This Non-provisional application claims priority under 35 U.S.C. § 119(a) on Patent Application No(s). 94116609 filed in Taiwan on May 20, 2005, the entire contents of which are hereby incorporated by reference.
1. Field of Invention
The present invention relates to an etching-stop technique, and particularly to a liquid-based gravity-driven etching-stop technique for controlling a microstructure dimension of a device.
2. Related Art
With the increasing development of science and technology, the research tends towards the miniaturization, and the research and development of the Micro-ElectroMechanical System (MEMS) have been increased significantly. The microstructures produced by the MEMS technique include a micro sensor, a micro actuator, an atomic force probe, and the like, which can be used in various fields such as biological medicine, aerospace, electronics, and environmental engineering.
For the current technique for controlling the etching degree of a microstructure, such as the thickness of a cantilever beam or suspend membrane structure, the etching degree is conventionally measured by manually observing the images of the etched parts using a microscope or a scanning electronic microscope (SEM), and determining whether the etching degree is in accordance with the standard. Alternatively, the etching rate of the material used and its proper etchant is measured as the reference of the time required to carry out the etching. However, most of the above methods are using empirical value obtained as reference of the process, and it is difficult to control the etching thickness efficiently when etching the structure.
In order to actively control the thickness of a suspend membrane or cantilever beam structure, in the current micro-electromechanical process, the ion implantation combined with electrochemical etching or a Silicon on isolation (SOI) is used for controlling, thus resulting in high manufacturing cost and technical difficulties.
Therefore, a method is developed to control the etching degree, in which etching trenches are made in a wafer. The etching trenches are portrayed previously around the device of the wafer to be etched, and then etched until they are etched through to drop the device, which is then taken out and washed. However, in this method, it is necessary to visually observe whether the device has fallen, and the device has to be taken out immediately. The etching is still continued during the time interval between taking-out and washing, therefore influencing the precision of the device.
In this regard, the present invention provides a liquid-based gravity-driven etching-stop technique for controlling structure dimension, in which opposite trenches are made around the microstructure of the substrate to be etched, and at the same time, an etching control solution, having an etching region and an etching-stop region, is also used. Thus the microstructure can be separated automatically when reaching the required etching depth, and fall into the etching-stop region.
The liquid-based gravity-driven etching-stop technique for controlling a structure dimension is provided in the present invention. First, provide an etching control solution having an etchant and an etching-stop solution for controlling the structure dimension. Further, provide a substrate having a first surface and a second surface, wherein the first surface is provided with a microstructure and thickness control trenches surrounding the microstructure, and the second surface is provided with etching trenches opposite to the thickness control trenches. Then, place the substrate within the etchant. Following that, etch the substrate by the etchant, such that the etching trench of the substrate communicates with the thickness control trench, to separate the microstructure form the substrate and thereby shift into the etching-stop solution. Thus, the etching of the microstructure can be stopped automatically, and the depth of the thickness control trench is the desired thickness of the microstructure.
The control of the microstructure thickness can be achieved by using the etching control solution along with the opposite thickness control trenches and etching trenches. Further, the etching-stop solution stays below the etchant. That is, a density of the etching-stop solution is greater than the density of the etchant. Furthermore, the etching-stop solution is chemically inert to the substrate and the etchant.
Accordingly, since the thickness control trench has been preset to a desired thickness, when the substrate is etched by the etchant, such that the etching trench communicates with the opposite thickness control trench, the microstructure will be separated from the whole substrate automatically and fall into the etching-stop solution below the etchant. Thereby, the etching is stopped by the etching-stop solution, and the automatic control of the microstructure thickness can be achieved effectively.
Moreover, the substrate may comprise one or more microstructures surrounded by etch control trenches. Similarly, a plurality of microstructures can also be surrounded by a single etch control trench.
Furthermore, the etchant can be well temperature-controlled with the heating energy transmitted through the etching-stop solution and from the hot plate on the bottom. Accordingly, obvious density change of the etching-stop solution can not be subject to the external heating, either. Therefore, the etching rate can be controlled by temperature-control.
Further scope of applicability of the present invention will become apparent from the detailed description given hereinafter. However, it should be understood that the detailed description and specific examples, while indicating preferred embodiments of the invention, are given by way of illustration only, since various changes and modifications within the spirit and scope of the invention will become apparent to those skilled in the art from this detailed description.
The invention will become more fully understood from the detailed description given herein below illustration only, and thus are not limitative of the present invention, and wherein:
In the liquid-based gravity-driven etching-stop technique for controlling a structure dimension of the present invention, opposite etching trenches and thickness control trenches are made around the microstructure to be etched, and at the same time, an etchant, having an etching region and an etching-stop region, is also used, so as to automatically control the structure thickness of the microstructure.
In an embodiment of the present invention, silicon is used as a substrate material to make a probe cantilever beam. The thickness control trench and the etching trench can be used to form a tapered trench by using a photolithography process, along with the characteristic that the etching rate of the potassium hydroxide solution is different on various crystal lattice surfaces of the silicon substrate material. For the fabrication of the thickness control trenches and the etching trenches on the surface of the silicon substrate respectively, references are made to
As shown in
Then, as shown in
After the photo resist layer 111 is removed, as shown in
Similarly, the surface of the Si3N4 suspend membrane 110 on the second surface is coated with a photo resist layer by using the photolithography processes, and is exposed with a mask, and then, the unmasked Si3N4 suspend membrane is removed by RIE. As shown in
As shown in
Further, obvious density change of the etching-stop solution may not be subject to the external heating, such that the etchant can be well temperature-controlled with the heating energy transmitted through the etching-stop solution and from the hot plate on the bottom. Therefore, the etching rate can be controlled by temperature-control.
The above etchant may be an anisotropic etchant, for example, potassium hydroxide (KOH) and tetra-methyl-ammonium-hydroxide (TMAH), and the above etching-stop solution is, for example, diiodomethane (CH2I2).
An etching method for controlling a structure dimension disclosed in the embodiment of the present invention is shown in
Number | Date | Country | Kind |
---|---|---|---|
94116609 A | May 2005 | TW | national |
Number | Name | Date | Kind |
---|---|---|---|
4469554 | Turner | Sep 1984 | A |
6203660 | Unger et al. | Mar 2001 | B1 |
6369931 | Funk et al. | Apr 2002 | B1 |
6939408 | Abramovich et al. | Sep 2005 | B1 |
20050150280 | Tang et al. | Jul 2005 | A1 |
Number | Date | Country |
---|---|---|
WO-2004068501 | Aug 2004 | DE |
Number | Date | Country | |
---|---|---|---|
20060264058 A1 | Nov 2006 | US |