targeting sequences, one or each of the second plurality of targeting sequences, or one or each of the plurality of targeting sequences independently is configured to bind its target with an affinity from 100 nM to 1 M.


Embodiment 280 is the linker polypeptide of embodiment 275, wherein one or each of the first targeting sequence and the second targeting sequence, one or each of the at least one targeting sequence, one or each of the first plurality of targeting sequences, one or each of the second plurality of targeting sequences, or one or each of the plurality of targeting sequences independently is configured to bind its target with an affinity from 1 μM to 10 μM.


Embodiment 281 is the linker polypeptide of embodiment 275, wherein one or each of the first targeting sequence and the second targeting sequence, one or each of the at least one targeting sequence, one or each of the first plurality of targeting sequences, one or each of the second plurality of targeting sequences, or one or each of the plurality of targeting sequences independently is configured to bind its target with an affinity from 10 μM to 100 μM.


Embodiment 282 is the linker polypeptide of any one of the preceding embodiments, wherein at least one of the first linker and the second linker comprises one of the first targeting sequence and the second targeting sequence, one of the at least one targeting sequence, one of the first plurality of targeting sequences, one of the second plurality of targeting sequences, or one of the plurality of targeting sequences.


Embodiment 283 is the linker polypeptide of the immediately preceding embodiment, wherein the protease-cleavable polypeptide sequence comprises one of the first targeting sequence and the second targeting sequence, one of the at least one targeting sequence, one of the first plurality of targeting sequences, one of the second plurality of targeting sequences, or one of the plurality of targeting sequences.


Embodiment 284 is the linker polypeptide of any one of the preceding embodiments, wherein one or each of the first targeting sequence and the second targeting sequence, one or each of the at least one targeting sequence, one or each of the first plurality of targeting sequences, one or each of the second plurality of targeting sequences, or one or each of the plurality of targeting sequences increases a serum half-life of the linker polypeptide.


Embodiment 285 is the linker polypeptide of any one of the preceding embodiments, wherein one or each of the first targeting sequence and the second targeting sequence, one or each of the at least one targeting sequence, one or each of the first plurality of targeting sequences, one or each of the second plurality of targeting sequences, or one or each of the plurality of targeting sequences synergistically increases a serum half-life of the linker polypeptide together with the pharmacokinetic modulator or with another one of the first targeting sequence and the second targeting sequence, another one of the at least one targeting sequence, another one of the first plurality of targeting sequences, another one of the second plurality of targeting sequences, or another one of the plurality of targeting sequences.


Embodiment 286 is the linker polypeptide of any one of the preceding embodiments, wherein one or each of the first targeting sequence and the second targeting sequence, one or each of the at least one targeting sequence, one or each of the first plurality of targeting sequences, one or each of the second plurality of targeting sequences, or one or each of the plurality of targeting sequences independently increases a serum half-life of the linker polypeptide.


Embodiment 287 is the linker polypeptide of any one of the preceding embodiments, further comprising a blocker conjugated to one of or each of the first active domain and the second active domain.


Embodiment 288 is the linker polypeptide of the immediately preceding embodiment, wherein the blocker is conjugated to one of or each of the first active domain and the second active domain via a protease-cleavable polypeptide sequence.


Embodiment 289 is the linker polypeptide of embodiment 287 or 288, wherein the blocker is an albumin.


Embodiment 290 is the linker polypeptide of any one of embodiments 287-289, wherein the blocker is a serum albumin.


Embodiment 291 is the linker polypeptide of any one of embodiments 287-290, wherein the blocker is a human albumin.


Embodiment 292 is the linker polypeptide of any one of the preceding embodiments, further comprising a chemotherapy drug.


Embodiment 293 is the linker polypeptide of the immediately preceding embodiment, wherein the chemotherapy drug is conjugated to the pharmacokinetic modulator.


Embodiment 294 is the linker polypeptide of embodiment 292 or 293, where the chemotherapy drug is selected from altretamine, bendamustine, busulfan, carboplatin, carmustine, chlorambucil, cisplatin, cyclophosphamide, dacarbazine, ifosfamide, lomustine, mechlorethamine, melphalan, oxaliplatin, temozolomide, thiotepa, trabectedin, carmustine, lomustine, streptozocin, azacitidine, 5-fluorouracil, 6-mercaptopurine, capecitabine, cladribine, clofarabine, cytarabine, decitabine, floxuridine, fludarabine, gemcitabine, hydroxyurea, methotrexate, nelarabine, pemetrexed, pentostatin, pralatrexate, thioguanine, trifluridine, tipiracil, daunorubicin, doxorubicin, epirubicin, idarubicin, valrubicin, bleomycin, dactinomycin, mitomycin-c, mitoxantrone, irinotecan, topotecan, etoposide, mitoxantrone, teniposide, cabazitaxel, docetaxel, paclitaxel, vinblastine, vincristine, vinorelbine, prednisone, methylprednisolone, dexamethasone, retinoic acid, arsenic trioxide, asparaginase, eribulin, hydroxyurea, ixabepilone, mitotane, omacetaxine, pegaspargase, procarbazine, romidepsin, and vorinostat.


Embodiment 295 is the linker polypeptide of any of the preceding embodiments, wherein a molecular weight of one or each of the first active domain and the second active domain independently is about or less than 14 kDa.


Embodiment 296 is the linker polypeptide of the immediately preceding embodiment, wherein the molecular weight is about 12 kDa to about 14 kDa.


Embodiment 297 is the linker polypeptide of embodiment 295, wherein the molecular weight is about 10 kDa to about 12 kDa.


Embodiment 298 is the linker polypeptide of embodiment 295, wherein the molecular weight is about 8 kDa to about 10 kDa.


Embodiment 299 is the linker polypeptide of embodiment 295, wherein the molecular weight is about 6 kDa to about 8 kDa.


Embodiment 300 is the linker polypeptide of embodiment 295, wherein the molecular weight is about 4 kDa to about 6 kDa.


Embodiment 301 is the linker polypeptide of embodiment 295, wherein the molecular weight is about 2 kDa to about 4 kDa.


Embodiment 302 is the linker polypeptide of embodiment 295, wherein the molecular weight is about 800 Da to about 2 kDa.


Embodiment 303 is the linker polypeptide of any of embodiments 1-294, wherein a molecular weight of one or each of the first active domain and the second active domain independently is about or greater than 16 kDa.


Embodiment 304 is the linker polypeptide of the immediately preceding embodiment, wherein the molecular weight is about 16 kDa to about 18 kDa.


Embodiment 305 is the linker polypeptide of embodiment 303, wherein the molecular weight is about 18 kDa to about 20 kDa.


Embodiment 306 is the linker polypeptide of embodiment 303, wherein the molecular weight is about 20 kDa to about 22 kDa.


Embodiment 307 is the linker polypeptide of embodiment 303, wherein the molecular weight is about 22 kDa to about 24 kDa.


Embodiment 308 is the linker polypeptide of embodiment 303, wherein the molecular weight is about 24 kDa to about 26 kDa.


Embodiment 309 is the linker polypeptide of embodiment 303, wherein the molecular weight is about 26 kDa to about 28 kDa.


Embodiment 310 is the linker polypeptide of embodiment 303, wherein the molecular weight is about 28 kDa to about 30 kDa.


Embodiment 311 is the linker polypeptide of embodiment 303, wherein the molecular weight is about 30 kDa to about 50 kDa.


Embodiment 312 is the linker polypeptide of embodiment 303, wherein the molecular weight is about 50 kDa to about 100 kDa.


Embodiment 313 is the linker polypeptide of embodiment 303, wherein the molecular weight is about 100 kDa to about 150 kDa.


Embodiment 314 is the linker polypeptide of embodiment 303, wherein the molecular weight is about 150 kDa to about 200 kDa.


Embodiment 315 is the linker polypeptide of embodiment 303, wherein the molecular weight is about 200 kDa to about 250 kDa.


Embodiment 316 is the linker polypeptide of embodiment 303, wherein the molecular weight is about 250 kDa to about 300 kDa.


Embodiment 317 is the linker polypeptide of any one of the preceding embodiments, comprising a combined targeting sequence and protease cleavable sequence, wherein the combined targeting sequence and protease cleavable sequence is any one of SEQ ID NOs: 667-673.


Embodiment 318 is a linker polypeptide comprising an amino acid sequence having at least 80, 85, 90, 95, 97, 98, or 99 percent identity to the sequence of any one of SEQ ID NOs: 800-848 or 1024-1041.


Embodiment 319 is the linker polypeptide of the immediately preceding embodiment, comprising the sequence of any one of SEQ ID NOs: 800-848 or 1024-1041.


Embodiment 320 is a pharmaceutical composition comprising the linker polypeptide of any one of the preceding embodiments.


Embodiment 321 is the linker polypeptide or pharmaceutical composition of any one of the preceding embodiments, for use in therapy.


Embodiment 322 is the linker polypeptide or pharmaceutical composition of any one of the preceding embodiments, for use in treating a cancer.


Embodiment 323 is a method of treating a cancer, comprising administering the linker polypeptide or pharmaceutical composition of any one of the preceding embodiments to a subject in need thereof.


Embodiment 324 is use of the linker polypeptide or pharmaceutical composition of any one of embodiments 1-321 for the manufacture of a medicament for treating cancer.


Embodiment 325 is the method, use, or linker polypeptide for use of any one of embodiments 322-324, wherein the cancer is a solid tumor.


Embodiment 326 is the method, use, or linker polypeptide for use of the immediately preceding embodiment, wherein the solid tumor is metastatic and/or unresectable.


Embodiment 327 is the method, use, or linker polypeptide for use of any one of embodiments 322-326, wherein the cancer is a PD-L1-expressing cancer.


Embodiment 328 is the method, use, or linker polypeptide for use of any one of embodiments 322-327, wherein the cancer is a melanoma, a colorectal cancer, a breast cancer, a pancreatic cancer, a lung cancer, a prostate cancer, an ovarian cancer, a cervical cancer, a gastric or gastrointestinal cancer, a lymphoma, a colon or colorectal cancer, an endometrial cancer, a thyroid cancer, or a bladder cancer.


Embodiment 329 is the method, use, or linker polypeptide for use of any one of embodiments 322-328, wherein the cancer is a microsatellite instability-high cancer.


Embodiment 330 is the method, use, or linker polypeptide for use of any one of embodiments 322-329, wherein the cancer is mismatch repair deficient.


Embodiment 331 is a nucleic acid encoding the linker polypeptide of any one of embodiments 1-319.


Embodiment 332 is an expression vector comprising the nucleic acid of the immediately preceding embodiment.


Embodiment 333 is a host cell comprising the nucleic acid of embodiment 331 or the vector of embodiment 332.


Embodiment 334 is a method of producing a linker polypeptide, comprising culturing the host cell of the immediately preceding embodiment under conditions wherein the linker polypeptide is produced.


Embodiment 335 is the method of the immediately preceding embodiment, further comprising isolating the linker polypeptide.





FIGURE LEGENDS


FIG. 1A shows an illustration of a structure of an exemplary linker polypeptide and an SDS-PAGE gel (with Coomassie stain) characterizing multiple purified linker polypeptides.



FIGS. 1B-1C each shows SDS-PAGE gels (with Coomassie stain) characterizing multiple purified linker polypeptides.



FIG. 1D shows an illustration of another exemplary linker polypeptide structure and an SDS-PAGE gel (with Coomassie stain) characterizing multiple purified linker polypeptides.



FIGS. 2A-2F each show one or more SDS-PAGE gels followed by immunoblotting characterizing multiple linker polypeptides, with and without treatment with matrix metallopeptidase 9 (MMP9).



FIGS. 3A-3BB each show the results of an HEK Blue IL-2 assay that measured IL-2 and IL-15 activity of a specific linker polypeptide, with and without treatment with an MMP.



FIG. 4A shows an illustration of structures of different MMP linker peptides in linker polypeptides, in particular linker peptides that bind heparin.



FIG. 4B shows the results of assays that measured binding of the linker peptides of FIG. 4A to heparin.



FIG. 4C shows an illustration of structures of different MMP linker peptides in linker polypeptides, in particular linker peptides that bind fibronectin, and also shows the results of assays that measured binding of the linker peptides to fibronectin.



FIG. 4D shows an illustration of structures of different MMP linker peptides in linker polypeptides, in particular linker peptides that bind collagen, and also shows the results of assays that measured binding of the linker peptides to collagen.



FIG. 4E shows an illustration of structures of different linker polypeptides, and also shows the results of assays that measured binding to heparin by the linker polypeptides.



FIG. 4F shows the results of assays that measured binding to heparin by different linker polypeptides, including those that share the same heparin binding motif as the linker polypeptide Construct CC in FIG. 4E. The asterisk (*) denotes that for Construct NN, software was unable to compute the EC50 based on fit; however, the Construct NN binding curve mimicked the Construct CC binding profile.



FIG. 4G shows the results of assays that measured binding to heparin by different linker polypeptides, including those that share the same heparin binding motif as the linker polypeptide Construct CC in FIG. 4E.



FIG. 4H shows the results of assays that measured binding to heparin by different linker polypeptides, including those that share the same heparin binding motif as the linker polypeptide Construct Y in FIG. 4E.



FIG. 4I shows the results of assays that measured binding to heparin by different linker polypeptides, including those that share the same heparin binding motif as the linker polypeptide Construct Y in FIG. 4E.



FIG. 4J shows the results of assays that measured binding to heparin by different IL-15Ra-IL-15 linker polypeptides.



FIG. 4K shows the results of assays that measured binding to fibronectin by different linker polypeptides.



FIG. 4L shows the results of a pulldown assay that measured binding to collagen by different linker polypeptides.



FIG. 4M shows the results of assays that measured binding to heparin by different linker polypeptides, with or without heparin binding sites.



FIG. 5A shows the results of real-time whole-body imaging for measuring in vivo levels of IL-2 fusion proteins in tumors, using fluorescently labelled proteins. FIG. 5B shows the levels of fusion proteins in FIG. 5A.



FIG. 6 shows the measurements of tumor volumes in C57BL/6 mice inoculated with B16F10 melanoma cells and treated with different linker polypeptides, and also shows a schematic drawing ranking the anti-tumor activity of the different linker polypeptides.



FIGS. 7A-7D respectively show the results of assays measuring levels of full-length fusion proteins in tumors (FIG. 7A), levels of IL-2 in tumors (FIG. 7B), levels of IFN-γ in tumors (FIG. 7C), and levels of full-length fusion proteins in serum (FIG. 7D).



FIGS. 8A-8B respectively show the results of assays measuring serum levels of TNF-α (FIG. 8A) and IL-6 (FIG. 8B) after animals were treated with different linker polypeptides.



FIG. 8C shows the results of an AST activity assay after animals were treated with different linker polypeptides.



FIGS. 9A-9D each illustrate a linker polypeptide according to certain embodiments of the disclosure. (AD, active domain; PM, pharmacokinetic modulator; CL, protease-cleavable polypeptide sequence and optionally a targeting sequence; IBD, immunoglobulin antigen-binding domain; D, chemotherapy drug.)



FIGS. 10A-10B each illustrate a linker polypeptide according to certain embodiments of the disclosure. (AD, active domain; PM, pharmacokinetic modulator; CL, protease-cleavable polypeptide sequence and optionally a targeting sequence; IBD, immunoglobulin antigen-binding domain; RBD, receptor-binding domain; CY, cytokine polypeptide sequence.)



FIGS. 11A-11B each illustrate release of the first active domain from the remainder of the linker polypeptide after the one or more protease-cleavable polypeptide sequences are cleaved. (AD, active domain; PM, pharmacokinetic modulator; CL, protease-cleavable polypeptide sequence and optionally a targeting sequence; IBD, immunoglobulin antigen-binding domain; D, chemotherapy drug.)



FIGS. 12A-12B each illustrate release of the first active domain from the remainder of the linker polypeptide after the one or more protease-cleavable polypeptide sequences are cleaved. (AD, active domain; PM, pharmacokinetic modulator; CL, protease-cleavable polypeptide sequence and optionally a targeting sequence; IBD, immunoglobulin antigen-binding domain; RBD, receptor-binding domain; CY, cytokine polypeptide sequence.)



FIGS. 13A-13C show the effects on tumor xenografts by treatment of different fusion proteins. Mean tumor volume is shown in FIGS. 13A-13B, and inhibition of tumor volume is shown in FIG. 13C.



FIG. 13D shows levels of IFN-7 in mice having tumor xenografts and treated with different fusion proteins.



FIGS. 14A-14E show results from flow cytometric analyses for select immune cell populations within harvested tumors in a mouse syngeneic model.



FIG. 15A shows schematics of asymmetrical IL-2 Fc fusion proteins containing ECM targeting sequences and single or dual masks.



FIG. 15B shows results of an SDS-PAGE analysis of asymmetrical IL-2 Fc fusion proteins.



FIGS. 15C-15U each show the results of an HEK Blue IL-2 assay that measured IL-2 activity of a specific asymmetrical IL-2 Fc fusion protein, with and without treatment with an MMP.



FIGS. 15V-15X show results from assays that measured binding to heparin and fibronectin by different asymmetrical IL-2 Fc fusion proteins, with or without heparin or fibronectin binding sites.



FIG. 15Y shows results from assays that measured binding to collagen by different asymmetrical IL-2 Fc fusion proteins, with or without a collagen binding site.





DETAILED DESCRIPTION OF CERTAIN EMBODIMENTS

This specification describes exemplary embodiments and applications of the disclosure. The disclosure, however, is not limited to these exemplary embodiments and applications or to the manner in which the exemplary embodiments and applications operate or are described herein. The term “or” is used in an inclusive sense, i.e., equivalent to “and/or,” unless the context dictates otherwise. It is noted that, as used in this specification and the appended claims, the singular forms “a,” “an,” and “the,” and any singular use of any word, include plural referents unless expressly and unequivocally limited to one referent. As used herein, the terms “comprise,” “include,” and grammatical variants thereof are intended to be non-limiting, such that recitation of items in a list is not to the exclusion of other like items that can be substituted or added to the listed items. Section divisions in the specification are provided for the convenience of the reader only and do not limit any combination of elements discussed. In case of any contradiction or conflict between material incorporated by reference and the expressly described content provided herein, the expressly described content controls.


Overview

Provided herein are linker polypeptides comprising a first targeting sequence; a second targeting sequence; and a first linker between the first targeting sequence and the second targeting sequence, the linker comprising a protease-cleavable polypeptide sequence. In some embodiments, the linker polypeptide comprises a first active domain; a second active domain; a pharmacokinetic modulator; and a first linker between the pharmacokinetic modulator and the first active domain, the first linker comprising a protease-cleavable polypeptide sequence. In some embodiments, the linker polypeptide comprises a first active domain; an inhibitory polypeptide sequence capable of blocking an activity of the first active domain; a first linker between the first active domain and the inhibitory polypeptide sequence, the linker comprising a protease-cleavable polypeptide sequence; and a first targeting sequence.


Proteolysis of the protease-cleavable polypeptide sequence can release the first and/or second binding domain, so that it can, for example, neutralize a tumor antigen and/or activate immune cells. Additionally, in some embodiments, each of the active domains can bind growth factor to reduce the extent to which the growth factor exerts an activity in vivo, such as stimulating cancer cell growth.


In some embodiments, the protease-cleavable polypeptide sequence is cleavable by a protease expressed at higher levels in the tumor microenvironment (TME) than in healthy tissue of the same type. In some embodiments, the protease-cleavable polypeptide sequence is a matrix metalloprotease (MMP)-cleavable linker, such as any of the MMP-cleavable linkers described herein. Without wishing to be bound by any particular theory, increased expression and/or activation of proteases, including but not necessarily limited to MMPs, in the tumor microenvironment (TME) can provide a mechanism for achieving selective or preferential activation of the linker polypeptide at or near a tumor site. Certain protease-cleavable polypeptide sequences described herein are considered particularly suitable for achieving such selective or preferential activation.


In other embodiments, the first and/or second targeting sequence binds an extracellular matrix component, an integrin, or a syndecan, or is configured to bind fibronectin in a pH-sensitive manner. In some embodiments, the targeting sequence is a targeting sequence described herein, e.g., a targeting sequence configured to bind an extracellular matrix component, heparin, an integrin, or a syndecan; or configured to bind an extracellular matrix component, heparin, IgB (CD79b), an integrin, a cadherin, a heparan sulfate proteoglycan, a syndecan, or a fibronectin in a pH-sensitive manner; or a targeting sequence comprising the sequence of any one of SEQ ID NOs: 179-665. The targeting sequence can facilitate accumulation and/or increased residence time of the linker polypeptide and/or the released active domain in the extracellular matrix (ECM). In some embodiments, a targeting sequence is combined with a protease-cleavable polypeptide sequence expressed at higher levels in the TME and/or cleavable by an MMP.


In some embodiments, the pharmacokinetic modulator may, for example, extend the half-life of the linker polypeptide.


Sequences of exemplary components of linker polypeptides are shown in Tables 1 and 2. In Table 1, “XHy” designates a hydrophobic amino acid residue. In some embodiments, the hydrophobic amino acid residue is any one of glycine (Gly), alanine (Ala), valine (Val), leucine (Leu), isoleucine (Ile), proline (Pro), phenylalanine (Phe), methionine (Met), and tryptophan (Trp). In some embodiments, the hydrophobic amino acid residue is any one of Ala, Leu, Val, Ile, Pro, Phe, Met, and Trp. In some embodiments, the hydrophobic amino acid residue is any one of Leu, Val, Ile, Pro, Phe, Met, and Trp. In some embodiments, the hydrophobic amino acid residue is any one of Ala, Leu, Val, Ile, Phe, Met, and Trp. In some embodiments, the hydrophobic amino acid residue is any one of Leu, Val, Ile, Phe, Met, and Trp. “(Pip)” represents piperidine. “(Hof)” represents homophenylalanine. “(Cit)” represents citrulline. “(Et)” represents ethionine. “C(me)” represents methylcysteine. In certain sequences, underlining is used to indicate mutated positions.


This disclosure further provides uses of these linker polypeptides, e.g., for treating cancer. In some embodiments, the linker polypeptide is selectively or preferentially cleaved in the tumor microenvironment, which may result in beneficial effects, e.g., improved recruitment and/or activation of immune cells in the vicinity of the tumor, and/or reduced systemic exposure to certain components of the linker polypeptides.









TABLE 1







Table of Sequences of Linker Polypeptides and Components Thereof












SEQ







ID







NO
Description
Sequence
Species
Function
Notes










IL-2 sequences












   1
h IL-2
APTSSSTKKTQLQLEHLLLDLQMILNGINNYKNPKLTRMLTFKFYMPKKATE
human
cytokine
wild-type




LKHLQCLEEELKPLEEVLNLAQSKNFHLRPRDLISNINVIVLELKGSETTFM







CEYADETATIVEFLNRWITFCQSIISTLT








   2
h IL-2
APTSSSTKKTQLQLEHLLLDLQMILNGINNYKNPKLTRMLTFKFYMPKKATE
human
cytokine
C125 to S



(C125S)
LKHLQCLEEELKPLEEVLNLAQSKNFHLRPRDLISNINVIVLELKGSETTFM


mutation




CEYADETATIVEFLNRWITFSQSIISTLT








   3
m IL-2
APTSSSTSSSTAEAQQQQQQQQQQQQHLEQLLMDLQELLSRMENYRNLKLPR
mouse
cytokine
wild-type




MLTFKFYLPKQATELKDLQCLEDELGPLRHVLDLTQSKSFQLEDAENFISNI







RVTVVKLKGSDNTFECQFDDESATVVDFLRRWIAFCQSIISTSPQ








   4
m IL-2
APTSSSTSSSTAEAQQQQQQQQQQQQHLEQLLMDLQELLSRMENYRNLKLPR
mouse
cytokine
C140 to S



(C140S)
MLTFKFYLPKQATELKDLQCLEDELGPLRHVLDLTQSKSFQLEDAENFISNI


mutation




RVTVVKLKGSDNTFECQFDDESATVVDFLRRWIAFSQSIISTSPQ








5-9
Not Used














IL-10 sequences












 900
IL-10
SPGQGTQSENSCTHFPGNLPNMLRDLRDAFSRVKTFFQMKDQLDNLLLKESL
human
cytokine
wild-type




LEDFKGYLGCQALSEMIQFYLEEVMPQAENQDPDIKAHVNSLGENLKTLRLR







LRRCHRFLPCENKSKAVEQVKNAFNKLQEKGIYKAMSEFDIFINYIEAYMTM







KIRN













IL-15 sequences












 901
IL-15
NWVNVISDLKKIEDLIQSMHIDATLYTESDVHPSCKVTAMKCFLLELQVISL
human
cytokine
wild-type




ESGDASIHDTVENLIILANNSLSSNGNVTESGCKECEELEEKNIKEFLQSFV







HIVQMFINTS













CXCL9 sequences












 902
CXCL9
TPVVRKGRCSCISTNQGTIHLQSLKDLKQFAPSPSCEKIEIIATLKNGVQTC
human
chemokine
wild-type




LNPDSADVKELIKKWEKQVSQKKKQKNGKKHQKKKVLKVRKSQRSRQKKTT













CXCL10 sequences












 903
CXCL10
VPLSRTVRCTCISISNQPVNPRSLEKLEIIPASQFCPRVEIIATMKKKGEKR
human
chemokine
wild-type




CLNPESKAIKNLLKAVSKERSKRSP













TGF-β sequences












 904
hu TGFb 1
LSTCKTIDMELVKRKRIEAIRGQILSKLRLASPPSQGEVPPGPLPEAVLALY
human
cytokine
wild-type




NSTRDRVAGESAEPEPEPEADYYAKEVTRVLMVETHNEIYDKFKQSTHSIYM


ligand




FFNTSELREAVPEPVLLSRAELRLLRLKLKVEQHVELYQKYSNNSWRYLSNR







LLAPSDSPEWLSFDVTGVVRQWLSRGGEIEGFRLSAHCSCDSRDNTLQVDIN







GFTTGRRGDLATIHGMNRPFLLLMATPLERAQHLQSSRHRRALDTNYCFSST







EKNCCVRQLYIDFRKDLGWKWIHEPKGYHANFCLGPCPYIWSLDTQYSKVLA







LYNQHNPGASAAPCCVPQALEPLPIVYYVGRKPKVEQLSNMIVRSCKCS








 905
hu TGFb 2
LSTCSTLDMDQFMRKRIEAIRGQILSKLKLTSPPEDYPEPEEVPPEVISIYN
human
cytokine
wild-type




STRDLLQEKASRRAAACERERSDEEYYAKEVYKIDMPPFFPSENAIPPTFYR


ligand




PYFRIVRFDVSAMEKNASNLVKAEFRVFRLQNPKARVPEQRIELYQILKSKD







LTSPTQRYIDSKVVKTRAEGEWLSFDVTDAVHEWLHHKDRNLGFKISLHCPC







CTFVPSNNYIIPNKSEELEARFAGIDGTSTYTSGDQKTIKSTRKKNSGKTPH







LLLMLLPSYRLESQQTNRRKKRALDAAYCFRNVQDNCCLRPLYIDFKRDLGW







KWIHEPKGYNANFCAGACPYLWSSDTQHSRVLSLYNTINPEASASPCCVSQD







LEPLTILYYIGKTPKIEQLSNMIVKSCKCS








 906
hu TGFb 3
LSTCTTLDFGHIKKKRVEAIRGQILSKLRLTSPPEPTVMTHVPYQVLALYNS
human
cytokine
wild-type




TRELLEEMHGEREEGCTQENTESEYYAKEIHKFDMIQGLAEHNELAVCPKGI


ligand




TSKVFRFNVSSVEKNRTNLFRAEFRVLRVPNPSSKRNEQRIELFQILRPDEH







IAKQRYIGGKNLPTRGTAEWLSFDVTDTVREWLLRRESNLGLEISIHCPCHT







FQPNGDILENIHEVMEIKFKGVDNEDDHGRGDLGRLKKQKDHHNPHLILMMI







PPHRLDNPGQGGQRKKRALDTNYCFRNLEENCCVRPLYIDFRQDLGWKWVHE







PKGYYANFCSGPCPYLRSADTTHSTVLGLYNTLNPEASASPCCVPQDLEPLT







ILYYVGRTPKVEQLSNMVVKSCKCS













Immunoglobulin sequences












 907
Trastuzumab
DIQMTQSPSSLSASVGDRVTITCRASQDVNTAVAWYQQKPGKAPKLLIYSAS
human-
bio-
anti-Her2



light chain
FLYSGVPSRFSGSRSGTDFTLTISSLQPEDFATYYCQQHYTTPPTFGQGTKV
ized
logic





EIKRTVAAPSVFIFPPSDEQLKSGTASVVCLLNNFYPREAKVQWKVDNALQS







GNSQESVTEQDSKDSTYSLSSTLTLSKADYEKHKVYACEVTHQGLSSPVTKS







FNRGEC








 908
Trastuzumab
EVQLVESGGGLVQPGGSLRLSCAASGFNIKDTYIHWVRQAPGKGLEWVARIY
human-
bio-
anti-Her2



heavy chain
PTNGYTRYADSVKGRFTISADTSKNTAYLQMNSLRAEDTAVYYCSRWGGDGF
ized
logic





YAMDYWGQGTLVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEP







VTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHK







PSNTKVDKKVEPKSCDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTP







EVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVL







HQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSREEMTKN







QVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVD







KSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK








 909
Trastuzumab
DIQMTQSPSSLSASVGDRVTITCRASQDVNTAVAWYQQKPGKAPKLLIYSAS
human-
bio-
anti-Her2



VL
FLYSGVPSRFSGSRSGTDFTLTISSLQPEDFATYYCQQHYTTPPTFGQGTKV
ized
logic





EIK








 910
Trastuzumab
EVQLVESGGGLVQPGGSLRLSCAASGFNIKDTYIHWVRQAPGKGLEWVARIY
human-
bio-
anti-Her2



VH
PTNGYTRYADSVKGRFTISADTSKNTAYLQMNSLRAEDTAVYYCSRWGGDGF
ized
logic





YAMDYWGQGTLVTVSS








 911
Cetuximab
DILLTQSPVILSVSPGERVSFSCRASQSIGTNIHWYQQRTNGSPRLLIKYAS
chimeric
bio-
anti-EGFR



light chain
ESISGIPSRFSGSGSGTDFTLSINSVESEDIADYYCQQNNNWPTTFGAGTKL
(mouse/
logic





ELKRTVAAPSVFIFPPSDEQLKSGTASVVCLLNNFYPREAKVQWKVDNALQS
human)






GNSQESVTEQDSKDSTYSLSSTLTLSKADYEKHKVYACEVTHQGLSSPVTKS







FNRGEC








 912
Cetuximab
QVQLKQSGPGLVQPSQSLSITCTVSGFSLTNYGVHWVRQSPGKGLEWLGVIW
chimeric
bio-
anti-EGFR



heavy chain
SGGNTDYNTPFTSRLSINKDNSKSQVFFKMNSLQSNDTAIYYCARALTYYDY
(mouse/
logic





EFAYWGQGTLVTVSAASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPV
human)






TVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKP







SNTKVDKKVEPKSCDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPE







VTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLH







QDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSRDELTKNQ







VSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDK







SRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK








 913
Cetuximab
DILLTQSPVILSVSPGERVSFSCRASQSIGTNIHWYQQRINGSPRLLIKYAS
chimeric
bio-
anti-EGFR



VL
ESISGIPSRFSGSGSGTDFILSINSVESEDIADYYCQQNNNWPTTFGAGTKL
(mouse/
logic





ELK
human)







 914
Cetuximab
QVQLKQSGPGLVQPSQSLSITCTVSGFSLTNYGVHWVRQSPGKGLEWLGVIW
chimeric
bio-
anti-EGFR



VH
SGGNTDYNTPFTSRLSINKDNSKSQVFFKMNSLQSNDTAIYYCARALTYYDY
(mouse/
logic





EFAYWGQGTLVTVS
human)







 915
Nivolumab
QVQLVESGGGVVQPGRSLRLDCKASGITFSNSGMHWVRQAPGKGLEWVAVIW
human
bio-
anti-PD-1



heavy chain
YDGSKRYYADSVKGRFTISRDNSKNTLFLQMNSLRAEDTAVYYCATNDDYWG

logic





QGTLVTVSSASTKGPSVFPLAPCSRSTSESTAALGCLVKDYFPEPVTVSWNS







GALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTKTYTCNVDHKPSNTKVD







KRVESKYGPPCPPCPAPEFLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVS







QEDPEVQFNWYVDGVEVHNAKTKPREEQFNSTYRVVSVLTVLHQDWLNGKEY







KCKVSNKGLPSSIEKTISKAKGQPREPQVYTLPPSQEEMTKNQVSLTCLVKG







FYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSRLTVDKSRWQEGNVF







SCSVMHEALHNHYTQKSLSLSLGK








 916
Nivolumab
EIVLTQSPAILSLSPGERATLSCRASQSVSSYLAWYQQKPGQAPRLLIYDAS
human
bio-
anti-PD-1



light chain
NRATGIPARFSGSGSGTDFTLTISSLEPEDFAVYYCQQSSNWPRTFGQGTKV

logic





EIKRTVAAPSVFIFPPSDEQLKSGTASVVCLLNNFYPREAKVQWKVDNALQS







GNSQESVTEQDSKDSTYSLSSTLTLSKADYEKHKVYACEVTHQGLSSPVIKS







FNRGEC








 917
Nivolumab
QVQLVESGGGVVQPGRSLRLDCKASGITFSNSGMHWVRQAPGKGLEWVAVIW
human
bio-
anti-PD-1



VH
YDGSKRYYADSVKGRFTISRDNSKNTLFLQMNSLRAEDTAVYYCAINDDYWG

logic





QGTLVTVSS








 918
Nivolumab
EIVLIQSPATLSLSPGERATLSCRASQSVSSYLAWYQQKPGQAPRLLIYDAS
human
bio-
anti-PD-1



VL
NRATGIPARFSGSGSGTDFTLTISSLEPEDFAVYYCQQSSNWPRTFGQGTKV

logic





EIK








 919
atezolizumab
EVQLVESGGGLVQPGGSLRLSCAASGFTFSDSWIHWVRQAPGKGLEWVAWIS
human-
bio-
anti-PD-L1



heavy chain
PYGGSTYYADSVKGRFTISADTSKNTAYLQMNSLRAEDTAVYYCARRHWPGG
ized
logic





FDYWGQGTLVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVT







VSWNSGALISGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPS







NTKVDKKVEPKSCDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEV







TCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYASTYRVVSVLTVLHQ







DWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQV







SLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKS







RWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK








 920
atezolizumab
DIQMTQSPSSLSASVGDRVTITCRASQDVSTAVAWYQQKPGKAPKLLIYSAS
human-
bio-
anti-PD-L1



light chain
FLYSGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQYLYHPATFGQGTKV
ized
logic





EIKRTVAAPSVFIFPPSDEQLKSGTASVVCLLNNFYPREAKVQWKVDNALQS







GNSQESVTEQDSKDSTYSLSSTLTLSKADYEKHKVYACEVTHQGLSSPVTKS







FNRGEC








 921
atezolizumab
EVQLVESGGGLVQPGGSLRLSCAASGFTFSDSWIHWVRQAPGKGLEWVAWIS
human-
bio-
anti-PD-L1



VH
PYGGSTYYADSVKGRFTISADTSKNTAYLQMNSLRAEDTAVYYCARRHWPGG
ized
logic





FDYWGQGTLVTVSS








 922
atezolizumab
DIQMTQSPSSLSASVGDRVTITCRASQDVSTAVAWYQQKPGKAPKLLIYSAS
human-
bio-
anti-PD-L1



VL
FLYSGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQYLYHPATFGQGTKV
ized
logic





EIK








 923
Teplizumab
QVQLVQSGGGVVQPGRSLRLSCKASGYTFTRYTMHWVRQAPGKGLEWIGYIN
human-
bio-
anti-CD3



heavy chain
PSRGYTNYNQKVKDRFTISRDNSKNTAFLQMDSLRPEDTGVYFCARYYDDHY
ized
logic





CLDYWGQGTPVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPV







TVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKP







SNTKVDKKVEPKSCDKTHTCPPCPAPEAAGGPSVFLFPPKPKDTLMISRTPE







VTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLH







QDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSRDELTKNQ







VSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDK







SRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK








 924
Teplizumab
DIQMTQSPSSLSASVGDRVTITCSASSSVSYMNWYQQTPGKAPKRWIYDTSK
human-
bio-
anti-CD3



light chain
LASGVPSRFSGSGSGTDYTFTISSLQPEDIATYYCQQWSSNPFTFGQGTKLQ
ized
logic





ITRTVAAPSVFIFPPSDEQLKSGTASVVCLLNNFYPREAKVQWKVDNALQSG







NSQESVTEQDSKDSTYSLSSTLTLSKADYEKHKVYACEVTHQGLSSPVTKSF







NRGEC








 925
Teplizumab
QVQLVQSGGGVVQPGRSLRLSCKASGYTFTRYTMHWVRQAPGKGLEWIGYIN
human-
bio-
anti-CD3



VH
PSRGYTNYNQKVKDRFTISRDNSKNTAFLQMDSLRPEDTGVYFCARYYDDHY
ized
logic





CLDYWGQGTPVTVSS








 926
Teplizumab
DIQMTQSPSSLSASVGDRVTITCSASSSVSYMNWYQQTPGKAPKRWIYDTSK
human-
bio-
anti-CD3



VL
LASGVPSRFSGSGSGTDYTFTISSLQPEDIATYYCQQWSSNPFTFGQGTKLQ
ized
logic





IT








 927
muromonab
QVQLQQSGAELARPGASVKMSCKASGYTFTRYTMHWVKQRPGQGLEWIGYIN
mouse
bio-
anti-CD3



heavy chain
PSRGYTNYNQKFKDKATLTTDKSSSTAYMQLSSLTSEDSAVYYCARYYDDHY

logic





CLDYWGQGTTLTVSSAKTTAPSVYPLAPVCGGTTGSSVTLGCLVKGYFPEPV







TLTWNSGSLSSGVHTFPAVLQSDLYTLSSSVTVTSSTWPSQSITCNVAHPAS







STKVDKKIEPRPKSCDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTP







EVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVL







HQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSRDELTKN







QVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVD







KSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK








 928
muromonab
QIVLTQSPAIMSASPGEKVTMTCSASSSVSYMNWYQQKSGTSPKRWIYDTSK
mouse
bio-
anti-CD3



light chain
LASGVPAHFRGSGSGTSYSLTISGMEAEDAATYYCQQWSSNPFTFGSGTKLE

logic





INRADTAPTVSIFPPSSEQLTSGGASVVCFLNNFYPKDINVKWKIDGSERQN







GVLNSWTDQDSKDSTYSMSSTLTLTKDEYERHNSYTCEATHKTSTSPIVKSF







NRNEC








 929
muromonab
QVQLQQSGAELARPGASVKMSCKASGYTFTRYTMHWVKQRPGQGLEWIGYIN
mouse
bio-
anti-CD3



VH
PSRGYTNYNQKFKDKATLTTDKSSSTAYMQLSSLTSEDSAVYYCARYYDDHY

logic





CLDYWGQGTTLTVSS








 930
muromonab
QIVLTQSPAIMSASPGEKVTMTCSASSSVSYMNWYQQKSGTSPKRWIYDTSK
mouse
bio-
anti-CD3



VL
LASGVPAHFRGSGSGTSYSLTISGMEAEDAATYYCQQWSSNPFTFGSGTKLE

logic





IN








 931
otelixizumab
EVQLLESGGGLVQPGGSLRLSCAASGFTFSSFPMAWVRQAPGKGLEWVSTIS
chimeric
bio-
anti-CD3



heavy chain
TSGGRTYYRDSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAKFRQYSG
(mouse/
logic





GFDYWGQGTLVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPV
human)






TVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKP







SNTKVDKKVEPKSCDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPE







VTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYASTYRVVSVLTVLH







QDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSRDELTKNQ







VSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDK







SRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK








 932
otelixizumab
DIQLTQPNSVSTSLGSTVKLSCTLSSGNIENNYVHWYQLYEGRSPTTMIYDD
chimeric
bio-
anti-CD3



light chain
DKRPDGVPDRFSGSIDRSSNSAFLTIHNVAIEDEAIYFCHSYVSSFNVFGGG
(mouse/
logic





TKLTVLRQPKAAPSVTLFPPSSEELQANKATLVCLISDFYPGAVTVAWKADS
human)






SPVKAGVETTTPSKQSNNKYAASSYLSLTPEQWKSHRSYSCQVTHEGSTVEK







TVAPTECS








 933
otelixizumab
EVQLLESGGGLVQPGGSLRLSCAASGFTFSSFPMAWVRQAPGKGLEWVSTIS
chimeric
bio-
anti-CD3



VH
TSGGRTYYRDSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAKFRQYSG
(mouse/
logic





GFDYWGQGTLVTVSS
human)







 934
otelixizumab
DIQLTQPNSVSTSLGSTVKLSCTLSSGNIENNYVHWYQLYEGRSPTTMIYDD
chimeric
bio-
anti-CD3



VL
DKRPDGVPDRFSGSIDRSSNSAFLTIHNVAIEDEAIYFCHSYVSSFNVFGGG
(mouse/
logic





TKLTVLR
human)







 935
visilizumab
QVQLVQSGAEVKKPGASVKVSCKASGYTFISYTMHWVRQAPGQGLEWMGYIN
human-
bio-
anti-CD3



heavy chain
PRSGYTHYNQKLKDKATLTADKSASTAYMELSSLRSEDTAVYYCARSAYYDY
ized
logic





DGFAYWGQGTLVTVSSASTKGPSVFPLAPCSRSTSESTAALGCLVKDYFPEP







VTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSNFGTQTYTCNVDHK







PSNTKVDKTVERKCCVECPPCPAPPAAAPSVFLFPPKPKDTLMISRTPEVTC







VVVDVSHEDPEVQFNWYVDGVEVHNAKTKPREEQFNSTFRVVSVLTVVHQDW







LNGKEYKCKVSNKGLPAPIEKTISKTKGQPREPQVYTLPPSREEMTKNQVSL







TCLVKGFYPSDIAVEWESNGQPENNYKTTPPMLDSDGSFFLYSKLTVDKSRW







QQGNVFSCSVMHEALHNHYTQKSLSLSPSK








 936
visilizumab
DIQMTQSPSSLSASVGDRVTITCSASSSVSYMNWYQQKPGKAPKRLIYDTSK
human-
bio-
anti-CD3



light chain
LASGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQWSSNPPTFGGGTKVE
ized
logic





IKRTVAAPSVFIFPPSDEQLKSGTASVVCLLNNFYPREAKVQWKVDNALQSG







NSQESVTEQDSKDSTYSLSSTLTLSKADYEKHKVYACEVTHQGLSSPVTKSF







NRGEC








 937
visilizumab
QVQLVQSGAEVKKPGASVKVSCKASGYTFISYTMHWVRQAPGQGLEWMGYIN
human-
bio-
anti-CD3



VH
PRSGYTHYNQKLKDKATLTADKSASTAYMELSSLRSEDTAVYYCARSAYYDY
ized
logic





DGFAYWGQGTLVTVSS








 938
visilizumab
DIQMTQSPSSLSASVGDRVTITCSASSSVSYMNWYQQKPGKAPKRLIYDTSK
human-
bio-
anti-CD3



VL
LASGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQWSSNPPTFGGGTKVE
ized
logic





IKR













Blockers: IL-2R sequences












  10
h IL-2Ralpha
ELCDDDPPEIPHATFKAMAYKEGTMLNCECKRGFRRIKSGSLYMLCTGNSSH
human
blocker
wild-type




SSWDNQCQCTSSATRNTTKQVTPQPEEQKERKTTEMQSPMQPVDQASLPGHC


amino acids




REPPPWENEATERIYHFVVGQMVYYQCVQGYRALHRGPAESVCKMTHGKTRW


1-219




TQPQLICTGEMETSQFPGEEKPQASPEGRPESETSCLVTTTDFQIQTEMAAT







METSIFTTEYQ








  11
h IL-2Ralpha
ELCDDDPPEIPHATFKAMAYKEGTMLNCECKRGFRRIKSGSLYMLCTGNSSH
human
blocker
sushi domain



(1-63)
SSWDNQCQCTS


1 wild-type





  12
h IL-2Ralpha
ELCDDDPPEIPHATFKAMAYKEGTILNCECKRGFRRIKSGSLYMLCTGNSSH
human
blocker
M25 to I



(M25I)
SSWDNQCQCTSSATRNTTKQVTPQPEEQKERKTTEMQSPMQPVDQASLPGHC


mutation




REPPPWENEATERIYHFVVGQMVYYQCVQGYRALHRGPAESVCKMTHGKTRW







TQPQLICTGEMETSQFPGEEKPQASPEGRPESETSCLVTTTDFQIQTEMAAT







METSIFTTEYQ








  13
h IL-2Ralpha
ELCDDDPPEIPHATFKAMAYKEGTMLNCECKRGFRRIKSGSVYMLCTGNSSH
human
blocker
L42 to V



(L42V)
SSWDNQCQCTSSATRNTTKQVTPQPEEQKERKTTEMQSPMQPVDQASLPGHC


mutation




REPPPWENEATERIYHFVVGQMVYYQCVQGYRALHRGPAESVCKMTHGKTRW







TQPQLICTGEMETSQFPGEEKPQASPEGRPESETSCLVTTTDFQIQTEMAAT







METSIFTTEYQ








  14
h IL-2Ralpha
ELCDDDPPEIPHATFKAMAYKEGTILNCECKRGFRRIKSGSVYMLCTGNSSH
human
blocker
M25 to I



(M25I; L42V)
SSWDNQCQCTSSATRNTTKQVTPQPEEQKERKTTEMQSPMQPVDQASLPGHC


mutation;




REPPPWENEATERIYHFVVGQMVYYQCVQGYRALHRGPAESVCKMTHGKTRW


L42 to V




TQPQLICTGEMETSQFPGEEKPQASPEGRPESETSCLVTTTDFQIQTEMAAT


mutation




METSIFTTEYQ








  15
Human
LNTTILTPNGNEDTTADFFLTTMPTDSLSVSTLPLPEVQCFVFNVEYMNCTW
human
blocker




IL2Rgamma
NSSSEPQPTNLTLHYWYKNSDNDKVQKCSHYLFSEEITSGCQLQKKEIHLYQ






polypeptide
TFVVQLQDPREPRRQATQMLKLQNLVIPWAPENLTLHKLSESQLELNWNNRF






sequence
LNHCLEHLVQYRTDWDHSWTEQSVDYRHKFSLPSVDGQKRYTFRVRSRFNPL







CGSAQHWSEWSHPIHWGSNTSKENPFLFALEA








  16
Human
AVNGTSQFTCFYNSRANISCVWSQDGALQDTSCQVHAWPDRRRWNQTCELLP
human
blocker




IL2Rbeta
VSQASWACNLILGAPDSQKLTTVDIVTLRVLCREGVRWRVMAIQDFKPFENL






polypeptide
RLMAPISLQVVHVETHRCNISWEISQASHYFERHLEFEARTLSPGHTWEEAP






sequence
LLTLKQKQEWICLETLTPDTQYEFQVRVKPLQGEFTTWSPWSQPLAFRTKPA







ALGKDT








  17
chimeric IL-
ELCLYDPPEVPNATFKALSYKNGTILNCECKRGFRRLKELVYMRCLGNSWSS
human/
blocker
mouse



2Ralpha
NCQCTSSATRNTTKQVTPQPEEQKERKTTEMQSPMQPVDQASLPGHCREPPP
mouse

IL2Ralpha




WENEATERIYHFVVGQMVYYQCVQGYRALHRGPAESVCKMTHGKTRWTQPQL


(1-58)-hu




ICTGEMETSQFPGEEKPQASPEGRPESETSCLVTTTDFQIQTEMAATMETSI


IL2Ralpha




FTTEYQ


(64-219)





  18
m IL-2Ralpha
ELCLYDPPEVPNATFKALSYKNGTILNCECKRGFRRLKELVYMRCLGNSWSS
mouse
blocker
wild-type




NCQCTSNSHDKSRKQVTAQLEHQKEQQTTTDMQKPTQSMHQENLTGHCREPP


amino acids




PWKHEDSKRIYHFVEGQSVHYECIPGYKALQRGPAISICKMKCGKTGWTQPQ


1-215




LTCVDEREHHRFLASEESQGSRNSSPESETSCPITTTDFPQPTETTAMTETF







VLTMEYK








  19
m IL-2Ralpha
ELCLYDPPEVPNATFKALSYKNGTILNCECKRGFRRLKELVYMRCLGNSWSS
mouse
blocker
sushi domain



(1-58)
NCQCTS


1 wild-type





  20
h IL-2Ralpha
ELCLYDPPEIPHATFKAMAYKEGTILNCECKRGFRRIKSGSLYMLCTGNSSH
human
blocker
D4 to L



(1-219)
SSWDNQCQCTSSATRNTTKQVTPQPEEQKERKTTEMQSPMQPVDQASLPGHC


mutation; D5




REPPPWENEATERIYHFVVGQMVYYQCVQGYRALHRGPAESVCKMTHGKTRW


to Y



M25I/D4L/D5
TQPQLICTGEMETSQFPGEEKPQASPEGRPESETSCLVTTTDFQ


mutation;



Y
IQTEMAATMETSIFTTEYQ


M25 to I







mutation





  21
h IL-2Ralpha
ELCLYDPPEIPHATFKAMAYKEGTMLNCECKRGFRRIKSGSVYMLCTGNSSH
human
blocker
D4 to L



(1-219)
SSWDNQCQCTSSATRNTTKQVTPQPEEQKERKTTEMQSPMQPVDQASLPGHC


mutation; D5



L42V/D4L/D
REPPPWENEATERIYHFVVGQMVYYQCVQGYRALHRGPAESVCKMTHGKTRW


to Y



5Y
TQPQLICTGEMETSQFPGEEKPQASPEGRPESETSCLVTTTDFQ


mutation;




IQTEMAATMETSIFTTEYQ


L42 to V







mutation





  22
h IL-2Ralpha
ELCLYDPPEIPHATFKAMAYKEGTILNCECKRGFRRIKSGSVYMLCTGNSSH
human
blocker
D4 to L



(1-219)
SSWDNQCQCTSSATRNTTKQVTPQPEEQKERKTTEMQSPMQPVDQASLPGHC


mutation; D5



M25I/L42V/D
REPPPWENEATERIYHFVVGQMVYYQCVQGYRALHRGPAESVCKMTHGKTRW


to Y



4L/D5Y
TQPQLICTGEMETSQFPGEEKPQASPEGRPESETSCLVTTTDFQ


mutation;




IQTEMAATMETSIFTTEYQ


M25 to I







mutation;







L42 to V







mutation





  23
h IL-2Ralpha
ELCLYDPPEIPHATFKAMAYKEGTMLNCECKRGFRRIKSGSLYMLCTGNSSH
human
blocker
D4 to L



(1-
SSWDNQCQCTSSATRNTTKQVTPQPEEQKERKTTEMQSPMQPVDQASLPGHC


mutation; D5



219)D4L/D5
REPPPWENEATERIYHFVVGQMVYYQCVQGYRALHRGPAESVCKMTHGKTRW


to Y



Y
TQPQLICTGEMETSQFPGEEKPQASPEGRPESETSCLVTTTDFQ


mutation




IQTEMAATMETSIFTTEYQ








  24
h IL-2Ralpha
ELCDDDPPEIPHATFKAMAYKEGTMLNCECKRGFRRIKELVYMLCTGNSSHS
human
blocker
Wild-type



(1-219)
SWDNQCQCTSSATRNTTKQVTPQPEEQKERKTTEMQSPMQPVDQASLPGHCR


residues 39-



SGSL39-42
EPPPWENEATERIYHFVVGQMVYYQCVQGYRALHRGPAESVCKMTHGKTRWT


42 replaced



ELV
QPQLICTGEMETSQFPGEEKPQASPEGRPESETSCLVTTTDFQ


with ELV




IQTEMAATMETSIFTTEYQ








  25
h IL-2Ralpha
ELCDDDPPEIPHATFKAMAYKEGTMLNCECKRGFRRIKSGSLYMLCTGNSSH
human
blocker
Wild-type



(1-192)
SSWDNQCQCTSSATRNTTKQVTPQPEEQKERKTTEMQSPMQPVDQASLPGHC


amino acids




REPPPWENEATERIYHFVVGQMVYYQCVQGYRALHRGPAESVCKMTHGKTRW


1-192




TQPQLICTGEMETSQFPGEEKPQASPEGRPESETSC








  26
h IL-2Ralpha
ELCDDDPPEIPHATFKAMAYKEGTILNCECKRGFRRIKSGSLYMLCTGNSSH
human
blocker
M25 to I



(1-192)M25I
SSWDNQCQCTSSATRNTTKQVTPQPEEQKERKTTEMQSPMQPVDQASLPGHC


mutation




REPPPWENEATERIYHFVVGQMVYYQCVQGYRALHRGPAESVCKMTHGKTRW







TQPQLICTGEMETSQFPGEEKPQASPEGRPESETSC








  27
h IL-2Ralpha
ELCDDDPPEIPHATFKAMAYKEGTMLNCECKRGFRRIKSGSVYMLCTGNSSH
human
blocker
L42 to V



(1-192)L42V
SSWDNQCQCTSSATRNTTKQVTPQPEEQKERKTTEMQSPMQPVDQASLPGHC


mutation




REPPPWENEATERIYHFVVGQMVYYQCVQGYRALHRGPAESVCKMTHGKTRW







TQPQLICTGEMETSQFPGEEKPQASPEGRPESETSC








  28
h IL-2Ralpha
ELCLYDPPEIPHATFKAMAYKEGTMLNCECKRGFRRIKSGSLYMLCTGNSSH
human
blocker
D4 to L



(1-
SSWDNQCQCTSSATRNTTKQVTPQPEEQKERKTTEMQSPMQPVDQASLPGHC


mutation;



192)D4L/D5
REPPPWENEATERIYHFVVGQMVYYQCVQGYRALHRGPAESVCKMTHGKTRW


D5



Y
TQPQLICTGEMETSQFPGEEKPQASPEGRPESETSC


to Y







mutation





  29
h IL-2Ralpha
ELCDDDPPEIPHATFKAMAYKEGTMLNCECKRGFRRIKELVYMLCTGNSSHS
human
blocker
Wild-type



(1-192)
SWDNQCQCTSSATRNTTKQVTPQPEEQKERKTTEMQSPMQPVDQASLPGHCR


residues



SGSL39-42
EPPPWENEATERIYHFVVGQMVYYQCVQGYRALHRGPAESVCKMTHGKTRWT


39-42



ELV
QPQLICTGEMETSQFPGEEKPQASPEGRPESETSC


replaced







with ELV










IL-2 Blockers: anti-IL-2 sequences












  30
scFv2
QSVLTQPPSVSGAPGQRVTISCTGTSSNIGAHYDVHWYQQFPGTAPKRLIYG
human
blocker
wild-type




NNNRPSGVPARFSGSKSGTSASLAITGLQAEDEADYYCQSYDRSLRGWVFGG







GTKLTVLGEGKSSGSGSESKASEVQLVESGGGLVQPGRSLRLSCAASGFTFD







DYAMHWVRQAPGKGLEWVSGISWNSGSIGYADSVKGRFTISRDNSKNTLYLQ







MNSLRAEDTAVYYCAKDVNWNYGYYFDYWGQGTLVTVSS








  31
scFv2 (18mer
QSVLTQPPSVSGAPGQRVTISCTGTSSNIGAHYDVHWYQQFPGTAPKRLIYG
human
blocker
18 mer



linker)
NNNRPSGVPARFSGSKSGTSASLAITGLQAEDEADYYCQSYDRSLRGWVFGG


linker




GTKLTVLGGSTSGSGKPGSGEGSTKGEVQLVESGGGLVQPGRSLRLSCAASG


between VL




FTFDDYAMHWVRQAPGKGLEWVSGISWNSGSIGYADSVKGRFTISRDNSKNT


and VH




LYLQMNSLRAEDTAVYYCAKDVNWNYGYYFDYWGQGTLVTVSS








  32
VL region of
QSVLTQPPSVSGAPGQRVTISCTGTSSNIGAHYDVHWYQQFPGTAPKRLIYG
human
blocker
wild-type



scFv2
NNNRPSGVPARFSGSKSGTSASLAITGLQAEDEADYYCQSYDRSLRGWVFGG







GTKLTVLG








  33
VH region of
EVQLVESGGGLVQPGRSLRLSCAASGFTFDDYAMHWVRQAPGKGLEWVSGIS
human
blocker
wild-type



scFv2
WNSGSIGYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAKDVNWNY







GYYFDYWGQGTLVTVSS








  34
scFv2 VL
TGTSSNIGAHYDVH






HVR1









  35
scFv2 VL
GNNNRPS






HVR2









  36
scFv2 VL
QSYDRSLRGWV






HVR3









  37
scFv2 VH
DDYAMH






HVR1









  38
scFv2 VH
GISWNSGSIGYADSVKG






HVR2









  39
scFv2 VH
KDVNWNYGYYFDY






HVR3









 747
scFv183
DIVMTQSPDSLAVSLGERATINCKSSQSVLYSNNNKNYLAWYQQKPGQPPKL
human
blocker
linker




LIYGASTRESWVPDRFSGSGSGTDFTLTISSLQAEDVAVYYCQQWYYYPYTF


between




GQGTKVEIKGGGGSGGGGSGGGSGGGGSEVQLLESGGGLVQPGGSLRLSCAA


VL




SGFTFSSYYMSWVRQAPGKGLEWVSDISGRGGQTNYADSVKGRFTISRDNSK


and VH




NTLYLQMNSLRAEDTAVYYCARGGGSFANWGRGTLVTVSS








 748
VL region of
DIVMTQSPDSLAVSLGERATINCKSSQSVLYSNNNKNYLAWYQQKPGQPPKL
human
blocker




scFv183
LIYGASTRESWVPDRFSGSGSGTDFTLTISSLQAEDVAVYYCQQWYYYPYTF







GQGTKVEIK








 749
VH region of
EVQLLESGGGLVQPGGSLRLSCAASGFTFSSYYMSWVRQAPGKGLEWVSDIS
human
blocker




scFv183
GRGGQTNYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARGGGSFA







NWGRGTLVTVSS








 750
scFv183 VL
KSSQSVLYSNNNKNYLA






HVR1









 751
scFv183 VL
GASTRES






HVR2









 752
scFv183 VL
QQWYYYPYT






HVR3









 753
scFv183 VH
SSYYMS






HVR1









 754
scFv183 VH
DISGRGGQTNYADSVKG






HVR2









 755
scFv183 VH
RGGGSFAN






HVR3









 850
794B1P3B1
EVQLVESGGGLVQAGGSLRLSCAASERTFNMNVMGWFRQAPGKEREFVAAIS
camelid
blocker
VHH




WSTGGTSYGNFVKGRFTISGDNAKNTVYLEMNSLKPEDTAEYYCAAARFFTS







LGAGEYAYRGQGTQVTVSS








 851
794B1P3A3
QVQLVESGGGLVQAGDSLRLSCAPSGRTFGTYAPSRRTFGTYAMGWFRQAPG
camelid
blocker
VHH




KEREFVADITWSGDRTYYADSVKGRFTISRDNPKSTVYLQMSSLKPEDTAVY







YCAADSFMSKVLAGSAEYWGQGTQVTVSS








 852
794B1P3C3
EVQLVESGGGLVQPGESLRLSCLASRTLSTFNVMAWYRQAPEKERELVAHVT
camelid
blocker
VHH




NGTTLVADSVKGRFTISRDYTKNTVDLQMSKLKPEDTAVYYCRFWRGRYEYW







GQGTQVTVSS








 853
794B1P3A4
QVQLVESGGGLVQAGGSLRLSCAASVRTDSHNVVGWIRQAPGKEREFVAAIS
camelid
blocker
VHH




RSGYTSYTDSVKDRFTISRDNSRNTVYLQMNSLKPEDTALYYCAGRTFFSEF







NVPPARNSGQGTQVTVSS








 854
794B1P3B7
QVQLVESGGGLVQPGGSLRLSCAASGRTFGTYAPSRRTFGTYAMGWFRQAPG
camelid
blocker
VHH




KEREFVADITWSGDRTYYADSVKGRFTISRDNPKSTVYLQMSSLKPEDTAVY







YCAADSFMSKVLAGSAEYWGQGTQVTVSS








 855
794B1P3C7
EVQLVESGGGLVQAGGSLRLSCAASGRALYLMGWFRQVPGKEREFVAGILWS
camelid
blocker
VHH




SSRYADSVKGRFTISRDNAKNTVSLQMNSLKPEDTAVYYCAAAIRRGQDIAT







ITSEYDYWGQGTQVTVSS








 856
794B1P3G11
QVQLVESGGGLVQAGGSPRLSCAASGRTLYFMGWFRQVPGKEREFVAGILWS
camelid
blocker
VHH




STTYADSVKGRFTISRDNAKNTASLQMNSLKPEDTAVYYCAAAIRRGQDIPT







MTSEYAYWGQGTQVTVSS








 863
794B1P3E1
EVQLVESGGXLVQAGGSLRLSCAASERTFNMNVMGWFRQAPGKEREFVAAMS
camelid
block-
VHH




WSISGTSYGNSVKGRFTISGDNAKNTVYLEMNSLKPEDTAEYYCVAGRFFSS

er





LGAGDYAYRGQGTQVTVSS








 864
794B1P3G7
QVQLVESGGGLVQPGGSLRLSCAASGFTFADGVMAWVRQAPGKGHEWVSSIS
camelid
block-
VHH




ISVGSTSYADSVKGRFTISRDNAKNTLYLQMNSLKPEDTAVYYCAKARFFLQ

er





AGRLDFEYRGRGTQVTVSS








 865
794B1P3G9
EVQLVESGGGLVQAGDSLRLSCAPSGRTFGTYAPSRRTFGTCAMGWFRPATG
camelid
block-
VHH




REGDFVSYINWSGDRTYYAHSVKGRFTISRDNPKRTEYLQMNNRAPEDTAVY

er





YCAANTIMCKVVTGSAEYWEQGTQVTVSS








 866
794B2P3G1
QVQLVESGGGLVQAGGSLRLSCAASGRTFSNYFAGWFRQPPGEEREFVASIS
camelid
block-
VHH




WGGDRMFYTDAVKGRFTISRDNAKNTVDLQMNSLKPEDTAVYYCSADRFATA

er





LYNGNGNYWGQGTQVTVSS








 867
794B2P3D2A
EVQLVESGGGLVQAGDSLRLSCAASGRTVSNYAMGWFRQAPGKGREWIVTSW
camelid
block-
VHH




TSGDARYEDSVKGRFTISRDHAKNTVYLQMNSLKPEDTGVYYCVADQFGSAI

er





LNGRAEYWGQGTQVTVSS








 868
794B2P3D2B
EVQLVESGGGLVQAGGSLRLSCAASGRTFIGYTMGWFRQAPGKEREFVASII
camelid
block-
VHH




WRGDRTRYADSVKGRFTISGDNAKNTVYLRMNSMKPEDTAVYYCAARSGSHF

er





PSFDYWGQGTQVSVSS








 869
794B2P3C10
EVQLVESGGGLVQPGGSLRLSCEVSGRILYIMGWFRQVPGKDREFVAGILWS
camelid
block-
VHH




STKYGDFVNGRFTISRDNVKNTVSLQMNSLKPEDTAVYYCAAAIRRGQDIPT

er





ISSEYNYWGQGTQVTVSS








 870
794B2P3F11
EVQLVESGGGLVQPGGSLRLSCAASGSISSMNVMGWYRQAPGKQREFVAGMN
camelid
block-
VHH




SRSVTSYDDSVQGRFTVSRDHTKNMVYLQMNSLKPEDTAIYYCAYSTWWSTL

er





GNDVWGQGTQVTVSS













IL-10 Blockers: anti-IL-10 sequences












 939
scFv (VL-
DVVMTQSPLSLPVTLGQPASISCRSSQNIVHSNGNTYLEWYLQRPGQSPRLL
human
block-
anti-



VH)
IYKVSNRFSGVPDRFSGSGSGTDFTLKISRVEAEDVGVYYCFQGSHVPWTFG

er
IL10




GQGTKVEIKGGGGSGGGSGGGGSEVQLVESGGGLVQPGGSLRLSCAASGFSF







ATYGVHWVRQSPGKGLEWLGVIWRGGSTDYSAAFMSRLTISKDNSKNTVYLQ







MNSLRAEDTAVYFCAKQAYGHYMDYWGQGTSVTVSS








 940
scFv (VH-
EVQLVESGGGLVQPGGSLRLSCAASGFSFATYGVHWVRQSPGKGLEWLGVIW
human
block-
anti-



VL)
RGGSTDYSAAFMSRLTISKDNSKNTVYLQMNSLRAEDTAVYFCAKQAYGHYM

er
IL10




DYWGQGTSVTVSSGGGGSGGGGSGGGGSDVVMTQSPLSLPVTLGQPASISCR







SSQNIVHSNGNTYLEWYLQRPGQSPRLLIYKVSNRFSGVPDRFSGSGSGTDF







TLKISRVEAEDVGVYYCFQGSHVPWTFGQGTKVEIK








 941
scFv VL
DVVMTQSPLSLPVTLGQPASISCRSSQNIVHSNGNTYLEWYLQRPGQSPRLL
human
block-
anti-



region
IYKVSNR

er
IL10 VL




FSGVPDRFSGSGSGTDFTLKISRVEAEDVGVYYCFQGSHVPWTFGQGTKVEI







K








 942
VL CDR1
SSQNIVHSNGNTY
human
block-
anti-






er
IL10 VL





 943
VL CDR2
KVSNRFSGVPD
human
block-
anti-






er
IL10 VL





 944
VL CDR3
GSHVPW
human
block-
anti-






er
IL10 VL





 945
scFv VH
EVQLVESGGGLVQPGGSLRLSCAASGFSFATYGVHWVRQSPGKGLEWLGVIW
human
block-
anti-



region
RGGS

er
IL10 VH




TDYSAAFMSRLTISKDNSKNTVYLQMNSLRAEDTAVYFCAKQAYGHYMDYWG







QGTSVTVSS








 946
VH CDR1
ASGFSFATYG
human
block-
anti-






er
IL10 VH





 947
VH CDR2
IWRGGSTDYSAAFMSR
human
block-
anti-






er
IL10 VH





 948
VH CDR3
QAYGHYMD
human
block-
anti-






er
IL10 VH










IL-15 Blockers: anti-IL-15 sequences












 949
anti-
EVQLVQSGAEVKKPGESLKISCKVSGYFFTTYWIGWVRQMPGKGLEYMGIIY
human
block-
anti-



IL15
PGDSDTRYSPSFQGQVTISADKSISTAYLQWSSLKASDTAMYYCARGGNWNC

er
IL15



heavy chain
FDYWGQGTLVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVT







VSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPS







NTKVDKRVEPKSCDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEV







TCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQ







DWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSRDELTKNQV







SLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKS







RWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK








 950
anti-
EVQLVQSGAEVKKPGESLKISCKVSGYFFTTYWIGWVRQMPGKGLEYMGIIY
human
block-
VH



IL15 VH
PGDSDTRYSPSFQGQVTISADKSISTAYLQWSSLKASDTAMYYCARGGNWNC

er





FDYWGQGTLVTVSS








 951
anti-
EIVLTQSPGTLSLSPGERATLSCRASQSVSSSYLAWYQQKPGQAPRLLIYGA
human
block-
anti-



IL15
SRRATGIPDRFSGSGSGTDFTLTISRLEPEDFAVYYCQRYGSSHTFGQGTKL

er
IL15



light chain
EISRTVAAPSVFIFPPSDEQLKSGTASVVCLLNNFYPREAKVQWKVDNALQS







GNSQESVTEQDSKDSTYSLSSTLTLSKADYEKHKVYACEVTHQGLSSPVTKS







FNRGEC








 952
anti-
EIVLTQSPGTLSLSPGERATLSCRASQSVSSSYLAWYQQKPGQAPRLLIYGA
human
block-
VL



IL15 VL
SRRATGIPDRFSGSGSGTDFTLTISRLEPEDFAVYYCQRYGSSHTFGQGTKL

er





EISR








 953
ADL108-R3-
EIVLTQSPGTLSLSPGERATLSCRASQSVSSNALAWYQQKPGQAPRLLIYGA
human
block-
scFv



09
SSRATGIPDRFSGSGSGTDFTLTISRLEPEDFAVYYCQQAGSYPITFGQGTK

er





VEIKGGGGSGGGGSGGGSGGGGSEVQLLESGGGLVQPGGSLRLSCAASGFTF







TDYAMSWVRQAPGKGLEWVSGISGGGGSTRYADSVKGRFTISRDNSKNTLYL







QMNSLRAEDTAVYYCARVVRGVISPYWYFDLWGRGTLVTVSS








 954
ADL108-R3-
EIVLTQSPGTLSLSPGERATLSCRASQSVSSNALAWYQQKPGQAPRLLIYGA
human
block-
scFv



09 VL
SSRATGIPDRFSGSGSGTDFTLTISRLEPEDFAVYYCQQAGSYPITFGQGTK

er





VEIK








 955
ADL108-R3-
EVQLLESGGGLVQPGGSLRLSCAASGFTFTDYAMSWVRQAPGKGLEWVSGIS
human
block-
scFv



09 VH
GGGGSTRYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARVVRGVI

er





SPYWYFDLWGRGTLVTVSS








 956
ADL108-R3-
EIVLTQSPGTLSLSPGERATLSCRASQSVSSNYLAWYQQKPGQAPRLLIYGA
human
block-
scFv



61
SSRATGIPDRFSGSGSGTDFTLTISRLEPEDFAVYYCQQYSSSPFTFGQGTK

er





VEIKGGGGSGGGGSGGGSGGGGSEVQLLESGGGLVQPGGSLRLSCAASGFTF







TDYWMSWVRQAPGKGLEWVSGIDGYGGGTNYADSVKGRFTISRDNSKNTLYL







QMNSLRAEDTAVYYCAKARDSYADYWGQGTLVTVSS








 957
ADL108-R3-
EVQLLESGGGLVQPGGSLRLSCAASGFTFTDYWMSWVRQAPGKGLEWVSGID
human
block-
scFv



61 VH
GYGGGTNYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAKARDSYA

er





DYWGQGTLVTVSS








 958
ADL108-R3-
EIVLTQSPGTLSLSPGERATLSCRASQSVSSNYLAWYQQKPGQAPRLLIYGA
human
block-
scFv



61 VL
SSRATGIPDRFSGSGSGTDFTLTISRLEPEDFAVYYCQQYSSSPFTFGQGTK

er





VEIK








 959
ADL108-R3-
DIVMTQSPDSLAVSLGERATINCKSSQSVLYSSNNENDLAWYQQKPGQPPKL
human
block-
scFv



79
LIYDASTRESGVPDRFSGSGSGTDFTLTISSLQAEDVAVYYCQQYSYRPLTF

er





GQGTKVEIKGGGGSGGGGSGGGSGGGGSEVQLLESGGGLVQPGGSLRLSCAA







SGFTFSDTAMSWVRQAPGKGLEWVSAISGSGGSTYYADSVKGRFTISRDNSK







NTLYLQMNSLRAEDTAVYYCANEWIPYGDYAFWGQGSLVTVSS








 960
ADL108-R3-
EVQLLESGGGLVQPGGSLRLSCAASGFTFSDTAMSWVRQAPGKGLEWVSAIS
human
block-
scFv



79 VH
GSGGSTYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCANEWIPYG

er





DYAFWGQGSLVTVSS








 961
ADL108-R3-
DIVMTQSPDSLAVSLGERATINCKSSQSVLYSSNNENDLAWYQQKPGQPPKL
human
block-
scFv



79 VL
LIYDASTRESGVPDRFSGSGSGTDFTLTISSLQAEDVAVYYCQQYSYRPLTF

er





GQGTKVEIK








 962
ADL108-R3-
DIVMTQSPDSLAVSLGERATINCKSSQSVLYSSNNKNYLAWYQQKPGQPPKL
human
block-
scFv



07
LIYGASTRESGVPDRFSGSGSGTDFTLTISSLQAEDVAVYYCQQGYSAPFTF

er





GQGTKVEIKGGGGSGGGGSGGGSGGGGSEVQLLESGGGLVQPGGSLRLSCAA







SGFTFTDTYMSWVRQAPGKGLEWVSAISGYGDTTKYADSVKGRFTISRDNSK







NTLYLQMNSLRAEDTAVYYCARDRTASRFGYWGQGTLVTVSS








 963
ADL108-R3-
EVQLLESGGGLVQPGGSLRLSCAASGFTFTDTYMSWVRQAPGKGLEWVSAIS
human
block-
scFv



07 VH
GYGDTTKYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARDRTASR

er





FGYWGQGTLVTVSS








 964
ADL108-R3-
DIVMTQSPDSLAVSLGERATINCKSSQSVLYSSNNKNYLAWYQQKPGQPPKL
human
block-
scFv



07 VL
LIYGASTRESGVPDRFSGSGSGTDFTLTISSLQAEDVAVYYCQQGYSAPFTF

er





GQGTKVEIK








 965
ADL108-R3-
DIVMTQSPDSLAVSLGERATINCKSSQSVLYSGNNENYLAWYQQKPGQPPKL
human
block-
scFv



10
LIYAASTRESGVPDRFSGSGSGTDFTLTISSLQAEDVAVYYCQQYQENPITF

er





GQGTKVEIKGGGGSGGGGSGGGSGGGGSEVQLLESGGGLVQPGGSLRLSCAA







SGFTFSNYAMSWVRQAPGKGLEWVSGISGGGGSTDYADSVKGRFTISRDNSK







NTLYLQMNSLRAEDTAVYYCARWPYGHWGQGTLVTVSS








 966
ADL108-R3-
EVQLLESGGGLVQPGGSLRLSCAASGFTFSNYAMSWVRQAPGKGLEWVSGIS
human
block-
scFv



10 VH
GGGGSTDYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARWPYGHW

er





GQGTLVTVSS








 967
ADL108-R3-
DIVMTQSPDSLAVSLGERATINCKSSQSVLYSGNNENYLAWYQQKPGQPPKL
human
block-
scFv



10 VL
LIYAASTRESGVPDRFSGSGSGTDFTLTISSLQAEDVAVYYCQQYQENPITF

er





GQGTKVEIK








 968
ADL108-R3-
DIVMTQSPDSLAVSLGERATINCKSSQSVLDSYNNKNDLAWYQQKPGQPPKL
human
block-
scFv



30
LIYAASTRESGVPDRFSGSGSGTDFTLTISSLQAEDVAVYYCQQYYEAPYTF

er





GQGTKVEIKGGGGSGGGGSGGGSGGGGSEVQLLESGGGLVQPGGSLRLSCAA







SGFTFSSYYMSWVRQAPGKGLEWVSEISGSGDSTYYADSVKGRFTISRDNSK







NTLYLQMNSLRAEDTAVYYCASYYYYGSGFDYWGQGTLVTVSS








 969
ADL108-R3-
DIVMTQSPDSLAVSLGERATINCKSSQSVLDSYNNKNDLAWYQQKPGQPPKL
human
block-
scFv



30 VH
LIYAASTRESGVPDRFSGSGSGTDFTLTISSLQAEDVAVYYCQQYYEAPYTF

er





GQGTKVEIK








 970
ADL108-R3-
EVQLLESGGGLVQPGGSLRLSCAASGFTFSSYYMSWVRQAPGKGLEWVSEIS
human
block-
scFv



30 VL
GSGDSTYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCASYYYYGS

er





GFDYWGQGTLVTVSS








 971
ADL108-R3-
DIVMTQSPDSLAVSLGERATINCKSSQSVLHSSNNENDLAWYQQKPGQPPKL
human
block-
scFv



38
LIYAASTRESGVPDRFSGSGSGTDFTLTISSLQAEDVAVYYCQQWYSEPYTF

er





GQGTKVEIKGGGGSGGGGSGGGSGGGGSEVQLLESGGGLVQPGGSLRLSCAA







SGFTFSSTYMSWVRQAPGKGLEWVSGIYGGGTSYADSVKGRFTISRDNSKNT







LYLQMNSLRAEDTAVYYCARENYYDILTGYYTQTETWGQGTLVTVSS








 972
ADL108-R3-
DIVMTQSPDSLAVSLGERATINCKSSQSVLHSSNNENDLAWYQQKPGQPPKL
human
block-
scFv



38 VH
LIYAASTRESGVPDRFSGSGSGTDFTLTISSLQAEDVAVYYCQQWYSEPYTF

er





GQGTKVEIK








 973
ADL108-R3-
EVQLLESGGGLVQPGGSLRLSCAASGFTFSSTYMSWVRQAPGKGLEWVSGIY
human
block-
scFv



38 VL
GGGTSYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARENYYDILT

er





GYYTQTETWGQGTLVTVSS








 974
ADL108-R3-
EIVLTQSPGTLSLSPGERATLSCRASQSVSSNALAWYQQKPGQAPRLLIYGA
human
block-
scFv



43
SSRATGIPDRFSGSGSGTDFTLTISRLEPEDFAVYYCQQYSEAPITFGQGTK

er





VEIKGGGGSGGGGSGGGSGGGGSEVQLLESGGGLVQPGGSLRLSCAASGFTF







TSYAMSWVRQAPGKGLEXVSGIDGYGGSTYYADSVKGRFTISRDNSKNTLYL







QMNSLRAEDTAVYYCARAGIHLYDYWGQGTLVTVSS








 975
ADL108-R3-
EIVLTQSPGTLSLSPGERATLSCRASQSVSSNALAWYQQKPGQAPRLLIYGA
human
block-
scFv



43 VH
SSRATGIPDRFSGSGSGTDFTLTISRLEPEDFAVYYCQQYSEAPITFGQGTK

er





VEIK








 976
ADL108-R3-
EVQLLESGGGLVQPGGSLRLSCAASGFTFTSYAMSWVRQAPGKGLEXVSGID
human
block-
scFv



43 VL
GYGGSTYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARAGIHLY

er





DYWGQGTLVTVSS








 977
ADL108-R3-
EIVLTQSPGTLSLSPGERATLSCRASQSVSSSSLAWYQQKPGQAPRLLIYAA
human
block-
scFv



53
SSRATGIPDRFSGSGSGTDFTLTISRLEPEDFAVYYCQQDSSSPFTFGQGTK

er





VEIKGGGGSGGGGSGGGSGGGGSEVQLLESGGGLVQPGGSLRLSCAASGFTF







SSYAMSWVRQAPGKGLEWVSAISGRGDYTKYADSVKGRFTISRDNSKNTLYL







QMNSLRAEDTAVYYCARGTTIFGVTAFVYWGQGTLVTVSS








 978
ADL108-R3-
EVQLLESGGGLVQPGGSLRLSCAASGFTFSSYAMSWVRQAPGKGLEWVSAIS
human
block-
scFv



53 VH
GRGDYTKYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARGTTIFG

er





VTAFVYWGQGTLVTVSS








 979
ADL108-R3-
EIVLTQSPGTLSLSPGERATLSCRASQSVSSSSLAWYQQKPGQAPRLLIYAA
human
block-
scFv



53 VL
SSRATGIPDRFSGSGSGTDFTLTISRLEPEDFAVYYCQQDSSSPFTFGQGTK

er





VEIK








 980
ADL108-R3-
EIVLTQSPGTLSLSPGERATLSCRASQSVQSSALAWYQQKPGQAPRLLIYGA
human
block-
scFv



60
SSRATGIPDRFSGSGSGTDFTLTISRLEPEDFAVYYCQQDGSWPLTFGQGTK

er





VEIKGGGGSGGGGSGGGSGGGGSEVQLLESGGGLVQPGGSLRLSCAASGFTF







SDYAMSWVRQAPGKGLEWVSRIDGGGGYTDYADSVKGRFTISRDNSKNTLYL







QMNSLRAEDTAVYYCARHGSATIFGVVIHGYWYFDLWGRGTLVTVSS








 981
ADL108-R3-
EVQLLESGGGLVQPGGSLRLSCAASGFTFSDYAMSWVRQAPGKGLEWVSRID
human
block-
scFv



60 VH
GGGGYTDYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARHGSATI

er





FGVVIHGYWYFDLWGRGTLVTVSS








 982
ADL108-R3-
EIVLTQSPGTLSLSPGERATLSCRASQSVQSSALAWYQQKPGQAPRLLIYGA
human
block-
scFv



60 VL
SSRATGIPDRFSGSGSGTDFTLTISRLEPEDFAVYYCQQDGSWPLTFGQGTK

er





VEIK








 983
ADL108-R3-
DIVMTQSPDSLAVSLGERATINCKSSQSVLRSSNNKNNLAWYQQKPGQPPKL
human
block-
scFv



87
LIYWASTRESGVPDRFSGSGSGTDFTLTISSLQAEDVAVYYCQQSYYEPITF

er





GQGTKVEIKGGGGSGGGGSGGGSGGGGSEVQLLESGGGLVQPGGSLRLSCAA







SGFTFSDTAMSWVRQAPGKGLEWVSGISGGGGYTNYADSVKGRFTISRDNSK







NTLYLQMNSLRAEDTAVYYCAKSPDYDRRNYYDHWGQGTLVTVSS








 984
ADL108-R3-
DIVMTQSPDSLAVSLGERATINCKSSQSVLRSSNNKNNLAWYQQKPGQPPKL
human
block-
scFv



87 VL
LIYWASTRESGVPDRFSGSGSGTDFTLTISSLQAEDVAVYYCQQSYYEPITF

er





GQGTKVEIK








 985
ADL108-R3-
EVQLLESGGGLVQPGGSLRLSCAASGFTFSDTAMSWVRQAPGKGLEWVSGIS
human
block-
scFv



87 VH
GGGGYTNYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAKSPDYDR

er





RNYYDHWGQGTLVTVSS








 986
ADL108-R3-
DIVMTQSPDSLAVSLGERATINCKSSQSVLYSGNNENYLAWYQQKPGQPPKL
human
block-
scFv



90
LIYDASTRESGVPDRFSGSGSGTDFTLTISSLQAEDVAVYYCQQWSNYPYTF

er





GQGTKVEIKGGGGSGGGGSGGGSGGGGSEVQLLESGGGLVQPGGSLRLSCAA







SGFTFTDTYMSWVRQAPGKGLEWVSRIDGRGGGTYYADSVKGRFTISRDNSK







NTLYLQMNSLRAEDTAVYYC








 987
ADL108-R3-
DIVMTQSPDSLAVSLGERATINCKSSQSVLYSGNNENYLAWYQQKPGQPPKL
human
block-
scFv



90 VL
LIYDASTRESGVPDRFSGSGSGTDFTLTISSLQAEDVAVYYCQQWSNYPYTF

er





GQGTKVEIK








 988
ADL108-R3-
EVQLLESGGGLVQPGGSLRLSCAASGFTFTDTYMSWVRQAPGKGLEWVSRID
human
block-
scFv



90 VH
GRGGGTYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAKGGSYGY

er





WGQGTLVTVSS













CXCL10 Blockers: anti-CXCL10 sequences












 989
anti-CXCL10
GIQCEVKLVESGGGLVQPGGSLRLSCATSGFTFTDYYMSWVRQPPGKALEWL
human
block-
anti-



scFv VL-VH
GFIRNKANGYTTEYSASVKGRFTISRDNQSILYLQMNTLRAEDSATYYCARD

er
CXCL10




PTIGTVLCYGLLGSRNLSGGGGSGGGGSGGGGSEVQLQQSGPELEKPGASVK


scFv




ISCKASGYSFTGYNMNWVKQSNGKSLEWIGNIDPYYGGTSYNQKFKGKATLT







VDKSSSTAYMQLKSLTSEDSAVYYCARSGTAWFAYWGQGTLV








 990
anti-CXCL10
EVQLQQSGPELEKPGASVKISCKASGYSFTGYNMNWVKQSNGKSLEWIGNID
human
block-
anti-



scFv VH-VL
PYYGGTSYNQKFKGKATLTVDKSSSTAYMQLKSLTSEDSAVYYCARSGTAWF

er
CXCL10




AYWGQGTLVGGGGSGGGGSGGGGSGIQCEVKLVESGGGLVQPGGSLRLSCAT


scFv




SGFTFTDYYMSWVRQPPGKALEWLGFIRNKANGYTTEYSASVKGRFTISRDN







QSILYLQMNTLRAEDSATYYCARDPTIGTVLCYGLLGSRNLS








 991
anti-CXCL10
EVQLQQSGPELEKPGASVKISCKASGYSFTGYNMNWVKQSNGKSLEWIGNID
human
block-
anti-



scFv VH
PYYGGTSYNQKFKGKATLTVDKSSSTAYMQLKSLTSEDSAVYYCARSGTAWF

er
CXCL10




AYWGQGTLV








 992
anti-CXCL10
GIQCEVKLVESGGGLVQPGGSLRLSCATSGFTFTDYYMSWVRQPPGKALEWL
human
block-
anti-



scFv VL
GFIRNKANGYTTEYSASVKGRFTISRDNQSILYLQMNTLRAEDSATYYCARD

er
CXCL10




PTIGTVLCYGLLGSRNLS








 993
VH CDR1
GYNMN
human
block-
anti-






er
CXCL10





 994
VH CDR2
NIDPYYGGTSYNQKFK
human
block-
anti-






er
CXCL10





 995
VH CDR3
SGTAWFAYW
human
block-
anti-






er
CXCL10





 996
VL CDR1
ATSGFTFTDYYMS
human
block-
anti-






er
CXCL10





 997
VL CDR2
IRNKANGYTTEYSA


anti-







CXCL10





 998
VL CDR3
ARDPTIGTV
human
block-
anti-






er
CXCL10










TGF-β Blockers: anti-TGF-β sequences












 999
VH region
QLQVQESGPGLVKPSETLSLTCTVSGGSISNSYFSWGWIRQPPGKGLEWIGS
human
TGFb
antibody



TGF1
FYYGEKTYYNPSLKSRATISIDTSKSQFSLKLSSVTAADTAVYYCPRGPTMI

trap
fragment




RGVIDSWGQGTLVTVSS


to







TGFbeta







Receptor







II





1000
VL region
EIVLTQSPATLSLSPGERATLSCRASQSVRSYLAWYQQKPGQAPRLLIYDAS
human
TGFb
antibody



TGF1
NRATGIPARFSGSGSGTDFTLTISSLEPEDFAVYYCQQRSNWPPTFGQGTKV

trap
fragment




EIK


to







TGFbeta







Receptor







II





1001
scFv TGF1
QLQVQESGPGLVKPSETLSLTCTVSGGSISNSYFSWGWIRQPPGKGLEWIGS
human
TGFb
antibody



(VH-VL)
FYYGEKTYYNPSLKSRATISIDTSKSQFSLKLSSVTAADTAVYYCPRGPTMI

trap
fragment




RGVIDSWGQGTLVTVSSGGGGSGGGGSGGGGSEIVLTQSPATLSLSPGERAT


to




LSCRASQSVRSYLAWYQQKPGQAPRLLIYDASNRATGIPARFSGSGSGTDFT


TGFbeta




LTISSLEPEDFAVYYCQQRSNWPPTFGQGTKVEIK


Receptor







II





1002
scFv TGF1
EIVLTQSPATLSLSPGERATLSCRASQSVRSYLAWYQQKPGQAPRLLIYDAS
human
TGFb
antibody



(VL-VH)
NRATGIPARFSGSGSGTDFTLTISSLEPEDFAVYYCQQRSNWPPTFGQGTKV

trap
fragment




EIKGGGGSGGGGSGGGGSQLQVQESGPGLVKPSETLSLTCTVSGGSISNSYF


to




SWGWIRQPPGKGLEWIGSFYYGEKTYYNPSLKSRATISIDTSKSQFSLKLSS


TGFbeta




VTAADTAVYYCPRGPTMIRGVIDSWGQGTLVTVSS


Receptor







II





1003
VH region
QLQLQESGPGLVKPSETLSLTCTVSGGSISSSSYSWGWIRQPPGKGLEWIGS
human
TGFb
antibody



TGF3
FYYSGITYYSPSLKSRIIISEDTSKNQFSLKLSSVTAADTAVYYCASGFTMI

trap
fragment




RGALDYWGQGTLVTVSS


to







TGFbeta







Receptor







II





1004
VL region
EIVLTQSPATLSLSPGERATLSCRASQSVRSFLAWYQQKPGQAPRLLIYDAS
human
TGFb
antibody



TGF3
NRATGIPARFSGSGSGTDFTLTISSLEPEDFAVYYCQQRSNWPPTFGQGTKV

trap
fragment




EIK


to







TGFbeta







Receptor







II





1005
scFv TGF3
QLQLQESGPGLVKPSETLSLTCTVSGGSISSSSYSWGWIRQPPGKGLEWIGS
human
TGFb
antibody



(VH-VL)
FYYSGITYYSPSLKSRIIISEDTSKNQFSLKLSSVTAADTAVYYCASGFTMI

trap
fragment




RGALDYWGQGTLVTVSSGGGGSGGGGSGGGGSEIVLTQSPATLSLSPGERAT


to




LSCRASQSVRSFLAWYQQKPGQAPRLLIYDASNRATGIPARFSGSGSGTDFT


TGFbeta




LTISSLEPEDFAVYYCQQRSNWPPTFGQGTKVEIK


Receptor







II





1006
scFv TGF3
EIVLTQSPATLSLSPGERATLSCRASQSVRSFLAWYQQKPGQAPRLLIYDAS
human
TGFb
antibody



(VL-VH)
NRATGIPARFSGSGSGTDFTLTISSLEPEDFAVYYCQQRSNWPPTFGQGTKV

trap
fragment




EIKGGGGSGGGGSGGGGSQLQLQESGPGLVKPSETLSLTCTVSGGSISSSSY


to




SWGWIRQPPGKGLEWIGSFYYSGITYYSPSLKSRIIISEDTSKNQFSLKLSS


TGFbeta




VTAADTAVYYCASGFTMIRGALDYWGQGTLVTVSS


Receptor







II





1007
Fresolimumab
QVQLVQSGAEVKKPGSSVKVSCKASGYTFSSNVISWVRQAPGQGLEWMGGVI
human
TGFb
antibody



heavy chain
PIVDIANYAQRFKGRVTITADESTSTTYMELSSLRSEDTAVYYCASTLGLVL

trap
targeting




DAMDYWGQGTLVTVSSASTKGPSVFPLAPCSRSTSESTAALGCLVKDYFPEP


TGFb1, 2, 3




VTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTKTYTCNVDHK







PSNTKVDKRVESKYGPPCPSCPAPEFLGGPSVFLFPPKPKDTLMISRTPEVT







CVVVDVSQEDPEVQFNWYVDGVEVHNAKTKPREEQFNSTYRVVSVLTVLHQD







WLNGKEYKCKVSNKGLPSSIEKTISKAKGQPREPQVYTLPPSQEEMTKNQVS







LTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSRLTVDKSR







WQEGNVFSCSVMHEALHNHYTQKSLSLSLGK








1008
Fresolimumab
QVQLVQSGAEVKKPGSSVKVSCKASGYTFSSNVISWVRQAPGQGLEWMGGVI
human
TGFb
antibody



VH
PIVDIANYAQRFKGRVTITADESTSTTYMELSSLRSEDTAVYYCASTLGLVL

trap
targeting




DAMDYWGQGTLVTVSS


TGFb1, 2, 3





1009
Fresolimumab
ETVLTQSPGTLSLSPGERATLSCRASQSLGSSYLAWYQQKPGQAPRLLIYGA
human
TGFb
antibody



light chain
SSRAPGIPDRFSGSGSGTDFTLTISRLEPEDFAVYYCQQYADSPITFGQGTR

trap
targeting




LEIKRTVAAPSVFIFPPSDEQLKSGTASVVCLLNNFYPREAKVQWKVDNALQ


TGFb1, 2, 3




SGNSQESVTEQDSKDSTYSLSSTLTLSKADYEKHKVYACEVTHQGLSSPVTK







SFNRGEC








1010
Fresolimumab
ETVLTQSPGTLSLSPGERATLSCRASQSLGSSYLAWYQQKPGQAPRLLIYGA
human
TGFb
antibody



VL
SSRAPGIPDRFSGSGSGTDFTLTISRLEPEDFAVYYCQQYADSPITFGQGTR

trap
targeting




LEIK


TGFb1, 2, 3










Blockers: IL-2R sequences












  40
h IL-2Ralpha
ELCLYDPPEIPHATFKAMAYKEGTILNCECKRGFRRIKSGSLYMLCTGNSSH
human
block-
D4 to L



(1-
SSWDNQCQCTSSATRNTTKQVTPQPEEQKERKTTEMQSPMQPVDQASLPGHC

er
mutation; D5



192)M25I/D4
REPPPWENEATERIYHFVVGQMVYYQCVQGYRALHRGPAESVCKMTHGKTRW


to Y



L/D5Y
TQPQLICTGEMETSQFPGEEKPQASPEGRPESETSC


mutation;







M25 to I







mutation





  41
h IL-2Ralpha
ELCDDDPPEIPHATFKAMAYKEGTILNCECKRGFRRIKSGSVYMLCTGNSSH
human
block-
M25 to I



(1-
SSWDNQCQCTSSATRNTTKQVTPQPEEQKERKTTEMQSPMQPVDQASLPGHC

er
mutation;



192)M25I/L4
REPPPWENEATERIYHFVVGQMVYYQCVQGYRALHRGPAESVCKMTHGKTRW


L42 to V



2V
TQPQLICTGEMETSQFPGEEKPQASPEGRPESETSC


mutation





  42
h IL-2Ralpha
ELCLYDPPEIPHATFKAMAYKEGTMLNCECKRGFRRIKSGSVYMLCTGNSSH
human
block-
D4 to L



(1-192)
SSWDNQCQCTSSATRNTTKQVTPQPEEQKERKTTEMQSPMQPVDQASLPGHC

er
mutation; D5



D4L/D5Y/L4
REPPPWENEATERIYHFVVGQMVYYQCVQGYRALHRGPAESVCKMTHGKTRW


to Y



2V
TQPQLICTGEMETSQFPGEEKPQASPEGRPESETSC


mutation;







L42 to V







mutation





  43
h IL-2Ralpha
ELCLYDPPEIPHATFKAMAYKEGTILNCECKRGFRRIKSGSVYMLCTGNSSH
human
block-
D4 to L



(1-192)
SSWDNQCQCTSSATRNTTKQVTPQPEEQKERKTTEMQSPMQPVDQASLPGHC

er
mutation; D5



M25I/D4L/D5
REPPPWENEATERIYHFVVGQMVYYQCVQGYRALHRGPAESVCKMTHGKTRW


to Y



Y/L42V
TQPQLICTGEMETSQFPGEEKPQASPEGRPESETSC


mutation;







M25 to I







mutation;







L42 to V







mutation





  44
h IL-2Ralpha
ELCDDDPPEIPHATFKAMAYKEGTMLNCECKRGFRRIKSGSLYMLCTGNSSH
human
block-
Wild-type



(1-178)
SSWDNQCQCTSSATRNTTKQVTPQPEEQKERKTTEMQSPMQPVDQASLPGHC

er
amino acids




REPPPWENEATERIYHFVVGQMVYYQCVQGYRALHRGPAESVCKMTHGKTRW


1-178




TQPQLICTGEMETSQFPGEEKP








  45
h IL-2Ralpha
ELCDDDPPEIPHATFKAMAYKEGTILNCECKRGFRRIKSGSLYMLCTGNSSH
human
block-
M25 to I



(1-178) M25I
SSWDNQCQCTSSATRNTTKQVTPQPEEQKERKTTEMQSPMQPVDQASLPGHC

er
mutation




REPPPWENEATERIYHFVVGQMVYYQCVQGYRALHRGPAESVCKMTHGKTRW







TQPQLICTGEMETSQFPGEEKP








  46
h IL-2Ralpha
ELCDDDPPEIPHATFKAMAYKEGTMLNCECKRGFRRIKSGSVYMLCTGNSSH
human
block-
L42 to V



(1-178) L42V
SSWDNQCQCTSSATRNTTKQVTPQPEEQKERKTTEMQSPMQPVDQASLPGHC

er
mutation




REPPPWENEATERIYHFVVGQMVYYQCVQGYRALHRGPAESVCKMTHGKTRW







TQPQLICTGEMETSQFPGEEKP








  47
h IL-2Ralpha
ELCLYDPPEIPHATFKAMAYKEGTMLNCECKRGFRRIKSGSLYMLCTGNSSH
human
block-
D4 to L



(1-178)
SSWDNQCQCTSSATRNTTKQVTPQPEEQKERKTTEMQSPMQPVDQASLPGHC

er
mutation; D5



D4L/D5Y
REPPPWENEATERIYHFVVGQMVYYQCVQGYRALHRGPAESVCKMTHGKTRW


to Y




TQPQLICTGEMETSQFPGEEKP


mutation





  48
h IL-2Ralpha
ELCDDDPPEIPHATFKAMAYKEGTMLNCECKRGFRRIKELVYMLCTGNSSHS
human
block-
Wild-type



(1-178)
SWDNQCQCTSSATRNTTKQVTPQPEEQKERKTTEMQSPMQPVDQASLPGHCR

er
residues 39-



SGSL39-42
EPPPWENEATERIYHFVVGQMVYYQCVQGYRALHRGPAESVCKMTHGKTRWT


42 replaced



ELV
QPQLICTGEMETSQFPGEEKP


with ELV





  49
h IL-2Ralpha
ELCDDDPPEIPHATFKAMAYKEGTILNCECKRGFRRIKSGSVYMLCTGNSSH
human
block-
M25 to I



(1-178)
SSWDNQCQCTSSATRNTTKQVTPQPEEQKERKTTEMQSPMQPVDQASLPGHC

er
mutation;



M25I/L42V
REPPPWENEATERIYHFVVGQMVYYQCVQGYRALHRGPAESVCKMTHGKTRW


L42 to V




TQPQLICTGEMETSQFPGEEKP


mutation





  50
h IL-2Ralpha
ELCLYDPPEIPHATFKAMAYKEGTMLNCECKRGFRRIKSGSVYMLCTGNSSH
human
block-
D4 to L



(1-178)
SSWDNQCQCTSSATRNTTKQVTPQPEEQKERKTTEMQSPMQPVDQASLPGHC

er
mutation; D5



D4L/D5Y/L4
REPPPWENEATERIYHFVVGQMVYYQCVQGYRALHRGPAESVCKMTHGKTRW


to Y



2V
TQPQLICTGEMETSQFPGEEKP


mutation;







L42 to V







mutation





  51
h IL-2Ralpha
ELCLYDPPEIPHATFKAMAYKEGTILNCECKRGFRRIKSGSVYMLCTGNSSH
human
block-
D4 to L



(1-178)
SSWDNQCQCTSSATRNTTKQVTPQPEEQKERKTTEMQSPMQPVDQASLPGHC

er
mutation; D5



D4L/D5Y/M2
REPPPWENEATERIYHFVVGQMVYYQCVQGYRALHRGPAESVCKMTHGKTRW


to Y



51/ L42V
TQPQLICTGEMETSQFPGEEKP


mutation;







M25 to I







mutation;







L42 to V







mutation





52-69
Not Used














Blockers: IL-10R sequences












1011
IL-10R beta
MVPPPENVRMNSVNFKNILQWESPAFAKGNLTFTAQYLSYRIFQDKCMNTTL
human
block-
wild-type




TECDFSSLSKYGDHTLRVRAEFADEHSDWVNITFCPVDDTIIGPPGMQVEVL

er
ECD




ADSLHMRFLAPKIENEYETWTMKNVYNSWTYNVQYWKNGTDEKFQITPQYDF







EVLRNLEPWTTYCVQVRGFLPDRNKAGEWSEPVCEQTTHDETVPS








1012
IL-10R alpha
HGTELPSPPSVWFEAEFFHHILHWTPIPNQSESTCYEVALLRYGIESWNSIS
human
block-
wild-type




NCSQTLSYDLTAVTLDLYHSNGYRARVRAVDGSRHSNWTVTNTRFSVDEVTL

er
ECD




TVGSVNLEIHNGFILGKIQLPRPKMAPANDTYESIFSHFREYEIAIRKVPGN







FTFTHKKVKHENFSLLTSGEVGEFCVQVKPSVASRSNKGMWSKEECISLTRQ







YFTVTN













Enhancers: IL-15R sequences












1013
IL-15R alpha
ITCPPPMSVEHADIWVKSYSLYSRERYICNSGFKRKAGTSSLTECVLNKATN
human
cytokine
wild-type



(1-175)
VAHWTTPSLKCIRDPALVHQRPAPPSTVTTAGVTPQPESLSPSGKEPAASSP

enhancer
ECD




SSNNTAATTAAIVPGSQLMPSKSPSTGTTEISSHESSHGTPSQTTAKNWELT







ASASHQPPGVYPQGHSDTT








1014
IL-15R alpha
ITCPPPMSVEHADIWVKSYSLYSRERYICNSGFKRKAGTSSLTECVLNKATN
human
cytokine
wild-type



(1-170)
VAHWTTPSLKCIRDPALVHQRPAPPSTVTTAGVTPQPESLSPSGKEPAASSP

enhancer
ECD




SSNNTAATTAAIVPGSQLMPSKSPSTGTTEISSHESSHGTPSQTTAKNWELT







ASASHQPPGVYPQG








1015
IL-15R alpha
ITCPPPMSVE HADIWVKSYS LYSRERYICN
human
cytokine
wild-type



(1-77)
SGFKRKAGTS SLTECVLNKA TNVAHWTTPS

enhancer
sushi




LKCIRDPALV HQRPAPP


domain










Blockers: IL-15R sequences












1016
Human
AVNGTSQFTCFYNSRANISCVWSQDGALQDTSCQVHAWPDRRRWNQTCELL
human
block-
full



IL2Rbeta (1-
PVSQASWACNLILGAPDSQKLTTVDIVTLRVLCREGVRWRVMAIQDFKPFE

er
length



214)
NLRLMAPISLQVVHVETHRCNISWEISQASHYFERHLEFEARTLSPGHTWE


ECD




EAPLLTLKQKQEWICLETLTPDTQYEFQVRVKPLQGEFTTWSPWSQPLAFR







TKPAALGKDT








1017
Human
LNTTILTPNGNEDTTADFFLTTMPTDSLSVSTLPLPEVQCFVFNVEYMNCTW
human
block-
full



IL2R gamma
NSSSEPQPTNLTLHYWYKNSDNDKVQKCSHYLFSEEITSGCQLQKKEIHLYQ

er
length



(1-240)
TFVVQLQDPREPRRQATQMLKLQNLVIPWAPENLTLHKLSESQLELNWNNRF


ECD




LNHCLEHLVQYRTDWDHSWTEQSVDYRHKFSLPSVDGQKRYTFRVRSRFNPL







CGSAQHWSEWSHPIHWGSNTSKENPFLFALEA








1018
Human
AVNGTSQFTCFYNSRANISCVWSQDGALQDTSCQVHAWPDRRRWNQTCELLP
human
block-
truncated



IL2Rbeta (1-
VSQASWACNLILGAPDSQKLTTVDIVTLRVLCREGVRWRVMAIQDFKPFENL

er
ECD



162)
RLMAPISLQVVHVETHRCNISWEISQASHYFERHLEFEARTLSPGHTWEEAP







LLTLKQ








1019
Human
AVNGTSQFTCFYNSRANISCVWSQDGALQDTSCQVHAWPDRRRWNQTCELLP
human
block-
truncated



IL2Rbeta (1-
VSQASWACNLILGAPDSQKLTTVDIVTLRVLCREGVRWRVMAIQDFKPFENL

er
ECD



120)
RLMAPISLQVVHVETH













Blockers: CXCR3 sequences












1020
CXCR3
MVLEVSDHQVLNDAEVAALLENFSSSYDYGENESDSCCTSPPCPQDFSLNFD
human
block-
wild-type




RAFLPALYSLLFLLGLLGNGAVAAVLLSRRTALSSTDTFLLHLAVADTLLVL

er





TLPLWAVDAAVQWVFGSGLCKVAGALFNINFYAGALLLACISFDRYLNIVHA







TQLYRRGPPARVTLTCLAVWGLCLLFALPDFIFLSAHHDERLNATHCQYNFP







QVGRTALRVLQLVAGFLLPLLVMAYCYAHILAVLLVSRGQRRLRAMRLVVV







VVVAFALCWTPYHLVVLVDILMDLGALARNCGRESRVDVAKSVTSGLGYMHC







CLNPLLYAFVGVKFRERMWMLLLRLGCPNQRGLQRQPSSSRRDSSWSETSEA







SYSGL








1021
CXCR3 (22-42)
NFSSSYDYGENESDSSSTSPP
human
block-
N-term






er
fragment










Blockers: TGF-βR sequences












1022
m TGFb R II
IPPHVPK SDVEMEAQKD ASIHLSCNRT
mouse
TGFb
wild-type



(1-161)
IHPLKHFNSD VMASDNGGAV KLPQLCKFCD

trap
ECD




VRLSTCDNQK SCMSNCSITA ICEKPHEVCV


domain




AVWRKNDKNI TLETVCHDPK LTYHGFTLED


of ligand




AASPKCVMKE KKRAGETFFM CACNMEECND


receptor




YIIFSEEYTT SSPD








1023
hu TGFb R II
TIPPHVQK SVNNDMIVTD NNGAVKFPQL
human
TGFb
wild-type



(1-136)
CKFCDVRFST CDNQKSCMSN CSITSICEKP

trap
ECD



of ligand
QEVCVAVWRK NDENITLETV CHDPKLPYHD


domain



receptor
FILEDAASPK CIMKEKKKPG ETFFMCSCSS







DECNDNIIFS EEYNTSNPD













Pharmacokinetic modulators












  70
h IgG1 Fc
DKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPE
human
half-life
C-terminal




VKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVS

extension
K residue




NKALPAPIEKTISKAKGQPREPQVYTLPPSRDELTKNQVSLTCLVKGFYPSD


deleted




IAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVM







HEALHNHYTQKSLSLSPG








  71
Human IgG1
DKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPE
human
half-life




K392D
VKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVS

extension




K409D Fc
NKALPAPIEKTISKAKGQPREPQVYTLPPSRDELTKNQVSLTCLVKGFYPSD






domain
IAVEWESNGQPENNYDTTPPVLDSDGSFFLYSDLTVDKSRWQQGNVFSCSVM






polypeptide
HEALHNHYTQKSLSLSPG






sequence









  72
Human serum
RGVFRRDAHKSEVAHRFKDLGEENFKALVLIA
human
half-life
wild-type



albumin
FAQYLQQCPFEDHVKLVNEVTEFAKTCVADESAENCDKSLHTLFGDKLCT

extension





VATLRETYGEMADCCAKQEPERNECFLQHKDDNPNLPRLVRPEVDVMCTA







FHDNEETFLKKYLYEIARRHPYFYAPELLFFAKRYKAAFTECCQAADKAAC







LLPKLDELRDEGKASSAKQRLKCASLQKFGERAFKAWAVARLSQRFPKA







EFAEVSKLVTDLTKVHTECCHGDLLECADDRADLAKYICENQDSISSKLK







ECCEKPLLEKSHCIAEVENDEMPADLPSLAADFVESKDVCKNYAEAKDVF







LGMFLYEYARRHPDYSVVLLLRLAKTYETTLEKCCAAADPHECYAKVFDE







FKPLVEEPQNLIKQNCELFEQLGEYKFQNALLVRYTKKVPQVSTPTLVEV







SRNLGKVGSKCCKHPEAKRMPCAEDYLSVVLNQLCVLHEKTPVSDRVTKC







CTESLVNRRPCFSALEVDETYVPKEFNAETFTFHADICTLSEKERQIKKQ







TALVELVKHKPKATKEQLKAVMDDFAAFVEKCCKADDKETCFAEEGKKLV







AASQAALGL








  73
m IgG1 Fc
GCKPCICTVPEVSSVFIFPPKPKDVLTITLTPKVTCVVVDISKDDPEVQFSW
mouse
half-life
wild-type




FVDDVEVHTAQTQPREEQFNSTFRSVSELPIMHQDWLNGKEFKCRVNSAAFP

extension





APIEKTISKTKGRPKAPQVYTIPPPKEQMAKDKVSLTCMITDFFPEDITVEW







QWNGQPAENYKNTQPIMDTDGSYFVYSKLNVQKSNWEAGNTFTCSVLHEGLH







NHHTEKSLSHSPGK








  74
Murine IgG1
GCKPCICTVPEVSSVFIFPPKPKDVLMITLTPKVTCVVVDISKDDPEVQFSW
mouse
half-life




T252M Fc
FVDDVEVHTAQTQPREEQFNSTFRSVSELPIMHQDWLNGKEFKCRVNSAAFP

extension




domain
APIEKTISKTKGRPKAPQVYTIPPPKEQMAKDKVSLTCMITDFFPEDITVEW






polypeptide
QWNGQPAENYKNTQPIMDTDGSYFVYSKLNVQKSNWEAGNTFTCSVLHEGLH






sequence
NHHTEKSLSHSPG








  75
hIgG1 Fc
EPKSSDKTHTCPPCPAPEAAGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVS
human
PK
hetero-



knob
HEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEY

extender
dimeric



L234A/L235
KCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLWCLVKG


Fc fusion



A
FYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVF


arm 1 FcgR




SCSVMHEALHNHYTQKSLSLSPG


binding







deficient





  76
hIgG1 Fc
EPKSSDKTHTCPPCPAPEAAGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVS
human
PK
hetero-



knob
HEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEY

extender
dimeric



(L234A/L235
KCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLWCLVKG


Fc fusion



A, H435R,
FYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVF


arm 1 FcgR



Y436F)
SCSVMHEALHNRFTQKSLSLSPG


binding







deficient /







protein A







binding







deficient





  77
hIgG1 Fc hole
EPKSSDKTHTCPPCPAPEAAGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVS
human
PK
hetero-



L234A/L235
HEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEY

extender
dimeric



A
KCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLSCAVKG


Fc fusion




FYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLVSKLTVDKSRWQQGNVF


arm 2 FcgR




SCSVMHEALHNHYTQKSLSLSPG


binding







deficient





  78
hIgG1 Fc hole
EPKSSDKTHTCPPCPAPEAAGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVS


hetero-



(L234A/L235
HEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEY


dimeric




KCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLSCAVKG


Fc fusion



A, H435R,
FYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLVSKLTVDKSRWQQGNVF


arm 2 FcgR



Y436F)
SCSVMHEALHNRFTQKSLSLSPG


binding







deficient/







protein A







binding







deficient





  79
Not Used









 756
IgG1 Fc
DKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPE
human
half-life
Knob



(K360E/K409
VKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVS

extension
mutations



W) Knob
NKALPAPIEKTISKAKGQPREPQVYTLPPSRDELTENQVSLTCLVKGFYPSD







IAVEWESNGQPENNYKTTPPVLDSDGSFFLYSWLTVDKSRWQQGNVFSCSVM







HEALHNHYTQKSLSLSPG








 757
h IgG1 Fc
DKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPE
human
half-life
Hole



(Q347R/D399
VKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVS

extension
mutations



V/F405T)
NKALPAPIEKTISKAKGQPREPRVYTLPPSRDELTKNQVSLTCLVKGFYPSD






Hole
IAVEWESNGQPENNYKTTPPVLVSDGSFTLYSKLTVDKSRWQQGNVFSCSVM







HEALHNHYTQKSLSLSPG








 857
h IgG1 Fc
DKTHTCPPCPAPEAAGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPE
human
PK
FcgR and



(L234A/L235
VKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVS

extender
C1q binding



A/P329G)
NKALGAPIEKTISKAKGQPREPQVYTLPPSRDELTKNQVSLTCLVKGFYPSD


impaired,




IAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVM


effectorless




HEALHNHYTQKSLSLSPG








 858
Human IgG1
DKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPE
human
PK
hetero-



Fc (D356K;
VKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVS

extender
dimeric



D399K)
NKALPAPIEKTISKAKGQPREPQVYTLPPSRKELTKNQVSLTCLVKGFYPSD


Fc fusion



charge variant
IAVEWESNGQPENNYKTTPPVLKSDGSFFLYSKLTVDKSRWQQGNVFSCSVM


arm2



2
HEALHNHYTQKSLSLSPG








 859
h IgG1 Fc
DKTHTCPPCPAPEAAGGPSVFLFPPKPKDTLMISRTPEVTCV
human
PK
hetero-



(L234A/L235
VVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQD

extender
dimeric



A/P329G/K36
WLNGKEYKCKVSNKALGAPIEKTISKAKGQPREPQVYTLPPSRDELTENQ


Fc fusion



0E/K409W)
VSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSWLTV


arm 1 FcgR



Knob
DKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPG


and C1q







binding







impaired





 860
h IgG1 Fc
DKTHTCPPCPAPEAAGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPE
human
PK
hetero-



(L234A/L235
VKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKV

extender
dimeric



A/P329G/Q34
SNKALGAPIEKTISKAKGQPREPRVYTLPPSRDELTKNQVSLTCLVKGFY


Fc fusion



7R/D399V/F4
PSDIAVEWESNGQPENNYKTTPPVLVSDGSFTLYSKLTVDKSRWQQGNVF


arm2 FcgR



05T) Hole
SCSVMHEALHNHYTQKSLSLSPG


and C1q







binding







impaired





 861
Human IgG1
DKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPE
human
PK
hetero-



(L234A/L235
VKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVS

extender
dimeric



A/P329G/K39
NKALGAPIEKTISKAKGQPREPQVYTLPPSRDELTKNQVSLTCLVKGFYPSD


Fc fusion



2D/K409D)
IAVEWESNGQPENNYDTTPPVLDSDGSFFLYSDLTVDKSRWQQGNVFSCSVM


arm 1 FcgR



Fc charge
HEALHNHYTQKSLSLSPG


and C1q



variant 1



binding







impaired





 862
Human IgG1
DKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPE
human
PK
hetero-



Fc
VKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVS

extender
dimeric



(L234A/L235
NKALGAPIEKTISKAKGQPREPQVYTLPPSRKELTKNQVSLTCLVKGFYPSD


Fc fusion



A/P329G/D35
IAVEWESNGQPENNYKTTPPVLKSDGSFFLYSKLTVDKSRWQQGNVFSCSVM


arm2 FcgR



6K/ D399K)
HEALHNHYTQKSLSLSPG


and C1q



charge variant



binding



2



impaired





871-899
Not Used














MMP cleavable segments












  80
MMP
GPLGVRG






cleavage site







polypeptide







sequence









  81
G112631
GPLGVRG






polypeptide







sequence









  82
G112632
GPLGLRG






polypeptide







sequence









  83
G112633
GPLGLAR






polypeptide







sequence









  84
G112634
GPAALVGA






polypeptide







sequence









  85
G112635
GPAALIGG






polypeptide







sequence









  86
G112636
GPLNLVGR






polypeptide







sequence









  87
G112637
GPAGLVAD






polypeptide







sequence









  88
G112638
GPANLVAP






polypeptide







sequence









  89
G112639
VPLSLYSG






polypeptide







sequence









  90
G112640
SGESPAYYTA






polypeptide







sequence









  91
MMP
PXXXHY






consensus







motif









  92
MMP-2
(L/I)×XXHY






consensus







motif









  93
MMP-2
XHYSXL






consensus







motif









  94
MMP-2
HXXXHY






consensus







motif









 95-119
Not Used






Other










 120
Gly-Ser rich
SGGGGSGGGG






linker







polypeptide







sequence









121-178
Not Used






179-700
See Table 2














Additional Protease-cleavable sequences












SEQ
Cleavable by
Sequence





ID







NO










 701
MMP7
KRALGLPG








 702
MMP7
(DE)8RPLALWRS(DR)8








 703
MMP9
PR(S/T)(L/I)(S/T)








 704
MMP9
LEATA








 705
MMP11
GGAANLVRGG








 706
MMP14
SGRIGFLRTA








 707
MMP
PLGLAG








 708
MMP
PLGLAX








 709
MMP
PLGC(me) AG








 710
MMP
ESPAYYTA








 711
MMP
RLQLKL








 712
MMP
RLQLKAC








 713
MMP,
EP(Cit)G(Hof)YL






MMP9,







MMP14









 714
Urokinase
SGRSA






plasminogen







activator







(uPA)









 715
Urokinase
DAFK






plasminogen







activator







(uPA)









 716
Urokinase
GGGRR






plasminogen







activator







(uPA)









 717
Lysomal
GFLG






Enzyme









 718
Lysomal
ALAL






Enzyme









 719
Lysomal
FK






Enzyme









 720
Cathepsin B
NLL








 721
Cathepsin D
PIC(Et) FF








 722
Cathepsin K
GGPRGLPG








 723
Prostate
HSSKLQ






Specific







Antigen









 724
Prostate
HSSKLQL






Specific







Antigen









 725
Prostate
HSSKLQEDA






Specific







Antigen









 726
Herpes
LVLASSSFGY






Simplex Virus







Protease









 727
HIV Protease
GVSQNYPIVG








 728
CMV
GVVQASCRLA






Protease









 729
Thrombin
F(Pip)RS








 730
Thrombin
DPRSFL








 731
Thrombin
PPRSFL








 732
Caspase-3
DEVD








 733
Caspase-3
DEVDP








 734
Caspase-3
KGSGDVEG








 735
Interleukin 1β
GWEHDG






converting







enzyme









 736
Enterokinase
EDDDDKA








 737
FAP
KQEQNPGST








 738
Kallikrein 2
GKAFRR








 739
Plasmin
DAFK








 740
Plasmin
DVLK








 741
Plasmin
DAFK








 742
TOP
ALLLALL













Growth Factor-Binding and Growth Factor Receptor-Binding Sequences












 760
m TGFb R II
IPPHVPK SDVEMEAQKD ASIHLSCNRT
murine
TGFβ
wild-type



(1-161)
IHPLKHFNSD VMASDNGGAV KLPQLCKFCD VRLSTCDNQK

trap
ECD




SCMSNCSITA


domain




ICEKPHEVCV AVWRKNDKNI TLETVCHDPK LTYHGFTLED


of ligand




AASPKCVMKE


receptor




KKRAGETFFM CACNMEECND YIIFSEEYTT SSPD








 761
hu TGFb R II
TIPPHVQK SVNNDMIVTD NNGA VKFPQL CKFCDVREST
human
TGFβ
wild-type



(1-136)
CDNQKSCMSN CSITSICEKP QEVCVAVWRK NDENITLETV

trap
ECD




CHDPKLPYHD FILEDAASPK CIMKEKKKPG ETFFMCSCSS


domain




DECNDNIIFS EEYNTSNPD


of ligand







receptor





 773
Anti-TGFβRII
QLQVQESGPGLVKPSETLSLTCTVSGGSISNSYFSWGWIRQPPGKGLEWIGS
human
TGFβRII
antibody



VH sequence
FYYGEKTYYNPSLKSRATISIDTSKSQFSLKLSSVTAADTAVYYCPRGPTMI

antagonist
fragment




RGVIDSWGQGTLVTVSS


to







TGFbeta







Receptor







II





 774
Anti-TGFβRII
EIVLTQSPATLSLSPGERATLSCRASQSVRSYLAWYQQKPGQAPRLLIYDAS
human
TGFβRII
antibody



VL sequence
NRATGIPARFSGSGSGTDFTLTISSLEPEDFAVYYCQQRSNWPPTFGQGTKV

antagonist
fragment




EIK


to







TGFbeta







Receptor







II





 775
Anti-TGFβRII
QLQVQESGPGLVKPSETLSLTCTVSGGSISNSYFSWGWIRQPPGKGLEWIGS
human
TGFβRII
antibody



scFv sequence
FYYGEKTYYNPSLKSRATISIDTSKSQFSLKLSSVTAADTAVYYCPRGPTMI

antagonist
fragment




RGVIDSWGQGTLVTVSSGGGGSGGGGSGGGGSEIVLTQSPATLSLSPGERAT


to




LSCRASQSVRSYLAWYQQKPGQAPRLLIYDASNRATGIPARFSGSGSGTDFT


TGFbeta




LTISSLEPEDFAVYYCQQRSNWPPTFGQGTKVEIK


Receptor







II





 776
Anti-TGFβRII
EIVLTQSPATLSLSPGERATLSCRASQSVRSYLAWYQQKPGQAPRLLIYDAS
human
TGFβRII
antibody



scFv sequence
NRATGIPARFSGSGSGTDFTLTISSLEPEDFAVYYCQQRSNWPPTFGQGTKV

antagonist
fragment




EIKGGGGSGGGGSGGGGSQLQVQESGPGLVKPSETLSLTCTVSGGSISNSYF


to




SWGWIRQPPGKGLEWIGSFYYGEKTYYNPSLKSRATISIDTSKSQFSLKLSS


TGFbeta




VTAADTAVYYCPRGPTMIRGVIDSWGQGTLVTVSS


Receptor







II





 777
Anti-TGFβRII
QLQLQESGPGLVKPSETLSLTCTVSGGSISSSSYSWGWIRQPPGKGLEWIGS
human
TGFβRII
antibody



VH sequence
FYYSGITYYSPSLKSRIIISEDTSKNQFSLKLSSVTAADTAVYYCASGFTMI

antagonist
fragment




RGALDYWGQGTLVTVSS


to







TGFbeta







Receptor







II





 778
Anti-TGFβRII
EIVLTQSPATLSLSPGERATLSCRASQSVRSFLAWYQQKPGQAPRLLIYDAS
human
TGFβRII
antibody



VL sequence
NRATGIPARFSGSGSGTDFTLTISSLEPEDFAVYYCQQRSNWPPTFGQGTKV

antagonist
fragment




EIK


to







TGFbeta







Receptor







II





 779
Anti-TGFβRII
QLQLQESGPGLVKPSETLSLTCTVSGGSISSSSYSWGWIRQPPGKGLEWIGS
human
TGFβRII
antibody



scFv sequence
FYYSGITYYSPSLKSRIIISEDTSKNQFSLKLSSVTAADTAVYYCASGFTMI

antagonist
fragment




RGALDYWGQGTLVTVSSGGGGSGGGGSGGGGSEIVLTQSPATLSLSPGERAT


to




LSCRASQSVRSFLAWYQQKPGQAPRLLIYDASNRATGIPARFSGSGSGTDFT


TGFbeta




LTISSLEPEDFAVYYCQQRSNWPPTFGQGTKVEIK


Receptor







II





 780
Anti-TGFβRII
EIVLTQSPATLSLSPGERATLSCRASQSVRSFLAWYQQKPGQAPRLLIYDAS
human
TGFβRII
antibody



scFv sequence
NRATGIPARFSGSGSGTDFTLTISSLEPEDFAVYYCQQRSNWPPTFGQGTKV

antagonist
fragment




EIKGGGGSGGGGSGGGGSQLQLQESGPGLVKPSETLSLTCTVSGGSISSSSY


to




SWGWIRQPPGKGLEWIGSFYYSGITYYSPSLKSRIIISEDTSKNQFSLKLSS


TGFbeta




VTAADTAVYYCASGFTMIRGALDYWGQGTLVTVSS


Receptor







II










Pro-cytokine polypeptides












 800
Construct B
APTSSSTSSSTAEAQQQQQQQQQQQQHLEQLLMDLQELLSRMENYRNLKLPR






polypeptide
MLTFKFYLPKQATELKDLQCLEDELGPLRHVLDLTQSKSFQLEDAENFISNI






sequence: m
RVTVVKLKGSDNTFECQFDDESATVVDFLRRWIAFCQSIISTSPQSGGGGSG






IL2-
GGGGPLGVRGGGGGSGGGGSELCLYDPPEVPNATFKALSYKNGTILNCECKR






2×(SG4)(SEQ
GFRRLKELVYMRCLGNSWSSNCQCTSNSHDKSRKQVTAQLEHQKEQQTTTDM






ID NO: 1143)
QKPTQSMHQENLTGHCREPPPWKHEDSKRIYHFVEGQSVHYECIPGYKALQR






-MMPcs1-
GPAISICKMKCGKTGWTQPQLTCVDEREHHRFLASEESQGSRNSSPESETSC






2×(G4S)
PITTTDFPQPTETTAMTETFVLTMEYKGCKPCICTVPEVSSVFIFPPKPKDV






(SEQ
LTITLTPKVTCVVVDISKDDPEVQFSWFVDDVEVHTAQTQPREEQFNSTERS






ID NO: 1142)
VSELPIMHQDWLNGKEFKCRVNSAAFPAPIEKTISKTKGRPKAPQVYTIPPP






-IL2Ralpha-
KEQMAKDKVSLTCMITDFFPEDITVEWQWNGQPAENYKNTQPIMDTDGSYFV






mIgG1 Fc
YSKLNVQKSNWEAGNTFTCSVLHEGLHNHHTEKSLSHSPGK








 801
Construct
APTSSSTSSSTAEAQQQQQQQQQQQQHLEQLLMDLQELLSRMENYRNLKLPR






GGG
MLTFKFYLPKQATELKDLQCLEDELGPLRHVLDLTQSKSFQLEDAENFISNI







RVTVVKLKGSDNTFECQFDDESATVVDFLRRWIAFSQSIISTSPQSGGGGSG







GGGGVRLGPGGGGGSGGGGSELCLYDPPEVPNATFKALSYKNGTILNCECKR







GFRRLKELVYMRCLGNSWSSNCQCTSNSHDKSRKQVTAQLEHQKEQQTTTDM







QKPTQSMHQENLTGHCREPPPWKHEDSKRIYHFVEGQSVHYECIPGYKALQR







GPAISICKMKCGKTGWTQPQLTCVDEREHHRFLASEESQGSRNSSPESETSC







PITTTDFPQPTETTAMTETFVLTMEYKGCKPCICTVPEVSSVFIFPPKPKDV







LTITLTPKVTCVVVDISKDDPEVQFSWFVDDVEVHTAQTQPREEQFNSTFRS







VSELPIMHQDWLNGKEFKCRVNSAAFPAPIEKTISKTKGRPKAPQVYTIPPP







KEQMAKDKVSLTCMITDFFPEDITVEWQWNGQPAENYKNTQPIMDTDGSYFV







YSKLNVQKSNWEAGNTFTCSVLHEGLHNHHTEKSLSHSPGK








 802
Construct
APTSSSTKKTQLQLEHLLLDLQMILNGINNYKNPKLTRMLTFKFYMPKKATE






AAA
LKHLQCLEEELKPLEEVLNLAQSKNFHLRPRDLISNINVIVLELKGSETTFM







CEYADETATIVEFLNRWITFSQSIISTLTSGGGGSGGGGGPLGVRGGGGGSG







GGGSELCDDDPPEIPHATFKAMAYKEGTILNCECKRGFRRIKSGSLYMLCTG







NSSHSSWDNQCQCTSSATRNTTKQVTPQPEEQKERKTTEMQSPMQPVDQASL







PGHCREPPPWENEATERIYHFVVGQMVYYQCVQGYRALHRGPAESVCKMTHG







KTRWTQPQLICTGEMETSQFPGEEKPQASPEGRPESETSCLVTTTDFQIQTE







MAATMETSIFTTEYQGSGGGGDKTHTCPPCPAPEAAGGPSVFLFPPKPKDTL







MISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVV







SVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSR







DELTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLY







SKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPG








 803
Construct Y
APTSSSTSSSTAEAQQQQQQQQQQQQHLEQLLMDLQELLSRMENYRNLKLPR







MLTFKFYLPKQATELKDLQCLEDELGPLRHVLDLTQSKSFQLEDAENFISNI







RVTVVKLKGSDNTFECQFDDESATVVDFLRRWIAFSQSIISTSPQVRIQRKK







EKMKETGPLGVRGGGGGSGGGGSELCLYDPPEVPNATFKALSYKNGTILNCE







CKRGFRRLKELVYMRCLGNSWSSNCQCTSNSHDKSRKQVTAQLEHQKEQQTT







TDMQKPTQSMHQENLTGHCREPPPWKHEDSKRIYHFVEGQSVHYECIPGYKA







LQRGPAISICKMKCGKTGWTQPQLTCVDEREHHRFLASEESQGSRNSSPESE







TSCPITTTDFPQPTETTAMTETFVLTMEYKIEGRMDGCKPCICTVPEVSSVF







IFPPKPKDVLTITLTPKVTCVVVDISKDDPEVQFSWFVDDVEVHTAQTQPRE







EQFNSTFRSVSELPIMHQDWLNGKEFKCRVNSAAFPAPIEKTISKTKGRPKA







PQVYTIPPPKEQMAKDKVSLTCMITDFFPEDITVEWQWNGQPAENYKNTQPI







MDTDGSYFVYSKLNVQKSNWEAGNTFTCSVLHEGLHNHHTEKSLSHSPGK








 804
Construct AA
APTSSSTSSSTAEAQQQQQQQQQQQQHLEQLLMDLQELLSRMENYRNLKLPR







MLTFKFYLPKQATELKDLQCLEDELGPLRHVLDLTQSKSFQLEDAENFISNI







RVTVVKLKGSDNTFECQFDDESATVVDFLRRWIAFCQSIISTSPQSGGFHRR







IKAGPLGVRGGGGGSGGGGSELCLYDPPEVPNATFKALSYKNGTILNCECKR







GFRRLKELVYMRCLGNSWSSNCQCTSNSHDKSRKQVTAQLEHQKEQQTTTDM







QKPTQSMHQENLTGHCREPPPWKHEDSKRIYHFVEGQSVHYECIPGYKALQR







GPAISICKMKCGKTGWTQPQLTCVDEREHHRFLASEESQGSRNSSPESETSC







PITTTDFPQPTETTAMTETFVLTMEYKGCKPCICTVPEVSSVFIFPPKPKDV







LTITLTPKVTCVVVDISKDDPEVQFSWFVDDVEVHTAQTQPREEQFNSTFRS







VSELPIMHQDWLNGKEFKCRVNSAAFPAPIEKTISKTKGRPKAPQVYTIPPP







KEQMAKDKVSLTCMITDFFPEDITVEWQWNGQPAENYKNTQPIMDTDGSYFV







YSKLNVQKSNWEAGNTFTCSVLHEGLHNHHTEKSLSHSPGK








 805
Construct BB
APTSSSTSSSTAEAQQQQQQQQQQQQHLEQLLMDLQELLSRMENYRNLKLPR







MLTFKFYLPKQATELKDLQCLEDELGPLRHVLDLTQSKSFQLEDAENFISNI







RVTVVKLKGSDNTFECQFDDESATVVDFLRRWIAFCQSIISTSPQSGGFHRR







IKAGVRLGPGGGGGSGGGGSELCLYDPPEVPNATFKALSYKNGTILNCECKR







GFRRLKELVYMRCLGNSWSSNCQCTSNSHDKSRKQVTAQLEHQKEQQTTTDM







QKPTQSMHQENLTGHCREPPPWKHEDSKRIYHFVEGQSVHYECIPGYKALQR







GPAISICKMKCGKTGWTQPQLTCVDEREHHRFLASEESQGSRNSSPESETSC







PITTTDFPQPTETTAMTETFVLTMEYKGCKPCICTVPEVSSVFIFPPKPKDV







LTITLTPKVTCVVVDISKDDPEVQFSWFVDDVEVHTAQTQPREEQFNSTFRS







VSELPIMHQDWLNGKEFKCRVNSAAFPAPIEKTISKTKGRPKAPQVYTIPPP







KEQMAKDKVSLTCMITDFFPEDITVEWQWNGQPAENYKNTQPIMDTDGSYFV







YSKLNVQKSNWEAGNTFTCSVLHEGLHNHHTEKSLSHSPGK








 806
Construct CC
APTSSSTSSSTAEAQQQQQQQQQQQQHLEQLLMDLQELLSRMENYRNLKLPR







MLTFKFYLPKQATELKDLQCLEDELGPLRHVLDLTQSKSFQLEDAENFISNI







RVTVVKLKGSDNTFECQFDDESATVVDFLRRWIAFCQSIISTSPQGHHPHGH







HPHGPLGVRGGGGGSGGGGSELCLYDPPEVPNATFKALSYKNGTILNCECKR







GFRRLKELVYMRCLGNSWSSNCQCTSNSHDKSRKQVTAQLEHQKEQQTTTDM







QKPTQSMHQENLTGHCREPPPWKHEDSKRIYHFVEGQSVHYECIPGYKALQR







GPAISICKMKCGKTGWTQPQLTCVDEREHHRFLASEESQGSRNSSPESETSC







PITTTDFPQPTETTAMTETFVLTMEYKGCKPCICTVPEVSSVFIFPPKPKDV







LTITLTPKVTCVVVDISKDDPEVQFSWFVDDVEVHTAQTQPREEQFNSTFRS







VSELPIMHQDWLNGKEFKCRVNSAAFPAPIEKTISKTKGRPKAPQVYTIPPP







KEQMAKDKVSLTCMITDFFPEDITVEWQWNGQPAENYKNTQPIMDTDGSYFV







YSKLNVQKSNWEAGNTFTCSVLHEGLHNHHTEKSLSHSPGK








 807
Construct DD
APTSSSTSSSTAEAQQQQQQQQQQQQHLEQLLMDLQELLSRMENYRNLKLPR







MLTFKFYLPKQATELKDLQCLEDELGPLRHVLDLTQSKSFQLEDAENFISNI







RVTVVKLKGSDNTFECQFDDESATVVDFLRRWIAFCQSIISTSPQGHHPHGH







HPHGVRLGPGGGGGSGGGGSELCLYDPPEVPNATFKALSYKNGTILNCECKR







GFRRLKELVYMRCLGNSWSSNCQCTSNSHDKSRKQVTAQLEHQKEQQTTTDM







QKPTQSMHQENLTGHCREPPPWKHEDSKRIYHFVEGQSVHYECIPGYKALQR







GPAISICKMKCGKTGWTQPQLTCVDEREHHRFLASEESQGSRNSSPESETSC







PITTTDFPQPTETTAMTETFVLTMEYKGCKPCICTVPEVSSVFIFPPKPKDV







LTITLTPKVTCVVVDISKDDPEVQFSWFVDDVEVHTAQTQPREEQFNSTFRS







VSELPIMHQDWLNGKEFKCRVNSAAFPAPIEKTISKTKGRPKAPQVYTIPPP







KEQMAKDKVSLTCMITDFFPEDITVEWQWNGQPAENYKNTQPIMDTDGSYFV







YSKLNVQKSNWEAGNTFTCSVLHEGLHNHHTEKSLSHSPGK








 808
Construct EE
APTSSSTSSSTAEAQQQQQQQQQQQQHLEQLLMDLQELLSRMENYRNLKLPR







MLTFKFYLPKQATELKDLQCLEDELGPLRHVLDLTQSKSFQLEDAENFISNI







RVTVVKLKGSDNTFECQFDDESATVVDFLRRWIAFCQSIISTSPQSGGGGWS







HWGPLGVRGGGGGSGGGGSELCLYDPPEVPNATFKALSYKNGTILNCECKRG







FRRLKELVYMRCLGNSWSSNCQCTSNSHDKSRKQVTAQLEHQKEQQTTTDMQ







KPTQSMHQENLTGHCREPPPWKHEDSKRIYHFVEGQSVHYECIPGYKALQRG







PAISICKMKCGKTGWTQPQLTCVDEREHHRFLASEESQGSRNSSPESETSCP







ITTTDFPQPTETTAMTETFVLTMEYKGCKPCICTVPEVSSVFIFPPKPKDVL







TITLTPKVTCVVVDISKDDPEVQFSWFVDDVEVHTAQTQPREEQFNSTFRSV







SELPIMHQDWLNGKEFKCRVNSAAFPAPIEKTISKTKGRPKAPQVYTIPPPK







EQMAKDKVSLTCMITDFFPEDITVEWQWNGQPAENYKNTQPIMDTDGSYFVY







SKLNVQKSNWEAGNTFTCSVLHEGLHNHHTEKSLSHSPGK








 809
Construct FF
APTSSSTSSSTAEAQQQQQQQQQQQQHLEQLLMDLQELLSRMENYRNLKLPR







MLTFKFYLPKQATELKDLQCLEDELGPLRHVLDLTQSKSFQLEDAENFISNI







RVTVVKLKGSDNTFECQFDDESATVVDFLRRWIAFCQSIISTSPQSGGGGWS







HWGVRLGPGGGGGSGGGGSELCLYDPPEVPNATFKALSYKNGTILNCECKRG







FRRLKELVYMRCLGNSWSSNCQCTSNSHDKSRKQVTAQLEHQKEQQTTTDMQ







KPTQSMHQENLTGHCREPPPWKHEDSKRIYHFVEGQSVHYECIPGYKALQRG







PAISICKMKCGKTGWTQPQLTCVDEREHHRFLASEESQGSRNSSPESETSCP







ITTTDFPQPTETTAMTETFVLTMEYKGCKPCICTVPEVSSVFIFPPKPKDVL







TITLTPKVTCVVVDISKDDPEVQFSWFVDDVEVHTAQTQPREEQFNSTFRSV







SELPIMHQDWLNGKEFKCRVNSAAFPAPIEKTISKTKGRPKAPQVYTIPPPK







EQMAKDKVSLTCMITDFFPEDITVEWQWNGQPAENYKNTQPIMDTDGSYFVY







SKLNVQKSNWEAGNTFTCSVLHEGLHNHHTEKSLSHSPGK








 810
Construct GG
APTSSSTSSSTAEAQQQQQQQQQQQQHLEQLLMDLQELLSRMENYRNLKLPR







MLTFKFYLPKQATELKDLQCLEDELGPLRHVLDLTQSKSFQLEDAENFISNI







RVTVVKLKGSDNTFECQFDDESATVVDFLRRWIAFCQSIISTSPQSGGKLWV







LPKGPLGVRGGGGGSGGGGSELCLYDPPEVPNATFKALSYKNGTILNCECKR







GFRRLKELVYMRCLGNSWSSNCQCTSNSHDKSRKQVTAQLEHQKEQQTTTDM







QKPTQSMHQENLTGHCREPPPWKHEDSKRIYHFVEGQSVHYECIPGYKALQR







GPAISICKMKCGKTGWTQPQLTCVDEREHHRFLASEESQGSRNSSPESETSC







PITTTDFPQPTETTAMTETFVLTMEYKGCKPCICTVPEVSSVFIFPPKPKDV







LTITLTPKVTCVVVDISKDDPEVQFSWFVDDVEVHTAQTQPREEQFNSTFRS







VSELPIMHQDWLNGKEFKCRVNSAAFPAPIEKTISKTKGRPKAPQVYTIPPP







KEQMAKDKVSLTCMITDFFPEDITVEWQWNGQPAENYKNTQPIMDTDGSYFV







YSKLNVQKSNWEAGNTFTCSVLHEGLHNHHTEKSLSHSPGK








 811
Construct HH
APTSSSTSSSTAEAQQQQQQQQQQQQHLEQLLMDLQELLSRMENYRNLKLPR







MLTFKFYLPKQATELKDLQCLEDELGPLRHVLDLTQSKSFQLEDAENFISNI







RVTVVKLKGSDNTFECQFDDESATVVDFLRRWIAFCQSIISTSPQSGGKLWV







LPKGVRLGPGGGGGSGGGGSELCLYDPPEVPNATFKALSYKNGTILNCECKR







GFRRLKELVYMRCLGNSWSSNCQCTSNSHDKSRKQVTAQLEHQKEQQTTTDM







QKPTQSMHQENLTGHCREPPPWKHEDSKRIYHFVEGQSVHYECIPGYKALQR







GPAISICKMKCGKTGWTQPQLTCVDEREHHRFLASEESQGSRNSSPESETSC







PITTTDFPQPTETTAMTETFVLTMEYKGCKPCICTVPEVSSVFIFPPKPKDV







LTITLTPKVTCVVVDISKDDPEVQFSWFVDDVEVHTAQTQPREEQFNSTFRS







VSELPIMHQDWLNGKEFKCRVNSAAFPAPIEKTISKTKGRPKAPQVYTIPPP







KEQMAKDKVSLTCMITDFFPEDITVEWQWNGQPAENYKNTQPIMDTDGSYFV







YSKLNVQKSNWEAGNTFTCSVLHEGLHNHHTEKSLSHSPGK








 812
Construct II
APTSSSTSSSTAEAQQQQQQQQQQQQHLEQLLMDLQELLSRMENYRNLKLPR







MLTFKFYLPKQATELKDLQCLEDELGPLRHVLDLTQSKSFQLEDAENFISNI







RVTVVKLKGSDNTFECQFDDESATVVDFLRRWIAFCQSIISTSPQSLHERHL







NNNGPLGVRGGGGGSGGGGSELCLYDPPEVPNATFKALSYKNGTILNCECKR







GFRRLKELVYMRCLGNSWSSNCQCTSNSHDKSRKQVTAQLEHQKEQQTTTDM







QKPTQSMHQENLTGHCREPPPWKHEDSKRIYHFVEGQSVHYECIPGYKALQR







GPAISICKMKCGKTGWTQPQLTCVDEREHHRFLASEESQGSRNSSPESETSC







PITTTDFPQPTETTAMTETFVLTMEYKGCKPCICTVPEVSSVFIFPPKPKDV







LTITLTPKVTCVVVDISKDDPEVQFSWFVDDVEVHTAQTQPREEQFNSTFRS







VSELPIMHQDWLNGKEFKCRVNSAAFPAPIEKTISKTKGRPKAPQVYTIPPP







KEQMAKDKVSLTCMITDFFPEDITVEWQWNGQPAENYKNTQPIMDTDGSYFV







YSKLNVQKSNWEAGNTFTCSVLHEGLHNHHTEKSLSHSPGK








 813
Construct JJ
APTSSSTSSSTAEAQQQQQQQQQQQQHLEQLLMDLQELLSRMENYRNLKLPR







MLTFKFYLPKQATELKDLQCLEDELGPLRHVLDLTQSKSFQLEDAENFISNI







RVTVVKLKGSDNTFECQFDDESATVVDFLRRWIAFCQSIISTSPQSLHERHL







NNNGVRLGPGGGGGSGGGGSELCLYDPPEVPNATFKALSYKNGTILNCECKR







GFRRLKELVYMRCLGNSWSSNCQCTSNSHDKSRKQVTAQLEHQKEQQTTTDM







QKPTQSMHQENLTGHCREPPPWKHEDSKRIYHFVEGQSVHYECIPGYKALQR







GPAISICKMKCGKTGWTQPQLTCVDEREHHRFLASEESQGSRNSSPESETSC







PITTTDFPQPTETTAMTETFVLTMEYKGCKPCICTVPEVSSVFIFPPKPKDV







LTITLTPKVTCVVVDISKDDPEVQFSWFVDDVEVHTAQTQPREEQFNSTFRS







VSELPIMHQDWLNGKEFKCRVNSAAFPAPIEKTISKTKGRPKAPQVYTIPPP







KEQMAKDKVSLTCMITDFFPEDITVEWQWNGQPAENYKNTQPIMDTDGSYFV







YSKLNVQKSNWEAGNTFTCSVLHEGLHNHHTEKSLSHSPGK








 814
Construct KK
APTSSSTSSSTAEAQQQQQQQQQQQQHLEQLLMDLQELLSRMENYRNLKLPR







MLTFKFYLPKQATELKDLQCLEDELGPLRHVLDLTQSKSFQLEDAENFISNI







RVTVVKLKGSDNTFECQFDDESATVVDFLRRWIAFCQSIISTSPQVRIQRKK







EKMKETGVRLGPGGGGGSGGGGSELCLYDPPEVPNATFKALSYKNGTILNCE







CKRGFRRLKELVYMRCLGNSWSSNCQCTSNSHDKSRKQVTAQLEHQKEQQTT







TDMQKPTQSMHQENLTGHCREPPPWKHEDSKRIYHFVEGQSVHYECIPGYKA







LQRGPAISICKMKCGKTGWTQPQLTCVDEREHHRFLASEESQGSRNSSPESE







TSCPITTTDFPQPTETTAMTETFVLTMEYKGCKPCICTVPEVSSVFIFPPKP







KDVLTITLTPKVTCVVVDISKDDPEVQFSWFVDDVEVHTAQTQPREEQFNST







FRSVSELPIMHQDWLNGKEFKCRVNSAAFPAPIEKTISKTKGRPKAPQVYTI







PPPKEQMAKDKVSLTCMITDFFPEDITVEWQWNGQPAENYKNTQPIMDTDGS







YFVYSKLNVQKSNWEAGNTFTCSVLHEGLHNHHTEKSLSHSPGK








 815
Construct LL
APTSSSTSSSTAEAQQQQQQQQQQQQHLEQLLMDLQELLSRMENYRNLKLPR







MLTFKFYLPKQATELKDLQCLEDELGPLRHVLDLTQSKSFQLEDAENFISNI







RVTVVKLKGSDNTFECQFDDESATVVDFLRRWIAFCQSIISTSPQSGGGGSG







GGGGPLGVRGFHRRIKAGGSELCLYDPPEVPNATFKALSYKNGTILNCECKR







GFRRLKELVYMRCLGNSWSSNCQCTSNSHDKSRKQVTAQLEHQKEQQTTTDM







QKPTQSMHQENLTGHCREPPPWKHEDSKRIYHFVEGQSVHYECIPGYKALQR







GPAISICKMKCGKTGWTQPQLTCVDEREHHRFLASEESQGSRNSSPESETSC







PITTTDFPQPTETTAMTETFVLTMEYKGCKPCICTVPEVSSVFIFPPKPKDV







LTITLTPKVTCVVVDISKDDPEVQFSWFVDDVEVHTAQTQPREEQFNSTFRS







VSELPIMHQDWLNGKEFKCRVNSAAFPAPIEKTISKTKGRPKAPQVYTIPPP







KEQMAKDKVSLTCMITDFFPEDITVEWQWNGQPAENYKNTQPIMDTDGSYFV







YSKLNVQKSNWEAGNTFTCSVLHEGLHNHHTEKSLSHSPGK








 816
Construct
APTSSSTSSSTAEAQQQQQQQQQQQQHLEQLLMDLQELLSRMENYRNLKLPR






MM
MLTFKFYLPKQATELKDLQCLEDELGPLRHVLDLTQSKSFQLEDAENFISNI







RVTVVKLKGSDNTFECQFDDESATVVDFLRRWIAFCQSIISTSPQSGGGGSG







GGGGVRLGPGFHRRIKAGGSELCLYDPPEVPNATFKALSYKNGTILNCECKR







GFRRLKELVYMRCLGNSWSSNCQCTSNSHDKSRKQVTAQLEHQKEQQTTTDM







QKPTQSMHQENLTGHCREPPPWKHEDSKRIYHFVEGQSVHYECIPGYKALQR







GPAISICKMKCGKTGWTQPQLTCVDEREHHRFLASEESQGSRNSSPESETSC







PITTTDFPQPTETTAMTETFVLTMEYKGCKPCICTVPEVSSVFIFPPKPKDV







LTITLTPKVTCVVVDISKDDPEVQFSWFVDDVEVHTAQTQPREEQFNSTFRS







VSELPIMHQDWLNGKEFKCRVNSAAFPAPIEKTISKTKGRPKAPQVYTIPPP







KEQMAKDKVSLTCMITDFFPEDITVEWQWNGQPAENYKNTQPIMDTDGSYFV







YSKLNVQKSNWEAGNTFTCSVLHEGLHNHHTEKSLSHSPGK








 817
Construct NN
APTSSSTSSSTAEAQQQQQQQQQQQQHLEQLLMDLQELLSRMENYRNLKLPR







MLTFKFYLPKQATELKDLQCLEDELGPLRHVLDLTQSKSFQLEDAENFISNI







RVTVVKLKGSDNTFECQFDDESATVVDFLRRWIAFCQSIISTSPQSGGGGSG







GGGGPLGVRGGHHPHGHHPHELCLYDPPEVPNATFKALSYKNGTILNCECKR







GFRRLKELVYMRCLGNSWSSNCQCTSNSHDKSRKQVTAQLEHQKEQQTTTDM







QKPTQSMHQENLTGHCREPPPWKHEDSKRIYHFVEGQSVHYECIPGYKALQR







GPAISICKMKCGKTGWTQPQLTCVDEREHHRFLASEESQGSRNSSPESETSC







PITTTDFPQPTETTAMTETFVLTMEYKGCKPCICTVPEVSSVFIFPPKPKDV







LTITLTPKVTCVVVDISKDDPEVQFSWFVDDVEVHTAQTQPREEQFNSTFRS







VSELPIMHQDWLNGKEFKCRVNSAAFPAPIEKTISKTKGRPKAPQVYTIPPP







KEQMAKDKVSLTCMITDFFPEDITVEWQWNGQPAENYKNTQPIMDTDGSYFV







YSKLNVQKSNWEAGNTFTCSVLHEGLHNHHTEKSLSHSPGK








 818
Construct OO
APTSSSTSSSTAEAQQQQQQQQQQQQHLEQLLMDLQELLSRMENYRNLKLPR







MLTFKFYLPKQATELKDLQCLEDELGPLRHVLDLTQSKSFQLEDAENFISNI







RVTVVKLKGSDNTFECQFDDESATVVDFLRRWIAFCQSIISTSPQSGGGGSG







GGGGVRLGPGGHHPHGHHPHELCLYDPPEVPNATFKALSYKNGTILNCECKR







GFRRLKELVYMRCLGNSWSSNCQCTSNSHDKSRKQVTAQLEHQKEQQTTTDM







QKPTQSMHQENLTGHCREPPPWKHEDSKRIYHFVEGQSVHYECIPGYKALQR







GPAISICKMKCGKTGWTQPQLTCVDEREHHRFLASEESQGSRNSSPESETSC







PITTTDFPQPTETTAMTETFVLTMEYKGCKPCICTVPEVSSVFIFPPKPKDV







LTITLTPKVTCVVVDISKDDPEVQFSWFVDDVEVHTAQTQPREEQFNSTFRS







VSELPIMHQDWLNGKEFKCRVNSAAFPAPIEKTISKTKGRPKAPQVYTIPPP







KEQMAKDKVSLTCMITDFFPEDITVEWQWNGQPAENYKNTQPIMDTDGSYFV







YSKLNVQKSNWEAGNTFTCSVLHEGLHNHHTEKSLSHSPGK








 819
Construct PP
APTSSSTSSSTAEAQQQQQQQQQQQQHLEQLLMDLQELLSRMENYRNLKLPR







MLTFKFYLPKQATELKDLQCLEDELGPLRHVLDLTQSKSFQLEDAENFISNI







RVTVVKLKGSDNTFECQFDDESATVVDFLRRWIAFCQSIISTSPQSGGGGSG







GGGGPLGVRGGGWSHWGGSELCLYDPPEVPNATFKALSYKNGTILNCECKRG







FRRLKELVYMRCLGNSWSSNCQCTSNSHDKSRKQVTAQLEHQKEQQTTTDMQ







KPTQSMHQENLTGHCREPPPWKHEDSKRIYHFVEGQSVHYECIPGYKALQRG







PAISICKMKCGKTGWTQPQLTCVDEREHHRFLASEESQGSRNSSPESETSCP







ITTTDFPQPTETTAMTETFVLTMEYKGCKPCICTVPEVSSVFIFPPKPKDVL







TITLTPKVTCVVVDISKDDPEVQFSWFVDDVEVHTAQTQPREEQFNSTFRSV







SELPIMHQDWLNGKEFKCRVNSAAFPAPIEKTISKTKGRPKAPQVYTIPPPK







EQMAKDKVSLTCMITDFFPEDITVEWQWNGQPAENYKNTQPIMDTDGSYFVY







SKLNVQKSNWEAGNTFTCSVLHEGLHNHHTEKSLSHSPGK








 820
Construct QQ
APTSSSTSSSTAEAQQQQQQQQQQQQHLEQLLMDLQELLSRMENYRNLKLPR







MLTFKFYLPKQATELKDLQCLEDELGPLRHVLDLTQSKSFQLEDAENFISNI







RVTVVKLKGSDNTFECQFDDESATVVDFLRRWIAFCQSIISTSPQSGGGGSG







GGGGVRLGPGGGWSHWGGSELCLYDPPEVPNATFKALSYKNGTILNCECKRG







FRRLKELVYMRCLGNSWSSNCQCTSNSHDKSRKQVTAQLEHQKEQQTTTDMQ







KPTQSMHQENLTGHCREPPPWKHEDSKRIYHFVEGQSVHYECIPGYKALQRG







PAISICKMKCGKTGWTQPQLTCVDEREHHRFLASEESQGSRNSSPESETSCP







ITTTDFPQPTETTAMTETFVLTMEYKGCKPCICTVPEVSSVFIFPPKPKDVL







TITLTPKVTCVVVDISKDDPEVQFSWFVDDVEVHTAQTQPREEQFNSTFRSV







SELPIMHQDWLNGKEFKCRVNSAAFPAPIEKTISKTKGRPKAPQVYTIPPPK







EQMAKDKVSLTCMITDFFPEDITVEWQWNGQPAENYKNTQPIMDTDGSYFVY







SKLNVQKSNWEAGNTFTCSVLHEGLHNHHTEKSLSHSPGK








 821
Construct RR
APTSSSTSSSTAEAQQQQQQQQQQQQHLEQLLMDLQELLSRMENYRNLKLPR







MLTFKFYLPKQATELKDLQCLEDELGPLRHVLDLTQSKSFQLEDAENFISNI







RVTVVKLKGSDNTFECQFDDESATVVDFLRRWIAFCQSIISTSPQSGGGGSG







GGGGPLGVRGKLWVLPKGGSELCLYDPPEVPNATFKALSYKNGTILNCECKR







GFRRLKELVYMRCLGNSWSSNCQCTSNSHDKSRKQVTAQLEHQKEQQTTTDM







QKPTQSMHQENLTGHCREPPPWKHEDSKRIYHFVEGQSVHYECIPGYKALQR







GPAISICKMKCGKTGWTQPQLTCVDEREHHRFLASEESQGSRNSSPESETSC







PITTTDFPQPTETTAMTETFVLTMEYKGCKPCICTVPEVSSVFIFPPKPKDV







LTITLTPKVTCVVVDISKDDPEVQFSWFVDDVEVHTAQTQPREEQFNSTFRS







VSELPIMHQDWLNGKEFKCRVNSAAFPAPIEKTISKTKGRPKAPQVYTIPPP







KEQMAKDKVSLTCMITDFFPEDITVEWQWNGQPAENYKNTQPIMDTDGSYFV







YSKLNVQKSNWEAGNTFTCSVLHEGLHNHHTEKSLSHSPGK








 822
Construct SS
APTSSSTSSSTAEAQQQQQQQQQQQQHLEQLLMDLQELLSRMENYRNLKLPR







MLTFKFYLPKQATELKDLQCLEDELGPLRHVLDLTQSKSFQLEDAENFISNI







RVTVVKLKGSDNTFECQFDDESATVVDFLRRWIAFCQSIISTSPQSGGGGSG







GGGGVRLGPGKLWVLPKGGSELCLYDPPEVPNATFKALSYKNGTILNCECKR







GFRRLKELVYMRCLGNSWSSNCQCTSNSHDKSRKQVTAQLEHQKEQQTTTDM







QKPTQSMHQENLTGHCREPPPWKHEDSKRIYHFVEGQSVHYECIPGYKALQR







GPAISICKMKCGKTGWTQPQLTCVDEREHHRFLASEESQGSRNSSPESETSC







PITTTDFPQPTETTAMTETFVLTMEYKGCKPCICTVPEVSSVFIFPPKPKDV







LTITLTPKVTCVVVDISKDDPEVQFSWFVDDVEVHTAQTQPREEQFNSTFRS







VSELPIMHQDWLNGKEFKCRVNSAAFPAPIEKTISKTKGRPKAPQVYTIPPP







KEQMAKDKVSLTCMITDFFPEDITVEWQWNGQPAENYKNTQPIMDTDGSYFV







YSKLNVQKSNWEAGNTFTCSVLHEGLHNHHTEKSLSHSPGK








 823
Construct TT
APTSSSTSSSTAEAQQQQQQQQQQQQHLEQLLMDLQELLSRMENYRNLKLPR







MLTFKFYLPKQATELKDLQCLEDELGPLRHVLDLTQSKSFQLEDAENFISNI







RVTVVKLKGSDNTFECQFDDESATVVDFLRRWIAFCQSIISTSPQSGGGGSG







GGGGPLGVRGLHERHLNNNGELCLYDPPEVPNATFKALSYKNGTILNCECKR







GFRRLKELVYMRCLGNSWSSNCQCTSNSHDKSRKQVTAQLEHQKEQQTTTDM







QKPTQSMHQENLTGHCREPPPWKHEDSKRIYHFVEGQSVHYECIPGYKALQR







GPAISICKMKCGKTGWTQPQLTCVDEREHHRFLASEESQGSRNSSPESETSC







PITTTDFPQPTETTAMTETFVLTMEYKGCKPCICTVPEVSSVFIFPPKPKDV







LTITLTPKVTCVVVDISKDDPEVQFSWFVDDVEVHTAQTQPREEQFNSTFRS







VSELPIMHQDWLNGKEFKCRVNSAAFPAPIEKTISKTKGRPKAPQVYTIPPP







KEQMAKDKVSLTCMITDFFPEDITVEWQWNGQPAENYKNTQPIMDTDGSYFV







YSKLNVQKSNWEAGNTFTCSVLHEGLHNHHTEKSLSHSPGK








 824
Construct UU
APTSSSTSSSTAEAQQQQQQQQQQQQHLEQLLMDLQELLSRMENYRNLKLPR







MLTFKFYLPKQATELKDLQCLEDELGPLRHVLDLTQSKSFQLEDAENFISNI







RVTVVKLKGSDNTFECQFDDESATVVDFLRRWIAFCQSIISTSPQSGGGGSG







GGGGVRLGPGLHERHLNNNGELCLYDPPEVPNATFKALSYKNGTILNCECKR







GFRRLKELVYMRCLGNSWSSNCQCTSNSHDKSRKQVTAQLEHQKEQQTTTDM







QKPTQSMHQENLTGHCREPPPWKHEDSKRIYHFVEGQSVHYECIPGYKALQR







GPAISICKMKCGKTGWTQPQLTCVDEREHHRFLASEESQGSRNSSPESETSC







PITTTDFPQPTETTAMTETFVLTMEYKGCKPCICTVPEVSSVFIFPPKPKDV







LTITLTPKVTCVVVDISKDDPEVQFSWFVDDVEVHTAQTQPREEQFNSTFRS







VSELPIMHQDWLNGKEFKCRVNSAAFPAPIEKTISKTKGRPKAPQVYTIPPP







KEQMAKDKVSLTCMITDFFPEDITVEWQWNGQPAENYKNTQPIMDTDGSYFV







YSKLNVQKSNWEAGNTFTCSVLHEGLHNHHTEKSLSHSPGK








 825
Construct VV
APTSSSTSSSTAEAQQQQQQQQQQQQHLEQLLMDLQELLSRMENYRNLKLPR







MLTFKFYLPKQATELKDLQCLEDELGPLRHVLDLTQSKSFQLEDAENFISNI







RVTVVKLKGSDNTFECQFDDESATVVDFLRRWIAFCQSIISTSPQSGGGGGH







HPHGPLGVRGGGGGSGGGGSELCLYDPPEVPNATFKALSYKNGTILNCECKR







GFRRLKELVYMRCLGNSWSSNCQCTSNSHDKSRKQVTAQLEHQKEQQTTTDM







QKPTQSMHQENLTGHCREPPPWKHEDSKRIYHFVEGQSVHYECIPGYKALQR







GPAISICKMKCGKTGWTQPQLTCVDEREHHRFLASEESQGSRNSSPESETSC







PITTTDFPQPTETTAMTETFVLTMEYKGCKPCICTVPEVSSVFIFPPKPKDV







LTITLTPKVTCVVVDISKDDPEVQFSWFVDDVEVHTAQTQPREEQFNSTFRS







VSELPIMHQDWLNGKEFKCRVNSAAFPAPIEKTISKTKGRPKAPQVYTIPPP







KEQMAKDKVSLTCMITDFFPEDITVEWQWNGQPAENYKNTQPIMDTDGSYFV







YSKLNVQKSNWEAGNTFTCSVLHEGLHNHHTEKSLSHSPGK








 826
Construct
APTSSSTSSSTAEAQQQQQQQQQQQQHLEQLLMDLQELLSRMENYRNLKLPR






WW
MLTFKFYLPKQATELKDLQCLEDELGPLRHVLDLTQSKSFQLEDAENFISNI







RVTVVKLKGSDNTFECQFDDESATVVDFLRRWIAFCQSIISTSPQGHHPHSG







GGGGPLGVRGGGGGSGGGGSELCLYDPPEVPNATFKALSYKNGTILNCECKR







GFRRLKELVYMRCLGNSWSSNCQCTSNSHDKSRKQVTAQLEHQKEQQTTTDM







QKPTQSMHQENLTGHCREPPPWKHEDSKRIYHFVEGQSVHYECIPGYKALQR







GPAISICKMKCGKTGWTQPQLTCVDEREHHRFLASEESQGSRNSSPESETSC







PITTTDFPQPTETTAMTETFVLTMEYKGCKPCICTVPEVSSVFIFPPKPKDV







LTITLTPKVTCVVVDISKDDPEVQFSWFVDDVEVHTAQTQPREEQFNSTFRS







VSELPIMHQDWLNGKEFKCRVNSAAFPAPIEKTISKTKGRPKAPQVYTIPPP







KEQMAKDKVSLTCMITDFFPEDITVEWQWNGQPAENYKNTQPIMDTDGSYFV







YSKLNVQKSNWEAGNTFTCSVLHEGLHNHHTEKSLSHSPGK








 827
Construct XX
APTSSSTSSSTAEAQQQQQQQQQQQQHLEQLLMDLQELLSRMENYRNLKLPR







MLTFKFYLPKQATELKDLQCLEDELGPLRHVLDLTQSKSFQLEDAENFISNI







RVTVVKLKGSDNTFECQFDDESATVVDFLRRWIAFCQSIISTSPQSGGGGSG







GGGGPLGVRGGHHPHGGGGSELCLYDPPEVPNATFKALSYKNGTILNCECKR







GFRRLKELVYMRCLGNSWSSNCQCTSNSHDKSRKQVTAQLEHQKEQQTTTDM







QKPTQSMHQENLTGHCREPPPWKHEDSKRIYHFVEGQSVHYECIPGYKALQR







GPAISICKMKCGKTGWTQPQLTCVDEREHHRFLASEESQGSRNSSPESETSC







PITTTDFPQPTETTAMTETFVLTMEYKGCKPCICTVPEVSSVFIFPPKPKDV







LTITLTPKVTCVVVDISKDDPEVQFSWFVDDVEVHTAQTQPREEQFNSTFRS







VSELPIMHQDWLNGKEFKCRVNSAAFPAPIEKTISKTKGRPKAPQVYTIPPP







KEQMAKDKVSLTCMITDFFPEDITVEWQWNGQPAENYKNTQPIMDTDGSYFV







YSKLNVQKSNWEAGNTFTCSVLHEGLHNHHTEKSLSHSPGK








 828
Construct YY
APTSSSTSSSTAEAQQQQQQQQQQQQHLEQLLMDLQELLSRMENYRNLKLPR







MLTFKFYLPKQATELKDLQCLEDELGPLRHVLDLTQSKSFQLEDAENFISNI







RVTVVKLKGSDNTFECQFDDESATVVDFLRRWIAFCQSIISTSPQSGGGGSG







GGGGPLGVRGGGGGSGGGGSELCLYDPPEVPNATFKALSYKNGTILNCECKR







GFRRLKELVYMRCLGNSWSSNCQCTSNSHDKSRKQVTAQLEHQKEQQTTTDM







QKPTQSMHQENLTGHCREPPPWKHEDSKRIYHFVEGQSVHYECIPGYKALQR







GPAISICKMKCGKTGWTQPQLTCVDEREHHRFLASEESQGSRNSSPESETSC







PITTTDFPQPTETTAMTETFVLTMEYKGCKPCICTVPEVSSVFIFPPKPKDV







LTITLTPKVTCVVVDISKDDPEVQFSWFVDDVEVHTAQTQPREEQFNSTFRS







VSELPIMHQDWLNGKEFKCRVNSAAFPAPIEKTISKTKGRPKAPQVYTIPPP







KEQMAKDKVSLTCMITDFFPEDITVEWQWNGQPAENYKNTQPIMDTDGSYFV







YSKLNVQKSNWEAGNTFTCSVLHEGLHNHHTEKSLSHSPGKGHHPHGHHPH








 829
Construct ZZ
APTSSSTSSSTAEAQQQQQQQQQQQQHLEQLLMDLQELLSRMENYRNLKLPR







MLTFKFYLPKQATELKDLQCLEDELGPLRHVLDLTQSKSFQLEDAENFISNI







RVTVVKLKGSDNTFECQFDDESATVVDFLRRWIAFCQSIISTSPQSGGGGSG







GGGGPLGVRGGGGGSGGGGSELCLYDPPEVPNATFKALSYKNGTILNCECKR







GFRRLKELVYMRCLGNSWSSNCQCTSNSHDKSRKQVTAQLEHQKEQQTTTDM







QKPTQSMHQENLTGHCREPPPWKHEDSKRIYHFVEGQSVHYECIPGYKALQR







GPAISICKMKCGKTGWTQPQLTCVDEREHHRFLASEESQGSRNSSPESETSC







PITTTDFPQPTETTAMTETFVLTMEYKGCKPCICTVPEVSSVFIFPPKPKDV







LTITLTPKVTCVVVDISKDDPEVQFSWFVDDVEVHTAQTQPREEQFNSTFRS







VSELPIMHQDWLNGKEFKCRVNSAAFPAPIEKTISKTKGRPKAPQVYTIPPP







KEQMAKDKVSLTCMITDFFPEDITVEWQWNGQPAENYKNTQPIMDTDGSYFV







YSKLNVQKSNWEAGNTFTCSVLHEGLHNHHTEKSLSHSPGKGHHPH








 830
Construct
APTSSSTSSSTAEAQQQQQQQQQQQQHLEQLLMDLQELLSRMENYRNLKLPR






UUU
MLTFKFYLPKQATELKDLQCLEDELGPLRHVLDLTQSKSFQLEDAENFISNI







RVTVVKLKGSDNTFECQFDDESATVVDFLRRWIAFCQSIISTSPQSGGGGSG







GGGGPLGVRGVRIQRKKEKMKETGSELCLYDPPEVPNATFKALSYKNGTILN







CECKRGFRRLKELVYMRCLGNSWSSNCQCTSNSHDKSRKQVTAQLEHQKEQQ







TTTDMQKPTQSMHQENLTGHCREPPPWKHEDSKRIYHFVEGQSVHYECIPGY







KALQRGPAISICKMKCGKTGWTQPQLTCVDEREHHRFLASEESQGSRNSSPE







SETSCPITTTDFPQPTETTAMTETFVLTMEYKGCKPCICTVPEVSSVFIFPP







KPKDVLTITLTPKVTCVVVDISKDDPEVQFSWFVDDVEVHTAQTQPREEQFN







STFRSVSELPIMHQDWLNGKEFKCRVNSAAFPAPIEKTISKTKGRPKAPQVY







TIPPPKEQMAKDKVSLTCMITDFFPEDITVEWQWNGQPAENYKNTQPIMDTD







GSYFVYSKLNVQKSNWEAGNTFTCSVLHEGLHNHHTEKSLSHSPGK








 831
Construct
APTSSSTSSSTAEAQQQQQQQQQQQQHLEQLLMDLQELLSRMENYRNLKLPR






HHH
MLTFKFYLPKQATELKDLQCLEDELGPLRHVLDLTQSKSFQLEDAENFISNI







RVTVVKLKGSDNTFECQFDDESATVVDFLRRWIAFCQSIISTSPQSGGGGSG







GGGGPLGVRGGGGGSGGGGSELCLYDPPEVPNATFKALSYKNGTILNCECKR







GFRRLKELVYMRCLGNSWSSNCQCTSNSHDKSRKQVTAQLEHQKEQQTTTDM







QKPTQSMHQENLTGHCREPPPWKHEDSKRIYHFVEGQSVHYECIPGYKALQR







GPAISICKMKCGKTGWTQPQLTCVDEREHHRFLASEESQGSRNSSPESETSC







PITTTDFPQPTETTAMTETFVLTMEYKGCKPCICTVPEVSSVFIFPPKPKDV







LTITLTPKVTCVVVDISKDDPEVQFSWFVDDVEVHTAQTQPREEQFNSTFRS







VSELPIMHQDWLNGKEFKCRVNSAAFPAPIEKTISKTKGRPKAPQVYTIPPP







KEQMAKDKVSLTCMITDFFPEDITVEWQWNGQPAENYKNTQPIMDTDGSYFV







YSKLNVQKSNWEAGNTFTCSVLHEGLHNHHTEKSLSHSPGKGGSGVRIQRKK







EKMKET








 832
Construct III
APTSSSTSSSTAEAQQQQQQQQQQQQHLEQLLMDLQELLSRMENYRNLKLPR







MLTFKFYLPKQATELKDLQCLEDELGPLRHVLDLTQSKSFQLEDAENFISNI







RVTVVKLKGSDNTFECQFDDESATVVDFLRRWIAFCQSIISTSPQVRIQRKK







EKMKETGPLGVRGGGSKLWVLPKGSELCLYDPPEVPNATFKALSYKNGTILN







CECKRGFRRLKELVYMRCLGNSWSSNCQCTSNSHDKSRKQVTAQLEHQKEQQ







TTTDMQKPTQSMHQENLTGHCREPPPWKHEDSKRIYHFVEGQSVHYECIPGY







KALQRGPAISICKMKCGKTGWTQPQLTCVDEREHHRFLASEESQGSRNSSPE







SETSCPITTTDFPQPTETTAMTETFVLTMEYKGCKPCICTVPEVSSVFIFPP







KPKDVLTITLTPKVTCVVVDISKDDPEVQFSWFVDDVEVHTAQTQPREEQFN







STFRSVSELPIMHQDWLNGKEFKCRVNSAAFPAPIEKTISKTKGRPKAPQVY







TIPPPKEQMAKDKVSLTCMITDFFPEDITVEWQWNGQPAENYKNTQPIMDTD







GSYFVYSKLNVQKSNWEAGNTFTCSVLHEGLHNHHTEKSLSHSPGK








 833
Construct JJJ
APTSSSTSSSTAEAQQQQQQQQQQQQHLEQLLMDLQELLSRMENYRNLKLPR







MLTFKFYLPKQATELKDLQCLEDELGPLRHVLDLTQSKSFQLEDAENFISNI







RVTVVKLKGSDNTFECQFDDESATVVDFLRRWIAFCQSIISTSPQKLWVLPK







GGSGPLGVRGVRIQRKKEKMKETGSELCLYDPPEVPNATFKALSYKNGTILN







CECKRGFRRLKELVYMRCLGNSWSSNCQCTSNSHDKSRKQVTAQLEHQKEQQ







TTTDMQKPTQSMHQENLTGHCREPPPWKHEDSKRIYHFVEGQSVHYECIPGY







KALQRGPAISICKMKCGKTGWTQPQLTCVDEREHHRFLASEESQGSRNSSPE







SETSCPITTTDFPQPTETTAMTETFVLTMEYKGCKPCICTVPEVSSVFIFPP







KPKDVLTITLTPKVTCVVVDISKDDPEVQFSWFVDDVEVHTAQTQPREEQFN







STFRSVSELPIMHQDWLNGKEFKCRVNSAAFPAPIEKTISKTKGRPKAPQVY







TIPPPKEQMAKDKVSLTCMITDFFPEDITVEWQWNGQPAENYKNTQPIMDTD







GSYFVYSKLNVQKSNWEAGNTFTCSVLHEGLHNHHTEKSLSHSPGK








 834
Construct
APTSSSTSSSTAEAQQQQQQQQQQQQHLEQLLMDLQELLSRMENYRNLKLPR






KKK
MLTFKFYLPKQATELKDLQCLEDELGPLRHVLDLTQSKSFQLEDAENFISNI







RVTVVKLKGSDNTFECQFDDESATVVDFLRRWIAFCQSIISTSPQTLTYTWS







GGGSGPLGVRGGGGGSGGGGSELCLYDPPEVPNATFKALSYKNGTILNCECK







RGFRRLKELVYMRCLGNSWSSNCQCTSNSHDKSRKQVTAQLEHQKEQQTTTD







MQKPTQSMHQENLTGHCREPPPWKHEDSKRIYHFVEGQSVHYECIPGYKALQ







RGPAISICKMKCGKTGWTQPQLTCVDEREHHRFLASEESQGSRNSSPESETS







CPITTTDFPQPTETTAMTETFVLTMEYKGCKPCICTVPEVSSVFIFPPKPKD







VLTITLTPKVTCVVVDISKDDPEVQFSWFVDDVEVHTAQTQPREEQFNSTFR







SVSELPIMHQDWLNGKEFKCRVNSAAFPAPIEKTISKTKGRPKAPQVYTIPP







PKEQMAKDKVSLTCMITDFFPEDITVEWQWNGQPAENYKNTQPIMDTDGSYF







VYSKLNVQKSNWEAGNTFTCSVLHEGLHNHHTEKSLSHSPGK








 835
Construct
APTSSSTSSSTAEAQQQQQQQQQQQQHLEQLLMDLQELLSRMENYRNLKLPR






LLL
MLTFKFYLPKQATELKDLQCLEDELGPLRHVLDLTQSKSFQLEDAENFISNI







RVTVVKLKGSDNTFECQFDDESATVVDFLRRWIAFCQSIISTSPQVRIQRKK







EKMKETGGSGPLGVRGVRIQRKKEKMKETGSELCLYDPPEVPNATFKALSYK







NGTILNCECKRGFRRLKELVYMRCLGNSWSSNCQCTSNSHDKSRKQVTAQLE







HQKEQQTTTDMQKPTQSMHQENLTGHCREPPPWKHEDSKRIYHFVEGQSVHY







ECIPGYKALQRGPAISICKMKCGKTGWTQPQLTCVDEREHHRFLASEESQGS







RNSSPESETSCPITTTDFPQPTETTAMTETFVLTMEYKGCKPCICTVPEVSS







VFIFPPKPKDVLTITLTPKVTCVVVDISKDDPEVQFSWFVDDVEVHTAQTQP







REEQFNSTFRSVSELPIMHQDWLNGKEFKCRVNSAAFPAPIEKTISKTKGRP







KAPQVYTIPPPKEQMAKDKVSLTCMITDFFPEDITVEWQWNGQPAENYKNTQ







PIMDTDGSYFVYSKLNVQKSNWEAGNTFTCSVLHEGLHNHHTEKSLSHSPGK








 836
Construct
APTSSSTSSSTAEAQQQQQQQQQQQQHLEQLLMDLQELLSRMENYRNLKLPR






MMM
MLTFKFYLPKQATELKDLQCLEDELGPLRHVLDLTQSKSFQLEDAENFISNI







RVTVVKLKGSDNTFECQFDDESATVVDFLRRWIAFCQSIISTSPQLHERHLN







NNGGSGPLGVRGVRIQRKKEKMKETGSELCLYDPPEVPNATFKALSYKNGTI







LNCECKRGFRRLKELVYMRCLGNSWSSNCQCTSNSHDKSRKQVTAQLEHQKE







QQTTTDMQKPTQSMHQENLTGHCREPPPWKHEDSKRIYHFVEGQSVHYECIP







GYKALQRGPAISICKMKCGKTGWTQPQLTCVDEREHHRFLASEESQGSRNSS







PESETSCPITTTDFPQPTETTAMTETFVLTMEYKGCKPCICTVPEVSSVFIF







PPKPKDVLTITLTPKVTCVVVDISKDDPEVQFSWFVDDVEVHTAQTQPREEQ







FNSTFRSVSELPIMHQDWLNGKEFKCRVNSAAFPAPIEKTISKTKGRPKAPQ







VYTIPPPKEQMAKDKVSLTCMITDFFPEDITVEWQWNGQPAENYKNTQPIMD







TDGSYFVYSKLNVQKSNWEAGNTFTCSVLHEGLHNHHTEKSLSHSPGK








 837
Construct
APTSSSTKKTQLQLEHLLLDLQMILNGINNYKNPKLTRMLTFKFYMPKKATE






CCC
LKHLQCLEEELKPLEEVLNLAQSKNFHLRPRDLISNINVIVLELKGSETTFM







CEYADETATIVEFLNRWITFSQSIISTLTGHHPHGHHPHGVRLGPGGGGGSG







GGGSELCDDDPPEIPHATFKAMAYKEGTILNCECKRGFRRIKSGSLYMLCTG







NSSHSSWDNQCQCTSSATRNTTKQVTPQPEEQKERKTTEMQSPMQPVDQASL







PGHCREPPPWENEATERIYHFVVGQMVYYQCVQGYRALHRGPAESVCKMTHG







KTRWTQPQLICTGEMETSQFPGEEKPQASPEGRPESETSCLVTTTDFQIQTE







MAATMETSIFTTEYQGSGGGGDKTHTCPPCPAPEAAGGPSVFLFPPKPKDTL







MISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVV







SVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSR







DELTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLY







SKLVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPG








 838
Construct
APTSSSTKKTQLQLEHLLLDLQMILNGINNYKNPKLTRMLTFKFYMPKKATE






DDD
LKHLQCLEEELKPLEEVLNLAQSKNFHLRPRDLISNINVIVLELKGSETTFM







CEYADETATIVEFLNRWITFSQSIISTLTGHHPHGHHPHGPLGVRGGGGGSG







GGGSELCDDDPPEIPHATFKAMAYKEGTILNCECKRGFRRIKSGSLYMLCTG







NSSHSSWDNQCQCTSSATRNTTKQVTPQPEEQKERKTTEMQSPMQPVDQASL







PGHCREPPPWENEATERIYHFVVGQMVYYQCVQGYRALHRGPAESVCKMTHG







KTRWTQPQLICTGEMETSQFPGEEKPQASPEGRPESETSCLVTTTDFQIQTE







MAATMETSIFTTEYQGSGGGGDKTHTCPPCPAPEAAGGPSVFLFPPKPKDTL







MISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVV







SVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSR







DELTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLY







SKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPG








 839
Construct
APTSSSTKKTQLQLEHLLLDLQMILNGINNYKNPKLTRMLTFKFYMPKKATE






EEE
LKHLQCLEEELKPLEEVLNLAQSKNFHLRPRDLISNINVIVLELKGSETTFM







CEYADETATIVEFLNRWITFSQSIISTLTVRIQRKKEKMKETGPLGVRGGGG







GSGGGGSELCDDDPPEIPHATFKAMAYKEGTILNCECKRGFRRIKSGSLYML







CTGNSSHSSWDNQCQCTSSATRNTTKQVTPQPEEQKERKTTEMQSPMQPVDQ







ASLPGHCREPPPWENEATERIYHFVVGQMVYYQCVQGYRALHRGPAESVCKM







THGKTRWTQPQLICTGEMETSQFPGEEKPQASPEGRPESETSCLVTTTDFQI







QTEMAATMETSIFTTEYQGSGGGGDKTHTCPPCPAPEAAGGPSVFLFPPKPK







DTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTY







RVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLP







PSRDELTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSF







FLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPG








 840
Construct FFF
APTSSSTKKTQLQLEHLLLDLQMILNGINNYKNPKLTRMLTFKFYMPKKATE







LKHLQCLEEELKPLEEVLNLAQSKNFHLRPRDLISNINVIVLELKGSETTFM







CEYADETATIVEFLNRWITFSQSIISTLTVRIQRKKEKMKETGPLGVRGGGG







GSGGGGSELCDDDPPEIPHATFKAMAYKEGTILNCECKRGFRRIKSGSLYML







CTGNSSHSSWDNQCQCTSSATRNTTKQVTPQPEEQKERKTTEMQSPMQPVDQ







ASLPGHCREPPPWENEATERIYHFVVGQMVYYQCVQGYRALHRGPAESVCKM







THGKTRWTQPQLICTGEMETSQFPGEEKPQASPEGRPESETSCLVTTTDFQI







QTEMAATMETSIFTTEYQGSGGGGDKTHTCPPCPAPEAAGGPSVFLFPPKPK







DTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTY







RVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLP







PSRDELTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSF







FLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPG








 841
Construct
APTSSSTKKTQLQLEHLLLDLQMILNGINNYKNPKLTRMLTFKFYMPKKATE






NNN
LKHLQCLEEELKPLEEVLNLAQSKNFHLRPRDLISNINVIVLELKGSETTFM







CEYADETATIVEFLNRWITFSQSIISTLTSGGKLWVLPKGPLGVRGGGGGSG







GGGSELCDDDPPEIPHATFKAMAYKEGTILNCECKRGFRRIKSGSLYMLCTG







NSSHSSWDNQCQCTSSATRNTTKQVTPQPEEQKERKTTEMQSPMQPVDQASL







PGHCREPPPWENEATERIYHFVVGQMVYYQCVQGYRALHRGPAESVCKMTHG







KTRWTQPQLICTGEMETSQFPGEEKPQASPEGRPESETSCLVTTTDFQIQTE







MAATMETSIFTTEYQGSGGGGDKTHTCPPCPAPEAAGGPSVFLFPPKPKDTL







MISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVV







SVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSR







DELTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLY







SKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPG








 842
Construct
APTSSSTKKTQLQLEHLLLDLQMILNGINNYKNPKLTRMLTFKFYMPKKATE






000
LKHLQCLEEELKPLEEVLNLAQSKNFHLRPRDLISNINVIVLELKGSETTFM







CEYADETATIVEFLNRWITFSQSIISTLTVRIQRKKEKMKETGPLGVRGGGS







KLWVLPKGSELCDDDPPEIPHATFKAMAYKEGTILNCECKRGFRRIKSGSLY







MLCTGNSSHSSWDNQCQCTSSATRNTTKQVTPQPEEQKERKTTEMQSPMQPV







DQASLPGHCREPPPWENEATERIYHFVVGQMVYYQCVQGYRALHRGPAESVC







KMTHGKTRWTQPQLICTGEMETSQFPGEEKPQASPEGRPESETSCLVTTTDF







QIQTEMAATMETSIFTTEYQGSGGGGDKTHTCPPCPAPEAAGGPSVFLFPPK







PKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNS







TYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYT







LPPSRDELTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDG







SFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPG








 843
Construct PPP
APTSSSTSSSTAEAQQQQQQQQQQQQHLEQLLMDLQELLSRMENYRNLKLPR







MLTFKFYLPKQATELKDLQCLEDELGPLRHVLDLTQSKSFQLEDAENFISNI







RVTVVKLKGSDNTFECQFDDESATVVDFLRRWIAFCQSIISTSPQVRIQRKK







EKMKETGGSGPLGVRGLHERHLNNNGSELCLYDPPEVPNATFKALSYKNGTI







LNCECKRGFRRLKELVYMRCLGNSWSSNCQCTSNSHDKSRKQVTAQLEHQKE







QQTTTDMQKPTQSMHQENLTGHCREPPPWKHEDSKRIYHFVEGQSVHYECIP







GYKALQRGPAISICKMKCGKTGWTQPQLTCVDEREHHRFLASEESQGSRNSS







PESETSCPITTTDFPQPTETTAMTETFVLTMEYKGCKPCICTVPEVSSVFIF







PPKPKDVLTITLTPKVTCVVVDISKDDPEVQFSWFVDDVEVHTAQTQPREEQ







FNSTFRSVSELPIMHQDWLNGKEFKCRVNSAAFPAPIEKTISKTKGRPKAPQ







VYTIPPPKEQMAKDKVSLTCMITDFFPEDITVEWQWNGQPAENYKNTQPIMD







TDGSYFVYSKLNVQKSNWEAGNTFTCSVLHEGLHNHHTEKSLSHSPGK








 844
Construct
APTSSSTSSSTAEAQQQQQQQQQQQQHLEQLLMDLQELLSRMENYRNLKLPR






QQQ
MLTFKFYLPKQATELKDLQCLEDELGPLRHVLDLTQSKSFQLEDAENFISNI







RVTVVKLKGSDNTFECQFDDESATVVDFLRRWIAFCQSIISTSPQSLRELHL







DNNGGPLGVRGGGGGSGGGGSELCLYDPPEVPNATFKALSYKNGTILNCECK







RGFRRLKELVYMRCLGNSWSSNCQCTSNSHDKSRKQVTAQLEHQKEQQTTTD







MQKPTQSMHQENLTGHCREPPPWKHEDSKRIYHFVEGQSVHYECIPGYKALQ







RGPAISICKMKCGKTGWTQPQLTCVDEREHHRFLASEESQGSRNSSPESETS







CPITTTDFPQPTETTAMTETFVLTMEYKGCKPCICTVPEVSSVFIFPPKPKD







VLTITLTPKVTCVVVDISKDDPEVQFSWFVDDVEVHTAQTQPREEQFNSTFR







SVSELPIMHQDWLNGKEFKCRVNSAAFPAPIEKTISKTKGRPKAPQVYTIPP







PKEQMAKDKVSLTCMITDFFPEDITVEWQWNGQPAENYKNTQPIMDTDGSYF







VYSKLNVQKSNWEAGNTFTCSVLHEGLHNHHTEKSLSHSPGK








 845
Construct
APTSSSTSSSTAEAQQQQQQQQQQQQHLEQLLMDLQELLSRMENYRNLKLPR






RRR
MLTFKFYLPKQATELKDLQCLEDELGPLRHVLDLTQSKSFQLEDAENFISNI







RVTVVKLKGSDNTFECQFDDESATVVDFLRRWIAFCQSIISTSPQSGGGGSG







GGGGPLGVRGLRELHLDNNGELCLYDPPEVPNATFKALSYKNGTILNCECKR







GFRRLKELVYMRCLGNSWSSNCQCTSNSHDKSRKQVTAQLEHQKEQQTTTDM







QKPTQSMHQENLTGHCREPPPWKHEDSKRIYHFVEGQSVHYECIPGYKALQR







GPAISICKMKCGKTGWTQPQLTCVDEREHHRFLASEESQGSRNSSPESETSC







PITTTDFPQPTETTAMTETFVLTMEYKGCKPCICTVPEVSSVFIFPPKPKDV







LTITLTPKVTCVVVDISKDDPEVQFSWFVDDVEVHTAQTQPREEQFNSTFRS







VSELPIMHQDWLNGKEFKCRVNSAAFPAPIEKTISKTKGRPKAPQVYTIPPP







KEQMAKDKVSLTCMITDFFPEDITVEWQWNGQPAENYKNTQPIMDTDGSYFV







YSKLNVQKSNWEAGNTFTCSVLHEGLHNHHTEKSLSHSPGK








 846
Construct SSS
APTSSSTSSSTAEAQQQQQQQQQQQQHLEQLLMDLQELLSRMENYRNLKLPR







MLTFKFYLPKQATELKDLQCLEDELGPLRHVLDLTQSKSFQLEDAENFISNI







RVTVVKLKGSDNTFECQFDDESATVVDFLRRWIAFCQSIISTSPQLRELHLD







NNGGSGPLGVRGVRIQRKKEKMKETGSELCLYDPPEVPNATFKALSYKNGTI







LNCECKRGFRRLKELVYMRCLGNSWSSNCQCTSNSHDKSRKQVTAQLEHQKE







QQTTTDMQKPTQSMHQENLTGHCREPPPWKHEDSKRIYHFVEGQSVHYECIP







GYKALQRGPAISICKMKCGKTGWTQPQLTCVDEREHHRFLASEESQGSRNSS







PESETSCPITTTDFPQPTETTAMTETFVLTMEYKGCKPCICTVPEVSSVFIF







PPKPKDVLTITLTPKVTCVVVDISKDDPEVQFSWFVDDVEVHTAQTQPREEQ







FNSTFRSVSELPIMHQDWLNGKEFKCRVNSAAFPAPIEKTISKTKGRPKAPQ







VYTIPPPKEQMAKDKVSLTCMITDFFPEDITVEWQWNGQPAENYKNTQPIMD







TDGSYFVYSKLNVQKSNWEAGNTFTCSVLHEGLHNHHTEKSLSHSPGK








 847
Construct
APTSSSTSSSTAEAQQQQQQQQQQQQHLEQLLMDLQELLSRMENYRNLKLPR






TTT
MLTFKFYLPKQATELKDLQCLEDELGPLRHVLDLTQSKSFQLEDAENFISNI







RVTVVKLKGSDNTFECQFDDESATVVDFLRRWIAFCQSIISTSPQVRIQRKK







EKMKETGGSGPLGVRGLRELHLDNNGSELCLYDPPEVPNATFKALSYKNGTI







LNCECKRGFRRLKELVYMRCLGNSWSSNCQCTSNSHDKSRKQVTAQLEHQKE







QQTTTDMQKPTQSMHQENLTGHCREPPPWKHEDSKRIYHFVEGQSVHYECIP







GYKALQRGPAISICKMKCGKTGWTQPQLTCVDEREHHRFLASEESQGSRNSS







PESETSCPITTTDFPQPTETTAMTETFVLTMEYKGCKPCICTVPEVSSVFIF







PPKPKDVLTITLTPKVTCVVVDISKDDPEVQFSWFVDDVEVHTAQTQPREEQ







FNSTFRSVSELPIMHQDWLNGKEFKCRVNSAAFPAPIEKTISKTKGRPKAPQ







VYTIPPPKEQMAKDKVSLTCMITDFFPEDITVEWQWNGQPAENYKNTQPIMD







TDGSYFVYSKLNVQKSNWEAGNTFTCSVLHEGLHNHHTEKSLSHSPGK








 848
Construct
ITCPPPMSVE HADIWVKSYS LYSRERYICN SGFKRKAGTS






FFFF
SLTECVLNKA TNVAHWTTPS LKCIRDPALV HQRPAPP







SGGSGGGGSGGGSGGGGSLQ NWVNVISDLKKIE







DLIQSMHIDATLYTESDVHPSCKVTAMKCFLLELQVISLESGDASIHDTVEN







LIILANNSLSSNGNVTESGCKECEELEEKNIKEFLQSFVHIVQMFINTS







HHHHHH








 849
Not Used









1024
Construct
ITCPPPMSVEHADIWVKSYSLYSRERYICNSGFKRKAGTSSLTECVLNKATN






VVV no TME
VAHWTTPSLKCIRDPALVHQRPAPPSGGSGGGGSGGGSGGGGSLQNWVNVIS






control
DLKKIEDLIQSMHIDATLYTESDVHPSCKVTAMKCFLLELQVISLESGDASI







HDTVENLIILANNSLSSNGNVTESGCKECEELEEKNIKEFLQSFVHIVQMFI







NTSSGGGGPLGVRGGGGGSGGGGSGGGGSGGGGSAVNGTSQFTCFYNSRANI







SCVWSQDGALQDTSCQVHAWPDRRRWNQTCELLPVSQASWACNLILGAPDSQ







KLTTVDIVTLRVLCREGVRWRVMAIQDFKPFENLRLMAPISLQVVHVETHRC







NISWEISQASHYFERHLEFEARTLSPGHTWEEAPLLTLKQKQEWICLETLTP







DTQYEFQVRVKPLQGEFTTWSPWSQPLAFRTKPAALGKDTHHHHHHG








1025
Construct
ITCPPPMSVEHADIWVKSYSLYSRERYICNSGFKRKAGTSSLTECVLNKATN






WWW
VAHWTTPSLKCIRDPALVHQRPAPPSGGSGGGGSGGGSGGGGSLQNWVNVIS







DLKKIEDLIQSMHIDATLYTESDVHPSCKVTAMKCFLLELQVISLESGDASI







HDTVENLIILANNSLSSNGNVTESGCKECEELEEKNIKEFLQSFVHIVQMFI







NTSSGGGGPLGVRGGSVRIQRKKEKMKETGGGGSGGGGSGGGGSAVNGTSQF







TCFYNSRANISCVWSQDGALQDTSCQVHAWPDRRRWNQTCELLPVSQASWAC







NLILGAPDSQKLTTVDIVTLRVLCREGVRWRVMAIQDFKPFENLRLMAPISL







QVVHVETHRCNISWEISQASHYFERHLEFEARTLSPGHTWEEAPLLTLKQKQ







EWICLETLTPDTQYEFQVRVKPLQGEFTTWSPWSQPLAFRTKPAALGKDTHH







HHHHG








1026
Construct
ITCPPPMSVEHADIWVKSYSLYSRERYICNSGFKRKAGTSSLTECVLNKATN






XXX
VAHWTTPSLKCIRDPALVHQRPAPPSGGSGGGGSGGGSGGGGSLQNWVNVIS







DLKKIEDLIQSMHIDATLYTESDVHPSCKVTAMKCFLLELQVISLESGDASI







HDTVENLIILANNSLSSNGNVTESGCKECEELEEKNIKEFLQSFVHIVQMFI







NTSSGGGGPLGVRGGGSKLWVLPKGGGGGGGGSAVNGTSQFTCFYNSRANI







SCVWSQDGALQDTSCQVHAWPDRRRWNQTCELLPVSQASWACNLILGAPDSQ







KLTTVDIVTLRVLCREGVRWRVMAIQDFKPFENLRLMAPISLQVVHVETHRC







NISWEISQASHYFERHLEFEARTLSPGHTWEEAPLLTLKQKQEWICLETLTP







DTQYEFQVRVKPLQGEFTTWSPWSQPLAFRTKPAALGKDTHHHHHHG








1027
Construct
ITCPPPMSVEHADIWVKSYSLYSRERYICNSGFKRKAGTSSLTECVLNKATN






YYY
VAHWTTPSLKCIRDPALVHQRPAPPSGGSGGGGSGGGSGGGGSLQNWVNVIS







DLKKIEDLIQSMHIDATLYTESDVHPSCKVTAMKCFLLELQVISLESGDASI







HDTVENLIILANNSLSSNGNVTESGCKECEELEEKNIKEFLQSFVHIVQMFI







NTSSGGGGPLGVRGVRIQRKKEKMKETGGGGSGGGGSAVNGTSQFTCFYNSR







ANISCVWSQDGALQDTSCQVHAWPDRRRWNQTCELLPVSQASWACNLILGAP







DSQKLTTVDIVTLRVLCREGVRWRVMAIQDFKPFENLRLMAPISLQVVHVET







HRCNISWEISQASHYFERHLEFEARTLSPGHTWEEAPLLTLKQKQEWICLET







LTPDTQYEFQVRVKPLQGEFTTWSPWSQPLAFRTKPAALGKDTGGGGSGEPK







SSDKTHTCPPCPAPEAAGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHED







PEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCK







VSNKALPAPIEKTISKAKGQPREPQVYTLPPSRDELTKNQVSLTCLVKGFYP







SDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCS







VMHEALHNHYTQKSLSLSPG








1028
Construct
ITCPPPMSVEHADIWVKSYSLYSRERYICNSGFKRKAGTSSLTECVLNKATN






ZZZ
VAHWTTPSLKCIRDPALVHQRPAPPSGGSGGGGSGGGSGGGGSLQNWVNVIS







DLKKIEDLIQSMHIDATLYTESDVHPSCKVTAMKCFLLELQVISLESGDASI







HDTVENLIILANNSLSSNGNVTESGCKECEELEEKNIKEFLQSFVHIVQMFI







NTSSGGGGPLGVRGGGSKLWVLPKGGGGSGGGGSAVNGTSQFTCFYNSRANI







SCVWSQDGALQDTSCQVHAWPDRRRWNQTCELLPVSQASWACNLILGAPDSQ







KLTTVDIVTLRVLCREGVRWRVMAIQDFKPFENLRLMAPISLQVVHVETHRC







NISWEISQASHYFERHLEFEARTLSPGHTWEEAPLLTLKQKQEWICLETLTP







DTQYEFQVRVKPLQGEFTTWSPWSQPLAFRTKPAALGKDTGGGGSGEPKSSD







KTHTCPPCPAPEAAGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEV







KFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSN







KALPAPIEKTISKAKGQPREPQVYTLPPSRDELTKNQVSLTCLVKGFYPSDI







AVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMH







EALHNHYTQKSLSLSPG








1029
Construct
ITCPPPMSVEHADIWVKSYSLYSRERYICNSGFKRKAGTSSLTECVLNKATN






AAAA
VAHWTTPSLKCIRDPALVHQRPAPPSGGSGGGGSGGGSGGGGSLQNWVNVIS







DLKKIEDLIQSMHIDATLYTESDVHPSCKVTAMKCFLLELQVISLESGDASI







HDTVENLIILANNSLSSNGNVTESGCKECEELEEKNIKEFLQSFVHIVQMFI







NTSSGGGGPLGVRGGLRELHLDNNGGGGSGGGGSAVNGTSQFTCFYNSRANI







SCVWSQDGALQDTSCQVHAWPDRRRWNQTCELLPVSQASWACNLILGAPDSQ







KLTTVDIVTLRVLCREGVRWRVMAIQDFKPFENLRLMAPISLQVVHVETHRC







NISWEISQASHYFERHLEFEARTLSPGHTWEEAPLLTLKQKQEWICLETLTP







DTQYEFQVRVKPLQGEFTTWSPWSQPLAFRTKPAALGKDTGGGGSGEPKSSD







KTHTCPPCPAPEAAGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEV







KFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSN







KALPAPIEKTISKAKGQPREPQVYTLPPSRDELTKNQVSLTCLVKGFYPSDI







AVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMH







EALHNHYTQKSLSLSPG








1030
Construct
ITCPPPMSVEHADIWVKSYSLYSRERYICNSGFKRKAGTSSLTECVLNKATN






BBBB
VAHWTTPSLKCIRDPALVHQRPAPPSGGSGGGGSGGGSGGGGSLQNWVNVIS







DLKKIEDLIQSMHIDATLYTESDVHPSCKVTAMKCFLLELQVISLESGDASI







HDTVENLIILANNSLSSNGNVTESGCKECEELEEKNIKEFLQSFVHIVQMFI







NTSSGGGGPLGVRGVRIQRKKEKMKETGGSKLWVLPKAVNGTSQFTCFYNSR







ANISCVWSQDGALQDTSCQVHAWPDRRRWNQTCELLPVSQASWACNLILGAP







DSQKLTTVDIVTLRVLCREGVRWRVMAIQDFKPFENLRLMAPISLQVVHVET







HRCNISWEISQASHYFERHLEFEARTLSPGHTWEEAPLLTLKQKQEWICLET







LTPDTQYEFQVRVKPLQGEFTTWSPWSQPLAFRTKPAALGKDTGGGGSGEPK







SSDKTHTCPPCPAPEAAGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHED







PEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCK







VSNKALPAPIEKTISKAKGQPREPQVYTLPPSRDELTKNQVSLTCLVKGFYP







SDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCS







VMHEALHNHYTQKSLSLSPG








1031
Construct
ITCPPPMSVEHADIWVKSYSLYSRERYICNSGFKRKAGTSSLTECVLNKATN






CCCC
VAHWTTPSLKCIRDPALVHQRPAPPSGGSGGGGSGGGSGGGGSLQNWVNVIS







DLKKIEDLIQSMHIDATLYTESDVHPSCKVTAMKCFLLELQVISLESGDASI







HDTVENLIILANNSLSSNGNVTESGCKECEELEEKNIKEFLQSFVHIVQMFI







NTSSGGGGPLGVRGGSKLWVLPKGGSKLWVLPKGGSAVNGTSQFTCFYNSRA







NISCVWSQDGALQDTSCQVHAWPDRRRWNQTCELLPVSQASWACNLILGAPD







SQKLTTVDIVTLRVLCREGVRWRVMAIQDFKPFENLRLMAPISLQVVHVETH







RCNISWEISQASHYFERHLEFEARTLSPGHTWEEAPLLTLKQKQEWICLETL







TPDTQYEFQVRVKPLQGEFTTWSPWSQPLAFRTKPAALGKDTGGGGSGEPKS







SDKTHTCPPCPAPEAAGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDP







EVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKV







SNKALPAPIEKTISKAKGQPREPQVYTLPPSRDELTKNQVSLTCLVKGFYPS







DIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSV







MHEALHNHYTQKSLSLSPG








1032
Construct
EPKSSDKTHTCPPCPAPEAAGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVS






GGGG
HEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEY







KCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSRDELTKNQVSLTCLVKG







FYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVF







SCSVMHEALHNHYTQKSLSLSPGVRIQRKKEKMKETGPLGVRGTPVVRKGRC







SCISTNQGTIHLQSLKDLKQFAPSPSCEKIEIIATLKNGVQTCLNPDSADVK







ELIKKWEKQVSQKKKQKNGKKHQKKKVLKVRKSQRSRQKKTT








1033
Construct
EPKSSDKTHTCPPCPAPEAAGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVS






HHHH
HEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEY







KCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSRDELTKNQVSLTCLVKG







FYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVF







SCSVMHEALHNHYTQKSLSLSPGKLWVLPKGGGPLGVRGTPVVRKGRCSCIS







TNQGTIHLQSLKDLKQFAPSPSCEKIEIIATLKNGVQTCLNPDSADVKELIK







KWEKQVSQKKKQKNGKKHQKKKVLKVRKSQRSRQKKTT








1034
Construct
HHHHHHGGSGDAHKSEVAHRFKDLGEENFKALVLIAFAQYLQQCPFEDHVKL






IIII
VNEVTEFAKTCVADESAENCDKSLHTLFGDKLCTVATLRETYGEMADCCAKQ







EPERNECFLQHKDDNPNLPRLVRPEVDVMCTAFHDNEETFLKKYLYEIARRH







PYFYAPELLFFAKRYKAAFTECCQAADKAACLLPKLDELRDEGKASSAKQRL







KCASLQKFGERAFKAWAVARLSQRFPKAEFAEVSKLVTDLTKVHTECCHGDL







LECADDRADLAKYICENQDSISSKLKECCEKPLLEKSHCIAEVENDEMPADL







PSLAADFVESKDVCKNYAEAKDVFLGMFLYEYARRHPDYSVVLLLRLAKTYE







TTLEKCCAAADPHECYAKVFDEFKPLVEEPQNLIKQNCELFEQLGEYKFQNA







LLVRYTKKVPQVSTPTLVEVSRNLGKVGSKCCKHPEAKRMPCAEDYLSVVLN







QLCVLHEKTPVSDRVTKCCTESLVNRRPCFSALEVDETYVPKEFNAETFTFH







ADICTLSEKERQIKKQTALVELVKHKPKATKEQLKAVMDDFAAFVEKCCKAD







DKETCFAEEGKKLVAASQAALGLGGKLWVLPKGSGPLGVRGTPVVRKGRCSC







ISTNQGTIHLQSLKDLKQFAPSPSCEKIEIIATLKNGVQTCLNPDSADVKEL







IKKWEKQVSQKKKQKNGKKHQKKKVLKVRKSQRSRQKKTT








1035
Construct JJJJ
HHHHHHGGSGDAHKSEVAHRFKDLGEENFKALVLIAFAQYLQQCPFEDHVKL







VNEVTEFAKTCVADESAENCDKSLHTLFGDKLCTVATLRETYGEMADCCAKQ







EPERNECFLQHKDDNPNLPRLVRPEVDVMCTAFHDNEETFLKKYLYEIARRH







PYFYAPELLFFAKRYKAAFTECCQAADKAACLLPKLDELRDEGKASSAKQRL







KCASLQKFGERAFKAWAVARLSQRFPKAEFAEVSKLVTDLTKVHTECCHGDL







LECADDRADLAKYICENQDSISSKLKECCEKPLLEKSHCIAEVENDEMPADL







PSLAADFVESKDVCKNYAEAKDVFLGMFLYEYARRHPDYSVVLLLRLAKTYE







TTLEKCCAAADPHECYAKVFDEFKPLVEEPQNLIKQNCELFEQLGEYKFQNA







LLVRYTKKVPQVSTPTLVEVSRNLGKVGSKCCKHPEAKRMPCAEDYLSVVLN







QLCVLHEKTPVSDRVTKCCTESLVNRRPCFSALEVDETYVPKEFNAETFTFH







ADICTLSEKERQIKKQTALVELVKHKPKATKEQLKAVMDDFAAFVEKCCKAD







DKETCFAEEGKKLVAASQAALGLVRIQRKKEKMKETGPLGVRGTPVVRKGRC







SCISTNQGTIHLQSLKDLKQFAPSPSCEKIEIIATLKNGVQTCLNPDSADVK







ELIKKWEKQVSQKKKQKNGKKHQKKKVLKVRKSQRSRQKKTT








1036
Construct
DIQMTQSPSSLSASVGDRVTITCRASQDVNTAVAWYQQKPGKAPKLLIYSAS


scFv



KKKK Arm 1
FLYSGVPSRFSGSRSGTDFTLTISSLQPEDFATYYCQQHYTTPPTFGQGTKV


Trastuzumab




EIKGGGGGGGGSGGGASEVQLVESGGGLVQPGGSLRLSCAASGFNIKDTYI


(VL-VH)-hu




HWVRQAPGKGLEWVARIYPTNGYTRYADSVKGRFTISADTSKNTAYLQMNSL


IgG1 Fc




RAEDTAVYYCSRWGGDGFYAMDYWGQGTLVTVSSEPKSSDKTHTCPPCPAPE


knob




LLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVH







NAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTIS







KAKGQPREPQVYTLPPSRDELTENQVSLTCLVKGFYPSDIAVEWESNGQPEN







NYKTTPPVLDSDGSFFLYSWLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSL







SLSPG








1037
Construct
APTSSSTKKTQLQLEHLLLDLQMILNGINNYKNPKLTRMLTFKFYMPKKATE


Hu linker



KKKK Arm 2
LKHLQCLEEELKPLEEVLNLAQSKNFHLRPRDLISNINVIVLELKGSETTFM


polypeptide-




CEYADETATIVEFLNRWITFSQSIISTLTSGGKLWVLPKGPLGVRGGGGGSG


IL2(TME)-




GGGSELCDDDPPEIPHATFKAMAYKEGTILNCECKRGFRRIKSGSLYMLCTG


hu IgG1 Fc




NSSHSSWDNQCQCTSSATRNTTKQVTPQPEEQKERKTTEMQSPMQPVDQASL


hole




PGHCREPPPWENEATERIYHFVVGQMVYYQCVQGYRALHRGPAESVCKMTHG







KTRWTQPQLICTGEMETSQFPGEEKPQASPEGRPESETSCLVTTTDFQIQTE







MAATMETSIFTTEYQGSGGGGEPKSSDKTHTCPPCPAPELLGGPSVFLFPPK







PKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNS







TYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPRVYT







LPPSRDELTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLVSDG







SFTLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPG








1038
Construct
DIQMTQSPSSLSASVGDRVTITCRASQDVNTAVAWYQQKPGKAPKLLIYSAS


scFv



LLLL Arm 1
FLYSGVPSRFSGSRSGTDFTLTISSLQPEDFATYYCQQHYTTPPTFGQGTKV


Trastuzumab




EIKGGGGSGGGGSGGGASEVQLVESGGGLVQPGGSLRLSCAASGFNIKDTYI


(VL-VH)-hu




HWVRQAPGKGLEWVARIYPTNGYTRYADSVKGRFTISADTSKNTAYLQMNSL


IgG1 Fc




RAEDTAVYYCSRWGGDGFYAMDYWGQGTLVTVSSEPKSSDKTHTCPPCPAPE


knob




LLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVH







NAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTIS







KAKGQPREPQVYTLPPSRDELTENQVSLTCLVKGFYPSDIAVEWESNGQPEN







NYKTTPPVLDSDGSFFLYSWLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSL







SLSPG








1039
Construct
APTSSSTKKTQLQLEHLLLDLQMILNGINNYKNPKLTRMLTFKFYMPKKATE


Hu linker



LLLL Arm 2
LKHLQCLEEELKPLEEVLNLAQSKNFHLRPRDLISNINVIVLELKGSETTFM


polypeptide-




CEYADETATIVEFLNRWITFSQSIISTLTVRIQRKKEKMKETGPLGVRGGGG


IL2 (TME)-




GSGGGGSELCDDDPPEIPHATFKAMAYKEGTILNCECKRGFRRIKSGSLYML


hu IgG1 Fc




CTGNSSHSSWDNQCQCTSSATRNTTKQVTPQPEEQKERKTTEMQSPMQPVDQ


hole




ASLPGHCREPPPWENEATERIYHFVVGQMVYYQCVQGYRALHRGPAESVCKM







THGKTRWTQPQLICTGEMETSQFPGEEKPQASPEGRPESETSCLVTTTDFQI







QTEMAATMETSIFTTEYQGSGGGGEPKSSDKTHTCPPCPAPELLGGPSVFLF







PPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQ







YNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPR







VYTLPPSRDELTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLV







SDGSFTLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPG








1040
Construct
DILLTQSPVILSVSPGERVSFSCRASQSIGTNIHWYQQRTNGSPRLLIKYAS


scFv



MMMM Arm
ESISGIPSRFSGSGSGTDFTLSINSVESEDIADYYCQQNNNWPTTFGAGTKL


cetuximab



1
ELKRGGGGSGGGGSGGGASQVQLKQSGPGLVQPSQSLSITCTVSGFSLTNYG


(VL-VH)-hu




VHWVRQSPGKGLEWLGVIWSGGNTDYNTPFTSRLSINKDNSKSQVFFKMNSL


IgG1 Fc




QSNDTAIYYCARALTYYDYEFAYWGQGTLVTVSEPKSSDKTHTCPPCPAPEL


knob




LGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHN







AKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISK







AKGQPREPQVYTLPPSRDELTENQVSLTCLVKGFYPSDIAVEWESNGQPENN







YKTTPPVLDSDGSFFLYSWLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLS







LSPG








1041
Construct
APTSSSTKKTQLQLEHLLLDLQMILNGINNYKNPKLTRMLTFKFYMPKKATE


Hu linker



MMMM Arm
LKHLQCLEEELKPLEEVLNLAQSKNFHLRPRDLISNINVIVLELKGSETTFM


polypeptide-



2
CEYADETATIVEFLNRWITFSQSIISTLTSGGKLWVLPKGPLGVRGGGGGSG


IL2(TME)-




GGGSELCDDDPPEIPHATFKAMAYKEGTILNCECKRGFRRIKSGSLYMLCTG


hu IgG1 Fc




NSSHSSWDNQCQCTSSATRNTTKQVTPQPEEQKERKTTEMQSPMQPVDQASL


hole




PGHCREPPPWENEATERIYHFVVGQMVYYQCVQGYRALHRGPAESVCKMTHG







KTRWTQPQLICTGEMETSQFPGEEKPQASPEGRPESETSCLVTTTDFQIQTE







MAATMETSIFTTEYQGSGGGGEPKSSDKTHTCPPCPAPELLGGPSVFLFPPK







PKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNS







TYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPRVYT







LPPSRDELTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLVSDG







SFTLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPG








1042
Construct
APTSSSTKKTQLQLEHLLLDLQMILNGINNYKNPKLTRMLTFKFYMPKKATE


HuIL2(C125



NNNN
LKHLQCLEEELKPLEEVLNLAQSKNFHLRPRDLISNINVIVLELKGSETTFM


S)-




CEYADETATIVEFLNRWITFSQSIISTLTVRIQRKKEKMKETGPLGVRGGGG


VRIQRKKE




GSGGGGSELCDDDPPEIPHATFKAMAYKEGTILNCECKRGFRRIKSGSLYML


KMKET(SEQ




CTGNSSHSSWDNQCQCTSSATRNTTKQVTPQPEEQKERKTTEMQSPMQPVDQ


ID NO:




ASLPGHCREPPPWENEATERIYHFVVGQMVYYQCVQGYRALHRGPAESVCKM


1139)-




THGKTRWTQPQLICTGEMETSQFPGEEKPQASPEGRPESETSCLVTTTDFQI


MMPcs1_(G




QTEMAATMETSIFTTEYQGSGGGGDKTHTCPPCPAPEAAGGPSVFLFPPKPK


4S)(SEQ ID




DTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTY


NO:




RVVSVLTVLHQDWLNGKEYKCKVSNKALGAPIEKTISKAKGQPREPQVYTLP


1142)×2-hu




PSRDELTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSF


IL2Ra(1-




FLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGGGSGKLWVLP


219; M25I)-




K


GSGGGG







(SEQ ID NO:







1138)-hu







IgG1Fc-







GGSGKLW







VLPK(SEQ







ID NO:







1164)





1043
Construct
APTSSSTKKTQLQLEHLLLDLQMILNGINNYKNPKLTRMLTFKFYMPKKATE


Hu



SSSS
LKHLQCLEEELKPLEEVLNLAQSKNFHLRPRDLISNINVIVLELKGSETTFM


IL2(C125S)-




CEYADETATIVEFLNRWITFSQSIISTLTVRIQRKKEKMKETGPLGVRGGGG


VRIQRKKE




GSGGGGSELCDDDPPEIPHATFKAMAYKEGTILNCECKRGFRRIKSGSLYML


KMKET(SEQ




CTGNSSHSSWDNQCQCTSSATRNTTKQVTPQPEEQKERKTTEMQSPMQPVDQ


ID NO:




ASLPGHCREPPPWENEATERIYHFVVGQMVYYQCVQGYRALHRGPAESVCKM


1139)-




THGKTRWTQPQLICTGEMETSQFPGEEKPQASPEGRPESETSCLVTTTDFQI


MMPcs1_(G




QTEMAATMETSIFTTEYQGSGGGGDKTHTCPPCPAPEAAGGPSVFLFPPKPK


4S) (SEQ ID




DTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTY


NO:




RVVSVLTVLHQDWLNGKEYKCKVSNKALGAPIEKTISKAKGQPREPQVYTLP


1142)×2-hu




PSRDELTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSF


IL2Ra(1-




FLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGGGSGLRELHL


219; M25I)-




DNN


GSGGGG(SEQ







ID NO:







1138)-hu







IgG1Fc-







GGSGLREL







HLDNN(SEQ







ID NO:







1165)





1044
Construct
APTSSSTKKTQLQLEHLLLDLQMILNGINNYKNPKLTRMLTFKFYMPKKATE


Hu



0000
LKHLQCLEEELKPLEEVLNLAQSKNFHLRPRDLISNINVIVLELKGSETTFM


IL2(C125S)-




CEYADETATIVEFLNRWITFSQSIISTLTSGGGGSGGGGGPLGVRGLRELHL


2×(SG4)




DNNGELCDDDPPEIPHATFKAMAYKEGTILNCECKRGFRRIKSGSLYMLCTG


(SEQ ID




NSSHSSWDNQCQCTSSATRNTTKQVTPQPEEQKERKTTEMQSPMQPVDQASL


NO: 1143)-




PGHCREPPPWENEATERIYHFVVGQMVYYQCVQGYRALHRGPAESVCKMTHG







KTRWTQPQLICTGEMETSQFPGEEKPQASPEGRPESETSCLVTTTDFQIQTE


MMPcs1-




MAATMETSIFTTEYQGSGGGGDKTHTCPPCPAPEAAGGPSVFLFPPKPKDTL


LRELHLDN




MISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVV


N(SEQ ID




SVLTVLHQDWLNGKEYKCKVSNKALGAPIEKTISKAKGQPREPQVYTLPPSR


NO: 188)-hu




DELTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLY


IL2Ra(1-




SKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPG


219; M25I)-







GSGGGG(SEQ







ID NO:







1138)-hu







IgG1Fc





1045
Construct IIIII
APTSSSTKKTQLQLEHLLLDLQMILNGINNYKNPKLTRMLTFKFYMPKKATE


huIL2(C125




LKHLQCLEEELKPLEEVLNLAQSKNFHLRPRDLISNINVIVLELKGSETTFM


S)-




CEYADETATIVEFLNRWITFSQSIISTLTSGGKLWVLPKGPLGVRGGGGGSG


SGGKLWV




GGGSELCDDDPPEIPHATFKAMAYKEGTILNCECKRGFRRIKSGSLYMLCTG


LPK(SEQ ID




NSSHSSWDNQCQCTSSATRNTTKQVTPQPEEQKERKTTEMQSPMQPVDQASL


NO: 1154)-




PGHCREPPPWENEATERIYHFVVGQMVYYQCVQGYRALHRGPAESVCKMTHG


MMPcs1-




KTRWTQPQLICTGEMETSQFPGEEKPQASPEGRPESETSCLVTTTDFQIQTE


2×(G4S)




MAATMETSIFTTEYQGSGGGGDKTHTCPPCPAPEAAGGPSVFLFPPKPKDTL


(SEQ ID




MISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVV


NO: 1142)-




SVLTVLHQDWLNGKEYKCKVSNKALGAPIEKTISKAKGQPREPQVYTLPPSR


hu IL2Ra(1-




DELTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLY


219; M25I)-




SKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGGGSGVRIQRKKEK


GSGGGG(SEQ




MKET


ID NO:







1138)-







huIgG1-







VRIQRKKE







KMKET(SEQ







ID NO:







1139)





1046
Construct
APTSSSTKKTQLQLEHLLLDLQMILNGINNYKNPKLTRMLTFKFYMPKKATE


huIL2(C125



JJJJJ
LKHLQCLEEELKPLEEVLNLAQSKNFHLRPRDLISNINVIVLELKGSETTFM


S)-




CEYADETATIVEFLNRWITFSQSIISTLTSGGKLWVLPKGPLGVRGGGGGSG


SGGKLWV




GGGSELCDDDPPEIPHATFKAMAYKEGTILNCECKRGFRRIKSGSLYMLCTG


LPK




NSSHSSWDNQCQCTSSATRNTTKQVTPQPEEQKERKTTEMQSPMQPVDQASL


(SEQ




PGHCREPPPWENEATERIYHFVVGQMVYYQCVQGYRALHRGPAESVCKMTHG


ID NO:




KTRWTQPQLICTGEMETSQFPGEEKPQASPEGRPESETSCLVTTTDFQIQTE


1154)-




MAATMETSIFTTEYQGSGGGGDKTHTCPPCPAPEAAGGPSVFLFPPKPKDTL


MMPcs1-




MISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVV


2×(G4S)(SEQ




SVLTVLHQDWLNGKEYKCKVSNKALGAPIEKTISKAKGQPREPQVYTLPPSR


ID NO:




DELTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLY


1142)-hu




SKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGGGSGLRELHLDNN


IL2Ra(1-







219; M25I)-







GSGGGG







(SEQ ID







NO: 1138)-







huIgG1-







LRELHLDN







N (SEQ ID







NO: 188)





1047
Construct
EPKSSDKTHTCPPCPAPEAAGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVS


Fc knob-



KKKKK
HEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEY


MMPcs1-




KCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSRDELTENQVSLTCLVKG


huIL2




FYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSWLTVDKSRWQQGNVF







SCSVMHEALHNRFTQKSLSLSPGGGGSGGGGGPLGVRGGGGGSAPTSSSTKK







TQLQLEHLLLDLQMILNGINNYKNPKLTRMLTFKFYMPKKATELKHLQCLEE







ELKPLEEVLNLAQSKNFHLRPRDLISNINVIVLELKGSETTFMCEYADETAT







IVEFLNRWITFSQSIISTLT








1048
Construct
APTSSSTKKTQLQLEHLLLDLQMILNGINNYKNPKLTRMLTFKFYMPKKATE


h IL2



LLLLL
LKHLQCLEEELKPLEEVLNLAQSKNFHLRPRDLISNINVIVLELKGSETTFM


(C125S)-




CEYADETATIVEFLNRWITFSQSIISTLTVRIQRKKEKMKETGPLGVRGGGG


VRIQRKKE




GSGGGGSGGGGSELCDDDPPEIPHATFKAMAYKEGTILNCECKRGFRRIKSG


KMKET




SLYMLCTGNSSHSSWDNQCQCTSSATRNTTKQVTPQPEEQKERKTTEMQSPM


(SEQ ID




QPVDQASLPGHCREPPPWENEATERIYHFVVGQMVYYQCVQGYRALHRGPAE


NO: 1139)-




SVCKMTHGKTRWTQPQLICTGEMETSQFPGEEKPQASPEGRPESETSCLVTT


MMPcs1-




TDFQIQTEMAATMETSIFTTEYQGSGGGEPKSSDKTHTCPPCPAPELLGGPS


3×(G4S)(SEQ




VFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKP


ID NO:




REEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQP







REPQVYTLPPSRDELTENQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTP


1142)-




PVLDSDGSFFLYSWLTVDKSRWQQGNVFSCSVMHEALHNRFTQKSLSLSPG


hIL2Ra(M25







I)-GSGGGG







(SEQ ID







NO: 1138)-







hu IgG1 Fc







knob





1049
Construct
APTSSSTKKTQLQLEHLLLDLQMILNGINNYKNPKLTRMLTFKFYMPKKATE


h IL2



MMMMM
LKHLQCLEEELKPLEEVLNLAQSKNFHLRPRDLISNINVIVLELKGSETTFM


(C125S)-




CEYADETATIVEFLNRWITFSQSIISTLTSGGKLWVLPKGPLGVRGGGGGSG


SGGKLWV




GGGSGGGGSELCDDDPPEIPHATFKAMAYKEGTILNCECKRGFRRIKSGSLY


LPK (SEQ




MLCTGNSSHSSWDNQCQCTSSATRNTTKQVTPQPEEQKERKTTEMQSPMQPV


ID NO:




DQASLPGHCREPPPWENEATERIYHFVVGQMVYYQCVQGYRALHRGPAESVC


1154)-




KMTHGKTRWTQPQLICTGEMETSQFPGEEKPQASPEGRPESETSCLVTTTDF


MMPcs1-




QIQTEMAATMETSIFTTEYQGSGGGEPKSSDKTHTCPPCPAPELLGGPSVFL


3×(G4S)(SEQ




FPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREE


ID NO:




QYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREP


1142)-




QVYTLPPSRDELTENQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVL


hIL2Ra(M25




DSDGSFFLYSWLTVDKSRWQQGNVFSCSVMHEALHNRFTQKSLSLSPG


I)-GSGGGG







(SEQ ID







NO: 1138)-







hu IgG1 Fc







knob





1050
Construct
APTSSSTKKTQLQLEHLLLDLQMILNGINNYKNPKLTRMLTFKFYMPKKATE


huil2-



NNNNN
LKHLQCLEEELKPLEEVLNLAQSKNFHLRPRDLISNINVIVLELKGSETTFM


VRIQRKKE




CEYADETATIVEFLNRWITFSQSIISTLTVRIQRKKEKMKETGPLGVRGGGG


KMKET




GSGGGGSGGGGSAVNGTSQFTCFYNSRANISCVWSQDGALQDTSCQVHAWPD


(SEQ ID




RRRWNQTCELLPVSQASWACNLILGAPDSQKLTTVDIVTLRVLCREGVRWRV


NO: 1139)-




MAIQDFKPFENLRLMAPISLQVVHVETHRCNISWEISQASHYFERHLEFEAR


mmpcs1-




TLSPGHTWEEAPLLTLKQKQEWICLETLTPDTQYEFQVRVKPLQGEFTTWSP


il2Rb-Fc




WSQPLAFRTKPAALGKDGSGGGEPKSSDKTHTCPPCPAPELLGGPSVFLFPP


knob




KPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYN







STYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVY







TLPPSRDELTENQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSD







GSFFLYSWLTVDKSRWQQGNVFSCSVMHEALHNRFTQKSLSLSPG








1051
Construct
APTSSSTKKTQLQLEHLLLDLQMILNGINNYKNPKLTRMLTFKFYMPKKATE


huil2-



00000
LKHLQCLEEELKPLEEVLNLAQSKNFHLRPRDLISNINVIVLELKGSETTFM


KLWVLPK




CEYADETATIVEFLNRWITFSQSIISTLTSGGKLWVLPKGPLGVRGGGGGSG


(SEQ ID




GGGSGGGGSAVNGTSQFTCFYNSRANISCVWSQDGALQDTSCQVHAWPDRRR


NO: 200)-




WNQTCELLPVSQASWACNLILGAPDSQKLTTVDIVTLRVLCREGVRWRVMAI


mmpcs1-




QDFKPFENLRLMAPISLQVVHVETHRCNISWEISQASHYFERHLEFEARTLS


il2Rb-Fc




PGHTWEEAPLLTLKQKQEWICLETLTPDTQYEFQVRVKPLQGEFTTWSPWSQ


knob




PLAFRTKPAALGKDGSGGGEPKSSDKTHTCPPCPAPELLGGPSVFLFPPKPK







DTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTY







RVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLP







PSRDELTENQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSF







FLYSWLTVDKSRWQQGNVFSCSVMHEALHNRFTQKSLSLSPG








1052
Construct
EPKSSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVS


empty Fc



PPPPP
HEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEY


hole




KCKVSNKALPAPIEKTISKAKGQPREPRVYTLPPSRDELTKNQVSLTCLVKG







FYPSDIAVEWESNGQPENNYKTTPPVLVSDGSFTLYSKLTVDKSRWQQGNVF







SCSVMHEALHNHYTQKSLSLSPG








1053
Construct
AVNGTSQFTCFYNSRANISCVWSQDGALQDTSCQVHAWPDRRRWNQTCELLP


huIL2Rb



QQQQQ
VSQASWACNLILGAPDSQKLTTVDIVTLRVLCREGVRWRVMAIQDFKPFENL


ECD-




RLMAPISLQVVHVETHRCNISWEISQASHYFERHLEFEARTLSPGHTWEEAP


3×(G4S)(SEQ




LLTLKQKQEWICLETLTPDTQYEFQVRVKPLQGEFTTWSPWSQPLAFRTKPA


ID NO:




ALGKDGGGGSGGGGSGGGGSEPKSSDKTHTCPPCPAPELLGGPSVFLFPPKP


1142)-Fc




KDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNST


Hole




YRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPRVYTL







PPSRDELTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLVSDGS







FTLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPG








1054
Construct
EPKSSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVS


Fc hole-



TTTTT
HEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEY


B2G1




KCKVSNKALPAPIEKTISKAKGQPREPRVYTLPPSRDELTKNQVSLTCLVKG







FYPSDIAVEWESNGQPENNYKTTPPVLVSDGSFTLYSKLTVDKSRWQQGNVF







SCSVMHEALHNHYTQKSLSLSPGGGGGSGGGGSGGGGSGGGGSGGGGSQVQL







VESGGGLVQAGGSLRLSCAASGRTFSNYFAGWFRQPPGEEREFVASISWGGD







RMFYTDAVKGRFTISRDNAKNTVDLQMNSLKPEDTAVYYCSADRFATALYNG







NGNYWGQGTQVTVSS








1055
Construct
EPKSSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVS


Fc hole-



RRRRR
HEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEY


B2d2b




KCKVSNKALPAPIEKTISKAKGQPREPRVYTLPPSRDELTKNQVSLTCLVKG







FYPSDIAVEWESNGQPENNYKTTPPVLVSDGSFTLYSKLTVDKSRWQQGNVF







SCSVMHEALHNHYTQKSLSLSPGGGGGSGGGGSGGGGSGGGGSGGGGSEVQL







VESGGGLVQAGGSLRLSCAASGRTFIGYTMGWFRQAPGKEREFVASIIWRGD







RTRYADSVKGRFTISGDNAKNTVYLRMNSMKPEDTAVYYCAARSGSHFPSFD







YWGQGTQVSVSS








1056
Construct
EPKSSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVS


Fc hole-



SSSSS
HEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEY


B2C10




KCKVSNKALPAPIEKTISKAKGQPREPRVYTLPPSRDELTKNQVSLTCLVKG







FYPSDIAVEWESNGQPENNYKTTPPVLVSDGSFTLYSKLTVDKSRWQQGNVF







SCSVMHEALHNHYTQKSLSLSPGGGGGSGGGGSGGGGSGGGGSGGGGSEVQL







VESGGGLVQPGGSLRLSCEVSGRILYIMGWFRQVPGKDREFVAGILWSSTKY







GDFVNGRFTISRDNVKNTVSLQMNSLKPEDTAVYYCAAAIRRGQDIPTISSE







YNYWGQGTQVTVSS








1057
Construct
EPKSSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVS


Fc hole-



UUUUU
HEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEY


B2C10-




KCKVSNKALPAPIEKTISKAKGQPREPRVYTLPPSRDELTKNQVSLTCLVKG


5×(G4S)(SEQ




FYPSDIAVEWESNGQPENNYKTTPPVLVSDGSFTLYSKLTVDKSRWQQGNVF


ID NO:




SCSVMHEALHNHYTQKSLSLSPGGGGGSGGGGSGGGGSGGGGSGGGGSEVQL


1142)-




VESGGGLVQPGGSLRLSCEVSGRILYIMGWFRQVPGKDREFVAGILWSSTKY


B2D2b




GDFVNGRFTISRDNVKNTVSLQMNSLKPEDTAVYYCAAAIRRGQDIPTISSE







YNYWGQGTQVTVSSGGGGSGGGGSGGGGSGGGGSGGGGSEVQLVESGGGLVQ







AGGSLRLSCAASGRTFIGYTMGWFRQAPGKEREFVASIIWRGDRTRYADSVK







GRFTISGDNAKNTVYLRMNSMKPEDTAVYYCAARSGSHFPSFDYWGQGTQVS







VSS








1058
Construct
EPKSSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVS


Fc hole-



VVVVV
HEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEY


B2G1-




KCKVSNKALPAPIEKTISKAKGQPREPRVYTLPPSRDELTKNQVSLTCLVKG


5×(G4S)(SEQ




FYPSDIAVEWESNGQPENNYKTTPPVLVSDGSFTLYSKLTVDKSRWQQGNVF


ID NO:




SCSVMHEALHNHYTQKSLSLSPGGGGGSGGGGSGGGGSGGGGSGGGGSQVQL


1142)-




VESGGGLVQAGGSLRLSCAASGRTFSNYFAGWFRQPPGEEREFVASISWGGD


B2D2b




RMFYTDAVKGRFTISRDNAKNTVDLQMNSLKPEDTAVYYCSADRFATALYNG







NGNYWGQGTQVTVSSGGGGSGGGGSGGGGSGGGGSGGGGSEVQLVESGGGLV







QAGGSLRLSCAASGRTFIGYTMGWFRQAPGKEREFVASIIWRGDRTRYADSV







KGRFTISGDNAKNTVYLRMNSMKPEDTAVYYCAARSGSHFPSFDYWGQGTQV







SVSS








1059
Construct
EPKSSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVS


Fc hole-



WWWWW
HEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEY


B2D2b-




KCKVSNKALPAPIEKTISKAKGQPREPRVYTLPPSRDELTKNQVSLTCLVKG


5×(G4S)(SEQ




FYPSDIAVEWESNGQPENNYKTTPPVLVSDGSFTLYSKLTVDKSRWQQGNVF


ID NO:




SCSVMHEALHNHYTQKSLSLSPGGGGGSGGGGSGGGGSGGGGSGGGGSEVQL


1142)-B2G1




VESGGGLVQAGGSLRLSCAASGRTFIGYTMGWFRQAPGKEREFVASIIWRGD







RTRYADSVKGRFTISGDNAKNTVYLRMNSMKPEDTAVYYCAARSGSHFPSFD







YWGQGTQVSVSSGGGGGGGGSGGGGSGGGGSGGGGSQVQLVESGGGLVQAG







GSLRLSCAASGRTFSNYFAGWFRQPPGEEREFVASISWGGDRMFYTDAVKGR







FTISRDNAKNTVDLQMNSLKPEDTAVYYCSADRFATALYNGNGNYWGQGTQV







TVSS








1060
Construct
EPKSSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVS


Fc hole-



XXXXX
HEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEY


B2D2b-




KCKVSNKALPAPIEKTISKAKGQPREPRVYTLPPSRDELTKNQVSLTCLVKG


5×(G4S)(SEQ




FYPSDIAVEWESNGQPENNYKTTPPVLVSDGSFTLYSKLTVDKSRWQQGNVF


ID NO:




SCSVMHEALHNHYTQKSLSLSPGGGGGSGGGGSGGGGSGGGGSGGGGSEVQL


1142)-




VESGGGLVQAGGSLRLSCAASGRTFIGYTMGWFRQAPGKEREFVASIIWRGD


B2C10




RTRYADSVKGRFTISGDNAKNTVYLRMNSMKPEDTAVYYCAARSGSHFPSFD







YWGQGTQVSVSSGGGGSGGGGSGGGGSGGGGSGGGGSEVQLVESGGGLVQPG







GSLRLSCEVSGRILYIMGWFRQVPGKDREFVAGILWSSTKYGDFVNGRFTIS







RDNVKNTVSLQMNSLKPEDTAVYYCAAAIRRGQDIPTISSEYNYWGQGTQVT







VSS








1061
Construct
EVQLVESGGGLVQPGGSLRLSCEVSGRILYIMGWFRQVPGKDREFVAGILWS


B2C10-



YYYYY
STKYGDFVNGRFTISRDNVKNTVSLQMNSLKPEDTAVYYCAAAIRRGQDIPT


5×(G4S)(SEQ




ISSEYNYWGQGTQVTVSSGGGGSGGGGSGGGGSGGGGSGGGGSEPKSSDKTH


ID NO:




TCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFN


1142)-Fc




WYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKAL


Hole




PAPIEKTISKAKGQPREPRVYTLPPSRDELTKNQVSLTCLVKGFYPSDIAVE







WESNGQPENNYKTTPPVLVSDGSFTLYSKLTVDKSRWQQGNVFSCSVMHEAL







HNHYTQKSLSLSPG








1062
Construct
QVQLVESGGGLVQAGGSLRLSCAASGRTFSNYFAGWFRQPPGEEREFVASIS


B2G1-



ZZZZZ
WGGDRMFYTDAVKGRFTISRDNAKNTVDLQMNSLKPEDTAVYYCSADRFATA


5×(G4S)(SEQ




LYNGNGNYWGQGTQVTVSSGGGGSGGGGSGGGGSGGGGSGGGGSEPKSSDKT


ID NO:




HTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKF







NWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKA







LPAPIEKTISKAKGQPREPRVYTLPPSRDELTKNQVSLTCLVKGFYPSDIAV


1142)-Fc




EWESNGQPENNYKTTPPVLVSDGSFTLYSKLTVDKSRWQQGNVFSCSVMHEA


Hole




LHNHYTQKSLSLSPG








1063
Construct
EPKSSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVS


B2D2b-



AAAAAA
HEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEY


5×(G4S)(SEQ




KCKVSNKALPAPIEKTISKAKGQPREPRVYTLPPSRDELTKNQVSLTCLVKG


ID NO:




FYPSDIAVEWESNGQPENNYKTTPPVLVSDGSFTLYSKLTVDKSRWQQGNVF


1142)-Fc




SCSVMHEALHNHYTQKSLSLSPGGGGGSGGGGSGGGGSGGGGSGGGGSEVQL


Hole




VESGGGLVQAGGSLRLSCAASGRTFIGYTMGWFRQAPGKEREFVASIIWRGD







RTRYADSVKGRFTISGDNAKNTVYLRMNSMKPEDTAVYYCAARSGSHFPSFD







YWGQGTQVSVSS








1064
Construct
EPKSSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVS


Fc knob-



BBBBBB
HEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEY


MMPcs1-




KCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSRDELTENQVSLTCLVKG


huIL2




FYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSWLTVDKSRWQQGNVF


(C125S)




SCSVMHEALHNRFTQKSLSLSPGGGGSGGGGGPLGVRGGGGGSAPTSSSTKK







TQLQLEHLLLDLQMILNGINNYKNPKLTRMLTFKFYMPKKATELKHLQCLEE







ELKPLEEVLNLAQSKNFHLRPRDLISNINVIVLELKGSETTFMCEYADETAT







IVEFLNRWITFSQSIISTLT








1065
Construct
APTSSSTKKTQLQLEHLLLDLQMILNGINNYKNPKLTRMLTFKFYMPKKATE


h IL2



CCCCCC
LKHLQCLEEELKPLEEVLNLAQSKNFHLRPRDLISNINVIVLELKGSETTFM


(C125S)-




CEYADETATIVEFLNRWITFSQSIISTLTSGGGGSGGGGGPLGVRGLRELHL


2×(SG4)(SEQ




DNNGGGGSELCDDDPPEIPHATFKAMAYKEGTILNCECKRGFRRIKSGSLYM


ID NO:




LCTGNSSHSSWDNQCQCTSSATRNTTKQVTPQPEEQKERKTTEMQSPMQPVD


1143)-




QASLPGHCREPPPWENEATERIYHFVVGQMVYYQCVQGYRALHRGPAESVCK


MMPcs1-




MTHGKTRWTQPQLICTGEMETSQFPGEEKPQASPEGRPESETSCLVTTTDFQ


LRELHLDN




IQTEMAATMETSIFTTEYQGSGGGEPKSSDKTHTCPPCPAPELLGGPSVFLF


N (SEQ ID




PPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQ


NO: 188)-




YNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQ


1×(G4S)(SEQ




VYTLPPSRDELTENQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLD


ID NO:




SDGSFFLYSWLTVDKSRWQQGNVFSCSVMHEALHNRFTQKSLSLSPG


1142)-







hIL2Ra(M25







I)-GSGGGG







(SEQ ID







NO: 1138)-







hu IgG1 Fc







knob





1066
Construct
APTSSSTKKTQLQLEHLLLDLQMILNGINNYKNPKLTRMLTFKFYMPKKATE


h IL2



DDDDDD
LKHLQCLEEELKPLEEVLNLAQSKNFHLRPRDLISNINVIVLELKGSETTFM


(C125S)-




CEYADETATIVEFLNRWITFSQSIISTLTVRIQRKKEKMKETGPLGVRGGGG


VRIQRKKE




GSGGGGSGGGGSELCDDDPPEIPHATFKAMAYKEGTILNCECKRGFRRIKSG


KMKET-




SLYMLCTGNSSHSSWDNQCQCTSSATRNTTKQVTPQPEEQKERKTTEMQSPM


MMPcs1-




QPVDQASLPGHCREPPPWENEATERIYHFVVGQMVYYQCVQGYRALHRGPAE


3×(G4S)(SEQ




SVCKMTHGKTRWTQPQLICTGEMETSQFPGEEKPQASPEGRPESETSCLVTT


ID NO:




TDFQIQTEMAATMETSIFTTEYQGSGGGEPKSSDKTHTCPPCPAPELLGGPS


1142)-




VFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKP


hIL2Ra(M25




REEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQP


I)-GSGGGG




REPQVYTLPPSRDELTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTP


(SEQ ID




PVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPG


NO: 1138)-







hu IgG1 Fc





1067
Construct
APTSSSTKKTQLQLEHLLLDLQMILNGINNYKNPKLTRMLTFKFYMPKKATE


h IL2



EEEEEE
LKHLQCLEEELKPLEEVLNLAQSKNFHLRPRDLISNINVIVLELKGSETTFM


(C125S)-




CEYADETATIVEFLNRWITFSQSIISTLTSGGKLWVLPKGPLGVRGGGGGSG


SGGKLWV




GGGSGGGGSELCDDDPPEIPHATFKAMAYKEGTILNCECKRGFRRIKSGSLY


LPK (SEQ




MLCTGNSSHSSWDNQCQCTSSATRNTTKQVTPQPEEQKERKTTEMQSPMQPV


ID NO:




DQASLPGHCREPPPWENEATERIYHFVVGQMVYYQCVQGYRALHRGPAESVC


1154)-




KMTHGKTRWTQPQLICTGEMETSQFPGEEKPQASPEGRPESETSCLVTTTDF


MMPcs1-




QIQTEMAATMETSIFTTEYQGSGGGEPKSSDKTHTCPPCPAPELLGGPSVFL


3×(G4S)(SEQ




FPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREE


ID NO:




QYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREP


1142)-




QVYTLPPSRDELTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVL


hIL2Ra(M25




DSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPG


I)-GSGGGG







(SEQ ID







NO: 1138)-







hu IgG1 Fc





1068
Construct
APTSSSTKKTQLQLEHLLLDLQMILNGINNYKNPKLTRMLTFKFYMPKKATE


h IL2



FFFFFF
LKHLQCLEEELKPLEEVLNLAQSKNFHLRPRDLISNINVIVLELKGSETTFM


(C125S)-




CEYADETATIVEFLNRWITFSQSIISTLTSGGGGSGGGGGPLGVRGLRELHL


2×(SG4)(SEQ




DNNGGGGSELCDDDPPEIPHATFKAMAYKEGTILNCECKRGFRRIKSGSLYM


ID NO:




LCTGNSSHSSWDNQCQCTSSATRNTTKQVTPQPEEQKERKTTEMQSPMQPVD


1143)-




QASLPGHCREPPPWENEATERIYHFVVGQMVYYQCVQGYRALHRGPAESVCK


MMPcs1-




MTHGKTRWTQPQLICTGEMETSQFPGEEKPQASPEGRPESETSCLVTTTDFQ


LRELHLDN




IQTEMAATMETSIFTTEYQGSGGGEPKSSDKTHTCPPCPAPELLGGPSVFLF


N (SEQ ID




PPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQ


NO: 188)-




YNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQ


1×(G4S)(SEQ




VYTLPPSRDELTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLD


ID NO:




SDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPG


1142)-







hIL2Ra(M25







I)-GSGGGG







(SEQ ID







NO: 1138)-







hu IgG1 Fc





1069
Construct
EPKSSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVS


Fc hole-



GGGGGG
HEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEY


5×(G4S)(SEQ




KCKVSNKALPAPIEKTISKAKGQPREPRVYTLPPSRDELTKNQVSLTCLVKG


ID NO:




FYPSDIAVEWESNGQPENNYKTTPPVLVSDGSFTLYSKLTVDKSRWQQGNVF


1142)-IL2Ra




SCSVMHEALHNHYTQKSLSLSPGGGGGSGGGGSGGGGSGGGGSGGGGSELCD


(1-219;




DDPPEIPHATFKAMAYKEGTILNCECKRGFRRIKSGSLYMLCTGNSSHSSWD


M25I)




NQCQCTSSATRNTTKQVTPQPEEQKERKTTEMQSPMQPVDQASLPGHCREPP







PWENEATERIYHFVVGQMVYYQCVQGYRALHRGPAESVCKMTHGKTRWTQPQ







LICTGEMETSQFPGEEKPQASPEGRPESETSCLVTTTDFQIQTEMAATMETS







IFTTEYQ








1070
Construct
EPKSSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVS


Fc hole-



HHHHHH
HEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEY


3×(G4S)(SEQ




KCKVSNKALPAPIEKTISKAKGQPREPRVYTLPPSRDELTKNQVSLTCLVKG


ID NO:




FYPSDIAVEWESNGQPENNYKTTPPVLVSDGSFTLYSKLTVDKSRWQQGNVF


1142)-IL2Ra




SCSVMHEALHNHYTQKSLSLSPGGGGGSGGGGSGGGGSELCDDDPPEIPHAT


(1-219;




FKAMAYKEGTILNCECKRGFRRIKSGSLYMLCTGNSSHSSWDNQCQCTSSAT


M25I)




RNTTKQVTPQPEEQKERKTTEMQSPMQPVDQASLPGHCREPPPWENEATERI







YHFVVGQMVYYQCVQGYRALHRGPAESVCKMTHGKTRWTQPQLICTGEMETS







QFPGEEKPQASPEGRPESETSCLVTTTDFQIQTEMAATMETSIFTTEYQ








1071
Construct
EPKSSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVS


Fc hole-



IIIIII
HEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEY


B2C10-




KCKVSNKALPAPIEKTISKAKGQPREPRVYTLPPSRDELTKNQVSLTCLVKG


5×(G4S)(SEQ




FYPSDIAVEWESNGQPENNYKTTPPVLVSDGSFTLYSKLTVDKSRWQQGNVF


ID NO:




SCSVMHEALHNHYTQKSLSLSPGGGGGSGGGGSGGGGSGGGGSGGGGSEVQL


1142)-IL2Ra




VESGGGLVQPGGSLRLSCEVSGRILYIMGWFRQVPGKDREFVAGILWSSTKY


(1-219;




GDFVNGRFTISRDNVKNTVSLQMNSLKPEDTAVYYCAAAIRRGQDIPTISSE


M25I)




YNYWGQGTQVTVSSGGGGGGGGSGGGGSGGGGSGGGGSELCDDDPPEIPHA







TFKAMAYKEGTILNCECKRGFRRIKSGSLYMLCTGNSSHSSWDNQCQCTSSA







TRNTTKQVTPQPEEQKERKTTEMQSPMQPVDQASLPGHCREPPPWENEATER







IYHFVVGQMVYYQCVQGYRALHRGPAESVCKMTHGKTRWTQPQLICTGEMET







SQFPGEEKPQASPEGRPESETSCLVTTTDFQIQTEMAATMETSIFTTEYQ








1072
Construct
EPKSSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVS


Fc hole-



JJJJJJ
HEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEY


B2G1-




KCKVSNKALPAPIEKTISKAKGQPREPRVYTLPPSRDELTKNQVSLTCLVKG


5×(G4S)(SEQ




FYPSDIAVEWESNGQPENNYKTTPPVLVSDGSFTLYSKLTVDKSRWQQGNVF


ID NO:




SCSVMHEALHNHYTQKSLSLSPGGGGGSGGGGSGGGGSGGGGSGGGGSQVQL


1142)-IL2Ra




VESGGGLVQAGGSLRLSCAASGRTFSNYFAGWFRQPPGEEREFVASISWGGD


(1-219;




RMFYTDAVKGRFTISRDNAKNTVDLQMNSLKPEDTAVYYCSADRFATALYNG


M25I)




NGNYWGQGTQVTVSSGGGGSGGGGSGGGGSGGGGSGGGGSELCDDDPPEIPH







ATFKAMAYKEGTILNCECKRGFRRIKSGSLYMLCTGNSSHSSWDNQCQCTSS







ATRNTTKQVTPQPEEQKERKTTEMQSPMQPVDQASLPGHCREPPPWENEATE







RIYHFVVGQMVYYQCVQGYRALHRGPAESVCKMTHGKTRWTQPQLICTGEME







TSQFPGEEKPQASPEGRPESETSCLVTTTDFQIQTEMAATMETSIFTTEYQ








1073
Construct
EPKSSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVS


Fc hole-



KKKKKK
HEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEY


B2D2b-




KCKVSNKALPAPIEKTISKAKGQPREPRVYTLPPSRDELTKNQVSLTCLVKG


5×(G4S)(SEQ




FYPSDIAVEWESNGQPENNYKTTPPVLVSDGSFTLYSKLTVDKSRWQQGNVF


ID NO:




SCSVMHEALHNHYTQKSLSLSPGGGGGSGGGGSGGGGSGGGGSGGGGSEVQL


1142)-IL2Ra




VESGGGLVQAGGSLRLSCAASGRTFIGYTMGWFRQAPGKEREFVASIIWRGD


(1-219;




RTRYADSVKGRFTISGDNAKNTVYLRMNSMKPEDTAVYYCAARSGSHFPSFD


M25I)




YWGQGTQVSVSSGGGGSGGGGSGGGGSGGGGSGGGGSELCDDDPPEIPHATF







KAMAYKEGTILNCECKRGFRRIKSGSLYMLCTGNSSHSSWDNQCQCTSSATR







NTTKQVTPQPEEQKERKTTEMQSPMQPVDQASLPGHCREPPPWENEATERIY







HFVVGQMVYYQCVQGYRALHRGPAESVCKMTHGKTRWTQPQLICTGEMETSQ







FPGEEKPQASPEGRPESETSCLVTTTDFQIQTEMAATMETSIFTTEYQ








1074
Construct
EPKSSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVS


Fc hole-



LLLLLL
HEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEY


B2C10-




KCKVSNKALPAPIEKTISKAKGQPREPRVYTLPPSRDELTKNQVSLTCLVKG


5×(G4S)(SEQ




FYPSDIAVEWESNGQPENNYKTTPPVLVSDGSFTLYSKLTVDKSRWQQGNVF


ID NO:




SCSVMHEALHNHYTQKSLSLSPGGGGGSGGGGSGGGGSGGGGSGGGGSEVQL


1142)-B1C3




VESGGGLVQPGGSLRLSCEVSGRILYIMGWFRQVPGKDREFVAGILWSSTKY







GDFVNGRFTISRDNVKNTVSLQMNSLKPEDTAVYYCAAAIRRGQDIPTISSE







YNYWGQGTQVTVSSGGGGSGGGGSGGGGSGGGGSGGGGSEVQLVESGGGLVQ







PGESLRLSCLASRTLSTFNVMAWYRQAPEKERELVAHVTNGTTLVADSVKGR







FTISRDYTKNTVDLQMSKLKPEDTAVYYCRFWRGRYEYWGQGTQVTVSS








1075
Construct
EPKSSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVS


Fc hole-



MMMMMM
HEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEY


B2G1-




KCKVSNKALPAPIEKTISKAKGQPREPRVYTLPPSRDELTKNQVSLTCLVKG


5×(G4S)(SEQ




FYPSDIAVEWESNGQPENNYKTTPPVLVSDGSFTLYSKLTVDKSRWQQGNVF


ID NO:




SCSVMHEALHNHYTQKSLSLSPGGGGGSGGGGSGGGGSGGGGSGGGGSQVQL


1142)-B1C3




VESGGGLVQAGGSLRLSCAASGRTFSNYFAGWFRQPPGEEREFVASISWGGD







RMFYTDAVKGRFTISRDNAKNTVDLQMNSLKPEDTAVYYCSADRFATALYNG







NGNYWGQGTQVTVSSGGGGSGGGGSGGGGSGGGGGGGGSEVQLVESGGGLV







QPGESLRLSCLASRTLSTFNVMAWYRQAPEKERELVAHVTNGTTLVADSVKG







RFTISRDYTKNTVDLQMSKLKPEDTAVYYCRFWRGRYEYWGQGTQVTVSS








1076
Construct
EPKSSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVS


Fc hole-



NNNNNN
HEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEY


B2D2b-




KCKVSNKALPAPIEKTISKAKGQPREPRVYTLPPSRDELTKNQVSLTCLVKG


5×(G4S)(SEQ




FYPSDIAVEWESNGQPENNYKTTPPVLVSDGSFTLYSKLTVDKSRWQQGNVF


ID NO:




SCSVMHEALHNHYTQKSLSLSPGGGGGSGGGGSGGGGGGGGSGGGGSEVQL


1142)-B1C3




VESGGGLVQAGGSLRLSCAASGRTFIGYTMGWFRQAPGKEREFVASIIWRGD







RTRYADSVKGRFTISGDNAKNTVYLRMNSMKPEDTAVYYCAARSGSHFPSFD







YWGQGTQVSVSSGGGGSGGGGSGGGGSGGGGSGGGGSQVQLVESGGGLVQAG







GSLRLSCAASGRTFSNYFAGWFRQPPGEEREFVASISWGGDRMFYTDAVKGR







FTISRDNAKNTVDLQMNSLKPEDTAVYYCSADRFATALYNGNGNYWGQGTQV







TVSS








1077
Construct
ELCDDDPPEIPHATFKAMAYKEGTILNCECKRGFRRIKSGSLYMLCTGNSSH


huIL2Ra(M2



000000
SSWDNQCQCTSSATRNTTKQVTPQPEEQKERKTTEMQSPMQPVDQASLPGHC


51; 1-219)-




REPPPWENEATERIYHFVVGQMVYYQCVQGYRALHRGPAESVCKMTHGKTRW


3×(G4S)(SEQ




TQPQLICTGEMETSQFPGEEKPQASPEGRPESETSCLVTTTDFQIQTEMAAT


ID NO:




METSIFTTEYQGGGGSGGGGSGGGGSEPKSSDKTHTCPPCPAPELLGGPSVF







LFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPRE







EQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPRE


1142)-Fc




PRVYTLPPSRDELTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPV


Hole




LVSDGSFTLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPG








1078
Construct
ELCDDDPPEIPHATFKAMAYKEGTILNCECKRGFRRIKSGSLYMLCTGNSSH


huIL2Ra(M2



PPPPPP
SSWDNQCQCTSSATRNTTKQVTPQPEEQKERKTTEMQSPMQPVDQASLPGHC


51; 1-219)-




REPPPWENEATERIYHFVVGQMVYYQCVQGYRALHRGPAESVCKMTHGKTRW


5×(G4S)(SEQ




TQPQLICTGEMETSQFPGEEKPQASPEGRPESETSCLVTTTDFQIQTEMAAT


ID NO:




METSIFTTEYQGGGGSGGGGSGGGGSGGGGSGGGGSEPKSSDKTHTCPPCPA


1142)-Fc




PELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVE


Hole




VHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKT







ISKAKGQPREPRVYTLPPSRDELTKNQVSLTCLVKGFYPSDIAVEWESNGQP







ENNYKTTPPVLVSDGSFTLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQK







SLSLSPG








1079
Construct
APTSSSTKKTQLQLEHLLLDLQMILNGINNYKNPKLTRMLTFKFYMPKKATE


huIL2(C125



QQQQQQ
LKHLQCLEEELKPLEEVLNLAQSKNFHLRPRDLISNINVIVLELKGSETTFM


S)-




CEYADETATIVEFLNRWITFSQSIISTLTSGGGGSGGGGGPLGVRGGGGGSG


3×(G4S)(SEQ




GGGSEPKSSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVV


ID NO:




VDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLN


1142)-Fc




GKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSRDELTENQVSLTC


knob




LVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSWLTVDKSRWQQ







GNVFSCSVMHEALHNRFTQKSLSLSPG








1080
Construct
EPKSSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVS


Fc knob-



RRRRRR
HEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEY


VRIQRKKE




KCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSRDELTENQVSLTCLVKG


KMKET




FYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSWLTVDKSRWQQGNVF


(SEQ ID




SCSVMHEALHNRFTQKSLSLSPGGGGSVRIQRKKEKMKETGGGGGPLGVRGG


NO: 1139)-




GGGSAPTSSSTKKTQLQLEHLLLDLQMILNGINNYKNPKLTRMLTFKFYMPK


MMPcs1-




KATELKHLQCLEEELKPLEEVLNLAQSKNFHLRPRDLISNINVIVLELKGSE


huIL2




TTFMCEYADETATIVEFLNRWITFSQSIISTLT


(C125S)





1081
Construct
EPKSSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVS


Fc knob-



SSSSSS
HEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEY


SGGKLWV




KCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSRDELTENQVSLTCLVKG


LPK (SEQ




FYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSWLTVDKSRWQQGNVF


ID NO:




SCSVMHEALHNRFTQKSLSLSPGGGGSKLWVLPKGGGGGPLGVRGGGGGSAP


1154)-




TSSSTKKTQLQLEHLLLDLQMILNGINNYKNPKLTRMLTFKFYMPKKATELK


MMPcs1-




HLQCLEEELKPLEEVLNLAQSKNFHLRPRDLISNINVIVLELKGSETTFMCE


huIL2




YADETATIVEFLNRWITFSQSIISTLT


(C125S)





1082
Construct
EPKSSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVS


Fc knob-



TTTTTT
HEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEY


LRELHLDN




KCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSRDELTENQVSLTCLVKG


N (SEQ ID




FYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSWLTVDKSRWQQGNVF


NO: 188)-




SCSVMHEALHNRFTQKSLSLSPGGGGSLRELHLDNNGGGGGPLGVRGGGGGS


MMPcs1-




APTSSSTKKTQLQLEHLLLDLQMILNGINNYKNPKLTRMLTFKFYMPKKATE


huIL2




LKHLQCLEEELKPLEEVLNLAQSKNFHLRPRDLISNINVIVLELKGSETTFM


(C125S)




CEYADETATIVEFLNRWITFSQSIISTLT








1083
Construct
APTSSSTKKTQLQLEHLLLDLQMILNGINNYKNPKLTRMLTFKFYMPKKATE


huIL2



UUUUUU
LKHLQCLEEELKPLEEVLNLAQSKNFHLRPRDLISNINVIVLELKGSETTFM


(C125S)-




CEYADETATIVEFLNRWITFSQSIISTLTGGGGSGGGGGPLGVRGGGSLREL


2×(G4S)(SEQ




HLDNNGGGGSEPKSSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTP


ID NO:




EVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVL


1142)-




HQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSRDELTEN


MMPcs1-




QVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSWLTVD


LRELHLDN




KSRWQQGNVFSCSVMHEALHNRFTQKSLSLSPG


N (SEQ ID







NO: 188)-







1×(G4S)(SEQ







ID NO:







1142)-Fc







knob





1084
Construct
EPKSSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVS


Fc hole-



VVVVVV
HEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEY


B2G1-GSGG




KCKVSNKALPAPIEKTISKAKGQPREPRVYTLPPSRDELTKNQVSLTCLVKG


(SEQ ID




FYPSDIAVEWESNGQPENNYKTTPPVLVSDGSFTLYSKLTVDKSRWQQGNVF


NO: 1166)-




SCSVMHEALHNHYTQKSLSLSPGGGGGSGGGGSGGGGSGGGGSGGGGSQVQL


VRIQRKKE




VESGGGLVQAGGSLRLSCAASGRTFSNYFAGWFRQPPGEEREFVASISWGGD


KMKET




RMFYTDAVKGRFTISRDNAKNTVDLQMNSLKPEDTAVYYCSADRFATALYNG


(SEQ ID




NGNYWGQGTQVTVSSGSGGVRIQRKKEKMKET


NO: 1139)





1085
Construct
EPKSSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVS


Fc hole-



WWWWWW
HEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEY


B2G1-GSGG




KCKVSNKALPAPIEKTISKAKGQPREPRVYTLPPSRDELTKNQVSLTCLVKG


(SEQ ID




FYPSDIAVEWESNGQPENNYKTTPPVLVSDGSFTLYSKLTVDKSRWQQGNVF


NO: 1166)-




SCSVMHEALHNHYTQKSLSLSPGGGGGSGGGGSGGGGSGGGGSGGGGSQVQL


LRELHLDN




VESGGGLVQAGGSLRLSCAASGRTFSNYFAGWFRQPPGEEREFVASISWGGD


N (SEQ ID




RMFYTDAVKGRFTISRDNAKNTVDLQMNSLKPEDTAVYYCSADRFATALYNG


NO: 188)




NGNYWGQGTQVTVSSGSGGLRELHLDNN








1086
Construct
EPKSSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVS


Fc hole-



XXXXXX
HEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEY


B2G1-GSGG




KCKVSNKALPAPIEKTISKAKGQPREPRVYTLPPSRDELTKNQVSLTCLVKG


(SEQ ID




FYPSDIAVEWESNGQPENNYKTTPPVLVSDGSFTLYSKLTVDKSRWQQGNVF


NO: 1166)-




SCSVMHEALHNHYTQKSLSLSPGGGGGSGGGGSGGGGSGGGGSGGGGSQVQL


KLWVLPK




VESGGGLVQAGGSLRLSCAASGRTFSNYFAGWFRQPPGEEREFVASISWGGD


(SEQ ID




RMFYTDAVKGRFTISRDNAKNTVDLQMNSLKPEDTAVYYCSADRFATALYNG


NO: 200)




NGNYWGQGTQVTVSSGSGGKLWVLPK








1087
Construct
EPKSSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVS


Fc hole-




HEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEY


B2C10-




KCKVSNKALPAPIEKTISKAKGQPREPRVYTLPPSRDELTKNQVSLTCLVKG


GSGG (SEQ




FYPSDIAVEWESNGQPENNYKTTPPVLVSDGSFTLYSKLTVDKSRWQQGNVF


ID NO:




SCSVMHEALHNHYTQKSLSLSPGGGGGSGGGGSGGGGSGGGGSGGGGSEVQL


1166)-




VESGGGLVQPGGSLRLSCEVSGRILYIMGWFRQVPGKDREFVAGILWSSTKY


VRIQRKKE




GDFVNGRFTISRDNVKNTVSLQMNSLKPEDTAVYYCAAAIRRGQDIPTISSE


KMKET




YNYWGQGTQVTVSSGSGGVRIQRKKEKMKET


(SEQ ID







NO: 1139)





1088
Construct
EPKSSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVS


Fc hole-



ZZZZZZ
HEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEY


B2C10-




KCKVSNKALPAPIEKTISKAKGQPREPRVYTLPPSRDELTKNQVSLTCLVKG


GSGG (SEQ




FYPSDIAVEWESNGQPENNYKTTPPVLVSDGSFTLYSKLTVDKSRWQQGNVF


ID NO:




SCSVMHEALHNHYTQKSLSLSPGGGGGSGGGGSGGGGSGGGGSGGGGSEVQL


1166)-




VESGGGLVQPGGSLRLSCEVSGRILYIMGWFRQVPGKDREFVAGILWSSTKY


LRELHLDN




GDFVNGRFTISRDNVKNTVSLQMNSLKPEDTAVYYCAAAIRRGQDIPTISSE


N (SEQ ID




YNYWGQGTQVTVSSGSGGLRELHLDNN


NO: 188)





1089
Construct
EPKSSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVS


Fc hole-



AAAAAAA
HEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEY


B2C10-




KCKVSNKALPAPIEKTISKAKGQPREPRVYTLPPSRDELTKNQVSLTCLVKG


GSGG




FYPSDIAVEWESNGQPENNYKTTPPVLVSDGSFTLYSKLTVDKSRWQQGNVF


(SEQ




SCSVMHEALHNHYTQKSLSLSPGGGGGSGGGGSGGGGSGGGGSGGGGSEVQL


ID NO:




VESGGGLVQPGGSLRLSCEVSGRILYIMGWFRQVPGKDREFVAGILWSSTKY


1166)-




GDFVNGRFTISRDNVKNTVSLQMNSLKPEDTAVYYCAAAIRRGQDIPTISSE


KLWVLPK




YNYWGQGTQVTVSSGSGGKLWVLPK


(SEQ ID







NO: 200)





1090
Construct
EPKSSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVS


Fc hole-



BBBBBBB
HEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEY


B2D2b-




KCKVSNKALPAPIEKTISKAKGQPREPRVYTLPPSRDELTKNQVSLTCLVKG


GSGG (SEQ




FYPSDIAVEWESNGQPENNYKTTPPVLVSDGSFTLYSKLTVDKSRWQQGNVF


ID NO:




SCSVMHEALHNHYTQKSLSLSPGGGGGSGGGGSGGGGSGGGGSGGGGSEVQL


1166)-




VESGGGLVQAGGSLRLSCAASGRTFIGYTMGWFRQAPGKEREFVASIIWRGD


VRIQRKKE




RTRYADSVKGRFTISGDNAKNTVYLRMNSMKPEDTAVYYCAARSGSHFPSFD


KMKET




YWGQGTQVSVSSGSGGVRIQRKKEKMKET


(SEQ ID







NO: 1139)





1091
Construct
SEPKSSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDV


Fc hole-



CCCCCCC
SHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKE


B2D2b-




YKCKVSNKALPAPIEKTISKAKGQPREPRVYTLPPSRDELTKNQVSLTCLVK


GSGG (SEQ




GFYPSDIAVEWESNGQPENNYKTTPPVLVSDGSFTLYSKLTVDKSRWQQGNV


ID NO:




FSCSVMHEALHNHYTQKSLSLSPGGGGGSGGGGSGGGGSGGGGSGGGGSEVQ


1166)-




LVESGGGLVQAGGSLRLSCAASGRTFIGYTMGWFRQAPGKEREFVASIIWRG


LRELHLDN




DRTRYADSVKGRFTISGDNAKNTVYLRMNSMKPEDTAVYYCAARSGSHFPSF


N (SEQ ID




DYWGQGTQVSVSSGSGGLRELHLDNN


NO: 188)





1092
Construct
EPKSSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVS


Fc hole-



DDDDDDD
HEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEY


B2D2b-




KCKVSNKALPAPIEKTISKAKGQPREPRVYTLPPSRDELTKNQVSLTCLVKG


GSGG (SEQ




FYPSDIAVEWESNGQPENNYKTTPPVLVSDGSFTLYSKLTVDKSRWQQGNVF


ID NO:




SCSVMHEALHNHYTQKSLSLSPGGGGGSGGGGSGGGGSGGGGSGGGGSEVQL


1166)-




VESGGGLVQAGGSLRLSCAASGRTFIGYTMGWFRQAPGKEREFVASIIWRGD


KLWVLPK




RTRYADSVKGRFTISGDNAKNTVYLRMNSMKPEDTAVYYCAARSGSHFPSFD


(SEQ ID




YWGQGTQVSVSSGSGGKLWVLPK


NO: 200)





1093
Construct
MGWSCIILFLVATATGVHSEPKSSDKTHTCPPCPAPELLGGPSVFLFPPKPK


Fc hole-



EEEEEEE
DTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTY


B2D2b-




RVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPRVYTLP


2×(G4S)(SEQ




PSRDELTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLVSDGSF


ID NO:




TLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGGGGGSGGGGS


1142)-




GGGGSGGGGSGGGGSEVQLVESGGGLVQAGGSLRLSCAASGRTFIGYTMGWF


MMPcs1-




RQAPGKEREFVASIIWRGDRTRYADSVKGRFTISGDNAKNTVYLRMNSMKPE


3×(G4S)(SEQ




DTAVYYCAARSGSHFPSFDYWGQGTQVSVSSGGGGSGGGGSGPLGVRGGGGS


ID NO:




GGGGSGGGGSEVQLVESGGGLVQPGGSLRLSCEVSGRILYIMGWFRQVPGKD


1142)-




REFVAGILWSSTKYGDFVNGRFTISRDNVKNTVSLQMNSLKPEDTAVYYCAA


B2C10




AIRRGQDIPTISSEYNYWGQGTQVTVSS








1094
Construct
MGWSCIILFLVATATGVHSEPKSSDKTHTCPPCPAPELLGGPSVFLFPPKPK


Fc hole-



FFFFFFF
DTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTY


B2C10-




RVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPRVYTLP


2×(G4S)(SEQ




PSRDELTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLVSDGSF


ID NO:




TLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGGGGGSGGGGS


1142)-




GGGGGGGGSGGGGSEVQLVESGGGLVQPGGSLRLSCEVSGRILYIMGWFRQ


MMPcs1-




VPGKDREFVAGILWSSTKYGDFVNGRFTISRDNVKNTVSLQMNSLKPEDTAV


3×(G4S)(SEQ




YYCAAAIRRGQDIPTISSEYNYWGQGTQVTVSSGGGGSGGGGSGPLGVRGGG


ID NO:




GSGGGGSGGGGSEVQLVESGGGLVQAGGSLRLSCAASGRTFIGYTMGWFRQA


1142)-




PGKEREFVASIIWRGDRTRYADSVKGRFTISGDNAKNTVYLRMNSMKPEDTA


B2D2b




VYYCAARSGSHFPSFDYWGQGTQVSVSS








1095
Construct
MGWSCIILFLVATATGVHSEPKSSDKTHTCPPCPAPELLGGPSVFLFPPKPK


Fc hole-



GGGGGGG
DTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTY


B2G1-




RVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPRVYTLP


2×(G4S)(SEQ




PSRDELTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLVSDGSF


ID NO:




TLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGGGGGSGGGGS


1142)-




GGGGSGGGGGGGGSQVQLVESGGGLVQAGGSLRLSCAASGRTFSNYFAGWF


MMPcs1-




RQPPGEEREFVASISWGGDRMFYTDAVKGRFTISRDNAKNTVDLQMNSLKPE


3×(G4S)(SEQ




DTAVYYCSADRFATALYNGNGNYWGQGTQVTVSSGGGGSGGGGSGPLGVRGG


ID NO:




GGSGGGGGGGGSEVQLVESGGGLVQAGGSLRLSCAASGRTFIGYTMGWFRQ


1142)-




APGKEREFVASIIWRGDRTRYADSVKGRFTISGDNAKNTVYLRMNSMKPEDT


B2D2b




AVYYCAARSGSHFPSFDYWGQGTQVSVSS








1096
Construct
MGWSCIILFLVATATGVHSEPKSSDKTHTCPPCPAPELLGGPSVFLFPPKPK


Fc hole-



HHHHHHH
DTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTY


B2D2b-




RVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPRVYTLP


2×(G4S)




PSRDELTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLVSDGSF


(SEQ




TLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGGGGGSGGGGS


ID NO:




GGGGSGGGGSGGGGSEVQLVESGGGLVQAGGSLRLSCAASGRTFIGYTMGWF


1142)-




RQAPGKEREFVASIIWRGDRTRYADSVKGRFTISGDNAKNTVYLRMNSMKPE


MMPcs1-




DTAVYYCAARSGSHFPSFDYWGQGTQVSVSSGGGGSGGGGSGPLGVRGGGGS


3×(G4S)(SEQ




GGGGSGGGGSQVQLVESGGGLVQAGGSLRLSCAASGRTFSNYFAGWFRQPPG


ID NO:




EEREFVASISWGGDRMFYTDAVKGRFTISRDNAKNTVDLQMNSLKPEDTAVY


1142)-B2G1




YCSADRFATALYNGNGNYWGQGTQVTVSS








1097
Construct
MGWSCIILFLVATATGVHSEPKSSDKTHTCPPCPAPELLGGPSVFLFPPKPK


Fc knob-




DTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTY


MMPcs1-




RVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLP


huIL2




PSRDELTENQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSF


(C125S)-




FLYSWLTVDKSRWQQGNVFSCSVMHEALHNRFTQKSLSLSPGGGGGSGGGGS


VRIQRKKE




GGGGGPLGVRGGGGGSAPTSSSTKKTQLQLEHLLLDLQMILNGINNYKNPKL


KMKET




TRMLTFKFYMPKKATELKHLQCLEEELKPLEEVLNLAQSKNFHLRPRDLISN


(SEQ ID




INVIVLELKGSETTFMCEYADETATIVEFLNRWITFSQSIISTLTGSGGVRI


NO: 1139)




QRKKEKMKET








1098
Construct
MGWSCIILFLVATATGVHSEPKSSDKTHTCPPCPAPELLGGPSVFLFPPKPK


Fc knob-



JJJJJJJ
DTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTY


MMPcs1-




RVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLP


huIL2




PSRDELTENQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSF


(C125S)-




FLYSWLTVDKSRWQQGNVFSCSVMHEALHNRFTQKSLSLSPGGGGGSGGGGS


KLWVLPK




GGGGGPLGVRGGGGGSAPTSSSTKKTQLQLEHLLLDLQMILNGINNYKNPKL


(SEQ ID




TRMLTFKFYMPKKATELKHLQCLEEELKPLEEVLNLAQSKNFHLRPRDLISN


NO: 200)




INVIVLELKGSETTFMCEYADETATIVEFLNRWITFSQSIISTLTGSGGKLW







VLPK








1099
Construct
MGWSCIILFLVATATGVHSEPKSSDKTHTCPPCPAPELLGGPSVFLFPPKPK


Fc knob-



KKKKKKK
DTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTY


MMPcs1-




RVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLP


huIL2




PSRDELTENQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSF


(C125S)-




FLYSWLTVDKSRWQQGNVFSCSVMHEALHNRFTQKSLSLSPGGGGGSGGGGS


LRELHLDN




GGGGGPLGVRGGGGGSAPTSSSTKKTQLQLEHLLLDLQMILNGINNYKNPKL


N (SEQ ID




TRMLTFKFYMPKKATELKHLQCLEEELKPLEEVLNLAQSKNFHLRPRDLISN


NO: 188)




INVIVLELKGSETTFMCEYADETATIVEFLNRWITFSQSIISTLTGSGGLRE







LHLDNN








1100
Construct
EPKSSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVS


Fc knob-



LLLLLLL
HEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEY


MMPcs1-




KCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSRDELTENQVSLTCLVKG


huIL2




FYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSWLTVDKSRWQQGNVF


(C125S)-




SCSVMHEALHNRFTQKSLSLSPGGGGGSGGGGSGGGGGPLGVRGGGGGSAPT


GWSHW




SSSTKKTQLQLEHLLLDLQMILNGINNYKNPKLTRMLTFKFYMPKKATELKH


(SEQ ID




LQCLEEELKPLEEVLNLAQSKNFHLRPRDLISNINVIVLELKGSETTFMCEY


NO: 1167)




ADETATIVEFLNRWITFSQSIISTLTGSGGGGWSHW








1101
Construct
EPKSSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVS


Fc knob-



MMMMMM
HEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEY


MMPcs1-



M
KCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSRDELTENQVSLTCLVKG


huIL2




FYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSWLTVDKSRWQQGNVF


(C125S)




SCSVMHEALHNRFTQKSLSLSPGGGGGSGGGGSGGGGGPLGVRGGGGGSAPT







SSSTKKTQLQLEHLLLDLQMILNGINNYKNPKLTRMLTFKFYMPKKATELKH







LQCLEEELKPLEEVLNLAQSKNFHLRPRDLISNINVIVLELKGSETTFMCEY







ADETATIVEFLNRWITFSQSIISTLT








1102
Construct
MGWSCIILFLVATATGVHSEPKSSDKTHTCPPCPAPELLGGPSVFLFPPKPK


Fc knob-



NNNNNNN
DTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTY


MMPcs1-




RVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLP


huIL2




PSRDELTENQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSF


(C125S)




FLYSWLTVDKSRWQQGNVFSCSVMHEALHNRFTQKSLSLSPGGGGGSGGGGS







GPLGVRGGGGGSGGGGAPTSSSTKKTQLQLEHLLLDLQMILNGINNYKNPKL







TRMLTFKFYMPKKATELKHLQCLEEELKPLEEVLNLAQSKNFHLRPRDLISN







INVIVLELKGSETTFMCEYADETATIVEFLNRWITFSQSIISTLT








1103
Construct
MGWSCIILFLVATATGVHSEPKSSDKTHTCPPCPAPELLGGPSVFLFPPKPK


Fc knob-



0000000
DTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTY


MMPcs1-




RVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLP


huIL2




PSRDELTENQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSF


(C125S)-




FLYSWLTVDKSRWQQGNVFSCSVMHEALHNRFTQKSLSLSPGGGGGSGGGGS


KLWVLPK




GPLGVRGGGGGSGGGGAPTSSSTKKTQLQLEHLLLDLQMILNGINNYKNPKL


(SEQ ID




TRMLTFKFYMPKKATELKHLQCLEEELKPLEEVLNLAQSKNFHLRPRDLISN


NO: 200)




INVIVLELKGSETTFMCEYADETATIVEFLNRWITFSQSIISTLTGSGGKLW







VLPK








1104
Construct
MGWSCIILFLVATATGVHSEPKSSDKTHTCPPCPAPELLGGPSVFLFPPKPK


Fc knob-



PPPPPPP
DTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTY


MMPcs1-




RVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLP


huIL2




PSRDELTENQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSF


(C125S)-




FLYSWLTVDKSRWQQGNVFSCSVMHEALHNRFTQKSLSLSPGGGGGSGGGGS


LRELHLDN




GPLGVRGGGGGSGGGGAPTSSSTKKTQLQLEHLLLDLQMILNGINNYKNPKL


N (SEQ ID




TRMLTFKFYMPKKATELKHLQCLEEELKPLEEVLNLAQSKNFHLRPRDLISN


NO: 188)




INVIVLELKGSETTFMCEYADETATIVEFLNRWITFSQSIISTLTGSGGLRE







LHLDNN








1105
Construct
MGWSCIILFLVATATGVHSVRIQRKKEKMKETGGGGSEPKSSDKTHTCPPCP


VRIQRKKE



QQQQQQQ
APELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGV


KMKET




EVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEK


(SEQ ID




TISKAKGQPREPQVYTLPPSRDELTENQVSLTCLVKGFYPSDIAVEWESNGQ


NO: 1139)-




PENNYKTTPPVLDSDGSFFLYSWLTVDKSRWQQGNVFSCSVMHEALHNRFTQ


Fc knob-




KSLSLSPGGGGSGGGGGPLGVRGGGGGSAPTSSSTKKTQLQLEHLLLDLQMI


MMPcs1-




LNGINNYKNPKLTRMLTFKFYMPKKATELKHLQCLEEELKPLEEVLNLAQSK


huIL2




NFHLRPRDLISNINVIVLELKGSETTFMCEYADETATIVEFLNRWITFSQSI


(C125S)




ISTLT








1106
Construct
MGWSCIILFLVATATGVHSLRELHLDNNGGGGSEPKSSDKTHTCPPCPAPEL


LRELHLDN



RRRRRRR
LGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHN


N (SEQ ID




AKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISK


NO: 188)-Fc




AKGQPREPQVYTLPPSRDELTENQVSLTCLVKGFYPSDIAVEWESNGQPENN


knob-




YKTTPPVLDSDGSFFLYSWLTVDKSRWQQGNVFSCSVMHEALHNRFTQKSLS


MMPcs1-




LSPGGGGGGGGGPLGVRGGGGGSAPTSSSTKKTQLQLEHLLLDLQMILNGI


huIL2




NNYKNPKLTRMLTFKFYMPKKATELKHLQCLEEELKPLEEVLNLAQSKNFHL


(C125S)




RPRDLISNINVIVLELKGSETTFMCEYADETATIVEFLNRWITFSQSIISTL







T








1107
Construct
MGWSCIILFLVATATGVHSKLWVLPKGGGGSEPKSSDKTHTCPPCPAPELLG


KLWVLPK



SSSSSSS
GPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAK


(SEQ ID




TKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAK


NO: 200)-Fc




GQPREPQVYTLPPSRDELTENQVSLTCLVKGFYPSDIAVEWESNGQPENNYK


knob-




TTPPVLDSDGSFFLYSWLTVDKSRWQQGNVFSCSVMHEALHNRFTQKSLSLS


MMPcs1-




PGGGGSGGGGGPLGVRGGGGGSAPTSSSTKKTQLQLEHLLLDLQMILNGINN


huIL2




YKNPKLTRMLTFKFYMPKKATELKHLQCLEEELKPLEEVLNLAQSKNFHLRP


(C125S)




RDLISNINVIVLELKGSETTFMCEYADETATIVEFLNRWITFSQSIISTLT








1108
Construct
MGWSCIILFLVATATGVHSGGWSHWGGGGSEPKSSDKTHTCPPCPAPELLGG


fibronectin-



TTTTTTT
PSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKT


Fc knob-




KPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKG


MMPcs1-




QPREPQVYTLPPSRDELTENQVSLTCLVKGFYPSDIAVEWESNGQPENNYKT


huIL2




TPPVLDSDGSFFLYSWLTVDKSRWQQGNVFSCSVMHEALHNRFTQKSLSLSP


(C125S)




GGGGSGGGGGPLGVRGGGGGSAPTSSSTKKTQLQLEHLLLDLQMILNGINNY







KNPKLTRMLTFKFYMPKKATELKHLQCLEEELKPLEEVLNLAQSKNFHLRPR







DLISNINVIVLELKGSETTFMCEYADETATIVEFLNRWITFSQSIISTLT








1109
Construct
EPKSSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVS


Fc knob-



UUUUUUU
HEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEY


MMPscr-




KCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSRDELTENQVSLTCLVKG


huIL2




FYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSWLTVDKSRWQQGNVF


(C125S)




SCSVMHEALHNRFTQKSLSLSPGGGGSGGGGGVRLGPGGGGGSAPTSSSTKK







TQLQLEHLLLDLQMILNGINNYKNPKLTRMLTFKFYMPKKATELKHLQCLEE







ELKPLEEVLNLAQSKNFHLRPRDLISNINVIVLELKGSETTFMCEYADETAT







IVEFLNRWITFSQSIISTLT








1110
Construct
EPKSSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVS


Fc knob-



VVvvvVV
HEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEY


MMPscr-




KCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSRDELTENQVSLTCLVKG


huIL2




FYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSWLTVDKSRWQQGNVF


(C125S)-




SCSVMHEALHNRFTQKSLSLSPGGGGGSGGGGSGGGGGVRLGPGGGGGSAPT


VRIQRKKE




SSSTKKTQLQLEHLLLDLQMILNGINNYKNPKLTRMLTFKFYMPKKATELKH


KMKET




LQCLEEELKPLEEVLNLAQSKNFHLRPRDLISNINVIVLELKGSETTFMCEY


(SEQ ID




ADETATIVEFLNRWITFSQSIISTLTGSGGVRIQRKKEKMKET


NO: 1139)





1111
Construct
EPKSSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVS


Fc knob-



WWWWWW
HEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEY


MMPscr-



W
KCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSRDELTENQVSLTCLVKG


huIL2




FYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSWLTVDKSRWQQGNVF


(C125S)-




SCSVMHEALHNRFTQKSLSLSPGGGGGSGGGGSGGGGGVRLGPGGGGGSAPT


KLWVLPK




SSSTKKTQLQLEHLLLDLQMILNGINNYKNPKLTRMLTFKFYMPKKATELKH


(SEQ ID




LQCLEEELKPLEEVLNLAQSKNFHLRPRDLISNINVIVLELKGSETTFMCEY


NO: 200)




ADETATIVEFLNRWITFSQSIISTLTGSGGKLWVLPK








1112
Construct
EPKSSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVS


Fc knob



XXXXXXX
HEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEY


MMPscr-




KCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSRDELTENQVSLTCLVKG


huIL2




FYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSWLTVDKSRWQQGNVF


(C125S)-




SCSVMHEALHNRFTQKSLSLSPGGGGGSGGGGSGGGGGVRLGPGGGGGSAPT


LRELHLDN




SSSTKKTQLQLEHLLLDLQMILNGINNYKNPKLTRMLTFKFYMPKKATELKH


N (SEQ ID




LQCLEEELKPLEEVLNLAQSKNFHLRPRDLISNINVIVLELKGSETTFMCEY


NO: 188)




ADETATIVEFLNRWITFSQSIISTLTGSGGLRELHLDNN








1113
Construct
EPKSSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVS


Fc knob-




HEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEY


MMPscr-




KCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSRDELTENQVSLTCLVKG


huIL2




FYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSWLTVDKSRWQQGNVF


(C125S)-




SCSVMHEALHNRFTQKSLSLSPGGGGGSGGGGSGGGGGVRLGPGGGGGSAPT


GWSHW




SSSTKKTQLQLEHLLLDLQMILNGINNYKNPKLTRMLTFKFYMPKKATELKH


(SEQ ID




LQCLEEELKPLEEVLNLAQSKNFHLRPRDLISNINVIVLELKGSETTFMCEY


NO: 1167)




ADETATIVEFLNRWITFSQSIISTLTGSGGGGWSHW








1114
Construct
EPKSSDKTHTCPPCPAPEAAGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVS


Fc hole-



ZZZZZZZ
HEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEY


B2G1




KCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLSCAVKG







FYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLVSKLTVDKSRWQQGNVF







SCSVMHEALHNHYTQKSLSLSPGGGGGSGGGGSGGGGSGGGGSGGGGSQVQL







VESGGGLVQAGGSLRLSCAASGRTFSNYFAGWFRQPPGEEREFVASISWGGD







RMFYTDAVKGRFTISRDNAKNTVDLQMNSLKPEDTAVYYCSADRFATALYNG







NGNYWGQGTQVTVSS








1115
Construct
EPKSSDKTHTCPPCPAPEAAGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVS


Fc hole-



AAAAAAAA
HEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEY


B2G1-




KCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLSCAVKG


2×(G4S)(SEQ




FYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLVSKLTVDKSRWQQGNVF


ID NO:




SCSVMHEALHNHYTQKSLSLSPGGGGGSGGGGSGGGGSGGGGSGGGGSQVQL


1142)-




VESGGGLVQAGGSLRLSCAASGRTFSNYFAGWFRQPPGEEREFVASISWGGD


MMPcs1-




RMFYTDAVKGRFTISRDNAKNTVDLQMNSLKPEDTAVYYCSADRFATALYNG


3×(G4S)(SEQ




NGNYWGQGTQVTVSSGGGGSGGGGSGPLGVRGGGGSGGGGSGGGGSEVQLVE


ID NO:




SGGGLVQAGGSLRLSCAASGRTFIGYTMGWFRQAPGKEREFVASIIWRGDRT


1142)-




RYADSVKGRFTISGDNAKNTVYLRMNSMKPEDTAVYYCAARSGSHFPSFDYW


B2D2b




GQGTQVSVSS








1116
Construct
EPKSSDKTHTCPPCPAPEAAGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVS


Fc knob-



BBBBBBBB
HEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEY


MMPcs1-




KCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLWCLVKG


huIL2




FYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVF


(C125S)




SCSVMHEALHNRFTQKSLSLSPGGGGSGGGGGPLGVRGGGGGSAPTSSSTKK







TQLQLEHLLLDLQMILNGINNYKNPKLTRMLTFKFYMPKKATELKHLQCLEE







ELKPLEEVLNLAQSKNFHLRPRDLISNINVIVLELKGSETTFMCEYADETAT







IVEFLNRWITFSQSIISTLT








1117
Construct
EPKSSDKTHTCPPCPAPEAAGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVS


Fc knob



CCCCCCCC
HEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEY


MMPcs1-




KCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLWCLVKG


huIL2




FYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVF


(C125S)-




SCSVMHEALHNRFTQKSLSLSPGGGGGSGGGGSGGGGGPLGVRGGGGGSAPT


LRELHLDN




SSSTKKTQLQLEHLLLDLQMILNGINNYKNPKLTRMLTFKFYMPKKATELKH


N (SEQ ID




LQCLEEELKPLEEVLNLAQSKNFHLRPRDLISNINVIVLELKGSETTFMCEY


NO: 188)




ADETATIVEFLNRWITFSQSIISTLTGSGGLRELHLDNN








1118
Construct
EPKSSDKTHTCPPCPAPEAAGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVS


Fc knob-



DDDDDDDD
HEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEY


MMPcs1-




KCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLWCLVKG


huIL2




FYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVF


(C125S)-




SCSVMHEALHNRFTQKSLSLSPGGGGGSGGGGSGGGGGPLGVRGGGGGSAPT


GWSHW




SSSTKKTQLQLEHLLLDLQMILNGINNYKNPKLTRMLTFKFYMPKKATELKH


(SEQ ID




LQCLEEELKPLEEVLNLAQSKNFHLRPRDLISNINVIVLELKGSETTFMCEY


NO: 1167)




ADETATIVEFLNRWITFSQSIISTLTGSGGGGWSHW








1119
Construct
EPKSSDKTHTCPPCPAPEAAGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVS


Fc knob-



EEEEEEEE
HEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEY


MMPcs1-




KCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLWCLVKG


huIL2




FYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVF


(C125S)-




SCSVMHEALHNRFTQKSLSLSPGGGGGSGGGGSGGGGGPLGVRGGGGGSAPT


VRIQRKKE




SSSTKKTQLQLEHLLLDLQMILNGINNYKNPKLTRMLTFKFYMPKKATELKH


KMKET




LQCLEEELKPLEEVLNLAQSKNFHLRPRDLISNINVIVLELKGSETTFMCEY


(SEQ ID




ADETATIVEFLNRWITFSQSIISTLTGSGGVRIQRKKEKMKET


NO: 1139)





1120
Construct
ITCPPPMSVEHADIWVKSYSLYSRERYICNSGFKRKAGTSSLTECVLNKATN


hu IL15Ra



TTTT
VAHWTTPSLKCIRDPALVHQRPAPPSGGSGGGGSGGGSGGGGSLQNWVNVIS


(1-77)-




DLKKIEDLIQSMHIDATLYTESDVHPSCKVTAMKCFLLELQVISLESGDASI


linker-hu




HDTVENLIILANNSLSSNGNVTESGCKECEELEEKNIKEFLQSFVHIVQMFI


IL15-




NTSSGGGGPLGVRGGGGGSGGGGSGGGGSGGGGSAVNGTSQFTCFYNSRANI


(SG3)(SEQ




SCVWSQDGALQDTSCQVHAWPDRRRWNQTCELLPVSQASWACNLILGAPDSQ


ID NO:




KLTTVDIVTLRVLCREGVRWRVMAIQDFKPFENLRLMAPISLQVVHVETHRC


1158)-




NISWEISQASHYFERHLEFEARTLSPGHTWEEAPLLTLKQKQEWICLETLTP


GPLGVRG




DTQYEFQVRVKPLQGEFTTWSPWSQPLAFRTKPAALGKDTGGGGSGEPKSSD


(SEQ ID




KTHTCPPCPAPEAAGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEV


NO: 80)-




KFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSN


4×(G4S)(SEQ




KALPAPIEKTISKAKGQPREPQVYTLPPSRDELTKNQVSLTCLVKGFYPSDI


ID NO:




AVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMH


1142)-IL2Rb




EALHNHYTQKSLSLSPG


(1-214)-







(G4SG)







(SEQ ID







NO: 1162)-







Hu IgG1 Fc





1121
Construct
ITCPPPMSVEHADIWVKSYSLYSRERYICNSGFKRKAGTSSLTECVLNKATN


hu IL 15Ra



QQQQ
VAHWTTPSLKCIRDPALVHQRPAPPSGGSGGGGSGGGSGGGGSLQNWVNVIS


(1-77)-




DLKKIEDLIQSMHIDATLYTESDVHPSCKVTAMKCFLLELQVISLESGDASI


linker-hu




HDTVENLIILANNSLSSNGNVTESGCKECEELEEKNIKEFLQSFVHIVQMFI


IL15-(SG3)




NTSSGGGGPLGVRGGGGSGGWSHWGGGGSGGGGSAVNGTSQFTCFYNSRANI


(SEQ ID




SCVWSQDGALQDTSCQVHAWPDRRRWNQTCELLPVSQASWACNLILGAPDSQ


NO: 1158)-




KLTTVDIVTLRVLCREGVRWRVMAIQDFKPFENLRLMAPISLQVVHVETHRC


GPLGVRG




NISWEISQASHYFERHLEFEARTLSPGHTWEEAPLLTLKQKQEWICLETLTP


(SEQ ID




DTQYEFQVRVKPLQGEFTTWSPWSQPLAFRTKPAALGKDTGGGGSGEPKSSD


NO: 80)-




KTHTCPPCPAPEAAGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEV


(G3S)-




KFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSN


GGWSHW




KALPAPIEKTISKAKGQPREPQVYTLPPSRDELTKNQVSLTCLVKGFYPSDI


(SEQ ID




AVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMH


NO: 653)-




EALHNHYTQKSLSLSPG


2×(G4S)(SEQ







ID NO:







1142)-IL2Rb







(1-214)-







(G4SG)







(SEQ ID







NO: 1162)-







Hu IgG1 Fc





1122
Construct
MGWSCIILFLVATATGVHSITCPPPMSVEHADIWVKSYSLYSRERYICNSGF


hu IL15Ra



UUUU
KRKAGTSSLTECVLNKATNVAHWTTPSLKCIRDPALVHQRPAPPSGGSGGGG


(1-77)-




SGGGSGGGGSLQNWVNVISDLKKIEDLIQSMHIDATLYTESDVHPSCKVTAM


linker-hu




KCFLLELQVISLESGDASIHDTVENLIILANNSLSSNGNVTESGCKECEELE


IL15-(SG3)




EKNIKEFLQSFVHIVQMFINTSSGGGGVRLGPGGGGSGGWSHWGGGGSGGGG


(SEQ ID




SAVNGTSQFTCFYNSRANISCVWSQDGALQDTSCQVHAWPDRRRWNQTCELL


NO: 1158)-




PVSQASWACNLILGAPDSQKLTTVDIVTLRVLCREGVRWRVMAIQDFKPFEN


MMPscr-




LRLMAPISLQVVHVETHRCNISWEISQASHYFERHLEFEARTLSPGHTWEEA


(G3S)-




PLLTLKQKQEWICLETLTPDTQYEFQVRVKPLQGEFTTWSPWSQPLAFRTKP


GGWSHW




AALGKDTGGGGSGEPKSSDKTHTCPPCPAPEAAGGPSVFLFPPKPKDTLMIS


(SEQ ID




RTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVL


NO: 653)-




TVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSRDEL


2×(G4S)(SEQ




TKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKL


ID NO:




TVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPG


1142)-IL2Rb







(1-214)-







(G4SG)







(SEQ ID







NO: 1162)-







Hu IgG1 Fc





1123
Construct
MGWSCIILFLVATATGVHSITCPPPMSVEHADIWVKSYSLYSRERYICNSGF


hu IL 15Ra



RRRR
KRKAGTSSLTECVLNKATNVAHWTTPSLKCIRDPALVHQRPAPPSGGSGGGG


(1-77)-




SGGGSGGGGSLQNWVNVISDLKKIEDLIQSMHIDATLYTESDVHPSCKVTAM


linker-hu




KCFLLELQVISLESGDASIHDTVENLIILANNSLSSNGNVTESGCKECEELE


IL15-(SG3)




EKNIKEFLQSFVHIVQMFINTSSGGGGPLGVRGGGSLRELHLDNNGGGGSGG


(SEQ ID




GGSAVNGTSQFTCFYNSRANISCVWSQDGALQDTSCQVHAWPDRRRWNQTCE


NO: 1158)-




LLPVSQASWACNLILGAPDSQKLTTVDIVTLRVLCREGVRWRVMAIQDFKPF


GPLGVRG




ENLRLMAPISLQVVHVETHRCNISWEISQASHYFERHLEFEARTLSPGHTWE


(SEQ ID




EAPLLTLKQKQEWICLETLTPDTQYEFQVRVKPLQGEFTTWSPWSQPLAFRT


NO: 80)-




KPAALGKDTGGGGSGEPKSSDKTHTCPPCPAPEAAGGPSVFLFPPKPKDTLM


(G3S)-




ISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVS


LRELHLDN




VLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSRD


N (SEQ ID




ELTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYS


NO: 188)-




KLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPG


2×(G4S)(SEQ







ID NO:







1142)-IL2Rb







(1-214)-







(G4SG)







(SEQ ID







NO: 1162)-







Hu IgG1 Fc





1124
Construct
ITCPPPMSVEHADIWVKSYSLYSRERYICNSGFKRKAGTSSLTECVLNKATN


hu IL 15Ra



VVVV
VAHWTTPSLKCIRDPALVHQRPAPPSGGSGGGGSGGGSGGGGSLQNWVNVIS


(1-77)-




DLKKIEDLIQSMHIDATLYTESDVHPSCKVTAMKCFLLELQVISLESGDASI


linker-hu




HDTVENLIILANNSLSSNGNVTESGCKECEELEEKNIKEFLQSFVHIVQMFI


IL15-(SG3)




NTSSGGGGVRLGPGGGSLRELHLDNNGGGGSGGGGSAVNGTSQFTCFYNSRA


(SEQ ID




NISCVWSQDGALQDTSCQVHAWPDRRRWNQTCELLPVSQASWACNLILGAPD


NO: 1158)-




SQKLTTVDIVTLRVLCREGVRWRVMAIQDFKPFENLRLMAPISLQVVHVETH


MMPscr-




RCNISWEISQASHYFERHLEFEARTLSPGHTWEEAPLLTLKQKQEWICLETL


(G3S)-




TPDTQYEFQVRVKPLQGEFTTWSPWSQPLAFRTKPAALGKDTGGGGSGEPKS


LRELHLDN




SDKTHTCPPCPAPEAAGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDP


N (SEQ ID




EVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKV


NO: 188)-




SNKALPAPIEKTISKAKGQPREPQVYTLPPSRDELTKNQVSLTCLVKGFYPS


2×(G4S)(SEQ




DIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSV


ID NO:




MHEALHNHYTQKSLSLSPG


1142)-IL2Rb







(1-214)-







(G4SG)







(SEQ ID







NO: 1162)-







Hu IgG1 Fc





1125
Construct
EPKSSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVS


Fc hole-



WWWW
HEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEY


5×(G4S)(SEQ




KCKVSNKALPAPIEKTISKAKGQPREPRVYTLPPSRDELTKNQVSLTCLVKG


ID NO:




FYPSDIAVEWESNGQPENNYKTTPPVLVSDGSFTLYSKLTVDKSRWQQGNVF


1142)-




SCSVMHEALHNHYTQKSLSLSPGGGGGSGGGGSGGGGSGGGGSGGGGSAVNG


IL2Rb (1-




TSQFTCFYNSRANISCVWSQDGALQDTSCQVHAWPDRRRWNQTCELLPVSQA


213)




SWACNLILGAPDSQKLTTVDIVTLRVLCREGVRWRVMAIQDFKPFENLRLMA







PISLQVVHVETHRCNISWEISQASHYFERHLEFEARTLSPGHTWEEAPLLTL







KQKQEWICLETLTPDTQYEFQVRVKPLQGEFTTWSPWSQPLAFRTKPAALGK







D








1126
Construct
EPKSSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVS


Fc hole-



XXXX
HEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEY


3×(G4S)




KCKVSNKALPAPIEKTISKAKGQPREPRVYTLPPSRDELTKNQVSLTCLVKG


(SEQ




FYPSDIAVEWESNGQPENNYKTTPPVLVSDGSFTLYSKLTVDKSRWQQGNVF


ID NO:




SCSVMHEALHNHYTQKSLSLSPGGGGGSGGGGSGGGGSAVNGTSQFTCFYNS


1142)-




RANISCVWSQDGALQDTSCQVHAWPDRRRWNQTCELLPVSQASWACNLILGA


IL2Rb (1-




PDSQKLTTVDIVTLRVLCREGVRWRVMAIQDFKPFENLRLMAPISLQVVHVE


213)




THRCNISWEISQASHYFERHLEFEARTLSPGHTWEEAPLLTLKQKQEWICLE







TLTPDTQYEFQVRVKPLQGEFTTWSPWSQPLAFRTKPAALGKD








1127
Construct
EPKSSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVS


Fc knob-



YYYY
HEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEY


MMPcs1-hu




KCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSRDELTENQVSLTCLVKG


IL15Ra (1-




FYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSWLTVDKSRWQQGNVF


77)-linker-




SCSVMHEALHNRFTQKSLSLSPGGGGSGGGGGPLGVRGGGGGSITCPPPMSV


hu IL15




EHADIWVKSYSLYSRERYICNSGFKRKAGTSSLTECVLNKATNVAHWTTPSL







KCIRDPALVHQRPAPPSGGSGGGGSGGGSGGGGSLQNWVNVISDLKKIEDLI







QSMHIDATLYTESDVHPSCKVTAMKCFLLELQVISLESGDASIHDTVENLII







LANNSLSSNGNVTESGCKECEELEEKNIKEFLQSFVHIVQMFINTS








1128
Construct
ITCPPPMSVEHADIWVKSYSLYSRERYICNSGFKRKAGTSSLTECVLNKATN


hu IL 15Ra



ZZZZ
VAHWTTPSLKCIRDPALVHQRPAPPSGGSGGGGSGGGSGGGGSLQNWVNVIS


(1-77)-




DLKKIEDLIQSMHIDATLYTESDVHPSCKVTAMKCFLLELQVISLESGDASI


linker-hu




HDTVENLIILANNSLSSNGNVTESGCKECEELEEKNIKEFLQSFVHIVQMFI


IL15-(SG3)




NTSSGGGGPLGVRGGGGGSGGGGSEPKSSDKTHTCPPCPAPELLGGPSVFLF


(SEQ ID




PPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQ


NO: 1158)-




YNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQ


GPLGVRG




VYTLPPSRDELTENQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLD


(SEQ ID




SDGSFFLYSWLTVDKSRWQQGNVFSCSVMHEALHNRFTQKSLSLSPG


NO: 80)-







2×(G4S)(SEQ







ID NO:







1142)-hIgG1







Fc knob





1129
Construct
EPKSSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVS


Fc knob-



AAAAA
HEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEY


MMPcs1-hu




KCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSRDELTENQVSLTCLVKG


IL15Ra (1-




FYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSWLTVDKSRWQQGNVF


77)-linker-




SCSVMHEALHNRFTQKSLSLSPGGGGSGGGGGPLGVRGGGGGSITCPPPMSV


hu IL 15-




EHADIWVKSYSLYSRERYICNSGFKRKAGTSSLTECVLNKATNVAHWTTPSL


KLWVLPK




KCIRDPALVHQRPAPPSGGSGGGGSGGGSGGGGSLQNWVNVISDLKKIEDLI


(SEQ ID




QSMHIDATLYTESDVHPSCKVTAMKCFLLELQVISLESGDASIHDTVENLII


NO: 200)




LANNSLSSNGNVTESGCKECEELEEKNIKEFLQSFVHIVQMFINTSGSGGKL







WVLPK








1130
Construct
EPKSSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVS


Fc knob-



BBBBB
HEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEY


MMPscr-hu




KCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSRDELTENQVSLTCLVKG


IL15Ra (1-




FYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSWLTVDKSRWQQGNVF


77)-linker-




SCSVMHEALHNRFTQKSLSLSPGGGGSGGGGGVRLGPGGGGGSITCPPPMSV


hu IL15-




EHADIWVKSYSLYSRERYICNSGFKRKAGTSSLTECVLNKATNVAHWTTPSL


KLWVLPK




KCIRDPALVHQRPAPPSGGSGGGGSGGGSGGGGSLQNWVNVISDLKKIEDLI


(SEQ ID




QSMHIDATLYTESDVHPSCKVTAMKCFLLELQVISLESGDASIHDTVENLII


NO: 200)




LANNSLSSNGNVTESGCKECEELEEKNIKEFLQSFVHIVQMFINTSGSGGKL







WVLPK








1131
Construct
EPKSSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVS


Fc knob-



CCCCC
HEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEY


MMPcs1-hu




KCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSRDELTENQVSLTCLVKG


IL15Ra (1-




FYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSWLTVDKSRWQQGNVF


77)-linker-




SCSVMHEALHNRFTQKSLSLSPGGGGGGGGGPLGVRGGGGGSITCPPPMSV


hu IL15-




EHADIWVKSYSLYSRERYICNSGFKRKAGTSSLTECVLNKATNVAHWTTPSL


LRELHLDN




KCIRDPALVHQRPAPPSGGSGGGGSGGGSGGGGSLQNWVNVISDLKKIEDLI


N (SEQ ID




QSMHIDATLYTESDVHPSCKVTAMKCFLLELQVISLESGDASIHDTVENLII


NO: 188)




LANNSLSSNGNVTESGCKECEELEEKNIKEFLQSFVHIVQMFINTSGSGGLR







ELHLDNN








1132
Construct
EPKSSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVS


Fc knob-



DDDDD
HEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEY


MMPscr-hu




KCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSRDELTENQVSLTCLVKG


IL15Ra (1-




FYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSWLTVDKSRWQQGNVF


77)-linker-




SCSVMHEALHNRFTQKSLSLSPGGGGSGGGGGVRLGPGGGGGSITCPPPMSV


hu IL15-




EHADIWVKSYSLYSRERYICNSGFKRKAGTSSLTECVLNKATNVAHWTTPSL


LRELHLDN




KCIRDPALVHQRPAPPSGGSGGGGSGGGSGGGGSLQNWVNVISDLKKIEDLI


N (SEQ ID




QSMHIDATLYTESDVHPSCKVTAMKCFLLELQVISLESGDASIHDTVENLII


NO: 188)




LANNSLSSNGNVTESGCKECEELEEKNIKEFLQSFVHIVQMFINTSGSGGLR







ELHLDNN








1133
Construct
ITCPPPMSVEHADIWVKSYSLYSRERYICNSGFKRKAGTSSLTECVLNKATN


hu IL15Ra



EEEEE
VAHWTTPSLKCIRDPALVHQRPAPPSGGSGGGGSGGGSGGGGSLQNWVNVIS


(1-77)-




DLKKIEDLIQSMHIDATLYTESDVHPSCKVTAMKCFLLELQVISLESGDASI


linker-hu




HDTVENLIILANNSLSSNGNVTESGCKECEELEEKNIKEFLQSFVHIVQMFI


IL15-




NTSGGGKLWVLPKGGGGPLGVRGGGGGSGGGGSEPKSSDKTHTCPPCPAPEL


KLWVLPK




LGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHN


(SEQ ID




AKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISK


NO: 200)-




AKGQPREPQVYTLPPSRDELTENQVSLTCLVKGFYPSDIAVEWESNGQPENN


MMPcs1-Fc




YKTTPPVLDSDGSFFLYSWLTVDKSRWQQGNVFSCSVMHEALHNRFTQKSLS


knob




LSPG








1134
Construct
ITCPPPMSVEHADIWVKSYSLYSRERYICNSGFKRKAGTSSLTECVLNKATN


hu IL 15Ra



FFFFF
VAHWTTPSLKCIRDPALVHQRPAPPSGGSGGGGSGGGSGGGGSLQNWVNVIS


(1-77)-




DLKKIEDLIQSMHIDATLYTESDVHPSCKVTAMKCFLLELQVISLESGDASI


linker-hu




HDTVENLIILANNSLSSNGNVTESGCKECEELEEKNIKEFLQSFVHIVQMFI


IL15-




NTSGGGKLWVLPKGGGGVRLGPGGGGGSGGGGSEPKSSDKTHTCPPCPAPEL


KLWVLPK




LGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHN


(SEQ ID




AKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISK


NO: 200)-




AKGQPREPQVYTLPPSRDELTENQVSLTCLVKGFYPSDIAVEWESNGQPENN


MMPscr-Fc




YKTTPPVLDSDGSFFLYSWLTVDKSRWQQGNVFSCSVMHEALHNRFTQKSLS


knob




LSPG








1135
Construct
ITCPPPMSVEHADIWVKSYSLYSRERYICNSGFKRKAGTSSLTECVLNKATN


hu IL 15Ra



GGGGG
VAHWTTPSLKCIRDPALVHQRPAPPSGGSGGGGSGGGSGGGGSLQNWVNVIS


(1-77)-




DLKKIEDLIQSMHIDATLYTESDVHPSCKVTAMKCFLLELQVISLESGDASI


linker-hu




HDTVENLIILANNSLSSNGNVTESGCKECEELEEKNIKEFLQSFVHIVQMFI


IL15-




NTSGGGLRELHLDNNGGGGPLGVRGGGGGSGGGGSEPKSSDKTHTCPPCPAP


LRELHLDN




ELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEV


N (SEQ ID




HNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTI


NO: 188)-




SKAKGQPREPQVYTLPPSRDELTENQVSLTCLVKGFYPSDIAVEWESNGQPE


MMPcs1-Fc




NNYKTTPPVLDSDGSFFLYSWLTVDKSRWQQGNVFSCSVMHEALHNRFTQKS


knob




LSLSPG








1136
Construct
ITCPPPMSVEHADIWVKSYSLYSRERYICNSGFKRKAGTSSLTECVLNKATN


hu IL 15Ra



HHHHH
VAHWTTPSLKCIRDPALVHQRPAPPSGGSGGGGSGGGSGGGGSLQNWVNVIS


(1-77)-




DLKKIEDLIQSMHIDATLYTESDVHPSCKVTAMKCFLLELQVISLESGDASI


linker-hu




HDTVENLIILANNSLSSNGNVTESGCKECEELEEKNIKEFLQSFVHIVQMFI


IL15-




NTSGGGLRELHLDNNGGGGPLGVRGGGGGSGGGGSEPKSSDKTHTCPPCPAP


LRELHLDN




ELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEV


N (SEQ ID




HNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTI


NO: 188)-




SKAKGQPREPQVYTLPPSRDELTENQVSLTCLVKGFYPSDIAVEWESNGQPE


MMPscr-Fc




NNYKTTPPVLDSDGSFFLYSWLTVDKSRWQQGNVFSCSVMHEALHNRFTQKS


knob




LSLSPG








1137
Construct
ITCPPPMSVEHADIWVKSYSLYSRERYICNSGFKRKAGTSSLTECVLNKATN


hu IL15Ra



PPPP
VAHWTTPSLKCIRDPALVHQRPAPPSGGSGGGGSGGGSGGGGSLQNWVNVIS


(1-77)-




DLKKIEDLIQSMHIDATLYTESDVHPSCKVTAMKCFLLELQVISLESGDASI


linker-hu




HDTVENLIILANNSLSSNGNVTESGCKECEELEEKNIKEFLQSFVHIVQMFI


IL15-(SG3)




NTSSGGGGPLGVRGGGGGSGGGGSGGGGSGGGGSAVNGTSQFTCFYNSRANI


(SEQ ID




SCVWSQDGALQDTSCQVHAWPDRRRWNQTCELLPVSQASWACNLILGAPDSQ


NO: 1158)-




KLTTVDIVTLRVLCREGVRWRVMAIQDFKPFENLRLMAPISLQVVHVETHRC


GPLGVRG




NISWEISQASHYFERHLEFEARTLSPGHTWEEAPLLTLKQKQEWICLETLTP


(SEQ ID




DTQYEFQVRVKPLQGEFTTWSPWSQPLAFRTKPAALGKDTGGGGSGEPKSSD


NO: 80)-




KTHTCPPCPAPEAAGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEV


4×(G4S)(SEQ




KFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSN


ID NO:




KALPAPIEKTISKAKGQPREPQVYTLPPSRDELTKNQVSLTCLVKGFYPSDI


1142)-IL2Rb




AVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMH


(1-214)-




EALHNHYTQKSLSLSPG


(G4SG)







(SEQ ID







NO: 1162)-







Hu IgG1 Fc
















TABLE 2







Table of Targeting Sequences











SEQ ID






NO
Sequence
Binds to
Note 1
Note 2













179
(TLTYTWS)n
denatured collagen 
binding to MMP degraded collagen




IV















180
(CREKA)n
denatured collagen 
binding to MMP degraded
inhibit tumor vasculature




IV
collagen
formation





181
(GXY)n
denatured Collagen
Gly = Glycine/X = Proline or 
This peptide binds to 





modified Proline/Y = Proline
collagen preteolytically





or modified Proline
digested by MMP





182
GHCVTDSGVVYSVGM
denatured Collagen
from Fibronectin Domain 1-6




QWLKTQGNKQMLCTC






LGNGVSCQET








183
EICTTNEGVMYRIGDQ
denatured Collagen
from Fibronectin Domain 1-7




WDKQHDMGHMMRCT






CVGNGRGEWTCIAY








184
DQCIVDDITYNVNDTFH
denatured Collagen
from Fibronectin Domain 1-8




KRHEEGHMLNCTCFGQ






GRGRWKCDPV








185
DQCQDSETGTFYQIGDS
denatured Collagen
from Fibronectin Domain 1-9




WEKYVHGVRYQCYCY






GRGIGEWHCQPL








186
SNGEPCVLPFTYNGRTF
denatured Collagen
from Fibronectin Domain 2-1




YSCTTEGRQDGHLWCS






TTSNYEQDQKYSFCTD








187
SNGALCHFPFLYNNHN
denatured Collagen
from Fibronectin Domain 2-2




YTDCTSEGRRDNMKW






CGTTQNYDADQKFGFC






PM








188
LRELHLDNN
Collagen type I







189
RRANAALKAGELYKSI
Collagen type I
Kd 0.86 uM // 860 nM
Differential binding 



LYGC


affinity to Collagen





190
RRANAALKAGELYKCI
Collagen type I
Kd: 10 nM (tight binding)
Differential binding 



LYGC


affinity to Collagen





191
MIVIELGTNPLKSSGIEN
Collagen type I
Kd 0.394 uM // 394 nM
Differential binding 



GAFQGMKK


affinity to Collagen





192
LRELHLNNN
Collagen type I
Kd 0.17 uM //170 nM
Differential binding 






affinity to Collagen





193
WREPSFCALS
Collagen type I
Kd 100 uM // 100,000 nM
Differential binding 






affinity to Collagen





194
TKKTLRT
Collagen type I
Kd ≤100 uM
Differential binding 






affinity to Collagen





195
CPKESCNLFVLKD
Collagen type I
Kd 0.681 uM //681 nM
Differential binding 






affinity to Collagen





196
WREPSFCALS
Collagen type I
Kd : 100 uM // 100,000 nM
Differential binding 






Collagen





197
HVWMQAPGGGK
Collagen type I
Kd 61 uM // 61,000 nM
H-V-F/W-Q/M-Q-P/A-P/K






motif





198
HVWMQAPGGGC
Collagen type I







199
WYRGRL
Collagen type II







200
KLWVLPK
Collagen type IV







201
RRANAALKAGELYKSI
Collagen





LY








202
GELYKSILY
Collagen







203
RRANAALKAGELYKCI
Collagen





LY








204
GELYKCILY
Collagen







205
RLDGNEIKR
Collagen







206
AHEEISTTNEGVM
Collagen















207
NGVFKYRPRYFLYKHA
Collagen




YFYPPLKRFPVQ







208
CQDSETRTFY
Collagen






209
TKKTLRT
Collagen






210
GLRSKSKKFRRPDIQYP
Collagen




DATDEDITSHM







211
SQNPVQP
Collagen






212
SYIRIADTNIT
Collagen






213
KELNLVYT
Collagen






214
GSIT
Collagen






215
GSITTIDVPWNV
Collagen






216
GQLYKSILY
Collagen






217
RRANAALKAGQLYKSI
Collagen




LY







218
WREPSFCALS
Collagen






219
WHCTTKFPHHYCLY
Collagen






220
AHKCPWHLYTTHYCFT
Collagen






221
PAHKCPWHLYTHYCFT
Collagen






222
GROGER
Collagen
O is 4-hydroxyproline (see, Raynal, N., et al., J. Biol. 





Chem., 2006, 281(7), 3821-3831)





223
GMOGER
Collagen
O is 4-hydroxyproline (see, Raynal, N., et al., J. Biol. 





Chem., 2006, 281(7), 3821-3831)





224
GLOGEN
Collagen
O is 4-hydroxyproline (see, Raynal, N., et al., J. Biol. 





Chem., 2006, 281(7), 3821-3831)





225
GLOGER
Collagen
O is 4-hydroxyproline (see, Raynal, N., et al., J. Biol. 





Chem., 2006, 281(7), 3821-3831)





226
GLKGEN
Collagen
O is 4-hydroxyproline (see, Raynal, N., et al., J. Biol. 





Chem., 2006, 281(7), 3821-3831)





227
GFOGERGVEGPOGPA
Collagen
O is 4-hydroxyproline (see, Raynal, N., et al., J. Biol. 





Chem., 2006, 281(7), 3821-3831)














228
WREPSFCALS
Collagen

Takagi, J., et al, 






Biochemistry,






1992, 31, 8530-8534





229
WYRGRL
Collagen

Rothenfluh D.A., et al, 






Nat Mater. 2008,






7(3), 748-54





230
WTCSGDEYTWHC
Collagen







231
WTCVGDHKTWKC
Collagen







232
QWHCTTRFPHHYCLYG
Collagen

U.S. 2007/0293656)





233
STWTWNGSAWTWNEG
Collagen





GK








234
STWTWNGTNWTRNDG
Collagen

WO/2014/059530



GK








235
CVWLWEQC
Collagen







236
CMTSPWRC
Collagen

Vanhoorelbeke, K., et al, 






J. Biol. Chem., 2003,






278, 37815-37821





237
CPGRVMHGLHLGDDE
Collagen

Muzzard, J., et al, PLOS 



GPC


one. 4 (e5585) I- 10)





238
KLWLLPK
Collagen

Chan, J. M., et al, Proc 






Natl Acad Sci






U.S.A., 2010, 107,






2213- 2218)





239
CQDSETRTFY
Collagen

U.S. 2013/0243700





240
LSELRLHEN
Collagen

Fredrico, S., Angew. 






Chem. Int. Ed. 2015,






37, 10980-10984





241
LTELHLDNN
Collagen

Fredrico, S., Angew. 






Chem. Int. Ed. 2015,






37, 10980-10985





242
LSELRLHNN
Collagen

Fredrico, S., Angew. 






Chem. Int. Ed. 2015,






37, 10980-10986





243
LSELRLHAN
Collagen

Fredrico, S., Angew. 






Chem. Int. Ed. 2015,






37, 10980-10987





244
LRELHLNNN
Collagen

Fredrico, S., Angew. 






Chem. Int. Ed. 2015,






37, 10980-10988





245
RVMHGLHLGDDE
Collagen







246
RVMHGLHLGNNQ
Collagen







247
RVMHGLHLGNNQ
Collagen















248
GQLYKSILYGSG-4K2K
Collagen
(a 4-branch peptide) which can be conjugated to a





fusion  polypeptide














249
GSGQLYKSILY
Collagen







250
GSGGQLYKSILY
Collagen







251
KQLNLVYT
Collagen







252
CVWLWQQC
Collagen







253
WREPSFSALS
Collagen







254
GHRPLDKKREEAPSLRP
Collagen





APPPISGGGYR








255
GHRPLNKKRQQ
Collagen





APSLRPAPPPISGGGYR








256
GELYKSILYGSG
Collagen







257
GQLYKSILYGSG
Collagen







258
RYPISRPRKRGSG
Collagen







259
GELYKSILYGC
Collagen







260
RLDGNEIKRGC
Collagen







261
AHEEISTTNEGVMGC
Collagen







262
GCGGELYKSILY
Collagen







263
NGVFKYRPRYFLYKHA
Collagen





YFYPPLKRFPVQGC








264
CQDSETRTFYGC
Collagen







265
TKKTLRTGC
Collagen







266
GLRSKSKKFRRPDIQYP
Collagen





DATDEDITSHMGC








267
SQNPVQPGC
Collagen







268
SYIRIADTNITGC
Collagen







269
KELNLVYTGC
Collagen







270
GSITTIDVPWNVGC
Collagen







271
GCGGELYKSILYGC
Collagen







272
RRANAALKAGELYKSI
Collagen





LYGSG
















273
cyclic CVWLWENC
Collagen
cyclic peptides can be conjugated to a fusion





polypeptide














274
cyclic CVWLWEQC
Collagen
cyclic peptides can be 
Depraetere H., et al, 





conjugated to a
Blood. 1998, 92,





fusion polypeptide
4207-421 1; 






and Duncan R.,






Nat Rev Drug Discov,






2003, 2(5), 347-360













275
D-amino acid
Collagen
D-amino acid-containing peptides can be conjugated to 



EDDGLHLGHMVR

linker polypeptide





276
D-amino acid
Collagen
D-amino acid-containing peptides can be conjugated to 



QNNGLHLGHMVR

linker polypeptide





277
PPTDLRFTNIGPDTMRV
integrin
from Fibronectin Domain III-9



TWAPPPSIDLTNFLVRY





SPVKNEEDVAELSISPS





DNAVVLTNLLPGTEYV





VSVSSVYEQHESTPLRG





RQKTGLDSP







278
TGIDFSDITANSFTVHWI
integrin
from Fibronectin Domain III-10



APRATITGYRIRHHPEH





FSGRPREDRVPHSRNSI





TLTNLTPGTEYVVSIVA





LNGREESPLLIGQQSTV





SD
















279
PGCYDNGKHYQINQQ
integrin
from Fibronectin Domain 1-1




WERTYLGNALVCTCYG






GSRGENCESK








280
ETCFDKYTGNTYRVGD
integrin
from Fibronectin Domain 1-2




TYERPKDSMIWDCTCIG






AGRGRISCTIA








281
NRCHEGGQSYKIGDTW
integrin
from Fibronectin Domain 1-3




RRPHETGGYMLECVCL






GNGKGEWTCKPI








282
EKCFDHAAGTSYVVGE
integrin
from Fibronectin Domain 1-4




TWEKPYQGWMMVDCT






CLGEGSGRITCTSR








283
NRCNDQDTRTSYRIGD
integrin
from Fibronectin Domain 1-5




TWSKKDNRGNLLQCIC






TGNGRGEWKCERH








284
GHCVTDSGVVYSVGM
denatured Collagen/
from Fibronectin Domain 1-6
duplicated in collagen



QWLKTQGNKQMLCTC
integrin





LGNGVSCQET








285
EICTTNEGVMYRIGDQ
denatured Collagen/
from Fibronectin Domain 1-7
duplicated in collagen



WDKQHDMGHMMRCT
integrin





CVGNGRGEWTCIAY








286
DQCIVDDITYNVNDTFH
denatured Collagen/
from Fibronectin Domain 1-8
duplicated in collagen



KRHEEGHMLNCTCFGQ
integrin





GRGRWKCDPV








287
DQCQDSETGTFYQIGDS
denatured Collagen/
from Fibronectin Domain 1-9
duplicated in collagen



WEKYVHGVRYQCYCY
integrin





GRGIGEWHCQPL








288
APTDLKFTQVTPTSLSA
integrin
from Fibronectin Domain III-14




QWTPPNVQLTGYRVRV






TPKEKTGPMKEINLAPD






SSSVVVSGLMVATKYE






VSVYALKDTLTSRPAQ






GVVTTLENVSPP








289
APTNLQFVNETDSTVL
integrin
from Fibronectin Domain III-5




VRWTPPRAQITGYRLT






VGLTRRGQPRQYNVGP






SVSKYPLRNLQPASEYT






VSLVAIKGNQESPKATG






VFTTLQPG
















290
KGHRGF
integrin
Derived from Collagen I





291
GFPGER
integrin
Derived from Collagen I





292
GTPGPQGIAGQRDVV
integrin
Derived from Collagen alpha1(I)





293
EKGPD
integrin
Derived from Collagen II





294
EKGPDP
integrin
Derived from Collagen II





295
EKGPDPL
integrin
Derived from Collagen II





296
TAGSCLRKFSTM
integrin
Derived from Collagen IV





297
TAIPSCPEGTVPLYS
integrin
Derived from Collagen alpha3(IV)-NC1





298
TDIPPCPHGWISLWK
integrin
Derived from Collagen IV





299
PHSRN
integrin
Derived from Fibronectin





300
RGD
integrin
Derived from Fibronectin





301
GRGDSP
integrin
Derived from Fibronectin





302
YRVRVTPKEKTGPMKE
integrin
Derived from Fibronectin





303
SPPRRARVT
integrin
Derived from Fibronectin





304
WQPPRARI
integrin
Derived from Fibronectin





305
KNNQKSEPLIGRKKT
integrin
Derived from Fibronectin





306
EILDVPST
integrin
Derived from Fibronectin





307
REDV
integrin
Derived from Fibronectin





308
RQVFQVAYIIIKA
integrin
Derived from Laminin Alpha-1 chain





309
SINNTAVMQRLT
integrin
Derived from Laminin Alpha-1 chain





310
IKVAV
integrin
Derived from Laminin Alpha-1 chain





311
NRWHSIYITRFG
integrin
Derived from Laminin Alpha-1 chain





312
TWYKIAFQRNRK
integrin
Derived from Laminin Alpha-1 chain





313
RKRLQVQLSIRT
integrin
Derived from Laminin Alpha-1 chain





314
KNRLTIELEVRT
integrin
Derived from Laminin Alpha-2 chain





315
SYWYRIEASRTG
integrin
Derived from Laminin Alpha-2 chain





316
DFGTVQLRNGFPFFSYD
integrin
Derived from Laminin Alpha-2 chain



LG







317
GQLFHVAYILIKF
integrin
Derived from Laminin Alpha-3 chain





318
KNSFMALYLSKG
integrin
Derived from Laminin Alpha-3 chain





319
TLFLAHGRLVFM
integrin
Derived from Laminin Alpha-4 chain





320
GQVFHVAYVLIKF
integrin
Derived from Laminin Alpha-5 chain





321
GIIFFL
integrin
Derived from Laminin Alpha-5 chain





322
LALFLSNGHFVA
integrin
Derived from Laminin Alpha-5 chain





323
RYVVLPR
integrin
Derived from Laminin Beta-1 chain





324
PDSGR
integrin
Derived from Laminin Beta-1 chain





325
YIGSR
integrin
Derived from Laminin Beta-1 chain





326
KAFDITYVRLKF
integrin
Derived from Laminin Gamma-1 chain





327
RNIAEIIKDI
integrin
Derived from Laminin Gamma-1 chain





328
FRHRNRKGY
integrin
Derived from Vitronectin





329
KKQRFRHRNRKGYRSQ
integrin
Derived from Vitronectin





330
FHRRIKA
integrin
Derived from Sialoprotein





331
KRSR
integrin
Derived from Sialoprotein





332
GLPGER
α1β1, α2β1
Derived from Collagen α1(1) 7S





333
GFPGER
α1β1, α2β1
Derived from Collagen alpha1(I)





334
GLSGER
α2β1
Derived from Collagen alphal(I)





335
DGEA
α2β1
Derived from Collagen alpha1(I)





336
GPAGKDGEAGAQG
α2β1
Derived from Collagen alpha1(I)





337
GPKGAAGEPGKP
α1β1, α3β1
Derived from Collagen alpha1(I)





338
GAPGPKGARGSA
α1β1, α3β1
Derived from Collagen alpha1(I)





339
GPQGIAGQRGVVGLP
α1β1
Derived from Collagen alpha1(I)





340
PKGQKGEKG
Poly(I)
Derived from Collagen alpha1(I)





341
GASGER
α2β1
Derived from Collagen alpha1(I)





342
GQRGER
α2β1
Derived from Collagen alpha1(I)





343
GMPGER
integrin
Derived from Collagen alpha1(I)





344
RGQPGVMGF
VWF
Derived from Collagen alpha1(III)





345
GKDGES
α2β1
Derived from Collagen alpha1(III)





346
GLKGEN
α2β1
Derived from Collagen alpha1(III)





347
GLPGEN
α2β1
Derived from Collagen alpha1(III)





348
GLPGEA
α2β1
Derived from Collagen alpha1(III)





349
GPPGDQGPPGIP
α1β1
Derived from Collagen alpha1(IV)





350
GAKGRAGFPGLP
α1β1
Derived from Collagen alpha1(IV)





351
MFKKPTPSTLKAGELR
integrin
Derived from Collagen alpha1(IV)





352
GFPGSRGDTGPP
integrin
Derived from Collagen alpha1(IV)





353
GVKGDKGNPGWPGAP
integrin
Derived from Collagen alpha1(IV)





354
FYFDLR
α1β1, α2β1
Derived from Collagen alpha1(IV)





355
MFKKPTPSTLKAGELR
integrin
Derived from Collagen alpha1(IV)





356
GFPGSRGDTGPP
integrin
Derived from Collagen alpha1(IV)





357
GVKGDKGNPGWPGAP
integrin
Derived from Collagen alpha1(IV)





358
FYFDLR
α1β1, α2β1
Derived from Collagen alpha1(IV)





359
RGQPGVPGVPGMKGD
integrin
Derived from Collagen alpha2(IV)





360
TDIPPCPHGWISLWK
integrin
Derived from Collagen alpha3(IV)-NC1





361
MNYYSNS
integrin
Derived from Collagen alpha3(IV)-NC1





362
CNYYSNSYSFWLASLN
integrin
Derived from Collagen alpha3(IV)-NC1



PER







363
ISRCQVCMKKRH
integrin
Derived from Collagen alpha3(IV)-NC1





364
TLGSCLQRFTTM
integrin
Derived from Collagen alpha3(IV)-NC1





365
GRRGKT
integrin
Derived from Collagen alpha3(IV)-NC1





366
RGQPGRKGL
integrin
Derived from Collagen alpha3(IV)-NC1





367
MFRKPIPSTVKA
integrin
Derived from Collagen alpha3(IV)-NC1





368
IISRCQVCMKMRP
integrin
Derived from Collagen alpha3(IV)-NC1





369
LAGSCLPVESTL
integrin
Derived from Collagen alpha4(IV)-NC1





370
TAGSCLRRESTM
integrin
Derived from Collagen alpha5(IV)-NC1





371
NKRAHG
integrin
Derived from Collagen alpha5(IV)-NC2





372
WTPPRAQITGYRLTVG
α5β1
Derived from Fibronectin III-5



LTRR







373
KLDAPT
α4β1, α4β7
Derived from Fibronectin III-5





374
PHSRN
α5β1
Derived from Fibronectin III-9





375
RGD
α5β1, αvβ3
Derived from Fibronectin III-10





376
RGDS
αIIbβ3
Derived from Fibronectin III-10





377
GRGDSP
α5β1
Derived from Fibronectin III-10





378
EDGIHEL
α4β1, α9β1
Derived from Fibronectin EDA





379
PRARITGYIIKYEKPGSP
integrin
Derived from Fibronectin III-14



PREVVPRPRPGV







380
IDAPS
α4β1
Derived from Fibronectin IIICS-1





381
VVIDASTAIDAPSNL
α4β1
Derived from Fibronectin IIICS-1





382
LDVPS
α4β1
Derived from Fibronectin IIICS-1





383
REDV
α4β1
Derived from Fibronectin IIICS-5





384
PHSRN-RGDSP
α5β1
Derived from Fibronectin III-10





385
PLDREAIAKY
integrin
Derived from E-Cadherin EC1





386
HAVDI
integrin
Derived from E-Cadherin EC1, groove





387
LFSHAVSSNG
integrin
Derived from E-Cadherin EC1, groove





388
ADTPPV
integrin
Derived from E-Cadherin EC1, bulge





389
QGADTPPVGV
integrin
Derived from E-Cadherin EC1, bulge





390
PLDREAIAKY
integrin
Derived from E-Cadherin EC1





391
DQNDN
integrin
Derived from E-Cadherin EC1





392
HAVDI
integrin
Derived from E-Cadherin EC1





393
LRAHAVDING
integrin
Derived from E-Cadherin EC1





394
LRAHAVDVNG
integrin
Derived from E-Cadherin EC1





395
VITVKDINDN
integrin
Derived from E-Cadherin EC2





396
GLDRESYPYY
integrin
Derived from E-Cadherin EC2





397
MKVSATDADD
integrin
Derived from E-Cadherin EC2





398
QDPELPDKNM
integrin
Derived from E-Cadherin EC2, bulge





399
LVVQAADLQG
integrin
Derived from E-Cadherin EC2, groove





400
NDDGGQFVVT
integrin
Derived from E-Cadherin EC3, bulge





401
LVVQAADLQG
integrin
Derived from E-Cadherin EC2, groove





402
TYRIWRDTAN
integrin
Derived from E-Cadherin EC4, bulge





403
YILHVAVTNY
integrin
Derived from E-Cadherin EC3, groove





404
YTALIIATDN
integrin
Derived from E-Cadherin EC4, groove





405
QDPELPDKNM
integrin
Derived from E-Cadherin EC2, bulge














406
RGDV
αvβ3, αvβ5
Somatomedin B






407
PQVTRGDVFTMP
αvβ3, αvβ5
Somatomedin B






408
LNRQELFPFG
integrin
Nidogen G2






409
SIGFRGDGQTC
integrin
Nidogen G2






410
TWSKVGGHLRPGIVQS
IgB
Perlecan IV




G








411
VAEIDGIEL
α9β1
Tenascin-C






412
VFDNFVLK
α7β1
Tenascin-C






413
VGVAPG
integrin
Elastin






414
PGVGV
integrin
Elastin






415
TTSWSQCSKS
α6β1
CCN-1






416
SVVYGLR
α9β1
Osteopontin






417
DGRGDSVAYG
ανβ3
Osteopontin






418
LALERKDHSG
α6β1
Thrombospondin






419
RGDF
αIIIbβ3
Fibrinogen






420
KRLDGSV
αMβ2
Fibrinogen






421
HHLGGAKQAGDV
αIIbβ3
Fibrinogen






422
YSMKKTTMKIIPFNRLT
αllbβ3
Fibrinogen




IG








423
GVYYQGGTYSKAS
αMB2
Fibrinogen






424
LWVTVRSQQRGLF
α5β1
Laminin α1 LN (A3)






425
GTNNWWQSPSIQN
α4β1, α4β7
Laminin α1 LN (A10)






426
WVTVTLDLRQVFQ
α5β1
Laminin α1 LN (A12)






427
RQVFQVAYIIIKA
α1β1, α2β1
Laminin α1 LN (A13)














428
LTRYKITPRRGPPT
α5β1
Laminin α1 LN (A18)





429
LLEFTSARYIRL
integrin
Laminin Laminin α1 LN (A24)





430
YIRLRLORIRTL
integrin
Laminin α1 LN (A25)





431
RRYYYSIKDISV
integrin
Laminin α1 V? (A29)





432
GGFLKYTVSYDI
integrin
Laminin α1 L4a (A55)





433
RDQLMTVLANVT
integrin
Laminin α1 L4a (A64)





434
VLIKGGRARKHV
α5β1
Laminin α1 L4a (A112)





435
NLLLLLVKANLK
integrin
Laminin α1 L1 (A167)





436
HRDELLLWARKI
integrin
Laminin α1 L1 (A174)





437
KRRARDLVHRAE
integrin
Laminin α1 L1 (A177)





438
SQFQESVDNITK
integrin
Laminin α1 L1 (A191)





439
PGGMREKGRKAR
integrin
Laminin α1 L1 (A194)





440
MEMQANLLLDRL
integrin
Laminin α1 L1 (A203)





441
LSEIKLLISRAR
integrin
Laminin α1 L1 (A206)





442
IKVAV
αvβ3
Laminin α1 L1 (A208)





443
AASIKVAVSADR
ανβ3
Laminin α1 L1 (A208)





444
NRWHSIYITRFG
α6β1
Laminin α1 LG1 (AG10)





445
SSFHFDGSGYAM
integrin
Laminin α1 LG2 (AG22)





446
IAFQRN
α6β1
Laminin α1 LG2 (AG32)





447
TWYKIAFQRNRK
α6β1
Laminin α1 LG2 (AG32)





448
SLVRNRR VITIQ
integrin
Laminin α1 LG2 (AG56)





449
DYATLQLQEGRLHFMF
α2β1
Laminin EF-1



DLG







450
KKGSYNNIVVHV
integrin
Laminin α2 LG (A2G2)





451
ADNLLFYLGSAK
integrin
Laminin α2 LG (A2G4)





452
GSAKFIDFLAIE
integrin
Laminin α2 LG (A2G5)





453
KVSFLWWVGSGV
integrin
Laminin α2 LG (A2G7)





454
SYWYRIEASRTG
integrin
Laminin α2 LG (A2G10)





455
ISTVMFKFRTFS
integrin
Laminin α2 LG (A2G25)





456
KQANISIVDIDSN
integrin
Laminin α2 LG (A2G34)





457
FSTRNESGIILL
integrin
Laminin α2 LG (A2G48)





458
RRQTTQAYYAIF
integrin
Laminin α2 LG (A2G51)





459
YAIFLNKGRLEV
integrin
Laminin α2 LG (A2G52)





460
KNRLTIELEVRT
integrin
Laminin α2 LG (A2G76)





461
GLLFYMARINHA
integrin
Laminin α2 LG (A2G78)





462
VQLRNGFPYFSY
integrin
Laminin α2 LG (A2G80)





463
HKIKIVRVKQEG
integrin
Laminin α2 LG (A2G84)





464
DFGTVQLRNGFPFFSYD
integrin
Laminin EF-2



LG







465
YFDGTGFAKAVG
integrin
Laminin α2 LG (A2G94)





466
NGQWHKVTAKKI
integrin
Laminin α2 LG (A2G103)





467
AKKIKNRLELVV
integrin
Laminin α2 LG (A2G104)





468
GFPGGLNQFGLTTN
integrin
Laminin α2 LG (A2G109)





469
IRSLKLTKGTGKP
integrin
Laminin α2 LG (A2G111)





470
AKALELRGVQPVS
integrin
Laminin α2 LG (A2G113)





471
GQLFHVAYILIKF
integrin
Laminin α3 (A3-10)





472
SQRIYQFAKLNYT
integrin
Laminin α3 LG (MA3G13)





473
NVLSLYNFKTTF
integrin
Laminin α3 LG (MA3G22)





474
NAPFPKLSWTIQ
integrin
Laminin α3 LG (MA3G27)





475
WTIQTTVDRGLL
integrin
Laminin α3 LG (MA3G28)





476
DTINNGRDHMILI
integrin
Laminin α3 LG (MA3G34)





477
MILISIGKSQKRM
integrin
Laminin α3 LG (MA3G35)





478
PPFLMLLKGSTR
integrin
Laminin α3 LG (A3GXX)





479
NQRLASFSNAQQS
integrin
Laminin α3 LG (MA3G57)





480
ISNVFVQRMSQSPEVLD
integrin
Laminin α3 LG (MA3G59)





481
KARSFNVNOLLQD
integrin
Laminin α3 LG (MA3G63)





482
KNSFMALYLSKG
integrin
Laminin α3 LG A3G75





483
KNSFMALYLSKGRLVF
integrin
Laminin α3 LG A3G756



ALG







484
RDSFVALYLSEGHVIFA
integrin
Laminin EF-3



LG







485
KPRLQFSLDIQT
integrin
Laminin α3 LG MA3G70





486
DGQWHSVTVSIK
integrin
Laminin α3 LG MA3G97





487
FVLYLGSKNAKK
integrin
Laminin α4 LG (A4G4)





488
LAIKNDNLVYVY
integrin
Laminin α4 LG (A4G6)





489
AYFSIVKIERVG
integrin
Laminin α4 LG (A4G10)





490
DVISLYNFKHIY
integrin
Laminin α4 LG (A4G20)





491
FFDGSSYAVVRD
integrin
Laminin α4 LG (A4G24)





492
LHVFYDFGFSNG
integrin
Laminin α4 LG (A4G31)





493
LKKAQINDAKYREISIIY
integrin




HN







494
RAYFNGQSFIAS
integrin
Laminin α4 LG (A4G47)





495
SRLRGKNPTKGK
integrin
Laminin α4 LG (A4G59)





496
LHKKGKNSSKPK
integrin
Laminin α4 LG (A4G69)





497
RLKTRSSHGMIF
integrin






498
GEKSQFSIRLKT
integrin
Laminin α4 LG (A4G78)





499
TLFLAHGRLVFM
integrin
Laminin α4 LG (A4G82)





500
LVFMFNVGHKKL
integrin
Laminin α4 LG (A4G83)





501
TLFLAHGRLVFMFNVG
integrin
Laminin α4 LG (A4G823)



HKKL







502
DFMTLFLAHGRLVFMF
integrin
Laminin EF-4



NVG







503
HKKLKIRSQEKY
integrin
Laminin α4 LG (A4G84)





504
GAAWKIKGPIYL
integrin
Laminin α4 LG (A4G90)





505
VIRDSNVVQLDV
integrin
Laminin α4 LG (A4G107)





506
EVNVTLDLGQVFH
α5β1
Laminin Laminin α5 LN (S1)





507
GQVFHVAYVLIKF
α4β1, α4β7
Laminin Laminin α5 LN (S2)





508
RDFTKATNIRLRFLR
α5β1
Laminin Laminin α5 LN (S6)





509
NIRLRFLRTNTL
α5β1
Laminin Laminin α5 LN (S7)





510
GKNTGDHFVLYM
α5β1
Laminin α5 LG1 (A5G3)





511
VVSLYNFEQTFML
integrin
Laminin α5 LG1 (A5G19)





512
RFDQELRLVSYN
integrin
Laminin α5 LG2 (A5G26)





513
ASKAIQVFLLGG
integrin
Laminin α5 LG2 (A5G33)





514
TVFSVDQDNMLE
integrin
Laminin α5 LG2 (A5G36)





515
RLRGPQRVFDLH
α5β1
Laminin α5 LG3 (A5G63)





516
SRATAQKVSRRS
integrin
Laminin α5 LG3 (A5G66)





517
GSLSSHLEFVGI
integrin
Laminin α5 LG4 (A5G71)





518
RNRLHLSMLVRP
integrin
Laminin α5 LG4 (A5G73)





519
APMSGRSPSLVLK
integrin
Laminin α5 LG4 (A5G76)





520
LALFLSNGHEVA
integrin
Laminin α5 LG4 (A5G77)





521
PGRWHKVSVRWE
integrin
Laminin α5 LG4 (A5G81)





522
VRWGMQQIQLVV
integrin
Laminin α5 LG4 (A5G82)





523
KMPYVSLELEMR
integrin
Laminin α5 LG5 (A5G94)





524
VLLQANDGAGEF
integrin
Laminin α5 LG5 (A5G99)





525
DGRWHRVAVIMG
integrin
Laminin α5 LG5 (A5G101)





526
APVNVTASVQIQ
integrin
Laminin α5 LG5 (A5G109)





527
KOGKALTQRHAK
integrin
Laminin α5 LG5 (A5G112)





528
AFGVLALWGTRV
integrin
Laminin Laminin VI (B-7)





529
IENVVTTFAPNR
integrin
Laminin Laminin VI (B-15)





530
LEAEFHFTHLIM
integrin
Laminin Laminin VI (B-19)





531
HLIMTFKTFRPA
integrin
Laminin Laminin VI (B-20)





532
KTWGVYRYFAYD
integrin
Laminin Laminin VI (B-23)





533
TNLRIKFVKLHT
integrin
Laminin Laminin VI (B-31)





534
REKYYYAVYDMV
integrin
Laminin Laminin VI (B-34)





535
KRLVTGQR
integrin
Laminin Laminin V (B-54)





536
KDISEKVAVYST
integrin
I (B-187)





537
PDSGR
integrin
Laminin III (B-96)





538
YIGSR
α1β1, α3β1
Laminin III (B-98)





539
DPGYIGSR
α1β1, α3β1
Laminin III (B-98)














540
FALWDAIIGEL
integrin
Laminin III (B-116)






541
AAEPLKNIGILF
integrin
Laminin II (B-123)






542
DSITKYFQMSLE
integrin
Laminin II (B-133)






543
VILQQSAADIAR
integrin
Laminin I (B-160)






544
SPYTFIDSLVLMPY
integrin
Laminin Laminin IV (B-77)






545
KDISEKVAVYST
integrin
Laminin I (B-187)






546
LGTIPG
integrin







547
LWPLLAVLAAVA
integrin
Laminin VI (C-3)






548
KAFDITYVRLKF
αvβ3, α5β1
Laminin VI (C-16)






549
AFSTLEGRPSAY
integrin
Laminin VI (C-25)






550
TDIRVTLNRLNTF
integrin
Laminin VI (C-28)






551
NEPKVLKSYYYAI
integrin
Laminin VI (C-30)






552
YYAISDFAVGGR
integrin
Laminin VI (C-31)






553
LPFFNDRPWRRAT
integrin
Laminin VI (C-35)






554
FDPELYRSTGHGGH
integrin
Laminin V (C-38)






555
TNAVGYSVYDIS
integrin
Laminin V (C-50)






556
APVKFLGNQVLSY
integrin
Laminin IV (C-57)






557
SFSFRVDRRDTR
integrin
Laminin IV (C-59)






558
SETTVKYIFRLHE
integrin
Laminin IV (C-64)






559
FQKLLNNLTSIK
integrin
Laminin IV (C-67)






560
TSIKIRGTYSER
integrin
Laminin IV (C-68)






561
DPETGV
integrin
Laminin III (C75)






562
TSAEAYNLLLRT
integrin
Laminin II (C-118)






563
KEAEREVTDLLR
integrin
Laminin II (C102)






564
SLLSQLNNLLDQ
integrin
Laminin II (C-155)






565
RNIAEIIKDI
integrin
Laminin






566
RDIAEIIKDI
integrin
Laminin






567
GAPGER
integrin
Derived from Collagen alpha1(I)






568
FNKHTEIIEEDTNKDKP
Fibronectin
(FAB D3: 1-37) - highest 
Differential binding 



SYQFGGHNSVDFEEDT

affinity
affinity to Collagen



LPKV








569
PSYQFGGHNSVDFEED
Fibronectin
(FAB D3: 16-36) - high
Differential binding 



TLPK

affinity
affinity to Collagen





570
SYQFGGHNSVDFEEDT
Fibronectin
(FAB D3: 17-33) - medium 
Differential binding 





affinity
affinity to Collagen





571
QFGGHNSVDFEEDTLP
Fibronectin
(FAB D3: 20-36) - medium 
Differential binding 



K

affinity
affinity to Collagen





572
FGGHNSVDFEEDTLPK
Fibronectin
(FAB D3: 21-36) - low
Differential binding 





affinity
affinity to Collagen





573
NAPQPSHISKYILRWRP
Fibronectin
Fibronectin Type III(1)




KNSVGRWKEATIPGHL






NSYTIKGLKPGVVYEG






QLISIQQYGHQEVTRFD






FTTTSTSTPVTSNTVTG






ETTPFSPLVATSESVTEI






TASSFVVS








574
NAPQPSHISKYILRWRP
Fibronectin
Fibronectin Type III(1)




KNSVGRWKEATIPG

fragment






575
EATIPGHLNSYTIKGLK
Fibronectin
Fibronectin Type III(1)




PGVVYEGQLISIQQ

fragment






576
LISIQQYGHQEVTRFDF
Fibronectin
Fibronectin Type III(1)




TTTSTSTPVTSNTV

fragment






577
VTSNTVTGETTPFSPLV
Fibronectin
Fibronectin Type III(1)




ATSESVTEITASSFVVS

fragment














578
RWSHDNGVNYKIGEK
Fibronectin
Fibronectin Type III(1) fragment (synthetic)



WDRQGENGQMMSSTS





LGNGKGEFKSDPHE







579
ATSYDDGKTYHVGEQ
Fibronectin
Fibronectin Type III(1) fragment (synthetic)



WQKEYLGAISSSTSFGG





QRGWRSDNSR
















580
DKPSYQFGGHNSVDFE
Fibronectin





EDT








581
DKPSYQFGGHNSVDFE
Fibronectin





EDTL








582
DKPSYQFGGHNSVDFE
Fibronectin





EDTLP








583
DKPSYQFGGHNSVDFE
Fibronectin





EDTLPK








584
KPSYQFGGHNSVDFEE
Fibronectin





DT








585
KPSYQFGGHNSVDFEE
Fibronectin





DTL








586
KPSYQFGGHNSVDFEE
Fibronectin





DTLP








587
KPSYQFGGHNSVDFEE
Fibronectin





DTLPK








588
PSYQFGGHNSVDFEED
Fibronectin





T








589
PSYQFGGHNSVDFEED
Fibronectin





TL








590
PSYQFGGHNSVDFEED
Fibronectin





TLP








591
PSYQFGGHNSVDFEED
Fibronectin





TLPK








592
PPFLMLLKGSTRFNKTK
Heparin/syndecans
Derived from Heparin Binding 
Differential binding 



TFR

Domans of Laminin
affinity to






Heparin/syndecans





593
RLVFALGTDGKKLRIKS
Heparin/syndecans
Derived from Heparin Binding 
Differential binding 



KEKCNDGK

Domans of Laminin
affinity to






Heparin/syndecans





594
PLFLLHKKGKNLSKPK
Heparin/syndecans
Derived from Heparin Binding 
Differential binding 



ASQNKKGGKSK

Domans of Laminin
affinity to






Heparin/syndecans





595
TLFLAHGRLVYMFNVG
Heparin/syndecans
Derived from Heparin Binding 
Differential binding 



HKKLKIR

Domans of Laminin
affinity to






Heparin/syndecans





596
TPGLGPRGLQATARKA
Heparin/syndecans
Derived from Heparin Binding 
Differential binding 



SRRSRQPARHPACML

Domans of Laminin
affinity to






Heparin/syndecans





597
RQRSRPGRWHKVSVR
Heparin/syndecans
Derived from Heparin Binding 
Differential binding 



WEKNR

Domans of Laminin
affinity to






Heparin/syndecans













598
LAGSCLARFSTM
a2B1, Heparin
Derived from Collagen alpha1(IV) HepII





599
KGHRGF
Heparin
Derived from Collagen alpha1(I)





600
GDRGIKGHRGFSG
Heparin
Derived from Collagen alpha1(I)





601
GDLGRPGRKGRPGPP
Heparin
Derived from Collagen alpha1(I)





602
GHRGPTGRPGKRGKQG
Heparin
Derived from Collagen alpha1(I)



QKGDS







603
KGIRGH
Heparin
Derived from Collagen alpha2(I)





604
GEFYFDLRLKGDK
α2β1, Heparin
Derived from Collagen alpha1(IV) HepIII





605
KYILRWRPKNS
Heparin
Derived from Fibronectin III-1





606
YRVRVTPKEKTGPMKE
Heparin
Derived from Fibronectin III-13 (FN-C/H-III)





607
SPPRRARVT
α5β1, Heparin
Derived from Fibronectin III-13 (FN-C/H-IV)





608
ATETTITIS
Heparin
Derived from Fibronectin III-13





609
VSPPRRARVTDATETTI
α5β1, Heparin
Derived from Fibronectin III-13



TISWRTKTETITGFG







610
KPDVRSYTITG
α4β1, Heparin
Derived from Fibronectin III-13





611
ANGQTPIQRYIK
α4β1, Heparin
Derived from Fibronectin III-13





612
YEKPGSPPREVVPRPRP
Heparin
Derived from Fibronectin III-14 (FN-C/H-I)



GV







613
KNNQKSEPLIGRKKT
Heparin
Derived from Fibronectin III-14 (FN-C/H-II)





614
EILDVPST
integrin
Derived from Fibronectin IIICS-1





615
TAGSCLRKFSTM
α2B1, Heparin
Derived from Collagen alpha1(IV) HepI





616
FRHRNRKGY
Heparin
HPV





617
KKQRFRHRNRKGYRSQ
Heparin
HPV





618
KRSR
Heparin
Bone sialoprotein





619
FHRRIKA
Heparin, HSP
Bone sialoprotein





620
SINNTAVMQRLT
Heparin
Laminin Laminin α1 L4a (A51)





621
ANVTHLLIRANY
Heparin
Laminin α1 L4a (A65)





622
AGTFALRGDNPQG
integrin
Laminin α1 L4a (A99)





623
RLVSYSGVLFFLK
Heparin
Laminin α5 LG2 (A5G27)





624
GIIFFL
Heparin
Laminin α5 LG2 (A5G)





625
VLVRVERATVES
Heparin
Laminin α5 LG2 (A5G35)





626
RIQNLLKITNLRIKFVK
Heparin
Laminin Laminin VI (B-30)





627
GPGVVVVERQYI
Heparin
Laminin IV (B-62)





628
RYVVLPR
Heparin
Laminin IV (B-73)





629
LSNIDYILIKAS
SDC-4
Laminin α1 L4a (A119)





630
LQQSRIANISME
SDC-4
Laminin α1 L4a (A121)





631
LQVQLSIR
SDC-1, -4
Laminin α1 LG4 (AG73)





632
RKRLQVQLSIRT
SDC-1, -4
Laminin α1 LG4 (AG73)





633
GLIYYVAHQNQM
SDC-1, -4
Laminin α1 LG4 (AG75)





634
FDLHQNMGSVN
SDC-4
Laminin α5 LG3 (A5G64)





635
QQNLGSVNVSTG
SDC-4
Laminin α5 LG3 (A5G65)





636
WQPPRARI
SDC-4
Derived from Fibronectin III-14 (FN-C/H-V)





637
WQPPRARITGYIIKYEK
SDC-4
Derived from Fibronectin III-14 (FN-C/H-V)



PG
















638
KNSFMALYLSKGR
syndecan 2(w)
Derived from Heparin Binding 
Differential binding 





Domans of Laminin
affinity to






Heparin/syndecans













639
NGRKIRMRCRAIDGD
Heparan sulfate
binds to HSGP with high affinity (DTx protein)




proteoglycans






640
DVIRDKTKTKIESLK
Heparan sulfate
binds to HSGP with low affinity (DTx protein)













proteoglycans












pH-sensitive targeting sequences











641
GVYHREARSGKYKLTY
hyaluronic acid
pH dependent (Link_TGS6)
binds better at lower pH



AEAKAVCEFEGGHLAT






YKGLEAARKIGFHVCA






AGWMAKGRVGYPIVK






PGPPNCGFGKTGIIDYGI






RLNRSERWDAYCYNPH






A
















642
KHAHLKKQVSDHIAVY
Heparin
binds to heparin at low pH (high affinity)





643
TTEPSEEHNHHK
Heparin
binds to heparin at low pH (low affinity)





644
KHAHL
Heparin
binds to heparin at low pH (lower affinity)





645
TTEPSEEHNHHK
Heparin
binds to heparin at low pH (lower affinity)





646
TTEPSEEHNHHKHHDK
Heparin
binds to heparin at low pH (lower affinity)





647
HKGQHR
Heparin
binds to heparin at low pH (lower affinity)





648
KVEHRVKKRPPTWRHN
Heparin
binds to heparin at low pH



VRAKYT







649
GGKVEHRVKKRPPTWR
Heparin
binds to heparin at low pH



HNVRAKYT







650
KKRPPTWRHNV
Heparin
binds to heparin at low pH





651
GTWSEW
heparin
derived from thrombospondin





652
GFWSEW
heparin
derived from thrombospondin














653
GGWSHW
Fibronectin
derived from thrombospondin 
binds better at lower pH





(highest affinity)






654
KRFKQDGGWSHWSPW
Fibronectin
derived from thrombospondin 




SS

(low affinity)














655
KRFKQDGGWSHWSP
Fibronectin
derived from thrombospondin (medium affinity)





656
GGWSHWSPWSS
Fibronectin
derived from thrombospondin (medium affinity)





657
WSXWS
Sulfated 
derived from thrombospondin (X = any amino acids)




Glycoprotein






658
WSHW
Sulfated 
derived from thrombospondin




Glycoprotein






659
Xaa Xaa Pro His Glu
heparin/heparan 
Xaa = any amino acid




sulfate






660
(H/P)(H/P)PHG
heparin/heparan 
tandem repeat - pH dependent HRGP (Histidine Rich




sulfate
Glyco  Protein)





661
HPHKHHSHEQHPHGHH
heparin/heparan 
Histidine Rich Glycoprotein (Histidine Rich Domain)



PHAHHPHEHDTHRQHP
sulfate




HGHHPHGHHPHGHHPH





GHHPHGHHPHCHDFQD





YGPCDPPPHNQGHCCH





GHGPPPGHLRRRGPGK





GPRPFHCRQIGSVYRLP





PLRKGEVLPLPEANFPS





FPLPHHKHPLKPDNQPF





P







662
DLHPHKHHSHEQHPHG
heparin/heparan 
Histidine Rich Glycoprotein (Histidine Rich Domain)



HHPHAHHPHEHDTHRQ
sulfate




HPH







663
GHHPH
heparin











Other targeting sequences










664
VRIQRKKEKMKET
heparin






665
LHERHLNNN
Collagen I






666-673
See Table 5







680-700
Not Used









I. Definitions

As used herein, an “active domain” refers to a polypeptide or a collection of polypeptides that have affinity towards a target, which may be one or more polypeptides, nucleic acids, sugars, and/or combinations thereof. In some embodiments, an active domain is an agonist or antagonist of its target, or will bring about and/or inhibit signal transduction relating to the target. The active domain need not have exclusive affinity towards the target but instead only needs to have affinity towards the target that is significantly higher (e.g., 10 times or more) than the domain's affinity towards a non-target. A dissociation constant (KD) between a active domain and a target may be in the range of pM, nM, μM, or mM. An active domain may comprise one or more subdomains or subunits that each has distinctive functions and together have the function of the active domain. For example, an active domain that comprises an IL-12 polypeptide sequence may comprise two subunits.


As used herein, an “immunoglobulin antigen-binding domain” refers to a domain that is an immunoglobulin or a fragment thereof, such as an Fv, scFv, Fab, or VHH. Exemplary immunoglobulin antigen-binding domains are provided in Table 1.


As used herein, a “receptor-binding domain” refers to an active domain, such as a cytokine polypeptide sequence, that is not an immunoglobulin antigen-binding domain.


As used herein, a “cytokine polypeptide sequence” refers to a polypeptide sequence (which may be part of a larger sequence, e.g., a fusion polypeptide) with significant sequence identity to a wild-type cytokine and which can bind and activate a cytokine receptor (e.g., when separated from an inhibitory polypeptide sequence). In some embodiments, a cytokine polypeptide sequence has at least 80, 85, 90, 95, 97, 98, or 99 percent identity to the sequence of a wild-type cytokine, e.g., a wild-type human cytokine. In some embodiments, a cytokine polypeptide sequence has no more than one, two, three, four, five, six, seven, eight, nine, or ten amino acid differences from a wild-type cytokine, e.g., a wild-type human cytokine. Cytokines include but are not limited to chemokines. Exemplary cytokine polypeptide sequences are provided in Table 1. This definition applies to IL-2 polypeptide sequences with substitution of “IL-2” for “cytokine.”


As used herein, an “inhibitory polypeptide sequence” refers to a polypeptide or a collection of polypeptides that inhibits an activity of an active domain in the linker polypeptide. The inhibitory polypeptide sequence may bind or sterically obstruct the active domain. In some embodiments, such binding is reduced or eliminated by action of an appropriate protease on a protease-cleavable polypeptide sequence of the linker polypeptide. Exemplary inhibitory polypeptide sequences are provided in Table 1. The inhibitory polypeptide sequence may, for example, comprise a polypeptide with significant sequence identity to a part of a wild-type target of an active domain, or an immunoglobulin or a fraction thereof, such as an Fv, scFv, Fab, or VHH.


As used herein, a “protease-cleavable polypeptide sequence” is a sequence that is a substrate for cleavage by a protease. The protease-cleavable polypeptide sequence is located in a linker polypeptide such that its cleavage releases one or more elements of the linker polypeptide from the remainder of the linker polypeptide, or reduces or eliminates binding of an inhibitory polypeptide sequence to an active domain.


As used herein, a protease-cleavable polypeptide sequence “is recognized by” a given protease or class thereof if exposing a polypeptide comprising the protease-cleavable polypeptide sequence to the protease under conditions permissive for cleavage by the protease results in a significantly greater amount of cleavage than is seen for a control polypeptide having an unrelated sequence, and/or if the protease-cleavable polypeptide sequence corresponds to a known recognition sequence for the protease (e.g., as described elsewhere herein for various exemplary proteases).


As used herein, a “pharmacokinetic modulator” is a moiety that extends the in vivo half-life of a linker polypeptide or an element of the linker polypeptide. The pharmacokinetic modulator may be a fused domain in a linker polypeptide or may be a chemical entity attached post-translationally. The attachment may be, but is not necessarily, covalent. Exemplary pharmacokinetic modulator polypeptide sequences are provided in Table 1. Exemplary non-polypeptide pharmacokinetic modulators are described elsewhere herein.


As used herein, a “targeting sequence” is a sequence that results in a greater fraction of a linker polypeptide localizing to an area of interest, e.g., a tumor microenvironment. The targeting sequence may bind an extracellular matrix component or other entity found in the area of interest, e.g., an integrin or syndecan. Exemplary targeting sequences are provided in Table 2.


As used herein, an “extracellular matrix component” refers to an extracellular protein or polysaccharide found in vivo. Integral and peripheral membrane proteins on a cell, including fibronectins, cadherins, integrins, and syndecans, are not considered extracellular matrix components.


As used herein, an “immunoglobulin constant domain” refers to a domain that occurs in or has significant sequence identity to a domain of a constant region of an immunoglobulin, such as an IgG. Exemplary constant domains are CH2 and CH3 domains. Unless indicated otherwise, a linker polypeptide comprising an immunoglobulin constant domain may comprise more than one immunoglobulin constant domain. In some embodiments, an immunoglobulin constant domain has at least 80, 85, 90, 95, 97, 98, or 99 percent identity to the sequence of a wild-type immunoglobulin constant domain, e.g., a wild-type human immunoglobulin constant domain. In some embodiments, an immunoglobulin constant domain has no more than one, two, three, four, five, six, seven, eight, nine, or ten amino acid differences from a wild-type immunoglobulin constant domain, e.g., a wild-type human immunoglobulin constant domain. In some embodiments, immunoglobulin constant domain has an identical sequence to a wild-type immunoglobulin constant domain, e.g., a wild-type human immunoglobulin constant domain. Exemplary immunoglobulin constant domains are contained within sequences provided in Table 1. This definition applies to CH2 and CH3 domains, respectively, with substitution of “CH2” or “CH3” for “immunoglobulin constant,” with the qualification that a CH2 domain sequence does not have greater percent identity to a non-CH2 immunoglobulin constant domain wild-type sequence than to a CH2 domain wild-type sequence, and a CH3 domain sequence does not have greater percent identity to a non-CH3 immunoglobulin constant domain wild-type sequence than to a CH3 domain wild-type sequence. These definitions also include domains having minor truncations relative to wild-type sequences, to the extent that the truncation does not abrogate substantially normal folding of the domain.


As used herein, a “immunoglobulin Fc region” refers to a region of an immunoglobulin heavy chain comprising a CH2 and a CH3 domain, as defined above. The Fc region does not include a variable domain or a CH1 domain.


As used herein, a given component is “between” a first component and a second component if the first component is on one side of the given component and the second component is on the other side of the given component, e.g., in the primary sequence of a polypeptide. This term does not require immediate adjacency. Thus, in the structure 1-2-3-4, 2 is between 1 and 4, and is also between 1 and 3.


As used herein, a “domain” may refer, depending on the context, to a structural domain of a polypeptide or to a functional assembly of at least one domain (but possibly a plurality of structural domains). For example, a CH2 domain refers to a part of a sequence that qualifies as such. An immunoglobulin cytokine-binding domain may comprise VH and VL structural domains.


As used herein, “denatured collagen” encompasses gelatin and cleavage products resulting from action of an MMP on collagen, and more generally refers to a form of collagen or fragments thereof that does not exist in the native structure of full-length collagen.


As used herein, “configured to bind . . . in a pH-sensitive manner” means that a polypeptide sequence (e.g., a targeting sequence) shows differential binding affinity for its binding partner depending on pH. For example, the polypeptide sequence may have a higher affinity at a relatively acidic pH than at normal physiological pH (about 7.4). The higher affinity may occur at a pH below 7, e.g., in the range of pH 5.5-7, 6-7, or 5.5-6.5, or below pH 6.


As used herein, a “cytokine-binding domain of a cytokine receptor” refers to an extracellular portion of a cytokine receptor, or a fragment or truncation thereof that can bind a cytokine polypeptide sequence. In some embodiments, the sequence of a cytokine binding domain of a cytokine receptor has at least 80, 85, 90, 95, 97, 98, or 99 percent identity to the sequence of a cytokine binding domain of a wild-type cytokine receptor, e.g., a cytokine binding domain of a wild-type human cytokine receptor. Exemplary sequences of a cytokine binding domain of a cytokine receptor are provided in Table 1. This definition applies to IL-2, IL-10, IL-15, CXCL9, CXCL10, and TGF-β-binding domains of an IL-2, IL-10, IL-15, CXCL9, CXCL10, and TGF-β receptor with substitution of “IL-2,” “IL-10,” “IL-15,” “CXCL9,” “CXCL10,” and “TGF-β,” respectively, for “cytokine.”


As used herein, an “immunoglobulin cytokine-binding domain” refers to one or more immunoglobulin variable domains (e.g., a VH and a VL region) that can bind a cytokine polypeptide sequence. Exemplary sequences of a cytokine-binding immunoglobulin domain are provided in Table 1. This definition applies to IL-2, IL-10, IL-15, CXCL9, CXCL10, and TGF-β-binding domains of an IL-2, IL-10, IL-15, CXCL9, CXCL10, and TGF-β receptor with substitution of “IL-2,” “IL-10,” “IL-15,” “CXCL9,” “CXCL10,” and “TGF-β,” respectively, for “cytokine.”


As used herein, a first element of the linker polypeptide being “proximal to” a second element relative to a third element means that in the primary polypeptide sequence of the linker polypeptide, the first element is closer to the second element than to the third element, regardless of whether the first element is spacially closer to the second element than to the third element when the linker polypeptide is folded.


As used herein, “substantially” and other grammatical forms thereof mean sufficient to work for the intended purpose. The term “substantially” thus allows for minor, insignificant variations from an absolute or perfect state, dimension, measurement, result, or the like such as would be expected by a person of ordinary skill in the field but that do not appreciably affect overall performance. When used with respect to numerical values or parameters or characteristics that can be expressed as numerical values, “substantially” means within ten percent.


As used herein, the term “plurality” can be 2, 3, 4, 5, 6, 7, 8, 9, 10, or more.


As used herein, a first sequence is considered to “comprise a sequence with at least X % identity to” a second sequence if an alignment of the first sequence to the second sequence shows that X % or more of the positions of the second sequence in its entirety are matched by the first sequence. For example, the sequence QLYV (SEQ ID NO: 1168) comprises a sequence with 100% identity to the sequence QLY because an alignment would give 100% identity in that there are matches to all three positions of the second sequence. Exemplary alignment algorithms are the Smith-Waterman and Needleman-Wunsch algorithms, which are well-known in the art. One skilled in the art will understand what choice of algorithm and parameter settings are appropriate for a given pair of sequences to be aligned; for sequences of generally similar length and expected identity >50% for amino acids or >75% for nucleotides, the Needleman-Wunsch algorithm with default settings of the Needleman-Wunsch algorithm interface provided by the EBI at the www.ebi.ac.uk web server is generally appropriate.


As used herein, a “subject” refers to any member of the animal kingdom. In some embodiments, “subject” refers to humans. In some embodiments, “subject” refers to non-human animals. In some embodiments, “subject” refers to primates. In some embodiments, subjects include, but are not limited to, mammals, birds, reptiles, amphibians, fish, insects, and/or worms. In certain embodiments, the non-human subject is a mammal (e.g., a rodent, a mouse, a rat, a rabbit, a monkey, a dog, a cat, a sheep, cattle, a primate, and/or a pig). In some embodiments, a subject may be a transgenic animal, genetically-engineered animal, and/or a clone. In certain embodiments of the present invention the subject is an adult, an adolescent or an infant. In some embodiments, the terms “individual” or “patient” are used and are intended to be interchangeable with “subject”.


II. Linker Polypeptide

The linker polypeptide may comprise a first targeting sequence; a second targeting sequence; and a first linker between the first targeting sequence and the second targeting sequence, the linker comprising a protease-cleavable polypeptide sequence. In some embodiments, the first targeting sequence and/or the second targeting sequence may each comprise two or more targeting subsequences that each binds to a target. In some embodiments, some or all of the two or more targeting subsequences may bind to the same target (e.g., tandem repeats). In some embodiments, the linker polypeptide comprises a first active domain; a second active domain; a pharmacokinetic modulator; and a first linker between the pharmacokinetic modulator and the first active domain, the first linker comprising a protease-cleavable polypeptide sequence. In some embodiments, the linker polypeptide comprises a first active domain; an inhibitory polypeptide sequence capable of blocking an activity of the first active domain; a first linker between the first active domain and the inhibitory polypeptide sequence, the linker comprising a protease-cleavable polypeptide sequence; and a first targeting sequence.


These elements of the linker polypeptide may be covalently connected to form a single polypeptide chain or may be present in a plurality of associated polypeptide chains, which may be linked noncovalently or covalently (e.g., via one or more disulfide bonds).


In some embodiments, the linker polypeptide comprises a first polypeptide chain comprising a first active domain, a first domain of a pharmacokinetic modulator, and a first linker between the first active domain and the first domain of the pharmacokinetic modulator, wherein the first active domain is C-terminal to the first domain of the pharmacokinetic modulator; a second polypeptide chain, comprising a second domain of the pharmacokinetic modulator, an inhibitory polypeptide sequence capable of blocking an activity of the first active domain, and a second linker between the second domain of the pharmacokinetic modulator and the inhibitory polypeptide sequence; wherein the first linker comprises a protease-cleavable polypeptide sequence; and the first polypeptide chain or the second polypeptide chain further comprises at least one targeting sequence.


In some embodiments, the linker polypeptide comprises a first polypeptide chain comprising a first active domain, a first domain of a pharmacokinetic modulator, and a first linker between the first active domain and the first domain of the pharmacokinetic modulator, wherein the first active domain is N-terminal to the first domain of the pharmacokinetic modulator; a second polypeptide chain, comprising a second domain of the pharmacokinetic modulator, an inhibitory polypeptide sequence capable of blocking an activity of the first active domain, and a second linker between the second domain of the pharmacokinetic modulator and the inhibitory polypeptide sequence; wherein the first linker comprises a protease-cleavable polypeptide sequence; and the first polypeptide chain or the second polypeptide chain further comprises at least one targeting sequence.


A. Active Domain
1. Immunoglobulin Antigen-Binding Domain

In some embodiments, the first active domain comprises an immunoglobulin antigen-binding domain. In some embodiments, the second active domain comprises an immunoglobulin antigen-binding domain.


In some embodiments, the immunoglobulin antigen-binding domain comprises a VH region and a VL region. In some embodiments, the immunoglobulin antigen-binding domain comprises an Fv, scFv, Fab, or VHH. The immunoglobulin antigen-binding domain may be humanized or fully human.


In some embodiments, the immunoglobulin antigen-binding domain binds to one or more sequences selected from a cancer cell surface antigen sequence, a growth factor sequence, and a growth factor receptor sequence.


Under physiological conditions, cells receive signals from surrounding tissue in the form of growth factors. Growth factors can influence normal cell differentiation as well as constitutively activate growth-promoting pathways in cancer cells. The linker polypeptides disclosed herein may bind to growth factors to facilitate neutralization of the activity of the growth factor to at least some extent, e.g., in the vicinity of a tumor. Thus, the linker polypeptides disclosed here, through an immunoglobulin antigen-binding domain, can in some embodiments reduce the pro-growth signaling received by cancer cells and stromal cells, including fibroblast and endothelial cells, while also activating or recruiting immune cells to the tumor. In some embodiments, the immunoglobulin antigen-binding domain may also promote localization of linker polypeptides to tissues that specifically express particular growth factors or tissues that express particular growth factors in high amounts, e.g., in and around tumors.


Growth factor receptors are generally transmembrane proteins that bind to specific growth factors and transmit the instructions conveyed by the factors on the outside of a cell to intracellular space. In general, growth factor receptors comprise extracellular, transmembrane, and cytoplasmic domains. In some embodiments, the linker polypeptides disclosed here, through an immunoglobulin antigen-binding domain, can inhibit binding of a growth factor to the growth factor receptor. This may facilitate reduction of signaling by the growth factor to at least some extent, e.g., in the vicinity of a tumor.


In some embodiments, one or each of the first immunoglobulin antigen-binding domain and the second immunoglobulin antigen-binding domain of the linker polypeptide independently is configured to bind to a HER2 sequence. In some embodiments, one or each of the first immunoglobulin antigen-binding domain and the second immunoglobulin antigen-binding domain of the linker polypeptide independently comprises hypervariable regions (HVRs) HVR-1, HVR-2, and HVR-3 of a VH region comprising the amino acid sequence of SEQ ID NO: 910, and a VL region comprising HVR-1, HVR-2, and HVR-3 of a VL region comprising the amino acid sequence of SEQ ID NO: 909. In general, a person skilled in the art can identify the HVRs in VH and VL sequences, e.g., by assigning amino acids to framework and HVR domains within the VH and VL sequences in accordance with the definitions of Kabat et al. in Sequences of Proteins of Immunological Interest, 5th Ed., US Dept. of Health and Human Services, PHS, NIH, NIH Publication no. 91-3242, 1991. Other numbering systems for the amino acids in immunoglobulin chains include IMGT™ (international ImMunoGeneTics information system; Lefranc et al, Dev. Comp. Immunol. 29:185-203; 2005) and AHo (Honegger and Pluckthun, J. Mol. Biol. 309(3):657-670; 2001). In some embodiments, one or each of the first immunoglobulin antigen-binding domain and the second immunoglobulin antigen-binding domain independently comprises a VH region comprising the amino acid sequence of SEQ ID NO: 910; and a VL region comprising the amino acid sequence of SEQ ID NO: 909. In some embodiments, one or each of the first immunoglobulin antigen-binding domain and the second immunoglobulin antigen-binding domain independently comprises a sequence that has at least 80, 85, 90, 95, 97, 98, or 99 percent identity to the sequence of SEQ ID NO: 909 or 910. In some embodiments, one or each of the first immunoglobulin antigen-binding domain and the second immunoglobulin antigen-binding domain independently is an antigen-binding domain of trastuzumab.


In some embodiments, one or each of the first immunoglobulin antigen-binding domain and the second immunoglobulin antigen-binding domain of the linker polypeptide independently is configured to bind to an EGFR extracellular domain sequence. In some embodiments, each of the first immunoglobulin antigen-binding domain and the second immunoglobulin antigen-binding domain independently comprises a VH region comprising HVR-1, HVR-2, and HVR-3 of a VH region comprising the amino acid sequence of SEQ ID NO: 914, and a VL region comprising HVR-1, HVR-2, and HVR-3 of a VL region comprising the amino acid sequence of SEQ ID NO: 913. In general, a person skilled in the art can identify the HVRs in VH and VL sequences, e.g., by assigning amino acids to framework and HVR domains within the VH and VL sequences in accordance with the definitions of Kabat et al. in Sequences of Proteins of Immunological Interest, 5th Ed., US Dept. of Health and Human Services, PHS, NIH, NIH Publication no. 91-3242, 1991. Other numbering systems for the amino acids in immunoglobulin chains include IMGT™ (international ImMunoGeneTics information system; Lefranc et al, Dev. Comp. Immunol. 29:185-203; 2005) and AHo (Honegger and Pluckthun, J. Mol. Biol. 309(3):657-670; 2001). In some embodiments, one or each of the first immunoglobulin antigen-binding domain and the second immunoglobulin antigen-binding domain independently comprises a VH region comprising the amino acid sequence of SEQ ID NO: 914; and a VL region comprising the amino acid sequence of SEQ ID NO: 913. In some embodiments, one or each of the first immunoglobulin antigen-binding domain and the second immunoglobulin antigen-binding domain independently comprises a sequence that has at least 80, 85, 90, 95, 97, 98, or 99 percent identity to the sequence of SEQ ID NO: 913 or 914. In some embodiments, one or each of the first immunoglobulin antigen-binding domain and the second immunoglobulin antigen-binding domain is an antigen-binding domain of cetuximab.


In some embodiments, one or each of the first immunoglobulin antigen-binding domain and the second immunoglobulin antigen-binding domain of the linker polypeptide independently is configured to bind to a PD-1 extracellular domain sequence. In some embodiments, one or each of the first immunoglobulin antigen-binding domain and the second immunoglobulin antigen-binding domain independently comprises a VH region comprising HVR-1, HVR-2, and HVR-3 of a VH region comprising the amino acid sequence of SEQ ID NO: 917, and a VL region comprising HVR-1, HVR-2, and HVR-3 of a VL region comprising the amino acid sequence of SEQ ID NO: 918. In general, a person skilled in the art can identify the HVRs in VH and VL sequences, e.g., by assigning amino acids to framework and HVR domains within the VH and VL sequences in accordance with the definitions of Kabat et al. in Sequences of Proteins of Immunological Interest, 5th Ed., US Dept. of Health and Human Services, PHS, NIH, NIH Publication no. 91-3242, 1991. Other numbering systems for the amino acids in immunoglobulin chains include IMGT™ (international ImMunoGeneTics information system; Lefranc et al, Dev. Comp. Immunol. 29:185-203; 2005) and AHo (Honegger and Pluckthun, J. Mol. Biol. 309(3):657-670; 2001). In some embodiments, one or each of the first immunoglobulin antigen-binding domain and the second immunoglobulin antigen-binding domain independently comprises a VH region comprising the amino acid sequence of SEQ ID NO: 917; and a VL region comprising the amino acid sequence of SEQ ID NO: 918. In some embodiments, one or each of the first immunoglobulin antigen-binding domain and the second immunoglobulin antigen-binding domain independently comprises a sequence that has at least 80, 85, 90, 95, 97, 98, or 99 percent identity to the sequence of SEQ ID NO: 917 or 918. In some embodiments, one or each of the first immunoglobulin antigen-binding domain and the second immunoglobulin antigen-binding domain independently is an antigen-binding domain of nivolumab.


In some embodiments, one or each of the first immunoglobulin antigen-binding domain and the second immunoglobulin antigen-binding domain of the linker polypeptide independently is configured to bind to a PD-L1 extracellular domain sequence. In some embodiments, one or each of the first immunoglobulin antigen-binding domain and the second immunoglobulin antigen-binding domain independently comprises a VH region comprising HVR-1, HVR-2, and HVR-3 of a VH region comprising the amino acid sequence of SEQ ID NO: 921, and a VL region comprising HVR-1, HVR-2, and HVR-3 of a VL region comprising the amino acid sequence of SEQ ID NO: 922. In general, a person skilled in the art can identify the HVRs in VH and VL sequences, e.g., by assigning amino acids to framework and HVR domains within the VH and VL sequences in accordance with the definitions of Kabat et al. in Sequences of Proteins of Immunological Interest, 5th Ed., US Dept. of Health and Human Services, PHS, NIH, NIH Publication no. 91-3242, 1991. Other numbering systems for the amino acids in immunoglobulin chains include IMGT™ (international ImMunoGeneTics information system; Lefranc et al, Dev. Comp. Immunol. 29:185-203; 2005) and AHo (Honegger and Pluckthun, J. Mol. Biol. 309(3):657-670; 2001). In some embodiments, one or each of the first immunoglobulin antigen-binding domain and the second immunoglobulin antigen-binding domain independently comprises a VH region comprising the amino acid sequence of SEQ ID NO: 921; and a VL region comprising the amino acid sequence of SEQ ID NO: 922. In some embodiments, one or each of the first immunoglobulin antigen-binding domain and the second immunoglobulin antigen-binding domain independently comprises a sequence that has at least 80, 85, 90, 95, 97, 98, or 99 percent identity to the sequence of SEQ ID NO: 921 or 922. In some embodiments, one or each of the first immunoglobulin antigen-binding domain and the second immunoglobulin antigen-binding domain independently is an antigen-binding domain of atezolizumab.


In some embodiments, one or each of the first immunoglobulin antigen-binding domain and the second immunoglobulin antigen-binding domain of the linker poly peptide independently is configured to bind to a CD3 extracellular domain sequence. In some embodiments, one or each of the first immunoglobulin antigen-binding domain and the second immunoglobulin antigen-binding domain independently comprises a VH region comprising HVR-1, HVR-2, and HVR-3 of a VH region comprising the amino acid sequence of any one of SEQ ID NOs: 925, 929, 933, and 937, and a VL region comprising HVR-1, HVR-2, and HVR-3 of a VL region comprising the amino acid sequence of any one of SEQ ID NOs: 926, 930, 934, and 938. In general, a person skilled in the art can identify the HVRs in VH and VL sequences, e.g., by assigning amino acids to framework and HVR domains within the VH and VL sequences in accordance with the definitions of Kabat et al. in Sequences of Proteins of Immunological Interest, 5th Ed., US Dept. of Health and Human Services, PHS, NIH, NIH Publication no. 91-3242, 1991. Other numbering systems for the amino acids in immunoglobulin chains include IMGT™ (international ImMunoGeneTics information system; Lefranc et al, Dev. Comp. Immunol. 29:185-203; 2005) and AHo (Honegger and Pluckthun, J. Mol. Biol. 309(3):657-670; 2001). In some embodiments, one or each of the first immunoglobulin antigen-binding domain and the second immunoglobulin antigen-binding domain independently comprises a VH region comprising the amino acid sequence of any one of SEQ ID NOs: 925, 929, 933, and 937; and a VL region comprising the amino acid sequence of any one of SEQ ID NOs: 926, 930, 934, and 938. In some embodiments, one or each of the first immunoglobulin antigen-binding domain and the second immunoglobulin antigen-binding domain independently comprises a sequence that has at least 80, 85, 90, 95, 97, 98, or 99 percent identity to the sequence of any one of SEQ ID NOs: 925, 926, 929, 930, 933, 934, 937, and 938. In some embodiments, one or each of the first immunoglobulin antigen-binding domain and the second immunoglobulin antigen-binding domain independently is an antigen-binding domain of teplizumab, muromonab, otelixizumab, or visilizumab.


2. Receptor-Binding Domain

In some embodiments, the first active domain comprises a receptor-binding domain. The receptor-binding domain may comprise, for example, a cytokine polypeptide sequence.


The receptor-binding domain may be a wild-type receptor-binding domain or a sequence with one or more differences from the wild-type receptor-binding domain. In some embodiments, the receptor-binding domain is a human receptor-binding domain (which may be wild-type or may have one or more differences). In some embodiments, the receptor-binding domain comprises a modification to prevent disulfide bond formation, and optionally otherwise comprises wild-type sequence. In some embodiments, the receptor-binding domain has at least 80, 85, 90, 95, 97, 98, or 99 percent identity to the sequence of a wild-type receptor-binding domain or to a receptor-binding domain in Table 1. In some embodiments, the receptor-binding domain is a dimeric receptor-binding domain, e.g., a heterodimeric cytokine. In some embodiments, the receptor-binding domain is a homodimeric receptor-binding domain, e.g., a homodimeric cytokine. The monomers may be linked as a fusion protein, e.g., with a linker, or by a covalent bond (e.g., disulfide bond), or by a noncovalent interaction. In some embodiments, the receptor-binding domain is an interleukin polypeptide sequence. In some embodiments, the receptor-binding domain is capable of binding a receptor comprising CD132. In some embodiments, the receptor-binding domain is capable of binding a receptor comprising CD122. In some embodiments, the receptor-binding domain is capable of binding a receptor comprising CD25.


In some embodiments, the receptor-binding domain is an IL-2 polypeptide sequence. The IL-2 polypeptide sequence may be a wild-type IL-2 polypeptide sequence or a sequence with one or more differences from the wild-type IL-2 polypeptide sequence. In some embodiments, the IL-2 polypeptide sequence is a human IL-2 polypeptide sequence (which may be wild-type or may have one or more differences). In some embodiments, the IL-2 comprises a modification to prevent disulfide bond formation (e.g., the sequence of aldesleukin (marketed as Proleukin®), and optionally otherwise comprises wild-type sequence. In some embodiments, the IL-2 polypeptide sequence has at least 80, 85, 90, 95, 97, 98, or 99 percent identity to the sequence of a wild-type IL-2 polypeptide sequence or to an IL-2 polypeptide sequence in Table 1.


In some embodiments, the IL-2 polypeptide sequence comprises the sequence of any one of SEQ ID NOs: 1-4. In some embodiments, the IL-2 polypeptide sequence comprises the sequence of SEQ ID NO: 1. In some embodiments, the IL-2 polypeptide sequence comprises the sequence of SEQ ID NO: 2.


In some embodiments, the receptor-binding domain is an IL-10 polypeptide sequence. The IL-10 polypeptide sequence may be a wild-type IL-10 polypeptide sequence or a sequence with one or more differences from the wild-type IL-10 polypeptide sequence. In some embodiments, the IL-10 polypeptide sequence is a human IL-10 polypeptide sequence (which may be wild-type or may have one or more differences). In some embodiments, the IL-10 comprises a modification to prevent disulfide bond formation, and optionally otherwise comprises wild-type sequence. In some embodiments, the IL-10 polypeptide sequence has at least 80, 85, 90, 95, 97, 98, or 99 percent identity to the sequence of a wild-type IL-10 polypeptide sequence or to an IL-10 polypeptide sequence in Table 1. In some embodiments, the IL-10 polypeptide sequence comprises the sequence of SEQ ID NO: 900.


In some embodiments, the receptor-binding domain is an IL-15 polypeptide sequence. The IL-15 polypeptide sequence may be a wild-type IL-15 polypeptide sequence or a sequence with one or more differences from the wild-type IL-15 polypeptide sequence. In some embodiments, the IL-15 polypeptide sequence is a human IL-15 polypeptide sequence (which may be wild-type or may have one or more differences). In some embodiments, the IL-15 comprises a modification to prevent disulfide bond formation, and optionally otherwise comprises wild-type sequence. In some embodiments, the IL-15 polypeptide sequence has at least 80, 85, 90, 95, 97, 98, or 99 percent identity to the sequence of a wild-type IL-15 polypeptide sequence or to an IL-15 polypeptide sequence in Table 1. In some embodiments, the IL-15 polypeptide sequence comprises the sequence of SEQ ID NO: 901.


In some embodiments, the receptor-binding domain is an CXCL9 polypeptide sequence. The CXCL9 polypeptide sequence may be a wild-type CXCL9 polypeptide sequence or a sequence with one or more differences from the wild-type CXCL9 polypeptide sequence. In some embodiments, the CXCL9 polypeptide sequence is a human CXCL9 polypeptide sequence (which may be wild-type or may have one or more differences). In some embodiments, the CXCL9 comprises a modification to prevent disulfide bond formation, and optionally otherwise comprises wild-type sequence. In some embodiments, the CXCL9 polypeptide sequence has at least 80, 85, 90, 95, 97, 98, or 99 percent identity to the sequence of a wild-type CXCL9 polypeptide sequence or to an CXCL9 polypeptide sequence in Table 1. In some embodiments, the CXCL9 polypeptide sequence comprises the sequence of SEQ ID NO: 902.


In some embodiments, the receptor-binding domain is an CXCL10 polypeptide sequence. The CXCL10 polypeptide sequence may be a wild-type CXCL10 polypeptide sequence or a sequence with one or more differences from the wild-type CXCL10 polypeptide sequence. In some embodiments, the CXCL10 polypeptide sequence is a human CXCL10 polypeptide sequence (which may be wild-type or may have one or more differences). In some embodiments, the CXCL10 comprises a modification to prevent disulfide bond formation, and optionally otherwise comprises wild-type sequence. In some embodiments, the CXCL10 polypeptide sequence has at least 80, 85, 90, 95, 97, 98, or 99 percent identity to the sequence of a wild-type CXCL10 polypeptide sequence or to an CXCL10 polypeptide sequence in Table 1. In some embodiments, the CXCL10 polypeptide sequence comprises the sequence of SEQ ID NO: 903.


3. Size of Active Domain

In some embodiments, a molecular weight of one or each of the first active domain and the second active domain independently is about or less than 14 kDa. In some embodiments, the molecular weight is about 12 kDa to about 14 kDa. In some embodiments, the molecular weight is about 10 kDa to about 12 kDa. In some embodiments, the molecular weight is about 8 kDa to about 10 kDa. In some embodiments, the molecular weight is about 6 kDa to about 8 kDa. In some embodiments, the molecular weight is about 4 kDa to about 6 kDa. In some embodiments, the molecular weight is about 2 kDa to about 4 kDa. In some embodiments, the molecular weight is about 800 Da to about 2 kDa.


In some embodiments, the molecular weight of one or each of the first active domain and the second active domain independently is about or greater than 16 kDa. In some embodiments, the molecular weight is about 16 kDa to about 18 kDa. In some embodiments, the molecular weight is about 18 kDa to about 20 kDa. In some embodiments, the molecular weight is about 20 kDa to about 22 kDa. In some embodiments, the molecular weight is about 22 kDa to about 24 kDa. In some embodiments, the molecular weight is about 24 kDa to about 26 kDa. In some embodiments, the molecular weight is about 26 kDa to about 28 kDa. In some embodiments, the molecular weight is about 28 kDa to about 30 kDa. In some embodiments, the molecular weight is about 30 kDa to about 50 kDa. In some embodiments, the molecular weight is about 50 kDa to about 100 kDa. In some embodiments, the molecular weight is about 100 kDa to about 150 kDa. In some embodiments, the molecular weight is about 150 kDa to about 200 kDa. In some embodiments, the molecular weight is about 200 kDa to about 250 kDa. In some embodiments, the molecular weight is about 250 kDa to about 300 kDa.


B. Inhibitory Polypeptide Sequence

In some embodiments, the linker polypeptide comprises an inhibitory polypeptide sequence capable of blocking an activity of an active domain, such as a receptor-binding domain. In some embodiments, the linker polypeptide further comprises a second linker between the receptor-binding domain and the inhibitory polypeptide sequence, the second linker comprising a protease-cleavable polypeptide sequence.


Various types of inhibitory polypeptide sequences may be used in a linker polypeptide according to the disclosure. In some embodiments, the inhibitory polypeptide sequence is a sequence that binds the active domain, such as a ligand-binding domain from a receptor, or an immunoglobulin domain. In some embodiments, the inhibitory polypeptide sequence is a steric blocker, i.e., a sequence that sterically obstructs the active domain. For example, a steric blocker can be an immunoglobulin Fc region, an albumin domain, or other relatively inert domain, which can be placed in proximity to the active domain to render it less accessible until the active domain is liberated from the inhibitory polypeptide sequence by cleavage. In some embodiments, the inhibitory polypeptide sequence interferes with binding between the first active domain and a receptor of the first active domain and/or with binding between the second active domain and a receptor of the second active domain. In some embodiments, the inhibitory polypeptide sequence and the pharmacokinetic modulator are different elements of the linker polypeptide. In some embodiments, the inhibitory polypeptide sequence comprises at least a portion of the pharmacokinetic modulator.


In some embodiments, the inhibitory polypeptide sequence comprises a cytokine-binding domain. The cytokine-binding domain may be the cytokine-binding domain of a cytokine receptor. The cytokine-binding domain of a cytokine receptor may be provided as an extracellular portion of the cytokine receptor or a portion thereof sufficient to bind the cytokine polypeptide sequence of the linker polypeptide. In some embodiments, the inhibitory polypeptide sequence has at least 80, 85, 90, 95, 97, 98, or 99 percent identity to the sequence of a wild-type cytokine-binding domain of a cytokine receptor, e.g., a wild-type cytokine-binding domain of a human cytokine receptor.


The cytokine-binding domain may be a fibronectin cytokine-binding domain. In some embodiments, the inhibitory polypeptide sequence has at least 80, 85, 90, 95, 97, 98, or 99 percent identity to the sequence of a wild-type fibronectin cytokine-binding domain of a cytokine receptor, e.g., a wild-type human fibronectin cytokine-binding domain.


In some embodiments, the inhibitory polypeptide sequence comprises an amino acid sequence having at least 80, 85, 90, 95, 97, 98, or 99 percent identity to the sequence of any one of SEQ ID NOs: 10-29, 40-51, 747, 748 and 749, 850-856, 939, 940, 941 and 945, 950 and 952, 953, 954 and 955, 956, 957 and 958, 959, 960 and 961, 962, 963 and 964, 965, 966 and 967, 968, 969 and 970, 971, 972 and 973, 974, 975 and 976, 977, 978 and 979, 980, 981 and 982, 983, 984 and 985, 986, 987 and 988, 989, 990, 991 and 992, 999 and 1000, 1001, 1002, 1003 and 1004, 1005, 1006, 1008 and 1010 (where pairs of SEQ ID NOs linked by “and” indicate a VH and VL pair that together can form an inhibitory polypeptide sequence, e.g., as separate chains or as a single chain joined by a linker). In some embodiments, the inhibitory polypeptide sequence comprises an amino acid sequence having at least 80, 85, 90, 95, 97, 98, or 99 percent identity to the sequence of SEQ ID NO: 1011 or 1012. In some embodiments, the inhibitory polypeptide sequence comprises an amino acid sequence having at least 80, 85, 90, 95, 97, 98, or 99 percent identity to the sequence of any one of SEQ ID NOs: 1016-1019. In some embodiments, the inhibitory polypeptide sequence comprises an amino acid sequence having at least 80, 85, 90, 95, 97, 98, or 99 percent identity to the sequence of SEQ ID NO: 1020, 1021, or 1023. In any of the foregoing embodiments, the VH and VL domains may comprise CDRs identical to the CDRs of the referenced SEQ ID NO(s). CDRs may be identified by any appropriate method, such as that of Kabat (as described in Kabat et al., (5th Ed. 1991) Sequences of Proteins of Immunological Interest, available at books.google.co.uk/books?id=3jMvZYW2ZtwC&lpg=PA1137-IA1&pg=PP1#v=onepage&q&f=false) or Chothia (as described in Al-Lazikani et al., (1997) JMB 273, 927-948). In some embodiments, the inhibitory polypeptide sequence comprises VH and VL domains comprising the CDRs of any of SEQ ID NO: 747, 748 and 749, 939, 940, 941 and 945, 950 and 952, 953, 954 and 955, 956, 957 and 958, 959, 960 and 961, 962, 963 and 964, 965, 966 and 967, 968, 969 and 970, 971, 972 and 973, 974, 975 and 976, 977, 978 and 979, 980, 981 and 982, 983, 984 and 985, 986, 987 and 988, 989, 990, 991 and 992, 999 and 1000, 1001, 1002, 1003 and 1004, 1005, 1006, 1008 and 1010. In some embodiments, the inhibitory polypeptide sequence comprises the sequence of any of SEQ ID NO: 747, 748 and 749, 939, 940, 941 and 945, 950 and 952, 953, 954 and 955, 956, 957 and 958, 959, 960 and 961, 962, 963 and 964, 965, 966 and 967, 968, 969 and 970, 971, 972 and 973, 974, 975 and 976, 977, 978 and 979, 980, 981 and 982, 983, 984 and 985, 986, 987 and 988, 989, 990, 991 and 992, 999 and 1000, 1001, 1002, 1003 and 1004, 1005, 1006, 1008 and 1010.


In some embodiments, the inhibitory polypeptide sequence comprises an amino acid sequence having at least 80, 85, 90, 95, 97, 98, or 99 percent identity to the sequence of any one of SEQ ID NOs: 850-856 and 863-870. In any of the foregoing embodiments, the VHH domain may comprise CDRs identical to the CDRs of any one of SEQ ID NOs: 850-856 and 863-870. In some embodiments, the inhibitory polypeptide sequence comprises a VHH comprising the CDRs of any one of SEQ ID NOs: 850-856 and 863-870. In some embodiments, the inhibitory polypeptide sequence comprises the sequence of any one of SEQ ID NOs: 850-856 and 863-870.


In some embodiments, the cytokine-binding domain may be an immunoglobulin cytokine-binding domain. In some embodiments, the immunoglobulin cytokine-binding domain comprises a VH region and a VL region that bind the cytokine. In some embodiments, the immunoglobulin cytokine-binding domain may be an Fv, scFv, Fab, VHH, or other immunoglobulin sequence having antigen-binding activity for the cytokine polypeptide sequence. A VHH antibody (or nanobody) is an antigen binding fragment of a heavy chain only antibody.


Additional examples of inhibitory polypeptide sequences that may be provided to inhibit the cytokine polypeptide sequence of the linker polypeptide are anticalins, affilins, affibody molecules, affimers, affitins, alphabodies, avimers, DARPins, fynomers, kunitz domain peptides, monobodies, and binding domains based on other engineered scaffolds such as SpA, GroEL, lipocallin and CTLA4 scaffolds.


In linker polypeptides comprising an IL-2 polypeptide sequence, the inhibitory polypeptide sequence may be an IL-2 inhibitory polypeptide sequence of any of the types described above. In some embodiments, the IL-2 inhibitory polypeptide sequence is an immunoglobulin IL-2 inhibitory polypeptide sequence.


In some embodiments, the IL-2 inhibitory polypeptide sequence comprises an anti-IL-2 antibody or a functional fragment thereof. In some embodiments, the inhibitory polypeptide sequence comprises an IL-2-binding immunoglobulin domain. In some embodiments, the IL-2-binding immunoglobulin domain is a human IL-2-binding immunoglobulin domain.


In some embodiments, the IL-2-binding immunoglobulin domain is an scFv. In some embodiments, the IL-2-binding immunoglobulin domain comprises a set of six anti-IL-2 hypervariable regions (HVRs) set forth in Table 1 (e.g., SEQ ID NOs: 34-39 or 750-755). In some embodiments, the IL-2-binding immunoglobulin domain comprises a set of anti-IL-2 VH and VL regions comprising sequences having at least 80, 85, 90, 95, 97, 98, or 99 percent identity to the sequence of a set of anti-IL-2 VH and VL regions comprising sequences set forth in Table 1, either as individual sequences or as part of an scFv. In some embodiments, an IL-2-binding immunoglobulin domain comprises a set of anti-IL-2 VH and VL regions having the sequence of a set of anti-IL-2 VH and VL sequences set forth in Table 1, either as individual sequences or as part of an scFv.


Exemplary IL-2 inhibitory polypeptide sequences include SEQ ID NOs: 10-31, 40-51, 747, and 850-856, and a combination of SEQ ID NOs: 32 and 33 or a combination of SEQ ID NOs: 748 and 749. In some embodiments, the IL-2 inhibitory polypeptide sequence comprises an IL-2-binding immunoglobulin domain, which comprises a VH region comprising an amino acid sequence having at least 80, 85, 90, 95, 97, 98, or 99 percent identity to the sequence of SEQ ID NO: 33 and a VL region comprising an amino acid sequence having at least 80, 85, 90, 95, 97, 98, or 99 percent identity to the sequence of SEQ ID NO: 32. In some embodiments, the IL-2-binding immunoglobulin domain comprises a VH region comprising the sequence of SEQ ID NO: 33 and a VL region comprising the sequence of SEQ ID NO: 32.


In some embodiments, the IL-2-binding immunoglobulin domain comprises a VH region comprising hypervariable regions HVR-1, HVR-2, and HVR-3 having the sequences of SEQ ID NOs: 37, 38, and 39, respectively, and a VL region comprising HVR-1, HVR-2, and HVR-3 having the sequences of SEQ ID NOs: 34, 35, and 36, respectively. In some embodiments, the IL-2-binding immunoglobulin domain comprises an amino acid sequence having at least 80, 85, 90, 95, 97, 98, or 99 percent identity to the sequence of SEQ ID NO: 30 or 31. In some embodiments, the IL-2-binding immunoglobulin domain comprises the sequence of SEQ ID NO: 30 or 31.


In some embodiments, the inhibitory polypeptide sequence comprises an IL-2 binding domain of an IL-2 receptor (IL-2R). In some embodiments, the IL-2R is a human IL-2R.


In linker polypeptides comprising an IL-10 polypeptide sequence, the inhibitory polypeptide sequence may be an IL-10 inhibitory polypeptide sequence of any of the types described above. In some embodiments, the IL-10 inhibitory polypeptide sequence is an immunoglobulin IL-10 inhibitory polypeptide sequence.


In some embodiments, the IL-10 inhibitory polypeptide sequence comprises an anti-IL-10 antibody or a functional fragment thereof. In some embodiments, the inhibitory polypeptide sequence comprises an IL-10-binding immunoglobulin domain. In some embodiments, the IL-10-binding immunoglobulin domain is a human IL-10-binding immunoglobulin domain.


In some embodiments, the IL-10-binding immunoglobulin domain is an scFv. In some embodiments, the IL-10-binding immunoglobulin domain comprises a set of six anti-IL-10 hypervariable regions (HVRs) set forth in Table 1 (e.g., SEQ ID NOs: 942-944 and 946-948). In some embodiments, the IL-10-binding immunoglobulin domain comprises a set of anti-IL-10 VH and VL regions comprising sequences having at least 80, 85, 90, 95, 97, 98, or 99 percent identity to the sequence of a set of anti-IL-10 VH and VL regions comprising sequences set forth in Table 1, either as individual sequences or as part of an scFv. In some embodiments, an IL-10-binding immunoglobulin domain comprises a set of anti-IL-10 VH and VL regions having the sequence of a set of anti-IL-10 VH and VL sequences set forth in Table 1, either as individual sequences or as part of an scFv.


Exemplary IL-10 inhibitory polypeptide sequences include SEQ ID NOs: 939-948, 1011, and 1012. In some embodiments, the IL-10 inhibitory polypeptide sequence comprises an IL-10-binding immunoglobulin domain, which comprises a VH region comprising an amino acid sequence having at least 80, 85, 90, 95, 97, 98, or 99 percent identity to the sequence of SEQ ID NO: 945 and a VL region comprising an amino acid sequence having at least 80, 85, 90, 95, 97, 98, or 99 percent identity to the sequence of SEQ ID NO: 941. In some embodiments, the IL-10-binding immunoglobulin domain comprises a VH region comprising the sequence of SEQ ID NO: 945 and a VL region comprising the sequence of SEQ ID NO: 941.


In some embodiments, the IL-10-binding immunoglobulin domain comprises a VH region comprising hypervariable regions HVR-1, HVR-2, and HVR-3 having the sequences of SEQ ID NOs: 946, 947, and 948, respectively, and a VL region comprising HVR-1, HVR-2, and HVR-3 having the sequences of SEQ ID NOs: 942, 943, and 944, respectively. In some embodiments, the IL-10-binding immunoglobulin domain comprises an amino acid sequence having at least 80, 85, 90, 95, 97, 98, or 99 percent identity to the sequence of SEQ ID NO: 939 or 940. In some embodiments, the IL-10-binding immunoglobulin domain comprises the sequence of SEQ ID NO: 939 or 940.


In some embodiments, the inhibitory polypeptide sequence comprises an IL-10 binding domain of an IL-10 receptor (IL-10R). In some embodiments, the IL-10R is a human IL-10R.


In linker polypeptides comprising an IL-15 polypeptide sequence, the inhibitory polypeptide sequence may be an IL-15 inhibitory polypeptide sequence of any of the types described above. In some embodiments, the IL-15 inhibitory polypeptide sequence is an immunoglobulin IL-15 inhibitory polypeptide sequence.


In some embodiments, the IL-15 inhibitory polypeptide sequence comprises an anti-IL-15 antibody or a functional fragment thereof. In some embodiments, the inhibitory polypeptide sequence comprises an IL-15-binding immunoglobulin domain. In some embodiments, the IL-15-binding immunoglobulin domain is a human IL-15-binding immunoglobulin domain.


In some embodiments, the IL-15-binding immunoglobulin domain is an scFv. In some embodiments, the IL-15-binding immunoglobulin domain comprises a VH region comprising HVR-1, HVR-2, and HVR-3 of a VH region comprising the amino acid sequence of any one of SEQ ID NOs: 950, 955, 957, 960, 963, 966, 969, 972, 975, 978, 981, 985, and 988, and a VL region comprising HVR-1, HVR-2, and HVR-3 of a VL region comprising the amino acid sequence of any one of SEQ ID NOs: 952, 954, 958, 961, 964, 967, 970, 973, 976, 979, 982, 984, and 987. In general, a person skilled in the art can identify the HVRs in VH and VL sequences, e.g., by assigning amino acids to framework and HVR domains within the VH and VL sequences in accordance with the definitions of Kabat et al. in Sequences of Proteins of Immunological Interest, 5th Ed., US Dept. of Health and Human Services, PHS, NIH, NIH Publication no. 91-3242, 1991. Other numbering systems for the amino acids in immunoglobulin chains include IMGT™ (international ImMunoGeneTics information system; Lefranc et al, Dev. Comp. Immunol. 29:185-203; 2005) and AHo (Honegger and Pluckthun, J. Mol. Biol. 309(3):657-670; 2001). In some embodiments, the IL-15-binding immunoglobulin domain comprises a set of anti-IL-15 VH and VL regions comprising sequences having at least 80, 85, 90, 95, 97, 98, or 99 percent identity to the sequence of a set of anti-IL-15 VH and VL regions comprising sequences set forth in Table 1, either as individual sequences or as part of an scFv. In some embodiments, an IL-15-binding immunoglobulin domain comprises a set of anti-IL-15 VH and VL regions having the sequence of a set of anti-IL-15 VH and VL sequences set forth in Table 1, either as individual sequences or as part of an scFv.


Exemplary IL-15 inhibitory polypeptide sequences include SEQ ID NOs: 953, 956, 959, 962, 965, 968, 971, 974, 977, 980, 983, and 986. In some embodiments, the IL-15 inhibitory polypeptide sequence comprises an IL-15-binding immunoglobulin domain, which comprises a VH region comprising an amino acid sequence having at least 80, 85, 90, 95, 97, 98, or 99 percent identity to any one of SEQ ID NOs: 950, 955, 957, 960, 963, 966, 969, 972, 975, 978, 981, 985, and 988 and a VL region comprising an amino acid sequence having at least 80, 85, 90, 95, 97, 98, or 99 percent identity to the any one of SEQ ID NOs: 952, 954, 958, 961, 964, 967, 970, 973, 976, 979, 982, 984, and 987. In some embodiments, the IL-15-binding immunoglobulin domain comprises a VH region comprising the sequence of any one of SEQ ID NOs: 950, 955, 957, 960, 963, 966, 969, 972, 975, 978, 981, 985, and 988 and a VL region comprising the sequence of any one of SEQ ID NOs: 952, 954, 958, 961, 964, 967, 970, 973, 976, 979, 982, 984, and 987.


In some embodiments, the inhibitory polypeptide sequence comprises an IL-15 binding domain of an IL-15 receptor (IL-15R). In some embodiments, the IL-15R is a human IL-15R.


In linker polypeptides comprising an CXCL9 polypeptide sequence, the inhibitory polypeptide sequence may be an CXCL9 inhibitory polypeptide sequence of any of the types described above. In some embodiments, the CXCL9 inhibitory polypeptide sequence is an immunoglobulin CXCL9 inhibitory polypeptide sequence.


In some embodiments, the CXCL9 inhibitory polypeptide sequence comprises an anti-CXCL9 antibody or a functional fragment thereof. In some embodiments, the inhibitory polypeptide sequence comprises an CXCL9-binding immunoglobulin domain. In some embodiments, the CXCL9-binding immunoglobulin domain is a human CXCL9-binding immunoglobulin domain.


Exemplary CXCL9 inhibitory polypeptide sequences include SEQ ID NOs: 1020-1021. In some embodiments, the inhibitory polypeptide sequence comprises an CXCL9 binding domain of an CXCL9 receptor (CXCR3). In some embodiments, the CXCR3 is a human CXCR3.


In linker polypeptides comprising an CXCL10 polypeptide sequence, the inhibitory polypeptide sequence may be an CXCL10 inhibitory polypeptide sequence of any of the types described above. In some embodiments, the CXCL10 inhibitory polypeptide sequence is an immunoglobulin CXCL10 inhibitory polypeptide sequence.


In some embodiments, the CXCL10 inhibitory polypeptide sequence comprises an anti-CXCL10 antibody or a functional fragment thereof. In some embodiments, the inhibitory polypeptide sequence comprises an CXCL10-binding immunoglobulin domain. In some embodiments, the CXCL10-binding immunoglobulin domain is a human CXCL10-binding immunoglobulin domain.


In some embodiments, the CXCL10-binding immunoglobulin domain is an scFv. In some embodiments, the CXCL10-binding immunoglobulin domain comprises a set of six anti-CXCL10 hypervariable regions (HVRs) set forth in Table 1 (e.g., SEQ ID NOs: 993-998). In some embodiments, the CXCL10-binding immunoglobulin domain comprises a set of anti-CXCL10 VH and VL regions comprising sequences having at least 80, 85, 90, 95, 97, 98, or 99 percent identity to the sequence of a set of anti-CXCL10 VH and VL regions comprising sequences set forth in Table 1, either as individual sequences or as part of an scFv. In some embodiments, a CXCL10-binding immunoglobulin domain comprises a set of anti-CXCL10 VH and VL regions having the sequence of a set of anti-CXCL10 VH and VL sequences set forth in Table 1, either as individual sequences or as part of an scFv.


Exemplary CXCL10 inhibitory polypeptide sequences include SEQ ID NOs: 989 and 990. In some embodiments, the CXCL10 inhibitory polypeptide sequence comprises an CXCL10-binding immunoglobulin domain, which comprises a VH region comprising an amino acid sequence having at least 80, 85, 90, 95, 97, 98, or 99 percent identity to the sequence of SEQ ID NO: 991 and a VL region comprising an amino acid sequence having at least 80, 85, 90, 95, 97, 98, or 99 percent identity to the sequence of SEQ ID NO: 992. In some embodiments, the CXCL10-binding immunoglobulin domain comprises a VH region comprising the sequence of SEQ ID NO: 991 and a VL region comprising the sequence of SEQ ID NO: 992.


In some embodiments, the CXCL10-binding immunoglobulin domain comprises a VH region comprising hypervariable regions HVR-1, HVR-2, and HVR-3 having the sequences of SEQ ID NOs: 993, 994, and 995, respectively, and a VL region comprising HVR-1, HVR-2, and HVR-3 having the sequences of SEQ ID NOs: 996, 997, and 998, respectively. In some embodiments, the CXCL10-binding immunoglobulin domain comprises an amino acid sequence having at least 80, 85, 90, 95, 97, 98, or 99 percent identity to the sequence of SEQ ID NO: 989 or 990. In some embodiments, the CXCL10-binding immunoglobulin domain comprises the sequence of SEQ ID NO: 989 or 990.


In some embodiments, the inhibitory polypeptide sequence comprises an CXCL10 binding domain of an CXCL10 receptor (CXCR3). In some embodiments, the CXCR3 is a human CXCR3.


C. Linker

A variety of linkers may be used in accordance with the present disclosure. In many embodiments, a linker may be used to connect any two domains in a linker polypeptide. In some embodiments, a linker polypeptide comprises one linker. In other embodiments, a linker polypeptide may comprise two or more linkers. In some embodiments, a first linker exists between a pharmacokinetic modulator and a first active domain. In some embodiments, a second linker exists between a receptor-binding domain and an inhibitory polypeptide sequence. In some embodiments, the first linker and/or the second linker comprises a protease-cleavable polypeptide sequence. In some embodiments, after the protease-cleavable polypeptide sequence is cleaved, the first active domain and/or the second active domain is released from the remainder of the linker polypeptide. In some embodiments, the linker polypeptide comprises a plurality of protease-cleavable polypeptide sequences.


In these embodiments, different linkers may be used to provide different release properties for different linked domains. For example, a linker for releasing a target binding domain, such as an immunoglobulin antigen-binding domain, may differ from a linker for releasing a receptor-binding domain, such as a cytokine polypeptide sequence. A linker may comprise any of the exemplary linker sequences disclosed herein, e.g., in Table 1.


1. Protease-Cleavable Sequence

The protease-cleavable sequence may comprise a sequence cleavable and/or recognized by various types of proteases, e.g., a metalloprotease, a serine protease, a cysteine protease, an aspartate protease, a threonine protease, a glutamate protease, a gelatinase, an asparagine peptide lyase, a cathepsin, a kallikrein, a plasmin, a collagenase, a hK1, a hK10, a hK15, a stromelysin, a Factor Xa, a chymotrypsin-like protease, a trypsin-like protease, a elastase-like protease, a subtilisin-like protease, an actinidain, a bromelain, a calpain, a caspase, a Mir 1-CP, a papain, a HIV-1 protease, a HSV protease, a CMV protease, a chymosin, a renin, a pepsin, a matriptase, a legumain, a plasmepsin, a nepenthesin, a metalloexopeptidase, a metalloendopeptidase, an ADAM 10, an ADAM 17, an ADAM 12, an urokinase plasminogen activator (uPA), an enterokinase, a prostate-specific target (PSA, hK3), an interleukin-1b converting enzyme, a thrombin, a FAP (FAP-a), a dipeptidyl peptidase, or dipeptidyl peptidase IV (DPPIV/CD26), a type II transmembrane serine protease (TTSP), a neutrophil elastase, a proteinase 3, a mast cell chymase, a mast cell tryptase, or a dipeptidyl peptidase. In some embodiments, the protease-cleavable sequence comprises a sequence of any one of those in Table 1 (e.g., SEQ ID NOs: 80-94 and 701-742), or a variant having one or two mismatches relative to a sequence of any one of those in Table 1 (e.g., SEQ ID NOs: 80-90 and 701-742). Proteases generally do not require an exact copy of the recognition sequence, and as such, the exemplary sequences may be varied at one or more portions of their amino acid positions. In some embodiments, the protease-cleavable sequence comprises a sequence that matches an MMP consensus sequence, such as any one of SEQ ID NOs: 91-94.


One skilled in the art will be familiar with additional sequences recognized by these types of proteases.


i. Matrix Metalloprotease-Cleavable Sequence


In some embodiments, the protease-cleavable sequence is a matrix metalloprotease (MMP)-cleavable sequence and is recognized by a matrix metalloprotease. Exemplary MMP-cleavable sequences are provided in Table 1. In some embodiments, the MMP-cleavable sequence is cleavable and/or recognized by a plurality of MMPs and/or one or more of MMP-1, MMP-2, MMP-3, MMP-7, MMP-8, MMP-9, MMP-12, MMP-13, and/or MMP-14. In some embodiments, the protease-cleavable polypeptide sequence is cleavable and/or recognized by two, three, four, five, six, or seven of MMP-2, MMP-7, MMP-8, MMP-9, MMP-12, MMP-13, and MMP-14. Table 1, e.g., SEQ ID NOs: 80-90, provides exemplary MMP-cleavable sequences.


In some embodiments, the protease-cleavable polypeptide sequence comprises a sequence of any one of SEQ ID NO: 80-90. In some embodiments, the protease-cleavable polypeptide sequence comprises the sequence of SEQ ID NO: 80 or a variant sequence having one or two mismatches relative thereto. In some embodiments, the protease-cleavable polypeptide sequence comprises the sequence of SEQ ID NO: 81 or a variant sequence having one or two mismatches relative thereto. In some embodiments, the protease-cleavable polypeptide sequence comprises the sequence of SEQ ID NO: 82 or a variant sequence having one or two mismatches relative thereto. In some embodiments, the protease-cleavable polypeptide sequence comprises the sequence of SEQ ID NO: 83 or a variant sequence having one or two mismatches relative thereto. In some embodiments, the protease-cleavable polypeptide sequence comprises the sequence of SEQ ID NO: 84 or a variant sequence having one or two mismatches relative thereto. In some embodiments, the protease-cleavable polypeptide sequence comprises the sequence of SEQ ID NO: 85 or a variant sequence having one or two mismatches relative thereto. In some embodiments, the protease-cleavable polypeptide sequence comprises the sequence of SEQ ID NO: 86 or a variant sequence having one or two mismatches relative thereto. In some embodiments, the protease-cleavable polypeptide sequence comprises the sequence of SEQ ID NO: 87 or a variant sequence having one or two mismatches relative thereto. In some embodiments, the protease-cleavable polypeptide sequence comprises the sequence of SEQ ID NO: 88 or a variant sequence having one or two mismatches relative thereto. In some embodiments, the protease-cleavable polypeptide sequence comprises the sequence of SEQ ID NO: 89 or a variant sequence having one or two mismatches relative thereto. In some embodiments, the protease-cleavable polypeptide sequence comprises the sequence of SEQ ID NO: 90 or a variant sequence having one or two mismatches relative thereto. In some embodiments, the protease-cleavable polypeptide sequence comprises the sequence of SEQ ID NO: 91 or a variant sequence having one or two mismatches relative thereto. In some embodiments, the protease-cleavable polypeptide sequence comprises the sequence of SEQ ID NO: 92 or a variant sequence having one or two mismatches relative thereto. In some embodiments, the protease-cleavable polypeptide sequence comprises the sequence of SEQ ID NO: 93 or a variant sequence having one or two mismatches relative thereto. In some embodiments, the protease-cleavable polypeptide sequence comprises the sequence of SEQ ID NO: 94 or a variant sequence having one or two mismatches relative thereto.


D. Targeting Sequence

In some embodiments, the linker polypeptide comprises a first targeting sequence and/or a second targeting sequence. In some embodiments, the first targeting sequence and/or the second targeting sequence is between a receptor-binding domain and a protease-cleavable polypeptide sequence or one of a plurality of protease-cleavable polypeptide sequences. In some embodiments, at least one of the first linker and the second linker comprises a targeting sequence, e.g., one of the first targeting sequence and the second targeting sequence, at least one targeting sequence, one of a first plurality of targeting sequences, one of a second plurality of targeting sequences, or one of a plurality of targeting sequences. In some embodiments, the protease-cleavable polypeptide sequence comprises a targeting sequence, e.g., one of the first targeting sequence and the second targeting sequence, the at least one targeting sequence, one of the first plurality of targeting sequences, one of the second plurality of targeting sequences, or one of the plurality of targeting sequences.


In some embodiments, one or each of the first targeting sequence and the second targeting sequence, one or each of the at least one targeting sequence, one or each of the first plurality of targeting sequences, one or each of the second plurality of targeting sequences, or one or each of the plurality of targeting sequences increases a serum half-life of the linker polypeptide. In general, an increase in serum half-life may be relative, e.g., to the serum half-life of a linker polypeptide that lacks one or each of the first targeting sequence and the second targeting sequence, one or each of the at least one targeting sequence, one or each of the first plurality of targeting sequences, one or each of the second plurality of targeting sequences, or one or each of the plurality of targeting sequences. In some embodiments, one or each of the first targeting sequence and the second targeting sequence, one or each of the at least one targeting sequence, one or each of the first plurality of targeting sequences, one or each of the second plurality of targeting sequences, or one or each of the plurality of targeting sequences synergistically increases a serum half-life of the linker polypeptide together with another one of the first targeting sequence and the second targeting sequence, another one of the at least one targeting sequence, another one of the first plurality of targeting sequences, another one of the second plurality of targeting sequences, or another one of the plurality of targeting sequences. In some embodiments, one or each of the first targeting sequence and the second targeting sequence, one or each of the at least one targeting sequence, one or each of the first plurality of targeting sequences, one or each of the second plurality of targeting sequences, or one or each of the plurality of targeting sequences synergistically increases a serum half-life of the linker polypeptide together with the pharmacokinetic modulator. In some embodiments, one or each of the first targeting sequence and the second targeting sequence, one or each of the at least one targeting sequence, one or each of the first plurality of targeting sequences, one or each of the second plurality of targeting sequences, or one or each of the plurality of targeting sequences independently increases a serum half-life of the linker polypeptide.


Serum half-life may be measured, for example, by measuring serum levels of the linker polypeptide over time after administration of the linker polypeptide. In some embodiments, any one of the above targeting sequences may independently increase the serum half-life of the linker polypeptide when the serum half-life is greater than a serum half-life of a linker polypeptide that lacks the one targeting sequence but that is otherwise identical to the linker polypeptide, and when the increase is independent of any other increase derived from another targeting sequence. In some embodiments, any one of the above targeting sequences may synergistically increase the serum half-life of the linker polypeptide together with the other one of the targeting sequences or with the pharmacokinetic modulator when the increase in serum half-life is greater than the sum of the increase derived from the one targeting sequence and the increase derived from the other one of the targeting sequences, or than the sum of the increase derived from the one targeting sequence and the increase derived from the pharmacokinetic modulator.


The targeting sequence may facilitate localization, accumulation, and/or retention of the linker polypeptide and/or the first active domain and/or the second active domain (e.g., after proteolysis of the protease-cleavable sequence) in an area of interest, e.g., a tumor microenvironment (TME). The targeting sequence may be a sequence that binds an extracellular matrix component. Exemplary extracellular matrix components may include, for example, a collagen or denatured collagen (in either case, the collagen may be collagen I, II, III, or IV), poly(I), von Willebrand factor, IgB (CD79b), a heparin, a heparan sulfate, a sulfated glycoprotein, or hyaluronic acid. In some embodiments, the extracellular matrix component is hyaluronic acid, a heparin, a heparan sulfate, or a sulfated glycoprotein.


In some embodiments, the targeting sequence binds a target other than an extracellular matrix component. In some embodiments, the targeting sequence binds one or more of IgB (CD79b), a fibronectin, an integrin, a cadherin, a heparan sulfate proteoglycan, and a syndecan. In some embodiments, the targeting sequence binds at least one integrin, such as one or more of α1β1 integrin, α2β1 integrin, α3β1 integrin, α4β1 integrin, α5β1 integrin, α6β1 integrin, α7β1 integrin, α9β1 integrin, α4β7 integrin, αvβ integrin, αvβ5 integrin, αIIbβ3 integrin, αIIIbβ3 integrin, αMβ2 integrin, or αIIbβ3 integrin. In some embodiments, the targeting sequence binds at least one syndecan, such as one of more of syndecan-1, syndecan-4, and syndecan-2(w). Linker polypeptides comprising such targeting sequences may also comprise an MMP-cleavable linker as set forth elsewhere herein, such as an MMP-cleavable linker comprising any one of SEQ ID NOs: 80-90, or a variant having one or two mismatches relative to the sequence of any one of SEQ ID NOs: 80-90.


In some embodiments, the targeting sequence comprises a sequence set forth in Table 2 (e.g., any one of SEQ ID NOs: 179-665, such as SEQ ID NOs: 179-640), or a variant having one or two mismatches relative to such a sequence.


In some embodiments that include a first targeting sequence and a second targeting sequence, the first targeting sequence is configured to bind to heparin and the second targeting sequence is configured to bind to heparin, wherein the first targeting sequence is configured to bind to collagen IV and the second targeting sequence is configured to bind to heparin, or wherein the first targeting sequence is configured to bind to heparin and the second targeting sequence is configured to bind to collagen IV.


In some embodiments, one or each of the first targeting sequence and the second targeting sequence, one or each of the at least one targeting sequence, one or each of the first plurality of targeting sequences, one or each of the second plurality of targeting sequences, or one or each of the plurality of targeting sequences independently is configured to bind its target with an affinity from 0.1 nM to 1 nM, from 1 nM to 10 nM, from 10 nM to 100 nM, from 100 nM to 1 μM, from 1 μM to 10 μM, or from 10 μM to 100 μM. In some embodiments, one or each of the first targeting sequence and the second targeting sequence, one or each of the at least one targeting sequence, one or each of the first plurality of targeting sequences, one or each of the second plurality of targeting sequences, or one or each of the plurality of targeting sequences independently is configured to bind its target with an affinity from 0.1 nM to 1 nM. In some embodiments, one or each of the first targeting sequence and the second targeting sequence, one or each of the at least one targeting sequence, one or each of the first plurality of targeting sequences, one or each of the second plurality of targeting sequences, or one or each of the plurality of targeting sequences independently is configured to bind its target with an affinity from 1 nM to 10 nM. In some embodiments, one or each of the first targeting sequence and the second targeting sequence, one or each of the at least one targeting sequence, one or each of the first plurality of targeting sequences, one or each of the second plurality of targeting sequences, or one or each of the plurality of targeting sequences independently is configured to bind its target with an affinity from 10 nM to 100 nM. In some embodiments, one or each of the first targeting sequence and the second targeting sequence, one or each of the at least one targeting sequence, one or each of the first plurality of targeting sequences, one or each of the second plurality of targeting sequences, or one or each of the plurality of targeting sequences independently is configured to bind its target with an affinity from 100 nM to 1 M. In some embodiments, one or each of the first targeting sequence and the second targeting sequence, one or each of the at least one targeting sequence, one or each of the first plurality of targeting sequences, one or each of the second plurality of targeting sequences, or one or each of the plurality of targeting sequences independently is configured to bind its target with an affinity from 1 μM to 10 μM. In some embodiments, one or each of the first targeting sequence and the second targeting sequence, one or each of the at least one targeting sequence, one or each of the first plurality of targeting sequences, one or each of the second plurality of targeting sequences, or one or each of the plurality of targeting sequences independently is configured to bind its target with an affinity from 10 μM to 100 μM. In some embodiments, the affinity may be a dissociation constant (KD), which may be measured, for example, through surface plasmon resonance (SPR), an enzyme linked immunosorbent assay (ELISA), or polarization-modulated oblique-incidence reflectivity difference (OI-RD).


1. pH-Sensitive Targeting Sequences


In some embodiments, the targeting sequence is configured to bind its target in a pH-sensitive manner. In some embodiments, the targeting sequence has a higher affinity for its target at a relatively acidic pH than at normal physiological pH (about 7.4). The higher affinity may occur at a pH below 7, e.g., in the range of pH 5.5-7, 6-7, or 5.5-6.5, or below pH 6. The presence of histidines in the targeting sequence can confer pH-sensitive binding. Without wishing to be bound by any particular theory, histidines are considered more likely to be protonated at lower pH and can render binding a negatively-charged target more energetically favorable. Accordingly, in some embodiments, a targeting sequence comprises one or more histidines, e.g., 1, 2, 3, 4, 5, 6, 7, 8, 9, or 10 histidines. Including a pH-sensitive targeting sequence can enhance discrimination between tumor versus normal tissue by the linker polypeptide, such that the linker polypeptide is more preferentially retained in the tumor microenvironment compared to normal extracellular matrix. Thus, a pH-sensitive targeting element can further facilitate tumor specific delivery of the linker polypeptide and thereby further reduce or eliminate toxicity that may result from activity of the linker polypeptide in normal extracellular matrix.


Binding a target in a pH-sensitive manner can be useful where it is desired to localize or retain a linker polypeptide and/or the cytokine polypeptide sequence thereof in an area with a pH different from normal physiological pH. For example, the tumor microenvironment may be more acidic than the blood and/or healthy tissue. As such, binding to a target in a pH-sensitive manner may improve the retention of the linker polypeptide and/or the cytokine polypeptide sequence thereof in the area of interest, which can facilitate lower doses than would otherwise be needed and/or reduce systemic exposure and/or adverse effects.


In some embodiments, the targeting sequence is configured to bind any target described herein in a pH-sensitive manner. In particular embodiments, the target is an extracellular matrix component, IgB (CD79b), an integrin, a cadherin, a heparan sulfate proteoglycan, a syndecan, or a fibronectin. In some embodiments, the extracellular matrix component is hyaluronic acid, heparin, heparan sulfate, or a sulfated glycoprotein. In another particular embodiment, the target is a fibronectin.


Exemplary targeting sequences for conferring target binding in a pH-sensitive manner are provided in Table 2 (e.g., SEQ ID NOs: 641-663). In some embodiments, the targeting sequence comprises the sequence of any one of SEQ ID NOs: 641-663, or a variant having one or two mismatches relative to the sequence of any one of SEQ ID NOs: 641-663.


In some embodiments, the linker polypeptide comprises a targeting sequence is adjacent to a protease cleavable sequence. The targeting sequence and protease cleavable sequence may be any of those described herein. Exemplary combinations of a targeting sequence and a protease cleavable sequence are SEQ ID NOs: 667-673.


E. Pharmacokinetic Modulators

In some embodiments, the linker polypeptide comprises a pharmacokinetic modulator. The pharmacokinetic modulator may be covalently or noncovalently associated with the linker polypeptide. The pharmacokinetic modulator can extend the half-life of the linker polypeptide, e.g., so that fewer doses are necessary and less of the linker polypeptide needs to be administered over time to achieve a desired result. Various forms of pharmacokinetic modulator are known in the art and may be used in linker polypeptides of this disclosure. In some embodiments, the pharmacokinetic modulator comprises a polypeptide (see examples below). In some embodiments, the pharmacokinetic modulator comprises a non-polypeptide moiety (e.g., polyethylene glycol, a polysaccharide, or hyaluronic acid). A non-polypeptide moiety can be associated with the linker polypeptide using known approaches, e.g., conjugation to the linker polypeptide; for example, a reactive amino acid residue can be used or added to the linker polypeptide to facilitate conjugation.


In some embodiments, the pharmacokinetic modulator alters the size, shape, and/or charge of the linker polypeptide, e.g., in a manner that reduces clearance. For example, a pharmacokinetic modulator with a negative charge may inhibit renal clearance. In some embodiments, the pharmacokinetic modulator increases the hydrodynamic volume of the linker polypeptide. In some embodiments, the pharmacokinetic modulator reduces renal clearance, e.g., by increasing the hydrodynamic volume of the linker polypeptide.


In some embodiments, the linker polypeptide comprising the pharmacokinetic modulator (e.g., any of the pharmacokinetic modulators described herein) has a molecular weight of at least 70 kDa, e.g., at least 75 or 80 kDa.


For further discussion of various approaches for providing a pharmacokinetic modulator, see, e.g., Strohl, BioDrugs 29:215-19 (2015) and Podust et al., J. Controlled Release 240:52-66 (2016).


1. Polypeptide Pharmacokinetic Modulators

In some embodiments, the pharmacokinetic modulator comprises a polypeptide, e.g., an immunoglobulin sequence (see exemplary embodiments below), an albumin, a CTP (a negatively-charged carboxy-terminal peptide of the chorionic gonadotropin 3-chain that undergoes sialylation in vivo and in appropriate host cells), an inert polypeptide (e.g., an unstructured polypeptide such as an XTEN, a polypeptide comprising the residues Ala, Glu, Gly, Pro, Ser, and Thr), a transferrin, a homo-amino-acid polypeptide, or an elastin-like polypeptide.


Exemplary polypeptide sequences suitable for use as a pharmacokinetic modulator are provided in Table 1 (e.g., any one of SEQ ID NOs: 70-74). In some embodiments, the pharmacokinetic modulator has at least 80, 85, 90, 95, 97, 98, or 99 percent identity to the sequence of a pharmacokinetic modulator in Table 1 (e.g., any one of SEQ ID NOs: 70-74).


In any embodiment where the pharmacokinetic modulator comprises a polypeptide sequence from an organism, the polypeptide sequence may be a human polypeptide sequence.


2. Immunoglobulin Pharmacokinetic Modulators

In some embodiments, the pharmacokinetic modulator comprises an immunoglobulin sequence, e.g., at least a portion of one or more immunoglobulin constant domains. In some embodiments, the pharmacokinetic modulator comprises an immunoglobulin constant domain. In some embodiments, the pharmacokinetic modulator comprises at least a portion of an immunoglobulin Fc region. In some embodiments, the pharmacokinetic modulator comprises an immunoglobulin Fc region.


The immunoglobulin sequence (e.g., at least a portion of one or more immunoglobulin constant domains or Fc region) may be a human immunoglobulin sequence. The immunoglobulin sequence (e.g., at least a portion of one or more immunoglobulin constant domains or Fc region) may have has at least 80, 85, 90, 95, 97, 98, or 99 percent identity to the sequence of a wild-type immunoglobulin sequence (e.g., at least a portion of one or more immunoglobulin constant domains or Fc region), such as a wild-type human immunoglobulin sequence. In any of such embodiments, the immunoglobulin sequence may be an IgG sequence, such as at least a portion of one or more immunoglobulin constant domains or Fc region thereof (e.g., IgG1, IgG2, IgG3, or IgG4, such as at least a portion of one or more immunoglobulin constant domains or Fc region of any of these isotypes). Exemplary immunoglobulin pharmacokinetic modulator sequences include SEQ ID NOs: 70-74, 857, 858, 861, and 862 and the combination of SEQ ID NOs: 756 and 757; 75 and 77; 75 and 78; 76 and 77; 76 and 78; and 859 and 860.


In some embodiments, immunoglobulin pharmacokinetic modulator sequences (such as an Fc region) may perform certain functions and effects by interacting with certain targets, as described in Table 3 below.


F. Growth Factor-Binding Polypeptide Sequence and Growth Factor Receptor-Binding Polypeptide Sequence

In some embodiments, the linker polypeptide comprises a growth factor-binding polypeptide sequence or a growth factor receptor-binding polypeptide sequence. Such a sequence can serve as an active domain.


In some embodiments, the growth factor-binding polypeptide sequence comprises a TGF-βR extracellular domain sequence. In some embodiments, the TGF-βR extracellular domain sequence comprises an amino acid sequence having at least 80, 85, 90, 95, 97, 98, or 99 percent identity to the sequence of SEQ ID NO: 1022 or 1023.


In some embodiments, the growth factor-binding polypeptide sequence comprises a growth factor-binding immunoglobulin domain. In some embodiments, the growth factor-binding immunoglobulin domain is configured to bind to a TGF-β. In some embodiments, the growth factor-binding immunoglobulin domain comprises a VH region comprising HVR-1, HVR-2, and HVR-3 of a VH region comprising the amino acid sequence of SEQ ID NO: 1008, and a VL region comprising HVR-1, HVR-2, and HVR-3 of a VL region comprising the amino acid sequence of SEQ ID NO: 1010. In general, a person skilled in the art can identify the HVRs in VH and VL sequences, e.g., by assigning amino acids to framework and HVR domains within the VH and VL sequences in accordance with the definitions of Kabat et al. in Sequences of Proteins of Immunological Interest, 5th Ed., US Dept. of Health and Human Services, PHS, NIH, NIH Publication no. 91-3242, 1991. Other numbering systems for the amino acids in immunoglobulin chains include IMGT™ (international ImMunoGeneTics information system; Lefranc et al, Dev. Comp. Immunol. 29:185-203; 2005) and AHo (Honegger and Pluckthun, J. Mol. Biol. 309(3):657-670; 2001). In some embodiments, the growth factor-binding immunoglobulin domain comprises a VH region comprising the amino acid sequence of SEQ ID NO: 1008; and a VL region comprising the amino acid sequence of SEQ ID NO: 1010. In some embodiments, the growth factor-binding immunoglobulin domain comprises a sequence that has at least 80, 85, 90, 95, 97, 98, or 99 percent identity to the sequence of SEQ ID NO: 1007 or 1009. In some embodiments, the growth factor receptor-binding polypeptide sequence comprises a TGF-0 sequence. In some embodiments, the TGF-0 sequence comprises an amino acid sequence having at least 80, 85, 90, 95, 97, 98, or 99 percent identity to the sequence of any one of SEQ ID NOs. 904-906.


In some embodiments, the growth factor receptor-binding polypeptide sequence comprises a growth factor receptor-binding immunoglobulin domain. In some embodiments, the growth factor receptor-binding immunoglobulin domain is configured to bind to a TGF-βR extracellular domain sequence. In some embodiments, the growth factor receptor-binding immunoglobulin domain comprises a VH region comprising HVR-1, HVR-2, and HVR-3 of a VH region comprising the amino acid sequence of SEQ ID NO: 999 or 1003, and a VL region comprising HVR-1, HVR-2, and HVR-3 of a VL region comprising the amino acid sequence of SEQ ID NO: 1000 or 1004. In some embodiments, the growth factor receptor-binding immunoglobulin domain comprises a VH region comprising the amino acid sequence of SEQ ID NO: 999 or 1003; and a VL region comprising the amino acid sequence of SEQ ID NO: 1000 or 1004. In some embodiments, the growth factor receptor-binding immunoglobulin domain comprises a sequence that has at least 80, 85, 90, 95, 97, 98, or 99 percent identity to the sequence of any one of SEQ ID NOs: 1001, 1002, 1005, and 1006.









TABLE 3







Pharmacokinetic Modulator Functions, Effects, and Targets









Function Mode
Target
Effects





Antibody Dependent
FcgR binding site
Kill Fab-bound cells


Cellular Cytotoxcity




(ADCC)




Antibody Dependent
FcgR binding site
Kill Fab-bound cells


Cellular Phagocytosis




(ADCP)




Complement Dependent
C1q binding site
Kill Fab-bound cells


Cytotoxicity (CDC)




Antibody Drug Conjugate
Fab
Kill Fab-bound cells


(ADC)




Fc-Recycle
FcRn binding site
Half-life extension









A. Blocker

In some embodiments, the linker polypeptide may comprise a blocker. In some embodiments, the blocker may be conjugated to one of or each of the first active domain and the second active domain. In some embodiments, the blocker is conjugated to one of or each of the first active domain and the second active domain via a protease-cleavable polypeptide sequence.


The blocker may obstruct an immunoglobulin antigen-binding domain from binding to an antigen (e.g., a growth factor or growth factor receptor). In some embodiments, the blocker is linked to the immunoglobulin antigen-binding domain through the N-terminus of a heavy or light chain of the immunoglobulin antigen-binding domain.


In some embodiments, the blocker comprises albumin. In some embodiments, the blocker comprises serium albumin. In some embodiments, the blocker comprises human serum albumin (HAS) (e.g., SEQ ID NO: 72) or a fragment thereof.


B. Chemotherapy Drug

In some embodiments, the linker polypeptide may comprise a chemotherapy drug or a plurality of chemotherapy drugs. The drug may, for example, be conjugated to different elements of the linker polypeptide. In some embodiments, a chemotherapy drug is conjugated to a pharmacokinetic modulator of the linker polypeptide.


In some embodiments, the chemotherapy drug is selected from altretamine, bendamustine, busulfan, carboplatin, carmustine, chlorambucil, cisplatin, cyclophosphamide, dacarbazine, ifosfamide, lomustine, mechlorethamine, melphalan, oxaliplatin, temozolomide, thiotepa, trabectedin, carmustine, lomustine, streptozocin, azacitidine, 5-fluorouracil, 6-mercaptopurine, capecitabine, cladribine, clofarabine, cytarabine, decitabine, floxuridine, fludarabine, gemcitabine, hydroxyurea, methotrexate, nelarabine, pemetrexed, pentostatin, pralatrexate, thioguanine, trifluridine, tipiracil, daunorubicin, doxorubicin, epirubicin, idarubicin, valrubicin, bleomycin, dactinomycin, mitomycin-c, mitoxantrone, irinotecan, topotecan, etoposide, mitoxantrone, teniposide, cabazitaxel, docetaxel, paclitaxel, vinblastine, vincristine, vinorelbine, prednisone, methylprednisolone, dexamethasone, retinoic acid, arsenic trioxide, asparaginase, eribulin, hydroxyurea, ixabepilone, mitotane, omacetaxine, pegaspargase, procarbazine, romidepsin, and vorinostat.


III. Arrangement of Components and Release Thereof

The recitation of components of a linker polypeptide herein does not imply any particular order beyond what is explicitly stated (for example, it may be explicitly stated that a protease-cleavable sequence is between the cytokine polypeptide sequence and the inhibitory polypeptide sequence). The components of the linker polypeptide may be arranged in various ways to provide properties suitable for a particular use. The components of the linker polypeptide may be all in one polypeptide chain or they may be in a plurality of polypeptide chains bridged by covalent bonds, such as disulfide bonds.


For example, in some embodiments, where a pharmacokinetic modulator comprises an Fc, one or more components (e.g., chemotherapy drugs) may be bound to one chain while one or more other components may be bound to the other chain. The Fc may be a heterodimeric Fc, such as a knob-into-hole Fc (in which one chain of the Fc comprises knob mutations and the other chain of the Fc comprises hole mutations). For an exemplary general discussion of knob and hole mutations, see, e.g., Xu et al., mAbs 7:1, 231-242 (2015). Exemplary knob mutations (e.g., for a human IgG1 Fc) are K360E/K409W. Exemplary hole mutations (e.g., for a human IgG1 Fc) are Q347R/D399V/F405T. See SEQ ID NOs: 756 and 757.


In some embodiments, some or all of the one or more protease-cleavable polypeptide sequences may be C-terminal to a VH region, C-terminal to at least a portion of a CH1 domain, between a CH1 domain and a CH2 domain, N-terminal to at least a portion of a CH2 domain, N-terminal to a disulfide bond between heavy chains, N-terminal to a disulfide bond within a CH2 domain, or N-terminal to a hinge region, or is within a hinge region. In some embodiments, some or all of the one or more protease-cleavable polypeptide sequences may be between the pharmacokinetic modulator and the second active domain, and/or between the blocker and one or each of the first active domain and the second active domain.


In some embodiments, a targeting sequence may be between the receptor-binding domain and the one or more protease-cleavable polypeptide sequences. In some embodiments, at least one of the first linker and the second linker comprises a targeting sequence, and/or a protease-cleavable polypeptide sequence comprises a targeting sequence.


In some embodiments, a targeting sequence may be present on the same side of a protease-cleavable polypeptide sequence as the receptor-binding domain (e.g., cytokine polypeptide sequence), meaning that cleavage of the protease-cleavable polypeptide sequence does not separate the targeting sequence from the receptor-binding domain. Such embodiments can be useful to facilitate localizing or retaining both the linker polypeptide and the released receptor-binding domain in an area of interest, e.g., a tumor microenvironment.


In some embodiments, a targeting sequence may be present on the same side of a protease-cleavable polypeptide sequence as an inhibitory polypeptide sequence, meaning that cleavage of that protease-cleavable polypeptide sequence does not separate the targeting sequence from the cytokine polypeptide sequence. Such embodiments can be useful to provide a gradient of cytokine emanating from an area of interest, or to provide such a gradient more rapidly than would occur if the targeting sequence were on the same side of the protease-cleavable sequence.


In some embodiments, the first active domain is proximal to the first targeting sequence relative to the second targeting sequence. In other embodiments, the second active domain is proximal to the first targeting sequence relative to the second targeting sequence. In some embodiments, the linker polypeptide comprises sequentially, from the N-terminus to the C-terminus or from the C-terminus to the N-terminus, the first active domain, the first targeting sequence, the first linker, the second targeting sequence, and the additional domain.


In some embodiments, the protease-cleavable polypeptide sequence is C-terminal to the first targeting sequence and to the second targeting sequence. In some embodiments, the protease-cleavable polypeptide sequence is N-terminal to the first targeting sequence and to the second targeting sequence. In some embodiments, the protease-cleavable polypeptide sequence is C-terminal to the first plurality of targeting sequences and is N-terminal to the second plurality of targeting sequences. In some embodiments, the protease-cleavable polypeptide sequence is C-terminal to the plurality of targeting sequences and is N-terminal to at least one targeting sequence. In some embodiments, the protease-cleavable polypeptide sequence is N-terminal to the plurality of targeting sequences and is C-terminal to at least one targeting sequence. In some embodiments, the protease-cleavable polypeptide sequence is C-terminal to the first targeting sequence and to the second targeting sequence and is not N-terminal to a targeting sequence. In some embodiments, the protease-cleavable polypeptide sequence is N-terminal to the first targeting sequence and to the second targeting sequence and is not C-terminal to a targeting sequence.


In some embodiments, the linker polypeptide comprises a first active domain, a second active domain, a pharmacokinetic modulator, and a first linker between the pharmacokinetic modulator and the first active domain. In some embodiments, the first linker comprises a protease-cleavable polypeptide sequence and optionally a targeting sequence. In certain embodiments, the active domains comprise immunoglobulin antigen-binding domains. In certain embodiments, the target binding domain may comprise a heavy chain and a light chain or only a heavy chain. In some embodiments, the linker polypeptide comprises a chemotherapy drug.


In some embodiments, the first active domain is released from the remainder of the linker polypeptide after the one or more protease-cleavable polypeptide sequences are cleaved. In some embodiments, the linker polypeptide further comprises a blocker conjugated, via a protease-cleavable polypeptide sequence, to one or each of the first active domain and the second active domain. In some embodiments, the protease-cleavable polypeptide sequence connecting the first active domain to the remainder of the linker polypeptide and the protease-cleavable polypeptide sequences connecting the blockers to the active domains may be cleaved together (e.g., by the same protease). In some embodiments, the protease-cleavable polypeptide sequence connecting the first active domain to the remainder of the linker polypeptide and the protease-cleavable polypeptide sequences connecting the blockers to the active domains may be cleaved separately (e.g., by different proteases).


In some embodiments, the linker polypeptide comprises a first active domain, a second active domain, a pharmacokinetic modulator, and a first linker between the pharmacokinetic modulator and the first active domain, the first linker comprising a protease-cleavable polypeptide sequence and optionally a targeting sequence. In certain embodiments, the first active domain comprises a receptor-binding domain, and the second active domain comprises an immunoglobulin antigen-binding domain, which may comprise a cytokine polypeptide sequence. In some embodiments, the linker polypeptide comprises an inhibitory polypeptide sequence capable of blocking an activity of the receptor-binding domain, and a second linker between the receptor-binding domain and the inhibitory polypeptide sequence, the second linker comprising a protease-cleavable polypeptide sequence.


In some embodiments, the first active domain is released from the remainder of the linker polypeptide after the one or more protease-cleavable polypeptide sequences are cleaved. In some embodiments, the first active domain comprises a receptor-binding domain, which may comprise a cytokine polypeptide sequence, and the second active domain comprises an immunoglobulin antigen-binding domain. In some embodiments, the linker polypeptide further comprises an inhibitory polypeptide sequence capable of blocking an activity of the receptor-binding domain, and a second linker between the receptor-binding domain and the inhibitory polypeptide sequence, the second linker comprising a protease-cleavable polypeptide sequence. In some embodiments, the protease-cleavable polypeptide sequences of the first linker and the second linker may be cleaved together (e.g., by the same protease). In some embodiments, the protease-cleavable polypeptide sequences of the first linker and the second linker may be cleaved separately (e.g., by different proteases).


In some embodiments, e.g., any of those in which first and second polypeptide chains comprising first and second domains of a pharmacokinetic modulator, respectively, are present, the inhibitory polypeptide sequence is C-terminal to the second domain of the pharmacokinetic modulator, or the inhibitory polypeptide sequence is N-terminal to the second domain of the pharmacokinetic modulator. A targeting sequence may be between the protease-cleavable polypeptide sequence and the first domain of the pharmacokinetic modulator, between the protease-cleavable polypeptide sequence and the first active domain, C-terminal to the first active domain, N-terminal to the first active domain, C-terminal to the inhibitory polypeptide sequence, N-terminal to the inhibitory polypeptide sequence, or between the inhibitory polypeptide sequence and the second domain of the pharmacokinetic modulator.


In some embodiments, e.g., any of those in which first and second polypeptide chains comprising first and second domains of a pharmacokinetic modulator, respectively, are present, the linker polypeptide may comprise first and second targeting sequences. In some such embodiments, the first targeting sequence is part of the first polypeptide chain and the second targeting sequence is part of the second polypeptide chain. In some such embodiments, the first targeting sequence is C-terminal to the first active domain and the second targeting sequence is C-terminal to the inhibitory polypeptide sequence.


In some embodiments, e.g., any of those in which first and second polypeptide chains comprising first and second domains of a pharmacokinetic modulator, respectively, are present, the linker polypeptide further comprises a second active domain, optionally wherein the second active domain is part of the second polypeptide chain, and/or the linker polypeptide comprises a first inhibitory polypeptide sequence and the linker polypeptide further comprises a second inhibitory polypeptide sequence. In some embodiments, the second inhibitory polypeptide sequence is part of the second polypeptide chain. In some embodiments, the second inhibitory polypeptide sequence is C-terminal to the first inhibitory polypeptide sequence. The first and/or second inhibitory polypeptide sequences may be immunoglobulin inhibitory polypeptide sequences, such as a VHH.


In some embodiments, e.g., any of those in which first and second polypeptide chains comprising first and second domains of a pharmacokinetic modulator, respectively, are present, the pharmacokinetic modulator comprises a heterodimeric Fc or heterodimeric CH3 domains. The heterodimeric Fc or heterodimeric CH3 domains may be in separate polypeptide chains. In some embodiments, the heterodimeric Fc or heterodimeric CH3 domains comprise a knob CH3 domain and a hole CH3 domain.


In some embodiments, the linker polypeptide comprises the polypeptide sequence of any one of SEQ ID NOs: 800-848 and 1024-1041. In some embodiments, the linker polypeptide comprises the polypeptide sequence of any one of SEQ ID NOs: 1042-1137.


IV. Pharmaceutical Formulations or Compositions

Pharmaceutical formulations or compositions of a linker polypeptide as described herein may be prepared by mixing such linker polypeptide having the desired degree of purity with one or more optional pharmaceutically acceptable carriers (Remington's Pharmaceutical Sciences 16th edition, Osol, A. Ed. (1980)), in the form of lyophilized formulations or compositions, or aqueous solutions. Pharmaceutically acceptable carriers are generally nontoxic to recipients at the dosages and concentrations employed, and include, but are not limited to: buffers such as phosphate, citrate, and other organic acids; antioxidants including ascorbic acid and methionine; preservatives (such as octadecyldimethylbenzyl ammonium chloride; hexamethonium chloride; benzalkonium chloride; benzethonium chloride; phenol, butyl or benzyl alcohol; alkyl parabens such as methyl or propyl paraben; catechol; resorcinol; cyclohexanol; 3-pentanol; and m-cresol); low molecular weight (less than about 10 residues) polypeptides; proteins, such as serum albumin, gelatin, or immunoglobulins; hydrophilic polymers such as polyvinylpyrrolidone; amino acids such as glycine, glutamine, asparagine, histidine, arginine, or lysine; monosaccharides, disaccharides, and other carbohydrates including glucose, mannose, or dextrins; chelating agents such as EDTA; sugars such as sucrose, mannitol, trehalose or sorbitol; salt-forming counter-ions such as sodium; metal complexes (e.g. Zn-protein complexes); and/or non-ionic surfactants such as polyethylene glycol (PEG).


The formulations or compositions to be used for in vivo administration are generally sterile. Sterility may be readily accomplished, e.g., by filtration through sterile filtration membranes.


V. Uses

In some embodiments, any one or more of the linker polypeptides, compositions, or pharmaceutical formulations described herein is for use in therapy, such as in preparing a medicament for treating or preventing a disease or disorder in a subject, such as cancer. In some embodiments, any one or more of the linker polypeptides, compositions, or pharmaceutical formulations described herein is for use in a method of treating a cancer, comprising, for example, administering the linker polypeptide or pharmaceutical composition to a subject in need thereof


In some embodiments, a method of treating or preventing a disease or disorder in subject is provided, comprising administering to a subject any of the linker polypeptides or pharmaceutical compositions described herein. In some embodiments, the disease or disorder is a cancer, e.g., a solid tumor. In some embodiments, the cancer is a melanoma, a colorectal cancer, a breast cancer, a pancreatic cancer, a lung cancer, a prostate cancer, an ovarian cancer, a cervical cancer, a gastric or gastrointestinal cancer, a lymphoma, a colon or colorectal cancer, an endometrial cancer, a thyroid cancer, or a bladder cancer. The cancer (e.g., any of the foregoing cancers) may have one or more of the following features: being PD-L1-positive; being metastatic; being unresectable; being mismatch repair defective (MMRd); and/or being microsatellite-instability high (MSI-H). In some embodiments, the cancer is a TGFβR-expressing cancer. In some embodiments, the cancer is a TGFβ-expressing cancer. In some embodiments, the cancer is a TGFβ-dependent cancer. A cancer is considered dependent on a growth factor such as TGFβ if cells of the cancer grow significantly more slowly in the absence of the growth factor than in its presence.


In some embodiments, a method of boosting T regulatory cells and/or reducing inflammation or autoimmune activity is provided comprising administering a linker polypeptide to an area of interest, e.g., an area of inflammation. The linker polypeptide for use in such methods may comprise an IL-2 polypeptide sequence. In some embodiments, a method of treating an autoimmune and/or inflammatory disease is provided, comprising administering a linker polypeptide to an area of interest, e.g., an area of inflammation or autoimmune activity. The linker polypeptide for use in such methods may comprise an IL-2 polypeptide sequence. These methods take advantage of the ability of certain cytokines at relatively low levels to stimulate T regulatory cells, which can exert anti-inflammatory effects and reduce or suppress autoimmune activity.


The linker polypeptides in any of the foregoing methods and uses may be delivered to a subject using any suitable route of administration. In some embodiments, the linker polypeptide is delivered parenterally. In some embodiments, the linker polypeptide is delivered intravenously.


A linker polypeptide provided herein can be used either alone or in combination with other agents in a therapy. For instance, a linker polypeptide provided herein may be co-administered with at least one additional therapeutic agent.


Such combination therapies noted above encompass combined administration (where two or more therapeutic agents are included in the same or separate formulations), and separate administration, in which case, administration of the linker polypeptide provided herein can occur prior to, simultaneously, and/or following, administration of the additional therapeutic agent and/or adjuvant.


Linker polypeptides would be formulated, dosed, and administered in a fashion consistent with good medical practice. Factors for consideration in this context include the particular disorder being treated, the particular mammal being treated, the clinical condition of the individual patient, the cause of the disorder, the site of delivery of the agent, the method of administration, the scheduling of administration, and other factors known to medical practitioners. In some embodiments, the linker polypeptide is optionally formulated with one or more agents currently used to prevent or treat the disorder in question. The effective amount of such other agents depends on the amount of linker polypeptide present in the formulation, the type of disorder or treatment, and other factors discussed above. These are generally used in the same dosages and with administration routes as described herein, or about from 1 to 99% of the dosages described herein, or in any dosage and by any route that is empirically/clinically determined to be appropriate.


For the prevention or treatment of disease, the appropriate dosage of an linker polypeptide (when used alone or in combination with one or more other additional therapeutic agents) will depend on the type of disease to be treated, the type of linker polypeptide, the severity and course of the disease, whether the linker polypeptide is administered for preventive or therapeutic purposes, previous therapy, the patient's clinical history and response to therapeutic agents (e.g., antibodies, immunoconjugates, cytokines) that share common elements and/or sequences with the linker polypeptide, and the discretion of the attending physician. The linker polypeptide is suitably administered to the patient at one time or over a series of treatments.


VI. Nucleic Acids, Host Cells, and Production Methods

Linker polypeptides or precursors thereof may be produced using recombinant methods and compositions. In some embodiments, an isolated nucleic acid encoding a linker polypeptide described herein is provided. Such nucleic acid may encode an amino acid sequence comprising active domains (including, for example, an immunoglobulin antigen-binding domain, a receptor-binding domain, and/or a cytokine polypeptide sequence), a pharmacokinetic modulator, a linker, and an inhibitory polypeptide sequence, and any other polypeptide components of the linker polypeptide that may be present. In a further embodiment, one or more vectors (e.g., expression vectors) comprising such nucleic acid are provided. In a further embodiment, a host cell comprising such nucleic acid is provided. In some such embodiments, a host cell comprises (e.g., has been transformed with) a vector comprising a nucleic acid that encodes a linker polypeptide according to the disclosure. In some embodiments, the host cell is eukaryotic, e.g., a Chinese Hamster Ovary (CHO) cell or lymphoid cell (e.g., Y0, NS0, Sp20 cell). In some embodiments, a method of making a linker polypeptide disclosed herein is provided, wherein the method comprises culturing a host cell comprising a nucleic acid encoding the linker polypeptide, as provided above, under conditions suitable for expression of the linker polypeptide, and optionally recovering the antibody from the host cell (or host cell culture medium).


For recombinant production of a linker polypeptide, nucleic acid encoding the linker polypeptide, e.g., as described above, is prepared and/or isolated (e.g., following construction using synthetic and/or molecular cloning techniques) and inserted into one or more vectors for further cloning and/or expression in a host cell. Such nucleic acid may be readily prepared and/or isolated using known techniques.


Suitable host cells for cloning or expression of linker polypeptide-encoding vectors include prokaryotic or eukaryotic cells described herein. For example, a linker polypeptide may be produced in bacteria, in particular when glycosylation is not needed. For expression of polypeptides in bacteria, see, e.g., U.S. Pat. Nos. 5,648,237, 5,789,199, and 5,840,523. After expression, the linker polypeptide may be isolated from the bacterial cell paste in a soluble fraction and can be further purified.


In addition to prokaryotes, eukaryotic microbes such as filamentous fungi or yeast are suitable cloning or expression hosts for linker polypeptide-encoding vectors, including fungi and yeast strains whose glycosylation pathways have been “humanized,” resulting in the production of polypeptides with a partially or fully human glycosylation pattern. See Gerngross, Nat. Biotech. 22:1409-1414 (2004), and Li et al., Nat. Biotech. 24:210-215 (2006).


Suitable host cells for the expression of linker polypeptides are also derived from multicellular organisms (plants, invertebrates, and vertebrates). Examples of invertebrate cells include insect cells. Numerous baculoviral strains have been identified which may be used in conjunction with insect cells, particularly for transfection of Spodoptera frugiperda cells.


Plant cell cultures can also be utilized as hosts. See, e.g., U.S. Pat. Nos. 5,959,177, 6,040,498, 6,420,548, 7,125,978, and 6,417,429.


Vertebrate cells may also be used as hosts. For example, mammalian cell lines that are adapted to grow in suspension may be useful. Other examples of useful mammalian host cell lines are monkey kidney CV1 line transformed by SV40 (COS-7); human embryonic kidney line (293 or 293 cells as described, e.g., in Graham et al., J. Gen Virol. 36:59 (1977)); baby hamster kidney cells (BHK); mouse sertoli cells (TM4 cells as described, e.g., in Mather, Biol. Reprod. 23:243-251 (1980); monkey kidney cells (CV1); African green monkey kidney cells (VERO-76); human cervical carcinoma cells (HELA); canine kidney cells (MDCK; buffalo rat liver cells (BRL 3A); human lung cells (W138); human liver cells (Hep G2); mouse mammary tumor (MMT 060562); TRI cells, as described, e.g., in Mather et al., Annals N.Y. Acad. Sci. 383:44-68 (1982); MRC 5 cells; and FS4 cells. Other useful mammalian host cell lines include Chinese hamster ovary (CHO) cells, including DHFR CHO cells (Urlaub et al., Proc. Natl. Acad. Sci. USA 77:4216 (1980)); and myeloma cell lines such as Y0, NS0 and Sp2/0.


This description and exemplary embodiments should not be taken as limiting. For the purposes of this specification and appended claims, unless otherwise indicated, all numbers expressing quantities, percentages, or proportions, and other numerical values used in the specification and claims, are to be understood as being modified in all instances by the term “about,” to the extent they are not already so modified. “About” indicates a degree of variation that does not substantially affect the properties of the described subject matter, e.g., within 10%, 5%, 2%, or 1%. Accordingly, unless indicated to the contrary, the numerical parameters set forth in the following specification and attached claims are approximations that may vary depending upon the desired properties sought to be obtained. At the very least, and not as an attempt to limit the application of the doctrine of equivalents to the scope of the claims, each numerical parameter should at least be construed in light of the number of reported significant digits and by applying ordinary rounding techniques.


EXAMPLES

The following examples are provided to illustrate certain disclosed embodiments and are not to be construed as limiting the scope of this disclosure in any way.


Example 1: Construction of Mammalian Expression Vectors Encoding Fusion Proteins

Coding sequences for all protein domains including linker sequences were synthesized as an entire gene (Genscript, NJ). All synthetic genes were designed to contain a coding sequence for an N-terminal signal peptide (to facilitate protein secretion), a 5′ Kozak sequence, and unique restriction sites at the 5′ and 3′ ends. These genes were then directionally cloned into the mammalian expression vector pcDNA3.1 (Invitrogen, Carlsbad, CA). Examples of fusion protein constructs are listed in Table 4.









TABLE 4







Linker polypeptide constructs








Lab ID
Features





Construct B - no TME
mIL2-2x(SG4)(SEQ ID NO: 1143)-MMPcs1-2x



(G4S)(SEQ ID NO: 1142)-mIL2Ralpha(1-215)-



mIgG1Fc


Construct GGG - no TME
mIL2-2x(SG4)(SEQ ID NO: 1143)-MMPscr-2x



(G4S)(SEQ ID NO: 1142)-mIL2Ralpha(1-215)-



mIgG1Fc


Construct AAA- no TME
hIL2(C125S)-2x(SG4)(SEQ ID NO: 1143)-MMPcs1-



2x(G4S)(SEQ ID NO: 1142)-hIL2Ra(M25I)-GSGGGG



(SEQ ID NO: 1138)-huIgG1Fc(LALA)


Construct BBB - no TME
hIL2(C125S)-2x(SG4)(SEQ ID NO: 1143)-MMPscr-



2x(G4S)(SEQ ID NO: 1142)-hIL2Ra(M25I)-GSGGGG



(SEQ ID NO: 1138)-huIgG1Fc(LALA)


Construct Y (heparin)
mIL2(C140S)-VRIQRKKEKMKET(SEQ ID NO:



1139)-MMPcs1-2x(G4S)(SEQ ID NO: 1142)-mIL2Ra



(1-215)-muIgG1Fc


Construct AA (heparin)
mIL2-SGG-FHRRIKA(SEQ ID NO: 1140)-MMPcs1-



2x(G4S)(SEQ ID NO: 1142)-mIL2Ra(1-215)-



muIgG1Fc


Construct BB (heparin)
mIL2-SGG-FHRRIKA(SEQ ID NO: 1140)-MMPscr-



2x(G4S)(SEQ ID NO: 1142)-mIL2Ra(1-215)-



muIgG1Fc


Construct CC (pH heparin)
mIL2-2x(GHHPH)(SEQ ID NO: 1141)-MMPcs1-



2x(G4S)(SEQ ID NO: 1142)-mIL2Ra(1-215)-



muIgG1Fc


Construct DD (pH heparin)
mIL2-2x(GHHPH)(SEQ ID NO: 1141)-MMPscr-



2x(G4S)(SEQ ID NO: 1142)-mIL2Ra(1-215)-



muIgG1Fc


Construct EE (pH fibronectin)
mIL2-SGG-GGWSHW(SEQ ID NO: 653)-



MMPcs1-2x(G4S)(SEQ ID NO: 1142)-mIL2Ra(1-215)-



muIgG1Fc


Construct FF (pH fibronectin)
mIL2-SGG-GGWSHW(SEQ ID NO: 653)-MMPscr-



2x(G4S)(SEQ ID NO: 1142)-mIL2Ra(1-215)-



muIgG1Fc


Construct GG (collagen IV)
mIL2-SGG-KLWVLPK(SEQ ID NO: 200)-



MMPcs1-2x(G4S)(SEQ ID NO: 1142)-mIL2Ra(1-215)-



muIgG1Fc


Construct HH (collagen IV)
mIL2-SGG-KLWVLPK(SEQ ID NO: 200)-



MMPscr-2x(G4S)(SEQ ID NO: 1142)-mIL2Ra(1-215)-



muIgG1Fc


Construct II (collagen I)
mIL2-LHERHLNNN(SEQ ID NO: 665)-MMPcs1-



2x(G4S)(SEQ ID NO: 1142)-mIL2Ra(1-215)-



muIgG1Fc


Construct JJ (collagen I)
mIL2-LHERHLNNN(SEQ ID NO: 665)-MMPscr-



2x(G4S)(SEQ ID NO: 1142)-mIL2Ra(1-215)-



muIgG1Fc


Construct KK (heparin)
mIL2-VRIQRKKEKMKET(SEQ ID NO: 1139)-



MMPscr-2x(G4S)(SEQ ID NO: 1142)-mIL2Ra(1-215)-



muIgG1Fc


Construct LL (heparin)
mIL2-2x(SG4)(SEQ ID NO: 1143)-MMPcs1-



FHRRIKAGGS(SEQ ID NO: 1144)-mIL2Ralpha(1-



215)-muIgG1Fc


Construct MM (heparin)
mIL2-2x(SG4)(SEQ ID NO: 1143)-MMPscr-



FHRRIKAGGS(SEQ ID NO: 1144)-mIL2Ralpha(1-



215)-muIgG1Fc


Construct NN (pH heparin)
mIL2-2x(SG4)(SEQ ID NO: 1143)-MMPcs1-



2x(GHHPH)(SEQ ID NO: 1141)-mIL2Ra(1-215)-



muIgG1Fc


Construct OO (pH heparin)
mIL2-2x(SG4)(SEQ ID NO: 1143)-MMPscr-



2x(GHHPH)(SEQ ID NO: 1141)-mIL2Ra(1-215)-



muIgG1Fc


Construct PP (pH fibronectin)
mIL2-2x(SG4)(SEQ ID NO: 1143)-MMPcs1-



GGWSHWGGS(SEQ ID NO: 1145)-mIL2Ralpha(1-



215)-muIgG1Fc


Construct QQ (pH fibronectin)
mIL2-2x(SG4)(SEQ ID NO: 1143)-MMPscr-



GGWSHWGGS(SEQ ID NO: 1145)-mIL2Ralpha(1-



215)-muIgG1Fc


Construct RR (collagen IV)
mIL2-2x(SG4)(SEQ ID NO: 1143)-MMPcs1-



KLWVLPKGGS(SEQ ID NO: 1146)-mIL2Ralpha(1-



215)-muIgG1Fc


Construct SS (collagen IV)
mIL2-2x(SG4)(SEQ ID NO: 1143)-MMPscr-



KLWVLPKGGS(SEQ ID NO: 1146)-mIL2Ralpha(1-



215)-muIgG1Fc


Construct TT (collagen I)
mIL2-2x(SG4)(SEQ ID NO: 1143)-MMPcs1-



LHERHLNNNG(SEQ ID NO: 1147)-mIL2Ralpha(1-



215)-muIgG1Fc


Construct UU (collagen I)
mIL2-2x(SG4)(SEQ ID NO: 1143)-MMPscr-



LHERHLNNNG(SEQ ID NO: 1147)-mIL2Ralpha(1-



215)-muIgG1Fc


Construct VV (pH heparin)
mIL2-SGGGGGHHPH(SEQ ID NO: 1148)-



MMPcs1-2x(G4S)(SEQ ID NO: 1142)-mIL2Ra-



muIgG1Fc


Construct WW (pH heparin)
mIL2-GHHPHSGGGG(SEQ ID NO: 1149)-



MMPcs1-2x(G4S)(SEQ ID NO: 1142)-mIL2Ra-



muIgG1Fc


Construct XX (pH heparin)
mIL2-2x(SG4)(SEQ ID NO: 1143)-MMPcs1-



GHHPHGGGGS(SEQ ID NO: 1150)-mIL2Ra-



muIgG1Fc


Construct YY (pH heparin)
mIL2-2x(SG4)(SEQ ID NO: 1143)-MMPcs1-



2x(G4S)(SEQ ID NO: 1142)-mIL2Ra-muIgG1Fc-



2x(GHHPH)(SEQ ID NO: 1141)


Construct ZZ (pH heparin)
mIL2-2x(SG4)(SEQ ID NO: 1143)-MMPcs1-



2x(G4S)(SEQ ID NO: 1142)-mIL2Ra-muIgG1Fc-



(GHHPH)(SEQ ID NO: 1141)


Construct UUU (hep)
mIL2-2x(SG4)(SEQ ID NO: 1143)-MMPcs1-



VRIQRKKEKMKETGS(SEQ ID NO: 1151)-mIL2Ra-



muIgG1Fc


Construct HHH (hep)
mIL2-2x(SG4)(SEQ ID NO: 1143)-MMPcs1-



2x(G4S)(SEQ ID NO: 1142)-mIL2Ra-muIgG1Fc-



GGSGVRIQRKKEKMKET(SEQ ID NO: 1152)


Construct III (hep/col IV)
mIL2-VRIQRKKEKMKET(SEQ ID NO: 1139)-



MMPcs1-GGSKLWVLPKGS(SEQ ID NO: 1155)-



mIL2Ra-muIgG1Fc


Construct JJJ (col IV/hep)
mIL2-KLWVLPKGGS(SEQ ID NO: 1146)-MMPcs1-



VRIQRKKEKMKETGS(SEQ ID NO: 1151)-mIL2Ra-



muIgG1Fc


Construct KKK (denatured
mIL2-TLTYTWSGGGS(SEQ ID NO: 1153)-


collagen)
MMPcs1-2x(G4S)(SEQ ID NO: 1142)-mIL2Ra(1-215)-



muIgG1Fc


Construct LLL
mIL2-VRIQRKKEKMKET(SEQ ID NO: 1139)-



MMPcs1-VRIQRKKEKMKET(SEQ ID NO: 1139)-



mIL2Ra-muIgG1Fc


Construct MMM
mIL2-LHERHLNNNG(SEQ ID NO: 1147)-MMPcs1-



VRIQRKKEKMKET(SEQ ID NO: 1139)-mIL2Ra-



muIgG1Fc


Construct CCC (pH heparin)
hIL2(C125S)-2x(GHHPH)(SEQ ID NO: 1141)-



MMPscr-2x(G4S)(SEQ ID NO: 1142)-hIL2Ra(M25I)-



GSGGGG(SEQ ID NO: 1138)-huIgG1Fc(LALA)


Construct DDD (pH heparin)
hIL2(C125S)-2x(GHHPH)(SEQ ID NO: 1141)-



MMPcs1-2x(G4S)(SEQ ID NO: 1142)-hIL2Ra(M25I)-



GSGGGG(SEQ ID NO: 1138)-huIgG1Fc(LALA)


Construct EEE (heparin)
hIL2(C125S)-VRIQRKKEKMKET(SEQ ID NO:



1139)-MMPcs1-2x(G4S)(SEQ ID NO: 1142)-



hIL2Ra(M25I)-GSGGGG(SEQ ID NO: 1138)-



huIgG1Fc(LALA)


Construct FFF (heparin)
hIL2(C125S)-VRIQRKKEKMKET(SEQ ID NO:



1139)-MMPscr-2x(G4S)(SEQ ID NO: 1142)-



hIL2Ra(M25I)-GSGGGG(SEQ ID NO: 1138)-



huIgG1Fc(LALA)


Construct NNN col IV
huIL2(C125S)-SGGKLWVLPK(SEQ ID NO: 1154)-



MMPcs1-2x(G4S)(SEQ ID NO: 1142)-huIL2Ra(1-219;



M25I)-GSGGGG(SEQ ID NO: 1138)-huIgG1(LALA)


Construct OOO hep/colIV
huIL2(C125S)-VRIQRKKEKMKET(SEQ ID NO:



1139)-MMPcs1-GGSKLWVLPKGS(SEQ ID NO:



1155)-huIL2Ra(1-219;M25I)-GSGGGG(SEQ ID NO:



1138)-huIgG1(LALA)


Construct PPP
mIL2-VRIQRKKEKMKET(SEQ ID NO: 1139)-



MMPcs1-LHERHLNNNG(SEQ ID NO: 1147)-



mIL2Ra-muIgG1Fc


Construct QQQ
mIL2-LRELHLDNN(SEQ ID NO: 188)-MMPcs1-



2x(G4S)(SEQ ID NO: 1142)-mIL2Ra(1-215)-



muIgG1Fc


Construct RRR
mIL2-2x(SG4)(SEQ ID NO: 1143)-MMPcs1-



LRELHDNNG(SEQ ID NO: 1156)-mIL2Ralpha(1-



215)-muIgG1Fc


Construct SSS
mIL2-LRELHLDNNG(SEQ ID NO: 1157)-MMPcs1-



VRIQRKKEKMKET(SEQ ID NO: 1139)-mIL2Ra-



muIgG1Fc


Construct TTT
mIL2-VRIQRKKEKMKET(SEQ ID NO: 1139)-



MMPcs1-LRELHLDNNG(SEQ ID NO: 1157)-



mIL2Ra-muIgG1Fc


Construct VVV no TME
huIL15Ra(1-77)-linker-huIL15-(SG3)(SEQ ID



NO: 1158)-GPLGVRG(SEQ ID NO: 80)-4x(G4S)(SEQ



ID NO: 1142)-IL2Rb(1-214)-6xHis(SEQ ID NO: 1159)


Construct WWW
huIL15Ra(1-77)-linker-huIL15-(SG3)(SEQ ID



NO: 1158)-GPLGVRG(SEQ ID NO: 80)-



gsVRIQRKKEKMKET(SEQ ID NO: 1160)-



3x(G4S)(SEQ ID NO: 1142)-IL2Rb(1-214)-6xHis



(SEQ ID NO: 1159)


Construct XXX
huIL15Ra(1-77)-linker-huIL15-(SG3)(SEQ ID



NO: 1158)-GPLGVRG(SEQ ID NO: 80)-



ggsKLWVLPK(SEQ ID NO: 1161)-2x(G4S)(SEQ ID



NO: 1142)-IL2Rb(1-214)-6xHis(SEQ ID NO: 1159)


Construct YYY
huIL15Ra(1-77)-linker-huIL15-(SG3)(SEQ ID



NO: 1158)-GPLGVRG(SEQ ID NO: 80)-



VRIQRKKEKMKET(SEQ ID NO: 1139)-



2x(G4S)(SEQ ID NO: 1142)-IL2Rb(1-214)-



(G4SG)(SEQ ID NO: 1162)-HuIgG1Fc


Construct ZZZ
huIL15Ra(1-77)-linker-huIL15-(SG3)(SEQ ID



NO: 1158)-GPLGVRG(SEQ ID NO: 80)-



ggsKLWVLPK(SEQ ID NO: 1161)-2x(G4S)(SEQ ID



NO: 1142)-IL2Rb(1-214)-(G4SG)(SEQ ID NO: 1162)-



HuIgG1Fc


Construct AAAA
huIL15Ra(1-77)-linker-huIL15-(SG3)(SEQ ID



NO: 1158)-GPLGVRG(SEQ ID NO: 80)-



gLRELHLDNN(SEQ ID NO: 1163)-2x(G4S)(SEQ ID



NO: 1142)-IL2Rb(1-214)-(G4SG)(SEQ ID NO: 1162)-



HuIgG1Fc


Construct BBBB
huIL15Ra(1-77)-linker-huIL15-(SG3)(SEQ ID



NO: 1158)-GPLGVRG(SEQ ID NO: 80)-



VRIQRKKEKMKET(SEQ ID NO: 1139)-



ggsKLWVLPK(SEQ ID NO: 1161)-IL2Rb(1-214)-



(G4SG)(SEQ ID NO: 1162)-HuIgG1Fc


Construct CCCC
huIL15Ra(1-77)-linker-huIL15-(SG3)(SEQ ID



NO: 1158)-GPLGVRG(SEQ ID NO: 80)-



ggsKLWVLPK(SEQ ID NO: 1161)-ggsKLWVLPK



(SEQ ID NO: 1161)-IL2Rb(1-214)-(G4SG)(SEQ ID



NO: 1162)-HuIgG1Fc


Construct GGGG
huIgG1Fc-VRIQRKKEKMKET(SEQ ID NO: 1139)-



GPLGVRG(SEQ ID NO: 80)-hCXCL9


Construct HHHH
huIgG1Fc-KLWVLPK(SEQ ID NO: 200)-



GPLGVRG(SEQ ID NO: 80)-hCXCL9


Construct IIII
6xHis(SEQ ID NO: 1159)-HSA-(G4S)(SEQ ID NO:



1142)-KLWVLPK(SEQ ID NO: 200)-GPLGVRG



(SEQ ID NO: 80)-hCXCL9


Construct JJJJ
6xHis(SEQ ID NO: 1159)-HSA-VRIQRKKEKMKET



(SEQ ID NO: 1139)-GPLGVRG(SEQ ID NO: 80)-



hCXCL9


Construct KKKK
scFv Herceptin(VL-VH)-huIgG1 knob/huODC-IL2



(TME collagen IV)-huIgG1Fc hole


Construct LLLL
scFv Herceptin(VL-VH)-huIgG1 knob/huODC-IL2



(TME heparin)-huIgG1Fc hole


Construct MMMM
scFv cetuximab(VL-VH)-huIgG1 knob/huODC-IL2



(TME collagen IV)-huIgG1Fc hole









Example 2: Expression and Purification of Fusion Proteins
Transient Expression of Fusion Proteins

Different mammalian cell expression systems were used to produce fusion proteins (ExpiCHO-S™, Expi293F™, Freestyle CHO-S™, and Freestyle 293™, Life Technologies). Briefly, expression constructs were transiently transfected into cells following manufacturer's protocol and using reagents provided in respective expression kits. Fusion proteins were then expressed and secreted into the cell culture supernatant. Samples were collected from the production cultures every day, and cell density and viability were assessed. Protein expression titers and product integrity in cell culture supernatants were analyzed by SDS-PAGE to determine the optimal harvesting time. Cell culture supernatants were generally harvested between 4 and 12 days at culture viabilities of typically >75%. On day of harvest, cell culture supernatants were cleared by centrifugation and vacuum filtration before further use.


Purification of Fusion Proteins

Fusion proteins were purified from cell culture supernatants in either a one-step or two-step procedure. Briefly, Fc-domain containing proteins were purified by Protein A affinity chromatography (HiTrap MabSelect SuRe, GE Healthcare). In some cases, Fc-domain containing proteins were further purified by size exclusion chromatography (HPLC SEC5 300A 7.8×300 mm, 5 m, part #5190-2526, Agilent Bio or HiLoad 26/60 Superdex 200). His-tagged proteins were first purified on a Nickel-agarose column (Ni-Penta™ Agarose 6 Fast Flow column, PROTEINDEX™), followed by size exclusion chromatography (HPLC SEC5 300A 7.8×300 mm, 5 m part #5190-2526, Agilent Bio). All purified samples were buffer-exchanged and concentrated by ultrafiltration to a typical concentration of >1 mg/mL. Purity and homogeneity (typically >90%) of final samples were assessed by SDS-PAGE under reducing and non-reducing conditions. Purified proteins were aliquoted and stored at −80° C. until further use. FIGS. 1A-1D show examples of successfully purified fusion proteins. In FIGS. 1A-1D, analysis (by Coomassie stain) of fusion proteins purified by Protein A column showed high purity of the target proteins and minimal high molecular weight entities.


Example 3: Cleavage of Fusion Protein by MMP9 Protease

Recombinant MMP9 (R&D Systems) was first activated with p-aminophenylmercuric acetate, and this activated protease or equivalent amount of activating solution without the protease was used to digest or mock-digest the fusion protein overnight (18-22 hr) at 37° C. Cleavage assays were set up in TCNB buffer: 50 mM Tris, 10 mM CaCl2, 150 mM NaCl, 0.05% Brij-35 (w/v), pH 7.5. Digested protein was aliquoted and stored at −80° C. prior to testing. Aliquots of digests were subsequently analyzed by SDS-PAGE followed by Western blotting to evaluate the extent of cleavage. Digests were also assessed in functional assays such as HEK-Blue Interleukin reporter assays. As shown in FIGS. 2A-2F, essentially complete cleavage by MMP9 protease of the fusion proteins with functional site was seen after overnight incubation. In contrast, proteins containing a scrambled MMP cleavage site were not cut (FIG. 2D).


Example 4: IL-2 and IL-15 Immunoblot Analyses

Untreated and digested fusion proteins were evaluated for cleavage products by Western blot. The following antibodies were used: goat anti-mouse IL-2 polyclonal antibody (AF-402-NA; R&D systems), anti-human IL-2 antibody (Invitrogen, cat #MA5-17097, mouse IgG1), and rabbit anti-human IL-15 polyclonal antibody (ThermoFisher, cat #PA5-79466). Detection was performed using either a donkey anti-goat HRP-conjugated antibody, goat anti-rabbit HRP-conjugated antibody, or goat anti-mouse HRP-conjugated (Jackson Immuno Research, West Grove, PA), and developed using the SuperSignal West Femto Maximum sensitivity detection reagent (ThermoFisher) following the manufacturer's recommendations.


Example 5: Detection of Mouse IL-2/IL-2Ra Fusion Proteins by ELISA

An ELISA assay was developed to detect and quantify prodrug fusion proteins comprising IL-2 and IL-2Ra moieties. Wells of a 96-well plate were coated overnight with 100 μL of a rat anti-mouse IL-2 monoclonal antibody (JES6-1A12; ThermoFisher) at 1 mg/mL in PBS. After washing, wells are blocked with TBS/0.05% Tween 20/1% BSA, then fusion proteins and/or unknown biological samples were added for 1 hour at room temperature. After washing, an anti-mouse IL-2Ra biotin-labelled detection antibody (BAF2438, R&D systems) was added and binding was detected using Ultra Strepavidin HRP (ThermoFisher). The ELISA plate was developed by adding the chromogenic tetramethylbenzidine substrate (Ultra TMB, ThermoFisher). The reaction was stopped by addition of 0.5 M H2SO4, and the absorbance was read at 450-650 nm.


Example 6: IL-2 and IL-15 Functional Cell-Based Assays

IL-2 and IL-15 are members of the four a helix bundle family of cytokines and share the same signaling receptors IL2-Rβ and common 7 chain. Hence, activity of these cytokines was measured using the same reporter cell line HEK Blue IL-2 (Invivogen, San Diego). HEK-Blue™ IL-2 cells were specifically designed to monitor the activation of the JAK-STAT pathway induced by ligand binding to the IL2-Rβ and common 7 chain receptors. Stimulation with the appropriate cytokines triggered the JAK/STAT5 pathway and induced secreted embryonic alkaline phosphatase (SEAP) production. SEAP was readily monitored using QUANTI-Blue™, a SEAP detection medium. These cells responded to human/murine IL-2 and IL-15. For the HEK Blue assay, untreated and digested samples were titrated and added to 50,000 HEK Blue cells per well in 200 μL medium in a 96-well plate and incubated at 37° C. in 5% CO2 for 20-24 hours. The following day, levels of SEAP were measured by adding 20 μL of cell supernatant to QuantiBlue reagent, followed by 1-3 hours of incubation at 37° C. and reading absorbance at 630 nm. FIGS. 3A-3V and FIGS. 3W-3BB respectively show results obtained from IL-2 and IL-15 fusion proteins tested in HEK Blue IL-2 cell assay.


Example 7: Next Generation Targeting Sequence Linker Peptide Binding Assay

A series of peptides comprising an MMP cleavable site with or without the addition of a targeting sequence were synthesized and conjugated to the fluorophore EDANS (5-((2-Aminoethyl)amino)naphthalene-1-sulfonic acid) (custom synthesis, ThermoFisher). Table 5 shows the list of peptides. These peptides were then tested for their ability to bind ECM proteins such as heparin, fibronectin and collagen which are found in abundance in tumor stroma. In Table 5, the bold text shows MMP cleavage site, the underlined text shows retention motif (targeting sequence) when present, and the italicized asterisk (*) shows Edans fluorophore conjugated to peptide.









TABLE 5







Next generation MMP cleavable linkers with targeting sequences












SEQ ID



Peptide
Sequence
NO:
Target of Targeting Sequence













1
GGGSGGGGPLGVRG-*
666
None (1st gen)





2
GGGHHPHGPLGVRG-*
667
pH dependent heparin





3
GVRIQRKKEKMKET-*
668
heparin





4

FHRRIKA
GPLGVRG-*

669
heparin





7
GGGSGGGPAALIGG-*
670
None (1st gen)





13
GGGWSHWGPLGVRG-*
671
pH dependent fibronectin





14

KLWVLPK
GPLGVRG-*

672
Collagen IV





15
GGGSGLHERHLNNN-*
673
Collagen I









All binding assays were set up in 10 mM TrisHCl, pH 7.5 and/or 10 mM TrisHCl, pH 6. Peptides (20 μM) were incubated on a shaker for 2 hours at room temperature with agarose cross-linked to heparin or control agarose beads (Sigma and Pierce respectively). The beads were then washed 4 times and resuspended in 100 μL of binding buffer in a black 96-well plate. Peptide binding was quantified by measuring the fluorescence of samples using excitation/emission spectra of EDANS (Ex 340/Em 490). FIGS. 4A-4B show that several next generation MMP linker peptides containing heparin binding motifs bound to the heparin-agarose beads, while first generation MMP linkers lacking these targeting sequences did not. One such peptide displayed enhanced binding to heparin at pH 6 (the pH of tumors) vs. pH 7.5 (the pH of normal tissues) (FIG. 4B).


For fibronectin and collagen binding peptide assays, streptavidin coupled magnetic beads (Mag Sepharose, Cytiva and Dynabeads, ThermoFisher, respectively) were first incubated with biotin-labelled fibronectin (Cytoskeleton) or biotin-labelled collagen IV (Prospec) for 1 hour with gentle shaking. Following multiple washes, the ECM-coated beads were then incubated with Edans Peptides (20 μM) for 2 hours at room temperature with shaking in neutral or acidic binding buffer. Beads were then washed and resuspended in 100 μL of binding buffer in a black 96-well plate. Peptide binding was quantified by measuring the fluorescence of samples using excitation/emission spectra of EDANS (Ex 340/Em 490). FIG. 4C shows that peptide 13 was able to bind fibronectin and displayed enhanced binding at pH 6 (the pH of tumors) vs. pH 7.5 (the pH of normal tissues). FIG. 4D shows that peptide 14 strongly bound collagen IV, while peptide 15 bound to a lesser extent.


Example 8: Next Generation IL-2/IL-15 Fusion Protein Binding Assays

A series of IL-2 and IL-15 fusion proteins comprising single or multiple targeting sequences in the linker regions or other locations were designed and successfully manufactured (Table 4 and FIGS. 1A-1D). These proteins were then tested for their ability to bind ECM proteins such as heparin, fibronectin, and collagen which are found in abundance in the tumor stroma.


96-well plates were coated with 10 μg/mL of Heparin-BSA conjugate (provided by Dr. Mueller, Boerhinger Ingelheim) or control BSA for 18-22 hours at room temperature on shaker (350 rpm). After washing, wells are blocked with 2% milk powder in PBS-0.05% Tween 20 or PBS-0.05% Tween 20/1% BSA for 90 minutes. The fusion proteins were then titrated in either 2% milk powder in PBS-0.05% Tween 20 or 1% BSA/PBS-0.05% Tween 20, pH 7.5 and/or pH 6, and added for 2 hours at room temperature with shaking. After washing, an anti-mouse IL-2 biotin-labelled detection antibody (JES6-5H4, ThermoFisher), anti-6×-His Tag HRP conjugate antibody (Invitrogen, 1 mg/mL, cat #MA1-21315-HRP), or anti-human IgG HRP conjugate antibody (SouthernBiotech) was added, and binding was detected using Ultra Streptavidin HRP (ThermoFisher). The plate was developed by adding the chromogenic tetramethylbenzidine substrate (Ultra TMB, ThermoFisher). The reaction was stopped by addition of 0.5 M H2SO4, and the absorbance was read at 450-650 nm. IL-2 fusion proteins Construct Y and Construct CC at acidic pH bound heparin in a dose-dependent manner and with higher affinity than Construct B (FIG. 4E). Strikingly, Construct CC preferentially bound heparin at acidic pH and showed the most robust binding with an EC50 of about 10 nM, while Construct B's binding was much weaker, with a greater than 100-fold higher EC50 value. Moreover, when the same pH-dependent heparin binding motif was inserted into different locations of IL-2 fusion proteins, all resulting proteins bound heparin at pH 6 with similar high affinities (FIGS. 4F and 4G). Likewise, similar binding affinities were observed when another heparin targeting sequence was engineered into different sites of IL-2 fusion proteins (FIGS. 4H-4I). FIG. 4J shows that IL-15Rα-IL-15 fusion protein has low intrinsic binding to heparin (EC50 about 0.4 μM), an interaction which is lost when the cytokine is bound by a blocker in the context of the linker polypeptide-IL-15 fusion protein (Construct VVV). The heparin binding activity is recovered when a heparin binding motif is engineered into the linker polypeptide-IL-15 fusion protein (Construct WWW). Finally, linker polypeptide-IL-2 fusion proteins engineered with a heparin binding site show about 30-fold enhanced binding to heparin in vitro compared to constructs lacking a heparin binding site (Construct EEE and Construct NNNN vs. Construct AAA and Construct NNN, respectively) as shown in FIG. 4M.


A similar plate-based assay was developed to interrogate binding of IL-2 fusion variants to fibronectin. 96-well plates were coated with fibronectin (4-10 μg/mL, Sigma) or control BSA for 18-22 hours at room temperature on shaker (350 rpm). After washing, wells were blocked with 2% milk powder in PBS-0.05% Tween 20 or protein-free blocking buffer (Pierce) for 90 min, then fusion proteins were titrated in blocking buffer-0.1% Tween 20, pH 7.5 and/or pH 6, and added for 1 hour at room temperature with shaking. After washing, an anti-mouse IL-2 biotin-labelled detection antibody (JES6-5H4, ThermoFisher) or anti-human IgG HRP conjugate antibody (SouthernBiotech) was added, and binding was detected using Ultra Streptavidin HRP (ThermoFisher). The plate was developed by adding the chromogenic tetramethylbenzidine substrate (Ultra TMB, ThermoFisher). The reaction was stopped by addition of 0.5 M H2SO4, and the absorbance was read at 450-650 nm. Construct EE preferentially bound fibronectin at acidic pH and showed dose-dependent binding, while no binding was observed at pH 7.5 (FIG. 4K). No significant binding of Construct B was seen in either neutral or acidic conditions.


To test binding to collagen, a pulldown assay using agarose cross-linked to collagen (Sigma) was performed. IL-2 fusion proteins were incubated with collagen-agarose or control agarose beads for 18-22 hours at 4° C. with gentle rotation in 1% BSA/PBS-0.05% Tween 20. After washing, proteins bound to the beads were eluted by resuspending beads in SDS sample buffer (Life Technologies). Bound proteins were then separated by SDS-PAGE on 4-12% BisTris gradient gel, followed by immunoblotting with goat anti-mouse IL-2 polyclonal antibody (AF-402-NA; R&D systems). Donkey anti-goat HRP-conjugated antibody was used for detection (Jackson Immuno Research, West Grove, PA), and the blot was developed using the SuperSignal West Femto Maximum sensitivity detection reagent (ThermoFisher) following the manufacturer's recommendations. The blot image is shown in FIG. 4L. Construct GG and Construct II were specifically bound by collagen-agarose beads, while no IL-2 fusion protein bound the control agarose beads. Quantitation of the blot using iBright imaging system (Invitrogen), showed that although the fraction of bound Construct GG and Construct II was low (<1% of input), it was 2.5 and 1.4-fold higher than the fraction of bound Construct B.


Example 9: Next Generation Retention Linker IL-2 Fusion Proteins Showed Greater Retention in Tumor In Vivo

The levels of IL-2 fusion proteins present in tumors in vivo were assessed by utilizing fluorescently labelled proteins and real-time whole-body imaging. Non-cleavable Construct GGG and Construct DD were conjugated to Dylight 650 probe according to the manufacturer's protocol (Dylight 650 Antibody labeling kit, ThermoFisher). The conjugation did not significantly alter the proteins' binding to heparin. BALB/c mice were subcutaneously inoculated with EMT6 breast cancer syngeneic model, and when the average tumor volume reached 240 mm3, animals were randomized into 3 groups based on tumor volumes (n=2 mice per treatment group). Table 6 below shows the study design.









TABLE 6







Study design for assessing IL-2 fusion proteins

















Dosing
Dose
Dose





Dose
Frequency &
Level
Volume


Group
Treatment
N
Route
Duration
(mg/kg)
(mL/kg)
















1
Control -PBS
2
IV
Once
NA
4


2
Construct
2
IV
Once
8
4



GGG-DY650


3
Construct
2
IV
Once
8
4



DD-DY650









Following administration of a single dose of the labeled IL-2 fusion proteins to tumor-bearing mice, fluorescent images (excitation 640/emission 680 consistent with Dylight 650 probe ex/em spectra) were captured over 96 hours on an IVIS system (PerkinElmer, IVIS Lumina Series III) and are shown in FIG. 5A. The fluorescence intensity in tumor areas was quantified across the groups, average background tumor fluorescence (group 1) was subtracted from group 2 and 3 values at each time-point, and data were normalized to the initial fluorescence intensity of same amount of each labeled protein. FIG. 5B shows that the tumor-associated fluorescence with group 3 was roughly 2-fold higher than that of group 2 at each of the time-points tested. This signifies next generation retention linker Construct DD accumulated and was retained in tumors at 2-fold higher levels compared to IL-2 fusion protein Construct GGG, lacking any targeting sequence.


Example 10: Multiple Targeting Sequences in Linker of IL-2 Fusion Protein Yielded Greatest Anti-Tumor Efficacy In Vivo

C57BL/6 mice were subcutaneously inoculated with B16F10 melanoma cells and when the average tumor volume reached on average 70-90 mm3, animals were randomized into 6 groups based on tumor volumes (n=8 mice per treatment group). Mice were dosed intravenously every 3 days (Q3D) for a total of 5 doses according to Table 7.









TABLE 7







Study design for assessing IL-2 fusion proteins


with multiple targeting sequences

















Dosing
Dose
Dose





Dose
Frequency &
Level
Volume


Group
Treatment
N
Route
Duration
(mg/kg)
(mL/kg)
















1
PBS-Vehicle
8
IV
Q3D for 14
NA
5






days


3
Construct Y
8
IV
Q3D for 14
20
5






days


4
Construct GG
8
IV
Q3D for 14
20
5






days


5
Construct RR
8
IV
Q3D for 14
20
5






days


6
Construct
8
IV
Q3D for 14
20
5



UUU


days


7
Construct III
8
IV
Q3D for 14
20
5






days









Tumor volumes were measured twice a week for the duration of the study. Mean tumor volume is shown in FIG. 6. Anti-tumor activity was observed in all treatment groups, but the most robust tumor growth inhibition (TGI) was observed with the multi-targeting linker construct Construct III (83.5%), compared to 52% to 66% TGI in single-targeting linker fusion proteins. On day 14, animals were sacrificed, and tissues and blood (processed to serum) were collected 24 hours post final dose (dose #5) and stored at −80° C. until further testing.


Example 11: Multiple Targeting Sequences in Linker of IL-2 Fusion Protein LED to Increased Intratumoral Levels of Drug, IL-2, and IFN-γ, as Well as Enhanced Levels of Drug in Circulation Compared to Single-Targeting Linker Constructs

The levels of full-length IL-2-IL-2Ra fusion proteins, IL-2, and IFN-7 were quantified in tumor samples collected during a pre-clinical efficacy study comparing a panel of retention linker IL-2 fusion drugs (see Example 10).


Tumors (n=3 per group) were collected 24 hours after the last dose injection, flash frozen, and stored at −80° C. until further processing. Tumor lysates were generated using tissue extraction reagent (ThermoFisher) supplemented with protease and phosphatase inhibitors. Standard techniques and protein concentrations were determined using the BCA assay (Pierce).


Lysates were tested with in-house developed ELISA (see Example 5) to measure full-length IL-2 fusion proteins (IL-2 capture/IL-2Ra detection). Results were normalized to 1 mg of tumor lysate and mean values are shown in FIG. 7A. The highest levels of drug were detected with the multi-targeting linker drug Construct III (about 2-fold to 5-fold higher levels compared to other retention linker drugs tested). Likewise, IL-2 intratumoral levels, measured with appropriate Luminex kit (IL-2 Mouse ProcartaPlex™ Simplex Kit, cat #EPX01A-20601-901, ThermoFisher), were highest in Construct III treated group compared to other arms (FIG. 7B). This demonstrates that multi-site targeting linker technology improved TME retention of both full-length drug and released active IL-2 post-cleavage. Moreover, levels of IFN-7, the main Th1 cytokine, were enhanced in Construct III animals (FIG. 7C; Essential Th1/Th2 Cytokine 6-Plex Mouse ProcartaPlex™ Panel, cat #EPX060-20831-901, ThermoFisher).


The equivalent serum samples (n=3 per group) were tested with in-house ELISA to quantify full-length IL-2 fusion drugs, and results are shown in FIG. 7D. 24 hours after dosing, circulating drug levels of Construct III are roughly 1.5-fold to 4-fold higher than other targeted drug serum levels. This demonstrates that engineering multiple targeting sequences into IL-2 fusion drugs increased drug levels in both tumor and circulation. Furthermore, multiple targeting sequences (e.g., a targeting sequence targeting heparin and a targeting sequence targeting collagen IV) can provide an increase in the serum half-life of the linker polypeptide.


Example 12: Multiple Targeting Sequences in Linker of IL-2 Fusion Protein was not Associated with any Systemic Toxicity

Inflammatory cytokine levels were measured in serum using a multiplex Luminex assay (Essential Th1/Th2 Cytokine 6-Plex Mouse ProcartaPlex™ Panel, cat #EPX060-20831-901, ThermoFisher). Low levels of TNF-α and IL-6 were detected (FIGS. 8A-8B; mean values per group equal or below 10 μg/mL and 27 μg/mL, respectively), while IL-12 was undetectable in all groups. In addition, no increase in aspartate transaminase levels was observed in treated arms compared to control animals, indicating the absence of any liver injury (FIG. 8C; AST activity assay, Sigma).


Example 13: Linker Polypeptides with Immunoglobulin Antigen-Binding Domains as Active Domains


FIGS. 9A-9D each illustrate a linker polypeptide according to certain embodiments of the disclosure. The linker polypeptide of FIG. 9A comprises a first active domain (AD1); a second active domain (AD2); a pharmacokinetic modulator (PM); and a first linker between the pharmacokinetic modulator and the first active domain, the first linker comprising a protease-cleavable polypeptide sequence (CL). In some embodiments, the first linker further comprises a targeting sequence. In certain embodiments, the active domains comprise immunoglobulin antigen-binding domains (IBD1 and IBD2), which may be directed to different targets. In certain embodiments, the target binding domain may comprise a heavy chain and a light chain (FIG. 9A) or only a heavy chain (FIG. 9B), such as a VHH. Compared to the linker polypeptide of FIG. 9A, the linker polypeptide of FIG. 9D further comprises a chemotherapy drug (D).



FIGS. 11A-11B each illustrate release of the first active domain from the remainder of the linker polypeptide after the one or more protease-cleavable polypeptide sequences are cleaved. In these figures, the active domains may comprise immunoglobulin antigen-binding domains (IBD1 and IBD2). Compared to the linker polypeptide of FIG. 11A, the linker polypeptide of FIG. 11B further comprises a blocker (B) conjugated, via a protease-cleavable polypeptide sequence (CL), to each of the first active domain and the second active domain. In some embodiments, the protease-cleavable polypeptide sequence connecting the first active domain to the remainder of the linker polypeptide and the protease-cleavable polypeptide sequences connecting the blockers to the active domains may be cleaved together (e.g., by the same protease). In some embodiments, the protease-cleavable polypeptide sequence connecting the first active domain to the remainder of the linker polypeptide and the protease-cleavable polypeptide sequences connecting the blockers to the active domains may be cleaved separately (e.g., by different proteases).


Example 14: Linker Polypeptides with an Immunoglobulin Antigen-Binding Domain as One Active Domain and a Non-Immunoglobulin Polypeptide as the Other Active Domain


FIGS. 10A-10B each illustrates a linker polypeptide according to certain embodiments of the disclosure. The linker polypeptide of FIG. 10A comprises a first active domain (AD1); a second active domain (AD2); a pharmacokinetic modulator (PM); and a first linker between the pharmacokinetic modulator and the first active domain, the first linker comprising a protease-cleavable polypeptide sequence (CL). In some embodiments, the first linker further comprises a targeting sequence. In certain embodiments, the first active domain comprises a receptor-binding domain (RBD), and the second active domain comprises an immunoglobulin antigen-binding domain (IBD). In some embodiments, the RBD comprises a cytokine polypeptide sequence (CY). Compared to the linker polypeptide of FIG. 10A, the linker polypeptide of FIG. 10B further comprises an inhibitory polypeptide sequence (IN) capable of blocking an activity of the first active domain; and a second linker between the receptor-binding domain and the inhibitory polypeptide sequence, the second linker comprising a protease-cleavable polypeptide sequence (CL).



FIGS. 12A-12B each illustrate release of the first active domain from the remainder of the linker polypeptide after the one or more protease-cleavable polypeptide sequences are cleaved. In these figures, the first active domain comprises a receptor-binding domain (RBD), which may comprise a cytokine polypeptide sequence (CY), and the second active domain comprises an immunoglobulin antigen-binding domain (IBD). Compared to the linker polypeptide of FIG. 12A, the linker polypeptide of FIG. 12B further comprises an inhibitory polypeptide sequence (IN) capable of blocking an activity of the receptor-binding domain; and a second linker between the receptor-binding domain and the inhibitory polypeptide sequence, the second linker comprising a protease-cleavable polypeptide sequence (CL). In some embodiments, the protease-cleavable polypeptide sequences of the first linker and the second linker may be cleaved together (e.g., by the same protease). In some embodiments, the protease-cleavable polypeptide sequences of the first linker and the second linker may be cleaved separately (e.g., by different proteases).


Example 15: Tumor Stroma Targeting Sequences in Linker of IL-2 Fusion Protein Yielded Enhanced Anti-Tumor Efficacy In Vivo

C57BL/6 mice were subcutaneously inoculated with MC38 colorectal cancer cells. When the average tumor volume reached 70-90 mm3, animals were randomized into 10 groups based on tumor volumes (n 7 or 6 mice per treatment group). Mice were dosed intraperitoneally (IP) twice-weekly (BIW) for a total of 5 doses according to design shown in Table 8 below:









TABLE 8







Dosing in C57BL/6 mice inoculated with MC38 cells

















Dosing
Dose
Dose





Dose
Frequency &
Level
Volume


Group
Treatment
N
Route
Duration
(mg/kg)
(mL/kg)
















1
PBS-Vehicle
7
IP
BIW for 14 days (5 doses
NA
5






D1, D4, D8, D11, D15)


2
Construct
7
IP
BIW for 14 days (5 doses
5
5



AAA


D1, D4, D8, D11, D15)


3
Construct
6
IP
BIW for 14 days (5 doses
1
5



AAA


D1, D4, D8, D11, D15)


4
Construct
7
IP
BIW for 14 days (5 doses
5
5



EEE


D1, D4, D8, D11, D15)


5
Construct
6
IP
BIW for 14 days (5 doses
1
5



EEE


D1, D4, D8, D11, D15)


6
Construct
7
IP
BIW for 14 days (5 doses
5
5



NNN


D1, D4, D8, D11, D15)


7
Construct
6
IP
BIW for 14 days (5 doses
1
5



NNN


D1, D4, D8, D11, D15)


8
Construct
7
IP
BIW for 14 days (5 doses
5
5



NNNN


D1, D4, D8, D11, D15)


9
Construct
6
IP
BIW for 14 days (5 doses
1
5



NNNN


D1, D4, D8, D11, D15)


10
Construct
7
IP
BIW for 14 days (5 doses
5
5



OOOO


D1, D4, D8, D11, D15)









Tumor volumes were measured twice a week for the duration of the study. Mean tumor volume is shown in FIGS. 13A-13B, and inhibition of tumor volume is shown in FIG. 13C. Anti-tumor activity was observed in all treatment groups at the 5 mg/kg dose; however, the most robust tumor growth inhibition (TGI) was observed with the tumor-stroma-targeting Construct NNNN, Construct EEL, Construct NNN, and Construct 0000 (TGI ranging from 74% to 86%). More modest TGI was observed in low dose treatment groups, and tumor-stroma-targeting Construct EEE and Construct NNN continued to show superior efficacy over parental non-targeting constructs.


On Day 16, animals were sacrificed, and tumors (n=3 per group) were collected 24 hours after the last dose injection, flash frozen, and stored at −80° C. until further processing. Tumor lysates were generated using tissue extraction reagent (ThermoFisher) supplemented with protease and phosphatase inhibitors and standard techniques, and protein concentrations were determined using the BCA assay (Pierce). Intratumoral levels of IFN-7 (IFNg), the main Th1 cytokine, were mostly elevated in groups treated with targeting constructed, compared to groups treated with parental non-targeting constructs, as shown in FIG. 13D. IFN-7 was measured using Essential Th1/Th2 Cytokine 6-Plex Mouse ProcartaPlex™ Panel (cat #EPX060-20831-901, ThermoFisher).


Example 16: IL-2 Fusion Proteins with TME Binding Motifs Showed Enhanced Intratumoral Immune Cell Infiltration

C57BL/6 mice were subcutaneously inoculated with B16F10 melanoma cells. When the average tumor volume reached 70-90 mm3, animals were randomized into 5 groups based on tumor volumes (n=3 mice per treatment group). Mice were dosed twice intraperitoneally on Day 1 and Day 4 with select ODC-IL2 fusions. On Day 6, tumors were harvested and processed into single cell suspension using standard technique (Miltenyi method, which is a combination of enzymatic and mechanical dissociation). Single cell samples were cryopreserved at −80° C. prior to further processing. Upon thawing, cells were washed and stained for surface and intracellular targets, using the antibodies listed in Table 9.









TABLE 9







Antibodies for staining immune cell markers











Marker
Format
Clone
Catalog No.
Manufacturer





CD3
AF700
17A2
100216
Biolegend


CD4
AF488
GK1.5
100423
Biolegend


CD8a
BV785
53-6.7
100750
Biolegend


CD25
PE-Cy7
3C7
101916
Biolegend


DX5
PCp/Cy5.5
DX5
108916
Biolegend


CD44
BV650
IM7
103049
Biolegend


PD-1
BV510
29F.1A12
135241
Biolegend


CD45
BV421
30-F11
103134
Biolegend


Ki-67
PE
11F6
151210
Biolegend


FoxP3
APC
FJK-16s
17-5773-82
ThermoFisher










FIGS. 14A-14E show the flow cytometric analysis for select immune cell populations. Strikingly, groups treated with IL-2 fusion proteins engineered with tumor stroma targeting sites show enhanced intratumoral T cell infiltration (CD3+ cells), compared to groups treated with parental non-targeting fusion proteins or the vehicle group. More specifically, this T cell increase appeared to be driven primarily by an increase in both total and activated cytotoxic T cells (CD8+ and CD8+CD25+ subsets).


Example 17: Examples of IL-2 Asymmetrical Fe Fusion Proteins with Tumor Targeting Sequences and Single or Dual Masks

Additional asymmetrical IL-2 Fc fusion proteins containing ECM targeting sequences and single or dual masks were manufactured, purified, and functionally characterized as previously described. FIG. 15A shows examples of such proteins: the rectangles indicate Fc domains (either Fc knob or Fc hole), the solid lines indicate protease cleavable linker peptides, and the dashed lines indicate flexible linker sequences. The purity of Fc fusion proteins was assessed by SDS-PAGE under non-reducing conditions (FIG. 15B). Proteins were cleaved with recombinant MMP-9 protease overnight at 37° C., and digests were assessed in HEK-Blue IL-2 reporter assays as previously described. Results are shown in FIGS. 15C-15U. Select IL-2 fusion proteins were evaluated for their ability to bind ECM components such as heparin and fibronectin using the binding assays previously described, and results are shown in FIGS. 15V-15X. Fusion proteins with heparin binding motifs inserted at different locations of the molecule all showed enhanced binding to heparin compared to a parental molecule without tumor stroma targeting sites (FIGS. 15V-15W). Likewise, only an IL-2 fusion protein fusion engineered with a pH dependent fibronectin binding motif was able to bind fibronectin compared to a parental molecule without tumor stroma targeting sites or a fusion protein engineered with a collagen I binding motif (FIG. 15X). Furthermore, binding to fibronectin is slightly enhanced in acidic conditions.


In order to assess the ability of fusion proteins to bind collagen, an image-based retention assay was performed. Fusion proteins were labeled with DyLight 650 Maleimide at reduced sulfhydryl groups following manufacturer's recommended procedure (ThermoFisher, Cat #62295). Fluorescently labeled fusion proteins were then mixed with bovine type I collagen (Advanced Biomatrix, TeloCol-10, catalog #5226) and 10×PBS buffer, pH 7.4 (Invitrogen, REFAM9624) to bring the sample mix to a neutral pH. The final concentrations of each component in mix are shown in Table 10 below.









TABLE 10







Concentrations of components in fusion protein-collagen mix








Component
Concentration





Construct BBBBBB/Construct TTTTT
5.4 μM (right panel)


Construct KKKKKKK/Construct TTTTT
3.4 μM (right panel)


Bovine type I collagen
4 mg/ml


PBS










5 μL of fusion protein-collagen mix was loaded to the inner well of ibidi u-Slide Angiogenesis (Uncoated, Part 81501) pretreated with gelatin solution (2% in H2O, Sigma, Cat #G1393-20ML). The slide was incubated at room temperature for 30 minutes to allow the fusion protein-collagen mix to form gel. Then, 50 μL of bovine type I collagen (1 mg/mL in 1×PBS) was loaded to the upper well of the slide. After the collagen gelled in the upper well, the slide was imaged using a BioTek Lionheart FX automated microscope. The fluorescence intensity of the inner well represented the amount of fusion protein present and retained in the collagen and was measured at excitation/emission 628/685 nm. LED intensity, integration time, and camera gain were adjusted to appropriate levels to avoid excessive exposure and saturating pixel intensities. Fluorescence intensity was measured over 66 hours and images were taken every 30 minutes at room temperature. The mean fluorescence intensity was calculated by Gen5 software and then normalized to the mean fluorescence intensity of the first image (T=0), which was set to 100%. The normalized mean fluorescence intensity over time showed that the fusion protein containing a collagen I binding site is retained in collagen gel to a greater extent than a non-targeting fusion protein (FIG. 15Y).

Claims
  • 1. A linker polypeptide, comprising: a first targeting sequence;a second targeting sequence; anda first linker between the first targeting sequence and the second targeting sequence, the linker comprising a protease-cleavable polypeptide sequence.
  • 2. The linker polypeptide of claim 1, wherein the linker polypeptide further comprises a first active domain, optionally wherein the first active domain is proximal to the first targeting sequence relative to the second targeting sequence, optionally wherein the linker polypeptide further comprises an additional domain, optionally wherein the additional domain comprises an inhibitory polypeptide sequence capable of blocking an activity of the first active domain, a pharmacokinetic modulator, and/or a second active domain, and optionally wherein the additional domain is proximal to the second targeting sequence relative to the first targeting sequence, andoptionally wherein the linker polypeptide comprises sequentially, from the N-terminus to the C-terminus or from the C-terminus to the N-terminus, the first active domain, the first targeting sequence, the first linker, the second targeting sequence, and the additional domain.
  • 3-4. (canceled)
  • 5. A linker polypeptide, comprising a first active domain;a second active domain;a pharmacokinetic modulator; anda first linker between the pharmacokinetic modulator and the first active domain, the first linker comprising a protease-cleavable polypeptide sequence; andoptionally a first targeting sequence.
  • 6. (canceled)
  • 7. A linker polypeptide, comprising: a first active domain;an inhibitory polypeptide sequence capable of blocking an activity of the first active domain;a first linker between the first active domain and the inhibitory polypeptide sequence, the linker comprising a protease-cleavable polypeptide sequence; anda first targeting sequence; andoptionally a pharmacokinetic modulator.
  • 8. (canceled)
  • 9. A linker polypeptide, comprising: a first polypeptide chain comprising a first active domain, a first domain of a pharmacokinetic modulator, and a first linker between the first active domain and the first domain of the pharmacokinetic modulator, wherein the first active domain is C-terminal to or N-terminal to the first domain of the pharmacokinetic modulator;a second polypeptide chain, comprising a second domain of the pharmacokinetic modulator, an inhibitory polypeptide sequence capable of blocking an activity of the first active domain, and a second linker between the second domain of the pharmacokinetic modulator and the inhibitory polypeptide sequence;wherein the first linker comprises a protease-cleavable polypeptide sequence; andthe first polypeptide chain or the second polypeptide chain further comprises at least one targeting sequence.
  • 10. (canceled)
  • 11. The linker polypeptide of claim 9, wherein the inhibitory polypeptide sequence is C-terminal to the second domain of the pharmacokinetic modulator, or wherein the inhibitory polypeptide sequence is N-terminal to the second domain of the pharmacokinetic modulator; and/or wherein the targeting sequence is between the protease-cleavable polypeptide sequence and the first domain of the pharmacokinetic modulator, or wherein the targeting sequence is between the protease-cleavable polypeptide sequence and the first active domain, or wherein the targeting sequence is C-terminal to the first active domain, or wherein the targeting sequence is N-terminal to the first active domain, or wherein the targeting sequence is C-terminal to the inhibitory polypeptide sequence, or wherein the targeting sequence is N-terminal to the inhibitory polypeptide sequence, or wherein the targeting sequence is between the inhibitory polypeptide sequence and the second domain of the pharmacokinetic modulator.
  • 12-19. (canceled)
  • 20. The linker polypeptide of claim 9, wherein the targeting sequence binds heparin, optionally wherein the targeting sequence comprises SEQ ID NO: 664; or wherein the targeting sequence binds collagen IV, optionally wherein the targeting sequence comprises SEQ ID NO: 200: orwherein the targeting sequence binds collagen I, optionally wherein the targeting sequence comprises SEQ ID NO: 188: orwherein the targeting sequence binds fibronectin, optionally wherein the targeting sequence comprises SEQ ID NO: 653.
  • 21-23. (canceled)
  • 24. The linker polypeptide of claim 9, wherein the targeting sequence is a first targeting sequence and the linker polypeptide further comprises a second targeting sequence, optionally wherein the first targeting sequence is part of the first polypeptide chain and the second targeting sequence is part of the second polypeptide chain, and optionally wherein the first targeting sequence is C-terminal to the first active domain and the second targeting sequence is C-terminal to the inhibitory polypeptide sequence.
  • 25-26. (canceled)
  • 27. The linker polypeptide of claim 24, wherein the second targeting sequence binds heparin, optionally wherein the targeting sequence comprises SEQ ID NO: 664; or wherein the second targeting sequence binds collagen IV, optionally wherein the targeting sequence comprises SEQ ID NO: 200; orwherein the second targeting sequence binds collagen I, optionally wherein the targeting sequence comprises SEQ ID NO: 188; orwherein the second targeting sequence binds fibronectin, optionally wherein the targeting sequence comprises SEQ ID NO: 653.
  • 28-30. (canceled)
  • 31. The linker polypeptide of claim 9, further comprising a second active domain, optionally wherein the second active domain is part of the second polypeptide chain.
  • 32. The linker polypeptide of claim 9, wherein the inhibitory polypeptide sequence is a first inhibitory polypeptide sequence, and the linker polypeptide further comprises a second inhibitory polypeptide sequence, optionally wherein the second inhibitory polypeptide sequence is part of the second polypeptide chain, and optionally wherein the second inhibitory polypeptide sequence is C-terminal to the first inhibitory polypeptide sequence; and optionally wherein the second inhibitory polypeptide sequence is an immunoglobulin inhibitory polypeptide sequence, optionally wherein the first inhibitory polypeptide sequence is an immunoglobulin inhibitory polypeptide sequence, and optionally wherein one or each of the immunoglobulin inhibitory polypeptide sequences is a VHH.
  • 33-37. (canceled)
  • 38. The linker polypeptide of claim 9, wherein the pharmacokinetic modulator comprises a heterodimeric Fc or heterodimeric CH3 domains, optionally wherein the heterodimeric Fc or heterodimeric CH3 domains comprise a knob CH3 domain and a hole CH3 domain, and optionally wherein the first domain of the pharmacokinetic modulator is a knob CH3 domain and the second domain of the pharmacokinetic modulator is a hole CH3 domain, or the first domain of the pharmacokinetic modulator is a hole CH3 domain and the second domain of the pharmacokinetic modulator is a knob CH3 domain; and optionally wherein the pharmacokinetic modulator comprises the sequence of SEQ ID NO: 76, 75, 77, 78, 756, or 757.
  • 39-47. (canceled)
  • 48. The linker polypeptide of claim 9, wherein the first active domain comprises a first immunoglobulin antigen-binding domain and/or wherein the second active domain comprises a second immunoglobulin antigen-binding domain; and/or wherein one or each of the first immunoglobulin antigen-binding domain and the second immunoglobulin antigen-binding domain independently comprises a VH region and a VL region; and/orwherein one or each of the first immunoglobulin antigen-binding domain and the second immunoglobulin antigen-binding domain independently comprises an Fv, scFv, Fab, or VHH; and/orwherein one or each of the first immunoglobulin antigen-binding domain and the second immunoglobulin antigen-binding domain independently is humanized or fully human; and/orwherein one or each of the first immunoglobulin antigen-binding domain and the second immunoglobulin antigen-binding domain independently is configured to bind to one or more sequences selected from a cancer cell surface antigen sequence, a growth factor sequence, and a growth factor receptor sequence, optionally wherein one or each of the first immunoglobulin antigen-binding domain and the second immunoglobulin antigen-binding domain independently is configured to bind to a HER2 sequence, an EGFR extracellular domain sequence, a PD-1 extracellular domain sequence, a PD-L1 extracellular domain sequence, or a CD3 extracellular domain sequence; and/orwherein one of the first immunoglobulin antigen-binding domain and the second immunoglobulin antigen-binding domain is configured to bind to a HER2 sequence, optionally wherein one of the first immunoglobulin antigen-binding domain and the second immunoglobulin antigen-binding domain comprises a VH region comprising hypervariable regions (HVRs) HVR-1, HVR-2, and HVR-3 of a VH region comprising the amino acid sequence of SEQ ID NO: 910, and a VL region comprising HVR-1, HVR-2, and HVR-3 of a VL region comprising the amino acid sequence of SEQ ID NO: 909, optionally wherein one of the first immunoglobulin antigen-binding domain and the second immunoglobulin antigen-binding domain comprises a sequence that has at least 80, 85, 90, 95, 97, 98, or 99 percent identity to the sequence of SEQ ID NO: 909 or 910, optionally wherein one of the first immunoglobulin antigen-binding domain and the second immunoglobulin antigen-binding domain comprises a VH region comprising the amino acid sequence of SEQ ID NO: 910; and a VL region comprising the amino acid sequence of SEQ ID NO: 909, and optionally wherein one of the first immunoglobulin antigen-binding domain and the second immunoglobulin antigen-binding domain is an antigen-binding domain of trastuzumab; and/orwherein one of the first immunoglobulin antigen-binding domain and the second immunoglobulin antigen-binding domain is configured to bind to an EGFR extracellular domain sequence, optionally wherein one of the first immunoglobulin antigen-binding domain and the second immunoglobulin antigen-binding domain comprises a VH region comprising HVR-1, HVR-2, and HVR-3 of a VH region comprising the amino acid sequence of SEQ ID NO: 914, and a VL region comprising HVR-1, HVR-2, and HVR-3 of a VL region comprising the amino acid sequence of SEQ ID NO: 913, optionally wherein one of the first immunoglobulin antigen-binding domain and the second immunoglobulin antigen-binding domain comprises a sequence that has at least 80, 85, 90, 95, 97, 98, or 99 percent identity to the sequence of SEQ ID NO: 913 or 914, optionally wherein one of the first immunoglobulin antigen-binding domain and the second immunoglobulin antigen-binding domain comprises a VH region comprising the amino acid sequence of SEQ ID NO: 914; and a VL region comprising the amino acid sequence of SEQ ID NO: 913, and optionally wherein one of the first immunoglobulin antigen-binding domain and the second immunoglobulin antigen-binding domain is an antigen-binding domain of cetuximab; and/orwherein one of the first immunoglobulin antigen-binding domain and the second immunoglobulin antigen-binding domain is configured to bind to a PD-1 extracellular domain sequence, optionally wherein one of the first immunoglobulin antigen-binding domain and the second immunoglobulin antigen-binding domain comprises a VH region comprising HVR-1, HVR-2, and HVR-3 of a VH region comprising the amino acid sequence of SEQ ID NO: 917, and a VL region comprising HVR-1, HVR-2, and HVR-3 of a VL region comprising the amino acid sequence of SEQ ID NO: 918, optionally wherein one of the first immunoglobulin antigen-binding domain and the second immunoglobulin antigen-binding domain comprises a sequence that has at least 80, 85, 90, 95, 97, 98, or 99 percent identity to the sequence of SEQ ID NO: 917 or 918, optionally wherein one of the first immunoglobulin antigen-binding domain and the second immunoglobulin antigen-binding domain comprises a VH region comprising the amino acid sequence of SEQ ID NO: 917; and a VL region comprising the amino acid sequence of SEQ ID NO: 918, and optionally wherein one of the first immunoglobulin antigen-binding domain and the second immunoglobulin antigen-binding domain is an antigen-binding domain of nivolumab; and/orwherein one of the first immunoglobulin antigen-binding domain and the second immunoglobulin antigen-binding domain is configured to bind to a PD-L1 extracellular domain sequence, optionally wherein one of the first immunoglobulin antigen-binding domain and the second immunoglobulin antigen-binding domain comprises a VH region comprising HVR-1, HVR-2, and HVR-3 of a VH region comprising the amino acid sequence of SEQ ID NO: 921, and a VL region comprising HVR-1, HVR-2, and HVR-3 of a VL region comprising the amino acid sequence of SEQ ID NO: 922, optionally wherein one of the first immunoglobulin antigen-binding domain and the second immunoglobulin antigen-binding domain comprises a sequence that has at least 80, 85, 90, 95, 97, 98, or 99 percent identity to the sequence of SEQ ID NO: 921 or 922, optionally wherein one of the first immunoglobulin antigen-binding domain and the second immunoglobulin antigen-binding domain comprises a VH region comprising the amino acid sequence of SEQ ID NO: 921; and a VL region comprising the amino acid sequence of SEQ ID NO: 922, and optionally wherein one of the first immunoglobulin antigen-binding domain and the second immunoglobulin antigen-binding domain is an antigen-binding domain of atezolizumab; and/orwherein one of the first immunoglobulin antigen-binding domain and the second immunoglobulin antigen-binding domain is configured to bind to a CD3 extracellular domain sequence, optionally wherein one of the first immunoglobulin antigen-binding domain and the second immunoglobulin antigen-binding domain comprises a VH region comprising HVR-1, HVR-2, and HVR-3 of a VH region comprising the amino acid sequence of any one of SEQ ID NOs: 925, 929, 933, and 937, and a VL region comprising HVR-1, HVR-2, and HVR-3 of a VL region comprising the amino acid sequence of any one of SEQ ID NOs: 926, 930, 934, and 938, optionally wherein one of the first immunoglobulin antigen-binding domain and the second immunoglobulin antigen-binding domain comprises a sequence that has at least 80, 85, 90, 95, 97, 98, or 99 percent identity to the sequence of any one of SEQ ID NOs: 925, 926, 929, 930, 933, 934, 937, and 938, optionally wherein one of the first immunoglobulin antigen-binding domain and the second immunoglobulin antigen-binding domain comprises a VH region comprising the amino acid sequence of any one of SEQ ID NOs: 925, 929, 933, and 937; and a VL region comprising the amino acid sequence of any one of SEQ ID NOs: 926, 930, 934, and 938, and optionally wherein one of the first immunoglobulin antigen-binding domain and the second immunoglobulin antigen-binding domain is an antigen-binding domain of teplizumab, muromonab, otelixizumab, or visilizumab.
  • 49-79. (canceled)
  • 80. The linker polypeptide of claim 9, wherein the first active domain comprises a receptor-binding domain; optionally wherein the receptor-binding domain comprises a cytokine polypeptide sequence; and/or wherein the receptor-binding domain comprises a modification to prevent disulfide bond formation, and optionally otherwise comprises wild-type sequence; and/orwherein the receptor-binding domain has at least 80, 85, 90, 95, 97, 98, or 99 percent identity to the sequence of a wild-type receptor-binding domain or to a receptor-binding domain in Table 1, optionally wherein the receptor-binding domain is a wild-type receptor-binding domain; and/orwherein the receptor-binding domain is a monomeric cytokine, or wherein the receptor-binding domain is a dimeric receptor-binding domain comprising monomers that are associated covalently (optionally via a polypeptide linker) or noncovalently; and/orwherein the linker polypeptide further comprises an inhibitory polypeptide sequence capable of blocking an activity of the receptor-binding domain, and a second linker between the receptor-binding domain and the inhibitory polypeptide sequence, the second linker comprising a protease-cleavable polypeptide sequence; and/orwherein the inhibitory polypeptide sequence comprises a cytokine-binding domain, optionally wherein the cytokine-binding domain is a cytokine-binding domain of a cytokine receptor or a cytokine-binding domain of a fibronectin, optionally wherein the cytokine-binding domain is an immunoglobulin cytokine-binding domain, optionally wherein the immunoglobulin cytokine-binding domain comprises a VL region and a VH region that bind the cytokine, and optionally wherein the immunoglobulin cytokine-binding domain is an Fv, scFv, Fab, or VHH.
  • 81-87. (canceled)
  • 88. The linker polypeptide of claim 9, wherein the inhibitory polypeptide sequence comprises a cytokine-binding domain, optionally wherein the cytokine-binding domain is a cytokine-binding domain of a cytokine receptor or a cytokine-binding domain of a fibronectin, optionally wherein the cytokine-binding domain is an immunoglobulin cytokine-binding domain, optionally wherein the immunoglobulin cytokine-binding domain comprises a VL region and a VH region that bind the cytokine, and optionally wherein the immunoglobulin cytokine-binding domain is an Fv, scFv, Fab, or VHH.
  • 89-92. (canceled)
  • 93. The linker polypeptide of claim 80, wherein the linker polypeptide comprises a targeting sequence, wherein the targeting sequence is between the receptor-binding domain and the protease-cleavable polypeptide sequence or one of the protease-cleavable polypeptide sequences; and/or wherein the receptor-binding domain is an interleukin polypeptide sequence; and/orwherein the receptor-binding domain is capable of binding a receptor comprising CD132; and/orwherein the receptor-binding domain is capable of binding a receptor comprising CD122; and/orwherein the receptor-binding domain is capable of binding a receptor comprising CD25; and/orwherein the receptor-binding domain is capable of binding a receptor comprising IL-10R; and/orwherein the receptor-binding domain is capable of binding a receptor comprising IL-15R; and/orwherein the receptor-binding domain is capable of binding a receptor comprising CXCR3.
  • 94-100. (canceled)
  • 101. The linker polypeptide of claim 80, wherein the receptor-binding domain is an IL-2 polypeptide sequence, optionally wherein the IL-2 polypeptide sequence has at least 80, 85, 90, 95, 97, 98, or 99 percent identity to the sequence of any one of SEQ ID NOs: 2, 1, 3, and 4, optionally wherein the IL-2 polypeptide sequence comprises the sequence of any one of SEQ ID NOs: 2, 1, 3, and 4, optionally wherein the IL-2 polypeptide sequence is a human IL-2 polypeptide sequence, and optionally wherein the IL-2 polypeptide sequence comprises the sequence of SEQ ID NO: 2 or 1; and/or wherein the inhibitory polypeptide sequence comprises an IL-2 binding domain of an IL-2 receptor (IL-2R), optionally wherein the inhibitory polypeptide sequence comprises an amino acid sequence having at least 80, 85, 90, 95, 97, 98, or 99 percent identity to the sequence of any one of SEQ ID NOs: 10-29 and 40-51, optionally wherein the TL-2R is a human IL-2R; and/orwherein the inhibitory polypeptide sequence comprises an IL-2-binding immunoglobulin domain, optionally wherein the IL-2-binding immunoglobulin domain is a human IL-2-binding immunoglobulin domain, optionally wherein the IL-2-binding immunoglobulin domain comprises a VH region comprising hypervariable regions (HVRs) HVR-1, HVR-2, and HVR-3 having the sequences of SEQ ID NOs: 37, 38, and 39, respectively, and a VL region comprising HVR-1, HVR-2, and HVR-3 having the sequences of SEQ ID NOs: 34, 35, and 36, respectively, and/or the IL-2-binding immunoglobulin domain comprises a VH region comprising an amino acid sequence having at least 80, 85, 90, 95, 97, 98, or 99 percent identity to the sequence of SEQ ID NO: 33 and a VL region comprising an amino acid sequence having at least 80, 85, 90, 95, 97, 98, or 99 percent identity to the sequence of SEQ ID NO: 32, or a VH region comprising an amino acid sequence having at least 80, 85, 90, 95, 97, 98, or 99 percent identity to the sequence of SEQ ID NO: 749 and a VL region comprising an amino acid sequence having at least 80, 85, 90, 95, 97, 98, or 99 percent identity to the sequence of SEQ ID NO: 748, or the IL-2-binding immunoglobulin domain comprises a VH region comprising the sequence of SEQ ID NO: 33 and a VL region comprising the sequence of SEQ ID NO: 32, or a VH region comprising the sequence of SEQ ID NO: 749 and a VL region comprising the sequence of SEQ ID NO: 748, and optionally wherein the IL-2-binding immunoglobulin domain is an scFv; and/orwherein the inhibitory polypeptide sequence comprises an IL-2-binding immunoglobulin domain, optionally wherein the IL-2-binding immunoglobulin domain is a human IL-2-binding immunoglobulin domain, optionally wherein the IL-2-binding immunoglobulin domain is an scFv, optionally wherein the IL-2-binding immunoglobulin domain comprises the CDRs of an amino acid sequence of SEQ ID NO: 30, 31, 747, 850-856, or 863-870, optionally wherein the IL-2-binding immunoglobulin domain comprises an amino acid sequence having at least 80, 85, 90, 95, 97, 98, or 99 percent identity to the sequence of SEQ ID NO: 30, 31, 747, 850-856, or 863-870, and optionally wherein the IL-2-binding immunoglobulin domain comprises the sequence of SEQ ID NO: 30, 31, 747, 850-856, or 863-870.
  • 102-118. (canceled)
  • 119. The linker polypeptide of claim 80, wherein the receptor-binding domain is an IL-10 polypeptide sequence, optionally wherein the IL-10 polypeptide sequence has at least 80, 85, 90, 95, 97, 98, or 99 percent identity to the sequence of SEQ ID NO: 900, and optionally wherein the IL-10 polypeptide sequence comprises the sequence of SEQ ID NO: 900; and/or wherein the IL-10 polypeptide sequence is a human IL-10 polypeptide sequence; and/orwherein the inhibitory polypeptide sequence comprises an IL-10 binding domain of an IL-10 receptor (IL-10R), optionally wherein the inhibitory polypeptide sequence comprises an amino acid sequence having at least 80, 85, 90, 95, 97, 98, or 99 percent identity to the sequence of SEQ ID NO: 1011 or 1012, and/or the IL-10R is a human IL-10R; and/orwherein the inhibitory polypeptide sequence comprises an IL-10-binding immunoglobulin domain, optionally wherein the IL-10-binding immunoglobulin domain is a human IL-10-binding immunoglobulin domain, optionally wherein the IL-10-binding immunoglobulin domain comprises a VH region comprising hypervariable regions (HVRs) HVR-1, HVR-2, and HVR-3 having the sequences of SEQ ID NOs: 946, 947, and 948, respectively, and a VL region comprising HVR-1, HVR-2, and HVR-3 having the sequences of SEQ ID NOs: 942, 943, and 944, respectively: optionally wherein the IL-10-binding immunoglobulin domain comprises a VH region comprising an amino acid sequence having at least 80, 85, 90, 95, 97, 98, or 99 percent identity to the sequence of SEQ ID NO: 945 and a VL region comprising an amino acid sequence having at least 80, 85, 90, 95, 97, 98, or 99 percent identity to the sequence of SEQ ID NO: 941, optionally wherein the IL-10-binding immunoglobulin domain comprises a VH region comprising the sequence of SEQ ID NO: 945 and a VL region comprising the sequence of SEQ ID NO: 941, optionally wherein the IL-10-binding immunoglobulin domain is an scFv, optionally wherein the IL-10-binding immunoglobulin domain comprises an amino acid sequence having at least 80, 85, 90, 95, 97, 98, or 99 percent identity to the sequence of SEQ ID NO: 939 or 940, and optionally wherein the IL-10-binding immunoglobulin domain comprises the sequence of SEQ ID NO: 939 or 940.
  • 120-133. (canceled)
  • 134. The linker polypeptide of claim 80, wherein the receptor-binding domain is an IL-15 polypeptide sequence, optionally wherein the IL-15 polypeptide sequence is a human IL-15 polypeptide sequence, optionally wherein the IL-15 polypeptide sequence has at least 80, 85, 90, 95, 97, 98, or 99 percent identity to the sequence of SEQ ID NO: 901, and optionally wherein the IL-15 polypeptide sequence comprises the sequence of SEQ ID NO: 901; and/or wherein the inhibitory polypeptide sequence comprises an IL-15 binding domain of an IL-15 receptor (IL-15R), optionally wherein the IL-15R is a human IL-15R, and optionally wherein the inhibitory polypeptide sequence comprises an amino acid sequence having at least 80, 85, 90, 95, 97, 98, or 99 percent identity to the sequence of any one of SEQ ID NOs: 1016-1019; and/orwherein the inhibitory polypeptide sequence comprises an IL-15-binding immunoglobulin domain, optionally wherein the IL-15-binding immunoglobulin domain is a human IL-15-binding immunoglobulin domain, optionally wherein the IL-15-binding immunoglobulin domain comprises a VH region comprising HVR-1, HVR-2, and HVR-3 of a VH region comprising the amino acid sequence of any one of SEQ ID NOs: 950, 955, 957, 960, 963, 966, 969, 972, 975, 978, 981, 985, and 988, and a VL region comprising HVR-1, HVR-2, and HVR-3 of a VL region comprising the amino acid sequence of any one of SEQ ID NOs: 952, 954, 958, 961, 964, 967, 970, 973, 976, 979, 982, 984, and 987, optionally wherein the IL-15-binding immunoglobulin domain comprises a VH region comprising an amino acid sequence having at least 80, 85, 90, 95, 97, 98, or 99 percent identity to the sequence of any one of SEQ ID NOs: 950, 955, 957, 960, 963, 966, 969, 972, 975, 978, 981, 985, and 988 and a VL region comprising an amino acid sequence having at least 80, 85, 90, 95, 97, 98, or 99 percent identity to the sequence of any one of SEQ ID NOs: 952, 954, 958, 961, 964, 967, 970, 973, 976, 979, 982, 984, and 987, optionally wherein the IL-15-binding immunoglobulin domain comprises a VH region comprising the sequence of any one of SEQ ID NOs: 950, 955, 957, 960, 963, 966, 969, 972, 975, 978, 981, 985, and 988 and a VL region comprising the sequence of any one of SEQ ID NOs: 952, 954, 958, 961, 964, 967, 970, 973, 976, 979, 982, 984, and 987, optionally wherein the IL-15-binding immunoglobulin domain is an scFv, optionally wherein the IL-15-binding immunoglobulin domain comprises an amino acid sequence having at least 80, 85, 90, 95, 97, 98, or 99 percent identity to the sequence of any one of SEQ ID NOs: 953, 956, 959, 962, 965, 968, 971, 974, 977, 980, 983, and 986, and optionally wherein the IL-15-binding immunoglobulin domain comprises the sequence of any one of SEQ ID NOs: 953, 956, 959, 962, 965, 968, 971, 974, 977, 980, 983, and 986.
  • 135-148. (canceled)
  • 149. The linker polypeptide of claim 80, wherein the receptor-binding domain is a CXCL9 polypeptide sequence, optionally wherein the CXCL9 polypeptide sequence is a human CXCL9 polypeptide sequence, optionally wherein the CXCL9 polypeptide sequence has at least 80, 85, 90, 95, 97, 98, or 99 percent identity to the sequence of SEQ ID NO: 902, and optionally wherein the CXCL9 polypeptide sequence comprises the sequence of SEQ ID NO: 902; and/or wherein the inhibitory polypeptide sequence comprises a CXCL9 binding domain of CXCR3, optionally wherein the CXCR3 is a human CXCR3, optionally wherein the inhibitory polypeptide sequence comprises an amino acid sequence having at least 80, 85, 90, 95, 97, 98, or 99 percent identity to the sequence of SEQ ID NO: 1020 or 1021; and/orwherein the inhibitory polypeptide sequence comprises an CXCL9-binding immunoglobulin domain, optionally wherein the CXCL9-binding immunoglobulin domain is a human CXCL9-binding immunoglobulin domain.
  • 150-157. (canceled)
  • 158. The linker polypeptide of claim 80, wherein the receptor-binding domain is a CXCL10 polypeptide sequence, optionally wherein the CXCL10 polypeptide sequence is a human CXCL10 polypeptide sequence, optionally wherein the CXCL10 polypeptide sequence has at least 80, 85, 90, 95, 97, 98, or 99 percent identity to the sequence of SEQ ID NO: 903, and optionally wherein the CXCL10 polypeptide sequence comprises the sequence of SEQ ID NO: 903; and/or wherein the inhibitory polypeptide sequence comprises an CXCL10 binding domain of CXCR3, optionally wherein the CXCR3 is a human CXCR3, and optionally wherein the inhibitory polypeptide sequence comprises an amino acid sequence having at least 80, 85, 90, 95, 97, 98, or 99 percent identity to the sequence of SEQ ID NO: 1020 or 1021; and/orwherein the inhibitory polypeptide sequence comprises an CXCL10-binding immunoglobulin domain, optionally wherein the CXCL10-binding immunoglobulin domain is a human CXCL10-binding immunoglobulin domain, optionally wherein the CXCL10-binding immunoglobulin domain comprises a VH region comprising hypervariable regions (HVRs) HVR-1, HVR-2, and HVR-3 having the sequences of SEQ ID NOs: 993, 994, and 995, respectively, and a VL region comprising HVR-1, HVR-2, and HVR-3 having the sequences of SEQ ID NOs: 996, 997, and 998, respectively, optionally wherein the CXCL10-binding immunoglobulin domain comprises a VH region comprising an amino acid sequence having at least 80, 85, 90, 95, 97, 98, or 99 percent identity to the sequence of SEQ ID NO: 991 and a VL region comprising an amino acid sequence having at least 80, 85, 90, 95, 97, 98, or 99 percent identity to the sequence of SEQ ID NO: 992, optionally wherein the CXCL10-binding immunoglobulin domain comprises a VH region comprising the sequence of SEQ ID NO: 991 and a VL region comprising the sequence of SEQ ID NO: 992, optionally wherein the CXCL10-binding immunoglobulin domain is an scFv, optionally wherein the CXCL10-binding immunoglobulin domain comprises an amino acid sequence having at least 80, 85, 90, 95, 97, 98, or 99 percent identity to the sequence of SEQ ID NO: 989 or 990, and optionally wherein the CXCL10-binding immunoglobulin domain comprises the sequence of SEQ ID NO: 989 or 990.
  • 159-172. (canceled)
  • 173. The linker polypeptide of claim 9, wherein the inhibitory polypeptide sequence interferes with binding between the first active domain and a receptor of the first active domain and/or with binding between the second active domain and a receptor of the second active domain; and/or wherein the inhibitory polypeptide sequence and the pharmacokinetic modulator are different elements of the linker polypeptide; and/orwherein the inhibitory polypeptide sequence comprises a steric blocker; and/orwherein the inhibitory polypeptide sequence comprises at least a portion of the pharmacokinetic modulator.
  • 174-176. (canceled)
  • 177. The linker polypeptide of claim 9, wherein the pharmacokinetic modulator comprises at least a portion of an immunoglobulin constant domain, optionally wherein the pharmacokinetic modulator comprises at least a portion of an immunoglobulin Fc region, and optionally wherein the pharmacokinetic modulator comprises an immunoglobulin Fc region; and/or wherein the immunoglobulin is a human immunoglobulin; and/orwherein the immunoglobulin is IgG, optionally wherein the IgG is IgG1, IgG2, IgG3, or IgG4.
  • 178-182. (canceled)
  • 183. The linker polypeptide of claim 9, wherein the linker polypeptide further comprises a growth factor-binding polypeptide sequence or a growth factor receptor-binding polypeptide sequence; optionally wherein the growth factor-binding polypeptide sequence comprises a TGF-βR extracellular domain sequence, and optionally wherein the TGF-βR extracellular domain sequence comprises an amino acid sequence having at least 80, 85, 90, 95, 97, 98, or 99 percent identity to the sequence of SEQ ID NO: 1022 or 1023; and/orwherein the growth factor-binding polypeptide sequence comprises a growth factor-binding immunoglobulin domain, optionally wherein the growth factor-binding immunoglobulin domain is configured to bind to a TGF-β, optionally wherein the growth factor-binding immunoglobulin domain comprises a VH region comprising HVR-1, HVR-2, and HVR-3 of a VH region comprising the amino acid sequence of SEQ ID NO: 1008, and a VL region comprising HVR-1, HVR-2, and HVR-3 of a VL region comprising the amino acid sequence of SEQ ID NO: 1010, optionally wherein the growth factor-binding immunoglobulin domain comprises a VH region comprising the amino acid sequence of SEQ ID NO: 1008; and a VL region comprising the amino acid sequence of SEQ ID NO: 1010, and optionally wherein the growth factor-binding immunoglobulin domain comprises a sequence that has at least 80, 85, 90, 95, 97, 98, or 99 percent identity to the sequence of SEQ ID NO: 1007 or 1009; and/orwherein the growth factor receptor-binding polypeptide sequence comprises a TGF-β sequence, optionally wherein the TGF-β sequence comprises an amino acid sequence having at least 80, 85, 90, 95, 97, 98, or 99 percent identity to the sequence of any one of SEQ ID NOs. 904-906; and/orwherein the growth factor receptor-binding polypeptide sequence comprises a growth factor receptor-binding immunoglobulin domain, optionally wherein the growth factor receptor-binding immunoglobulin domain is configured to bind to a TGF-βR extracellular domain sequence, optionally wherein the growth factor receptor-binding immunoglobulin domain comprises a VH region comprising HVR-1, HVR-2, and HVR-3 of a VH region comprising the amino acid sequence of SEQ ID NO: 999 or 1003, and a VL region comprising HVR-1, HVR-2, and HVR-3 of a VL region comprising the amino acid sequence of SEQ ID NO: 1000 or 1004, optionally wherein the growth factor receptor-binding immunoglobulin domain comprises a VH region comprising the amino acid sequence of SEQ ID NO: 999 or 1003; and a VL region comprising the amino acid sequence of SEQ ID NO: 1000 or 1004, and optionally wherein the growth factor receptor-binding immunoglobulin domain comprises a sequence that has at least 80, 85, 90, 95, 97, 98, or 99 percent identity to the sequence of any one of SEQ ID NOs: 1001, 1002, 1005, and 1006.
  • 184-197. (canceled)
  • 198. The linker polypeptide of claim 9, comprising a plurality of protease-cleavable polypeptide sequences; and/or wherein the protease-cleavable polypeptide sequence is C-terminal to a VH region, C-terminal to at least a portion of a CH1 domain, between a CH1 domain and a CH2 domain, N-terminal to at least a portion of a CH2 domain, N-terminal to a disulfide bond between heavy chains, N-terminal to a disulfide bond within a CH2 domain, or N-terminal to a hinge region, or is within a hinge region; and/orwherein the protease-cleavable polypeptide sequence is C-terminal to the first targeting sequence and to the second targeting sequence; and/orwherein the protease-cleavable polypeptide sequence is N-terminal to the first targeting sequence and to the second targeting sequence; and/orwherein the protease-cleavable polypeptide sequence is C-terminal to a first plurality of targeting sequences and is N-terminal to a second plurality of targeting sequences; and/orwherein the protease-cleavable polypeptide sequence is C-terminal to a plurality of targeting sequences and is N-terminal to at least one targeting sequence; and/orwherein the protease-cleavable polypeptide sequence is N-terminal to a plurality of targeting sequences and is C-terminal to at least one targeting sequence; and/orwherein the protease-cleavable polypeptide sequence is C-terminal to the first targeting sequence and to the second targeting sequence and is not N-terminal to a targeting sequence; and/orwherein the protease-cleavable polypeptide sequence is N-terminal to the first targeting sequence and to the second targeting sequence and is not C-terminal to a targeting sequence.
  • 199-206. (canceled)
  • 207. The linker polypeptide of claim 9, wherein the linker polypeptide is configured to release the first active domain from a remaining portion of the linker polypeptide upon cleavage of the protease-cleavable polypeptide sequence, optionally wherein the first active domain is configured to remain connected to one or more of: one of the first targeting sequence and the second targeting sequence, one of the at least one targeting sequence, one of the first plurality of targeting sequences, one of the second plurality of targeting sequences, one of the plurality of targeting sequences, and the pharmacokinetic modulator upon cleavage of the protease-cleavable polypeptide sequence; and/or wherein the linker polypeptide is configured to release the second active domain from a remaining portion of the linker polypeptide upon cleavage of the protease-cleavable polypeptide sequence, optionally wherein the second active domain is configured to remain connected to one or more of: one of the first targeting sequence and the second targeting sequence, one of the at least one targeting sequence, one of the first plurality of targeting sequences, one of the second plurality of targeting sequences, one of the plurality of targeting sequences, and the pharmacokinetic modulator upon cleavage of the protease-cleavable polypeptide sequence.
  • 208-210. (canceled)
  • 211. The linker polypeptide of claim 9, wherein the protease-cleavable polypeptide sequence is recognized by a metalloprotease, a serine protease, a cysteine protease, an aspartate protease, a threonine protease, a glutamate protease, a gelatinase, an asparagine peptide lyase, a cathepsin, a kallikrein, a plasmin, a collagenase, a hK1, a hK10, a hK15, a stromelysin, a Factor Xa, a chymotrypsin-like protease, a trypsin-like protease, a elastase-like protease, a subtilisin-like protease, an actinidain, a bromelain, a calpain, a caspase, a Mir 1-CP, a papain, a HIV-1 protease, a HSV protease, a CMV protease, a chymosin, a renin, a pepsin, a matriptase, a legumain, a plasmepsin, a nepenthesin, a metalloexopeptidase, a metalloendopeptidase, an ADAM 10, an ADAM 17, an ADAM 12, an urokinase plasminogen activator (uPA), an enterokinase, a prostate-specific target (PSA, hK3), an interleukin-1b converting enzyme, a thrombin, a FAP (FAP-a), a dipeptidyl peptidase, or dipeptidyl peptidase IV (DPPIV/CD26), a type II transmembrane serine protease (TTSP), a neutrophil elastase, a proteinase 3, a mast cell chymase, a mast cell tryptase, or a dipeptidyl peptidase; and/or wherein the protease-cleavable polypeptide sequence comprises the sequence of any one of SEQ ID NOs: 80-94 or a variant sequence having one or two mismatches relative to the sequence of any one of SEQ ID NOs: 80-90; and/orwherein the protease-cleavable polypeptide sequence comprises the sequence of any one of SEQ ID NOs: 701-742, or a variant having one or two mismatches relative to the sequence of any one of SEQ ID NOs: 701-742; and/orwherein the protease-cleavable polypeptide sequence is recognized by a matrix metalloprotease; and/orwherein the protease-cleavable polypeptide sequence is recognized by MMP-1; and/orwherein the protease-cleavable polypeptide sequence is recognized by MMP-2; and/orwherein the protease-cleavable polypeptide sequence is recognized by MMP-3; and/orwherein the protease-cleavable polypeptide sequence is recognized by MMP-7; and/orwherein the protease-cleavable polypeptide sequence is recognized by MMP-8; and/orwherein the protease-cleavable polypeptide sequence is recognized by MMP-9; and/orwherein the protease-cleavable polypeptide sequence is recognized by MMP-12; and/orwherein the protease-cleavable polypeptide sequence is recognized by MMP-13; and/orwherein the protease-cleavable polypeptide sequence is recognized by MMP-14; and/orwherein the protease-cleavable polypeptide sequence is recognized by more than one MMP; and/orwherein the protease-cleavable polypeptide sequence is recognized by two, three, four, five, six, or seven of MMP-2, MMP-7, MMP-8, MMP-9, MMP-12, MMP-13, and MMP-14.
  • 212-241. (canceled)
  • 242. The linker polypeptide of claim 9, wherein one or each of the first targeting sequence and the second targeting sequence, one or each of the at least one targeting sequence, one or each of the first plurality of targeting sequences, one or each of the second plurality of targeting sequences, or one or each of the plurality of targeting sequences independently is configured to bind an extracellular matrix component, heparin, an integrin, or a syndecan; or is configured to bind, in a pH-sensitive manner, an extracellular matrix component, heparin, IgB (CD79b), an integrin, a cadherin, a heparan sulfate proteoglycan, a syndecan, or a fibronectin; or the targeting sequence comprises the sequence of any one of SEQ ID NOs: 179-665 or a variant having one or two mismatches relative to the sequence of any one of SEQ ID NOs: 179-665; and/or wherein one or each of the first targeting sequence and the second targeting sequence, one or each of the at least one targeting sequence, one or each of the first plurality of targeting sequences, one or each of the second plurality of targeting sequences, or one or each of the plurality of targeting sequences independently comprises the sequence of any one of SEQ ID NOs: 179-665, or a variant having one or two mismatches relative to the sequence of any one of SEQ ID NOs: 179-665; and/orwherein one or each of the first targeting sequence and the second targeting sequence, one or each of the at least one targeting sequence, one or each of the first plurality of targeting sequences, one or each of the second plurality of targeting sequences, or one or each of the plurality of targeting sequences independently comprises the sequence of any one of SEQ ID NOs: 179-665; and/orwherein one or each of the first targeting sequence and the second targeting sequence, one or each of the at least one targeting sequence, one or each of the first plurality of targeting sequences, one or each of the second plurality of targeting sequences, or one or each of the plurality of targeting sequences independently comprises the sequence of any one of SEQ ID NOs: 200, 330, 619, 653, and 663-665, or a variant having one or two mismatches relative to the sequence of any one of SEQ ID NOs: 200, 330, 619, 653, and 663-665; and/orwherein one or each of the first targeting sequence and the second targeting sequence, one or each of the at least one targeting sequence, one or each of the first plurality of targeting sequences, one or each of the second plurality of targeting sequences, or one or each of the plurality of targeting sequences independently comprises the sequence of any one of SEQ ID NOs: 200, 330, 619, 653, and 663-665; and/orwherein one or each of the first targeting sequence and the second targeting sequence, one or each of the at least one targeting sequence, one or each of the first plurality of targeting sequences, one or each of the second plurality of targeting sequences, or one or each of the plurality of targeting sequences independently is configured to bind to denatured collagen or to collagen, optionally wherein the collagen is collagen I, collagen II, collagen III, or collagen IV.
  • 243-252. (canceled)
  • 253. The linker polypeptide of claim 9, wherein one or each of the first targeting sequence and the second targeting sequence, one or each of the at least one targeting sequence, one or each of the first plurality of targeting sequences, one or each of the second plurality of targeting sequences, or one or each of the plurality of targeting sequences independently is configured to bind to integrin, optionally wherein the integrin is one or more of α1β1 integrin, α2β1 integrin, α3β 1 integrin, α4β1 integrin, α5β1 integrin, α6β1 integrin, α7β1 integrin, α9β1 integrin, α4β7 integrin, αvβ3 integrin, αvβ5 integrin, αIIbβ3 integrin, αIIIbβ3 integrin, αMβ2 integrin, or αIIbβ3 integrin; and/or wherein one or each of the first targeting sequence and the second targeting sequence, one or each of the at least one targeting sequence, one or each of the first plurality of targeting sequences, one or each of the second plurality of targeting sequences, or one or each of the plurality of targeting sequences independently is configured to bind to von Willebrand factor; and/orwherein one or each of the first targeting sequence and the second targeting sequence, one or each of the at least one targeting sequence, one or each of the first plurality of targeting sequences, one or each of the second plurality of targeting sequences, or one or each of the plurality of targeting sequences independently is configured to bind to IgB; and/orwherein one or each of the first targeting sequence and the second targeting sequence, one or each of the at least one targeting sequence, one or each of the first plurality of targeting sequences, one or each of the second plurality of targeting sequences, or one or each of the plurality of targeting sequences independently is configured to bind to heparin; and/orwherein one or each of the first targeting sequence and the second targeting sequence, one or each of the at least one targeting sequence, one or each of the first plurality of targeting sequences, one or each of the second plurality of targeting sequences, or one or each of the plurality of targeting sequences independently is configured to bind to heparin and a syndecan, a heparan sulfate proteoglycan, or an integrin, optionally wherein the integrin is one or more of α1β1 integrin, α2β1 integrin, α3β1 integrin, α4β1 integrin, α5β1 integrin, α6β1 integrin, α7β1 integrin, α9β1 integrin, α4β7 integrin, αvβ3 integrin, αvβ5 integrin, αIIbβ3 integrin, αIIbβ3 integrin, αMβ2 integrin, or αIIbβ3 integrin, and optionally wherein the syndecan is one of more of syndecan-1, syndecan-4, and syndecan-2(w); and/orwherein one or each of the first targeting sequence and the second targeting sequence, one or each of the at least one targeting sequence, one or each of the first plurality of targeting sequences, one or each of the second plurality of targeting sequences, or one or each of the plurality of targeting sequences independently is configured to bind to a heparan sulfate proteoglycan; and/orwherein one or each of the first targeting sequence and the second targeting sequence, one or each of the at least one targeting sequence, one or each of the first plurality of targeting sequences, one or each of the second plurality of targeting sequences, or one or each of the plurality of targeting sequences independently is configured to bind to a sulfated glycoprotein; and/orwherein one or each of the first targeting sequence and the second targeting sequence, one or each of the at least one targeting sequence, one or each of the first plurality of targeting sequences, one or each of the second plurality of targeting sequences, or one or each of the plurality of targeting sequences independently is configured to bind to hyaluronic acid; and/orwherein one or each of the first targeting sequence and the second targeting sequence, one or each of the at least one targeting sequence, one or each of the first plurality of targeting sequences, one or each of the second plurality of targeting sequences, or one or each of the plurality of targeting sequences independently is configured to bind to fibronectin; and/orwherein one or each of the first targeting sequence and the second targeting sequence, one or each of the at least one targeting sequence, one or each of the first plurality of targeting sequences, one or each of the second plurality of targeting sequences, or one or each of the plurality of targeting sequences independently is configured to bind to cadherin; and/orwherein one or each of the first targeting sequence and the second targeting sequence, one or each of the at least one targeting sequence, one or each of the first plurality of targeting sequences, one or each of the second plurality of targeting sequences, or one or each of the plurality of targeting sequences independently is configured to bind its target in a pH-sensitive manner; and/orwherein one or each of the first targeting sequence and the second targeting sequence, one or each of the at least one targeting sequence, one or each of the first plurality of targeting sequences, one or each of the second plurality of targeting sequences, or one or each of the plurality of targeting sequences independently has a higher affinity for its target at a pH below normal physiological pH than at normal physiological pH, optionally wherein the pH below normal physiological pH is below 7, or below 6; and/orwherein one or each of the first targeting sequence and the second targeting sequence, one or each of the at least one targeting sequence, one or each of the first plurality of targeting sequences, one or each of the second plurality of targeting sequences, or one or each of the plurality of targeting sequences independently has a higher affinity for its target at a pH in the range of 5-7, e.g., 5-5.5, 5.5-6, 6-6.5, or 6.5-7, than at normal physiological pH; and/orwherein one or each of the first targeting sequence and the second targeting sequence, one or each of the at least one targeting sequence, one or each of the first plurality of targeting sequences, one or each of the second plurality of targeting sequences, or one or each of the plurality of targeting sequences independently comprises one or more histidines, e.g., 1, 2, 3, 4, 5, 6, 7, 8, 9, or 10 histidines; and/orwherein one or each of the first targeting sequence and the second targeting sequence, one or each of the at least one targeting sequence, one or each of the first plurality of targeting sequences, one or each of the second plurality of targeting sequences, or one or each of the plurality of targeting sequences independently comprises the sequence of any one of SEQ ID NOs: 641-663, or a variant having one or two mismatches relative to the sequence of any one of SEQ ID NOs: 641-663; and/orwherein one or each of the first targeting sequence and the second targeting sequence, one or each of the at least one targeting sequence, one or each of the first plurality of targeting sequences, one or each of the second plurality of targeting sequences, or one or each of the plurality of targeting sequences independently comprises the sequence of any one of SEQ ID NOs: 641-665; and/orwherein one or each of the first targeting sequence and the second targeting sequence, one or each of the at least one targeting sequence, one or each of the first plurality of targeting sequences, one or each of the second plurality of targeting sequences, or one or each of the plurality of targeting sequences independently is configured to bind, in a pH-sensitive manner, an extracellular matrix component, IgB (CD79b), an integrin, a cadherin, a heparan sulfate proteoglycan, a syndecan, or a fibronectin, optionally wherein the extracellular matrix component is hyaluronic acid, heparin, heparan sulfate, or a sulfated glycoprotein; and/orwherein one or each of the first targeting sequence and the second targeting sequence, one or each of the at least one targeting sequence, one or each of the first plurality of targeting sequences, one or each of the second plurality of targeting sequences, or one or each of the plurality of targeting sequences independently is configured to bind a fibronectin in a pH-sensitive manner; and/orwherein one or each of the first targeting sequence and the second targeting sequence, one or each of the at least one targeting sequence, one or each of the first plurality of targeting sequences, one or each of the second plurality of targeting sequences, or one or each of the plurality of targeting sequences independently is configured to bind its target with an affinity from 0.1 nM to 1 nM, from 1 nM to 10 nM, from 10 nM to 100 nM, from 100 nM to 1 μM, from 1 μM to 10 μM, or from 10 μM to 100 μM.
  • 254-281. (canceled)
  • 282. The linker polypeptide of claim 9, wherein at least one of the first linker and the second linker comprises one of the first targeting sequence and the second targeting sequence, one of the at least one targeting sequence, one of the first plurality of targeting sequences, one of the second plurality of targeting sequences, or one of the plurality of targeting sequences; and/or wherein the protease-cleavable polypeptide sequence comprises one of the first targeting sequence and the second targeting sequence, one of the at least one targeting sequence, one of the first plurality of targeting sequences, one of the second plurality of targeting sequences, or one of the plurality of targeting sequences; and/orwherein one or each of the first targeting sequence and the second targeting sequence, one or each of the at least one targeting sequence, one or each of the first plurality of targeting sequences, one or each of the second plurality of targeting sequences, or one or each of the plurality of targeting sequences increases a serum half-life of the linker polypeptide; and/orwherein one or each of the first targeting sequence and the second targeting sequence, one or each of the at least one targeting sequence, one or each of the first plurality of targeting sequences, one or each of the second plurality of targeting sequences, or one or each of the plurality of targeting sequences synergistically increases a serum half-life of the linker polypeptide together with the pharmacokinetic modulator or with another one of the first targeting sequence and the second targeting sequence, another one of the at least one targeting sequence, another one of the first plurality of targeting sequences, another one of the second plurality of targeting sequences, or another one of the plurality of targeting sequences; and/orwherein one or each of the first targeting sequence and the second targeting sequence, one or each of the at least one targeting sequence, one or each of the first plurality of targeting sequences, one or each of the second plurality of targeting sequences, or one or each of the plurality of targeting sequences independently increases a serum half-life of the linker polypeptide.
  • 283-286. (canceled)
  • 287. The linker polypeptide of claim 9, further comprising a blocker conjugated to one of or each of the first active domain and the second active domain, optionally wherein the blocker is conjugated to one of or each of the first active domain and the second active domain via a protease-cleavable polypeptide sequence, andoptionally wherein the blocker is an albumin, a serum albumin, and/or a human albumin.
  • 288-291. (canceled)
  • 292. The linker polypeptide of claim 9, further comprising a chemotherapy drug, optionally wherein the chemotherapy drug is conjugated to the pharmacokinetic modulator, and optionally wherein the chemotherapy drug is selected from altretamine, bendamustine, busulfan, carboplatin, carmustine, chlorambucil, cisplatin, cyclophosphamide, dacarbazine, ifosfamide, lomustine, mechlorethamine, melphalan, oxaliplatin, temozolomide, thiotepa, trabectedin, carmustine, lomustine, streptozocin, azacitidine, 5-fluorouracil, 6-mercaptopurine, capecitabine, cladribine, clofarabine, cytarabine, decitabine, floxuridine, fludarabine, gemcitabine, hydroxyurea, methotrexate, nelarabine, pemetrexed, pentostatin, pralatrexate, thioguanine, trifluridine, tipiracil, daunorubicin, doxorubicin, epirubicin, idarubicin, valrubicin, bleomycin, dactinomycin, mitomycin-c, mitoxantrone, irinotecan, topotecan, etoposide, mitoxantrone, teniposide, cabazitaxel, docetaxel, paclitaxel, vinblastine, vincristine, vinorelbine, prednisone, methylprednisolone, dexamethasone, retinoic acid, arsenic trioxide, asparaginase, eribulin, hydroxyurea, ixabepilone, mitotane, omacetaxine, pegaspargase, procarbazine, romidepsin, and vorinostat.
  • 293-294. (canceled)
  • 295. The linker polypeptide of claim 9, wherein a molecular weight of one or each of the first active domain and the second active domain independently is about or less than 14 kDa, about 12 kDa to about 14 kDa, about 10 kDa to about 12 kDa, about 8 kDa to about 10 kDa, about 6 kDa to about 8 kDa, about 4 kDa to about 6 kDa, about 2 kDa to about 4 kDa, or about 800 Da to about 2 kDa: or wherein a molecular weight of one or each of the first active domain and the second active domain independently is about or greater than 16 kDa, about 16 kDa to about 18 kDa, about 18 kDa to about 20 kDa, about 20 kDa to about 22 kDa, about 22 kDa to about 24 kDa, about 24 kDa to about 26 kDa, about 26 kDa to about 28 kDa, about 28 kDa to about 30 kDa, about 30 kDa to about 50 kDa, about 50 kDa to about 100 kDa, about 100 kDa to about 150 kDa, about 150 kDa to about 200 kDa, about 200 kDa to about 250 kDa, or about 250 kDa to about 300 kDa.
  • 296-316. (canceled)
  • 317. The linker polypeptide of claim 9, comprising a combined targeting sequence and protease cleavable sequence, wherein the combined targeting sequence and protease cleavable sequence is any one of SEQ ID NOs: 667-673.
  • 318. A linker polypeptide comprising an amino acid sequence having at least 80, 85, 90, 95, 97, 98, or 99 percent identity to the sequence of any one of SEQ ID NOs: 800-848 and 1024-1137, optionally wherein the linker polypeptide comprises the sequence of any one of SEQ ID NOs: 800-848 and 1024-1137, optionally wherein the linker polypeptide comprises the sequence of SEQ ID NO: 1119.
  • 319. (canceled)
  • 320. A pharmaceutical composition comprising the linker polypeptide of claim 9.
  • 321-322. (canceled)
  • 323. A method of treating a cancer, comprising administering the linker polypeptide of claim 9 to a subject in need thereof.
  • 324. (canceled)
  • 325. The method of claim 323, wherein the cancer is a solid tumor, optionally wherein the solid tumor is metastatic and/or unresectable; and/or wherein the cancer is a PD-L1-expressing cancer; and/orwherein the cancer is a melanoma, a colorectal cancer, a breast cancer, a pancreatic cancer, a lung cancer, a prostate cancer, an ovarian cancer, a cervical cancer, a gastric or gastrointestinal cancer, a lymphoma, a colon or colorectal cancer, an endometrial cancer, a thyroid cancer, or a bladder cancer; and/orwherein the cancer is a microsatellite instability-high cancer; and/orwherein the cancer is mismatch repair deficient.
  • 326-330. (canceled)
  • 331. A nucleic acid encoding the linker polypeptide of claim 9, or an expression vector comprising a nucleic acid encoding the linker polypeptide of claim 9.
  • 332. (canceled)
  • 333. A host cell comprising the nucleic acid or the vector of claim 331.
  • 334. A method of producing a linker polypeptide, comprising culturing the host cell of claim 333 under conditions wherein the linker polypeptide is produced, optionally further comprising isolating the linker polypeptide.
  • 335. (canceled)
CROSS-REFERENCE TO RELATED APPLICATIONS

This application claims the benefit of U.S. Provisional Patent Application No. 63/224,350, filed Jul. 21, 2021, which is incorporated herein by reference in its entirety for all purposes.

Provisional Applications (1)
Number Date Country
63224350 Jul 2021 US
Continuations (1)
Number Date Country
Parent PCT/US22/73970 Jul 2022 WO
Child 18416736 US