The field of the disclosure relates generally to a test system for testing semiconductor integrated circuit chips and, more specifically, a system including a liquid cooled test socket in which test socket contacts are at least partially submerged in the liquid coolant.
Semiconductor integrated circuit (IC) chips are produced in various packages, or chip configurations, and are produced in large quantities. Production of IC chips generally includes testing of each IC chip package, or simply “IC chip,” in a manner that simulates an end-user's application of that chip. One manner of testing IC chips is to connect each IC chip through a test socket to a printed circuit board (PCB), or load board, that exercises various functionalities of the IC chip. The IC chip is then removed from the test socket and proceeds in the production process based on the results of the test. The test socket assembly can then be re-used to test many IC chips.
IC chip testing is often highly automated using robotic systems, e.g., “auto handlers,” to move IC chips into and out of test sites. This includes setting each IC chip in a test socket attached to a load board for a duration of the test, and removing the IC chip when testing is complete. Some robotic systems can handle from tens, or hundreds, of IC chips up to tens of thousands of IC chips per hour. Accordingly, precision and durability of the test socket are imperative. Moreover, modern IC chips incorporate greater densities of semiconductor components that operate at higher frequencies, with greater current throughput, and with greater power consumption. Adequately testing such IC chips generally results in significant heating of the IC chip and test socket, which can degrade the test socket over time and impact integrity of the testing itself if left unmitigated, resulting in a reduced lifecycle for the test socket. Accordingly, it is desirable to cool both the IC chip under test and the test socket through which the IC chip is coupled to the load board.
In one aspect, a test socket for an IC chip includes a retainer configured to be positioned adjacent a load board, the retainer defining a plurality of apertures corresponding to contact pads on the load board; a plurality of contacts disposed in the plurality of apertures, the plurality of contacts configured to electrically couple the IC chip to the contact pads; a housing at least partially defining a chamber in fluid communication with an inlet, a liquid outlet, and a vapor outlet. The housing includes a guide structure configured to receive the IC chip and position the IC chip in the chamber when engaged with the plurality of contacts. The chamber is configured to receive a two phase fluid coolant via the inlet to at least partially submerge the plurality of contacts in the two phase fluid coolant.
In another aspect, a test system for a plurality of IC chips includes a test site, a fluid coolant system, and a handler system. The test site includes a test socket coupled to a load board. The test socket includes a housing, a plurality of contacts, and a guide structure. The housing at least partially defines a chamber. The plurality of contacts is disposed within a retainer structure within the chamber and electrically coupled to the load board. The guide structure is configured to receive each of the plurality of IC chips and position each IC chip in the chamber when engaged with the plurality of contacts. The fluid coolant system includes a reservoir configured to hold a two phase fluid coolant, an inlet pathway coupled between the reservoir and the test socket, the inlet pathway configured to carry the two phase fluid coolant to the test socket to at least partially fill the chamber, a liquid outlet pathway coupled between the reservoir and the test socket, the liquid outlet pathway configured to carry heated liquid coolant away from the test socket, and a vapor outlet pathway coupled between the reservoir and the test socket, the vapor outlet pathway configured to carry coolant vapor away from the test socket. The handler system is configured to move the plurality of IC chips from a feed container to the test site, and from the test site to an output container. The handler system includes a pick arm configured to set each IC chip into the guide structure of the test socket to engage with the plurality of contacts at least partially submerged in the two phase fluid coolant.
In yet another aspect, a method of testing an IC chip includes coupling a test socket to a load board. The test socket defines a chamber within which a plurality of contacts is disposed. The plurality of contacts are configured to electrically couple the IC chip to the load board. The method includes supplying a two phase fluid coolant to the chamber to at least partially submerge the plurality of contacts. The method includes receiving the IC chip in a guide structure of the test socket to position the IC chip in the chamber when engaged with the plurality of contacts. The method includes conducting, employing the load board, an electrical test of the IC chip. The method includes removing heated liquid coolant via a liquid outlet defined in the test socket. The method includes removing coolant vapor via a vapor outlet defined in the test socket.
Various refinements exist of the features noted in relation to the above-mentioned aspects. Further features may also be incorporated in the above-mentioned aspects as well. These refinements and additional features may exist individually or in any combination. For instance, various features discussed below in relation to any of the illustrated embodiments may be incorporated into any of the above-described aspects, alone or in any combination.
Although specific features of various embodiments may be shown in some drawings and not in others, this is for convenience only. Any feature of any drawing may be referenced and/or claimed in combination with any feature of any other drawing.
Unless otherwise indicated, the drawings provided herein are meant to illustrate features of embodiments of the disclosure. These features are believed to be applicable in a wide variety of systems comprising one or more embodiments of the disclosure. As such, the drawings are not meant to include all conventional features known by those of ordinary skill in the art to be required for the practice of the embodiments disclosed herein.
Known systems and methods for cooling IC chips are generally limited to carrying heat away from the IC chip itself. For example, common cooling schemes utilize heat sinks, fans, or heat pipes to absorb heat from the package of the IC chip and release it into the ambient or other mass, such as a coolant reservoir. Such schemes generally fail to cool contact interfaces of the IC chip, contact probes in the test socket, or the test socket itself.
The disclosed test socket at least partially submerges its contacts in a fluid coolant and, in some embodiments, a liquid coolant. The test socket defines a sealed chamber resting on a top surface of the load board, and in which the test socket contacts interface with both the load board and the IC chip when inserted, i.e., the device under test (DUT). The sealed chamber receives a fluid coolant through an inlet, and the fluid coolant fills the sealed chamber to a level at least partially submerging the test socket contacts, for example, spring probes or rotational contacts. In certain embodiments the test socket contacts are entirely submerged as well as the contact balls or contact pads of the IC chip. In certain embodiments the IC chip is at least partially submerged and optionally entirely submerged.
The fluid coolant is electrically insulative and has a low and stable dielectric constant. For example, the fluid coolant may include a perfluorinated compound (PFC) such as perfluorohexane, perfluroro, or perfluorotripentylamine. PFCs are sometimes referred to as Fluorinert™, which is one example manufactured by 3M. The low electrical conductivity of the coolant prevents making a short circuit among the test socket contacts. The low dielectric constant preserves signal integrity of signals conducted through the test socket pins between the IC chip and the load board. Given a fluid coolant having a dielectric constant greater than that of a vacuum or ambient air, properties of the test socket may be modified to compensate for the additional dielectric material, i.e., fluid coolant, surrounding the test socket contacts. For example, cavities defined in a test socket to receive coaxial contacts may be dimensioned based on the dielectric constant of the fluid coolant that will flow through the chamber and through the cavities between the IC chip and the load board.
The fluid coolant may be a liquid around room temperature, i.e., when introduced to the chamber, and, in certain embodiments, has a relatively low vaporization threshold. Generally, the liquid coolant has a greater capacity for absorbing heat than a gaseous coolant. The liquid coolant is heated by the test socket, test socket contacts, and the IC chip. In some embodiments, the liquid coolant is heated below a threshold for vaporization and flows from the chamber through a liquid outlet. Such embodiments utilize a coolant referred to as single phase coolant, i.e., one operating in only the liquid phase. For example, the fluid coolant may have a vaporization threshold at or above about 100 degrees C. In other embodiments the vaporization threshold may be higher or lower.
Alternatively, the test socket, test socket contacts, and the IC chip raise the temperature of the liquid coolant above a threshold for vaporization (e.g., above about 40 to 60 degrees C.). Such a fluid coolant is sometimes referred to as a two phase coolant, i.e., it assumes both the gas and liquid states, or phases, at various points in the cooling process. The coolant vapor rises within the chamber and flows from the chamber through a vapor outlet. Some two phase embodiments may include both a liquid outlet and a vapor outlet for heated coolant. Seals applied between the test socket and the load board prevent leakage of liquid or vapor coolant at the interface. Likewise, in embodiments having a test socket constructed of two or more body structures, e.g., a socket body and a retainer, seals are applied between the body components to prevent leakage of liquid or vapor coolant at those interfaces. The vaporized coolant generally has a greater capacity for releasing heat efficiently once removed from the chamber.
The fluid coolant is supplied from a reservoir using an inflow pump, gravity, or other suitable motive force. Unheated, or fresh, fluid coolant flows into the chamber until a desired fill level is reached. Fill level may be detected, for example, by one or more sensors positioned on the test socket. The sensors may include, for example, a pressure transducer or optical sensor. In certain embodiments, one or more additional sensors may be positioned in the chamber, for example, to measure coolant temperature within the chamber. Heated coolant flows from the chamber through the outlet and into the same reservoir for cooling and recirculation, or a second reservoir for cooling and recirculation, or for disposal. Heated coolant flowing from the chamber may include liquid coolant, coolant vapor, or both. For example, in one embodiment, heated coolant flows from the chamber in liquid phase only. In an alternative embodiment, heated coolant flows from the chamber in both a liquid phase and gas phase.
Heated coolant must be chilled to enable recirculation, which may be achieved, for example, by a refrigerant chilling system. Heated coolant may flow from the chamber under pressure from the inlet or, alternatively, may be moved by an outflow pump, gravity, or other suitable motive force. The pressure of the heated fluid coolant may be measured using one or more pressure sensors disposed in the return coolant flow path. In certain embodiments, heated coolant is filtered to remove particulates or other contaminates before it reaches a pump, chiller, or reservoir. The flow of fluid coolant through the chamber may be regulated according to a flow algorithm based on measured, temperatures, pressures, flow rates, or other operational parameter. The flow algorithm may include a constant flow setpoint determined by a lookup table or programmed by a user according to IC chip size and power demand. Alternatively, the flow algorithm may dynamically regulate outflow to achieve a desired coolant exit temperature setpoint or a desired coolant pressure setpoint, for example.
The fluid coolant system may be incorporated into a test system referred to as an auto handler system or provided independently. In certain embodiments, the fluid coolant system services multiple test sockets, or test sites, within an auto handler system, enabling greater efficiencies in scale of the fluid coolant system. The test system, or auto handler, may include additional ventilation equipment to evacuate coolant vapor that escapes the test socket. Likewise, in certain embodiments, additional sealants or seals may be incorporated into the test system enclosure to ensure coolant vapor does not escape the test system.
Test system 100 may include one or multiple test sites 108 and handler systems 104. Moreover, each handler system 104 may supply IC chips 102 to multiple test sites 108 and multiple test sockets 114.
Each test socket 114 is mounted, or coupled, to a surface of a load board 116. Load board 116 is a printed circuit board (PCB) configured to conduct automated electrical tests on a given IC chip, such as IC chip 102. Load board 116 can host one or more test sockets 114 for essentially simultaneous electrical testing of multiple IC chips 102. For example, a given test site 108 may include one or more load boards 116, each having one or more test sockets 114 mounted thereon.
Test system 100 includes a fluid coolant system 118. Fluid coolant system 118 includes a reservoir 120 of fluid coolant and, in some embodiments, a coolant that is liquid at temperatures around room temperature, e.g., around 20-25 degrees Celsius and, in certain embodiments, has a relatively low vaporization threshold, e.g., in a range of about 40 to 60 degrees Celsius. Such a coolant is referred to as a two-phase coolant. In alternative embodiments, the vaporization threshold may be higher, e.g., about 60 to 70 degrees Celsius, about 70 to 80 degrees Celsius, about 80 to 90 degrees Celsius, about 90 to 100 degrees Celsius, or any other suitable threshold temperature for the specific test socket and testing system. The fluid coolant is electrically insulative, or non-conductive, and has a low dielectric constant. The fluid coolant is supplied from reservoir 120 through an inflow pathway 122 to one or more test sites 108, each having one or more test sockets 114. Fluid coolant may be supplied with the assistance of an inflow pump 124, gravity, or any other suitable motive force. The liquid coolant is heated by test socket 114, test socket contacts, and IC chip 102. In some embodiments, the liquid coolant is heated below a threshold for vaporization and flows from the chamber through a liquid outlet. Such embodiments utilize a coolant referred to as single phase coolant, i.e., one operating in only the liquid phase. For example, the fluid coolant may have a vaporization threshold at or above about 100 degrees C.
Alternatively, test socket 114, test socket contacts, and IC chip 102 raise the temperature of the liquid coolant above a threshold for vaporization (e.g., above about 40 to 60 degrees C.). Such a fluid coolant is sometimes referred to as a two phase coolant, i.e., it assumes both the gas and liquid states, or phases, at various points in the cooling process. The coolant vapor rises within the chamber formed by test socket 114 and flows from the chamber through a vapor outlet. Some two phase embodiments may include both a liquid outlet and a vapor outlet for heated coolant.
Fluid coolant is removed, once heated at the test site 108, through an outflow pathway 126 and returned to reservoir 120 to be cooled and recirculated. Heated coolant flowing from the chamber may include liquid coolant, coolant vapor, or both. For example, in one embodiment, heated coolant flows from test site 108 in liquid phase only. In an alternative embodiment, heated coolant flows from test site 108 in both a liquid phase and gas phase.
Heated coolant must be chilled to enable recirculation, which may be achieved, for example, by a refrigerant chilling system. Heated coolant may flow from the chamber under pressure from the inlet or, alternatively, may be moved by an outflow pump, gravity, or other suitable motive force. The pressure of the heated fluid coolant may be measured using one or more pressure sensors disposed in the return coolant flow path. In certain embodiments, heated coolant is filtered to remove particulates or other contaminates before it reaches a pump, chiller, or reservoir.
In alternative embodiments, heated fluid coolant may be returned through outflow pathway 126 to a second reservoir (not shown) for cooling and, in certain embodiments, recirculation to reservoir 120. Inflow pathway 122 and outflow pathway 126 each include a suitable fluid tubing or pipe, including, for example, metal or plastic tubing. Fluid coolant may flow through outflow pathway 126 toward reservoir 120 with the assistance of an outflow pump 128, gravity, or any other suitable motive force.
In certain embodiments, fluid coolant system 118 includes a pump controller (not shown) having one or more processing devices and memory configured to operate, i.e., control torque or speed output of, inflow pump 124, outflow pump 128, or both. In certain embodiments, the pump controller operates inflow pump 124 to fill test socket 114 to a predetermined fill level. Alternatively, pump controller may operate inflow pump 124 until a desired fill level is detected, for example, by one or more sensors, such as a pressure sensor or optical sensor. Similarly, the pump controller may operate outflow pump 128 to remove heated coolant at a selected rate once the desired fill level is detected. The rate may be programmed into memory or, alternatively, user selected. In alternative embodiments, the pump controller may execute a control algorithm for dynamically regulating outflow from test socket 114 based on one or more parameters or setpoints. For example, the pump controller may operate outflow pump 128 to remove heated coolant at rate selected to achieve a desired temperature of the heated coolant.
Test system 100 includes an enclosure 130 within which test site 108 and handler system 104 are disposed. Enclosure 130 supplies a controlled environment for testing IC chips, including, for example, ambient temperature, humidity, or ambient air composition. In at least some embodiments, fluid coolant system 118 may introduce at least some amount of coolant vapor that escapes test site 108. Accordingly, test system 100 includes a ventilation subsystem 132 to vent vapor from inside enclosure 130 or exchange ambient air within enclosure 130 with another volume. Additionally, in certain embodiments, test system 100 may include one or more seals 134, for example, to aid in capturing coolant vapor within enclosure 130 and avoid unwanted leakage through doors, hatches, or other openings in enclosure 130.
Housing 202 also defines one or more channels to receive seals for retaining the fluid coolant within chamber 204. For example, housing 202 defines channels facing retainer cartridge 214 to receive a cartridge seal 216. Cartridge seal 216 prevents fluid coolant leakage at the interface between housing 202 and retainer cartridge 214.
Retainer cartridge 214 defines additional channels configured to face a load board. The additional channels receive a PCB seal 218. As fluid coolant flows around test socket contacts through cavities defined in retainer cartridge 214, PCB seal 218 prevents fluid coolant leakage at the interface between test socket 200 and a load board.
Test socket 300 includes a guide structure 318 configured to receive IC chip 306 and position IC chip 306 in chamber 310 when engaged with test socket contacts 302. Guide structure 318 enables precise insertion of IC chip 306 into chamber 310, for example, by an auto handler system such as that shown in
Fluid coolant fills chamber 310 until a desired fill level is reached. For example, body structure 308 includes a sensor 328 configured to detect the fill level within the chamber 310. In the embodiment of
Fluid coolant system 118 includes a chiller 130 that receives the heated coolant from outflow pathway 126 and chills the fluid coolant to a temperature suitable for recirculation to test socket 300 again. In certain embodiments, where the fluid coolant exits test socket 300 as a vapor, chiller 130 also condenses the fluid coolant back to a liquid state. Once the fluid coolant is cooled and condensed, it flows back to reservoir 120 for recirculation.
Test socket 600 includes guide structure 318 configured to receive IC chip 306 and position IC chip 306 in chamber 310 when engaged with test socket contacts 302. Guide structure 318 enables precise insertion of IC chip 306 into chamber 310, for example, by an auto handler system such as that shown in
Fluid coolant fills chamber 310 until a desired fill level is reached. For example, body structure 308 includes sensor 328 configured to detect the fill level within the chamber 310. In the embodiment of
Fluid coolant system 118 includes a chiller 130 that receives the heated coolant from outflow pathway 126 and chills the fluid coolant to a temperature suitable for recirculation to test socket 300 again. In certain embodiments, where the fluid coolant exits test socket 300 as a vapor, chiller 130 also condenses the fluid coolant back to a liquid state. Once the fluid coolant is cooled and condensed, it flows back to reservoir 120 for recirculation.
Once IC chip 306 is in position within test socket 600, load board 314 is employed to conduct 808 an electrical test of IC chip 306. The electrical tests generally result in significant amounts of power consumed by IC chip 306, and current conducted through at least some test socket contacts 302, resulting in substantial heating of test socket 600 and, more specifically, test socket contacts 302, housing 305, and IC chip 306. The two phase fluid coolant in which at least test socket contacts 302 are at least partially submerged is circulated within chamber 310 and, once heated sufficiently, removed from chamber 310. Heated liquid coolant is removed 810 via a liquid outlet 330 defined in test socket 600. When heated liquid coolant is heated to a vaporization threshold, the coolant vapor is removed 612 through vapor outlet 332.
Liquid and vapor coolant are returned to a chiller for cooling and condensing, and then flow to reservoir 120 for recirculation to test socket 600. When the electrical test is complete, IC chip 306 is removed from test socket 600 and is passed into an output container. Test socket 600 can then be employed to conduct electrical tests on a next IC chip 306.
Once IC chip 306 is in position within test socket 300, load board 314 is employed to conduct 908 an electrical test of IC chip 306. The electrical tests generally result in significant amounts of power consumed by IC chip 306, and current conducted through at least some test socket contacts 302, resulting in substantial heating of test socket 300 and, more specifically, test socket contacts 302, housing 305, and IC chip 306. The fluid coolant in which at least test socket contacts 302 are at least partially submerged is circulated within chamber 310 and, once heated sufficiently, removed from chamber 310. For example, when a liquid coolant is heated to a vaporization threshold, the coolant vapor is removed through outlets 324 and an outflow pathway to return the coolant to a reservoir for cooling and recirculation to test socket 300. When the electrical test is complete, IC chip 306 is removed from test socket 300 and is passed into an output container. Test socket 300 can then be employed to conduct electrical tests on a next IC chip 306.
Example technical effects of the methods, systems, and apparatus described herein include at least one of: (a) submerging at least test socket contacts at least partially in a fluid coolant to directly cool the test socket contacts, the interface between the test socket contacts and the load board, and the interface between the test socket contacts and the IC chip; (b) submerging an IC chip under test at least partially in a fluid coolant to directly cool the IC chip and test socket housing in addition to the test socket contacts; (c) maintaining signal integrity through test socket contacts submerged in a non-conductive and low dielectric constant fluid coolant; (d) improving heat absorbing capacity and heat releasing capacity of a fluid coolant by use of a fluid coolant that is in a liquid state at about room temperature and having a low vaporization threshold; (e) improving heat absorbing capacity and heat releasing capacity of a single phase coolant by increasing flow rate through the test socket; (f) control flow of fluid coolant supply and removal to and from the test socket to achieve a desired coolant temperature, test socket contact temperature, IC chip temperature, or other suitable parameter; (g) improving test socket contact useful life; and (h) reducing down time of test system for replacing test socket contacts.
At least some example embodiments of the disclosed test sockets and methods include:
The systems and methods described herein are not limited to the specific embodiments described herein, but rather, components of the systems and/or steps of the methods may be utilized independently and separately from other components and/or steps described herein.
Although specific features of various embodiments of the disclosure may be shown in some drawings and not in others, this is for convenience only. In accordance with the principles of the disclosure, any feature of a drawing may be referenced and/or claimed in combination with any feature of any other drawing.
As used herein, an element or step recited in the singular and proceeded with the word “a” or “an” should be understood as not excluding plural elements or steps unless such exclusion is explicitly recited. Furthermore, references to “one embodiment” of the present disclosure or “an example embodiment” are not intended to be interpreted as excluding the existence of additional embodiments that also incorporate the recited features.
Disjunctive language such as the phrase “at least one of X, Y, or Z,” unless specifically stated otherwise, is generally understood within the context as used to state that an item, term, etc., may be either X, Y, or Z, or any combination thereof (e.g., X, Y, and/or Z). Thus, such disjunctive language is not generally intended to, and should not, imply that certain embodiments require at least one of X, at least one of Y, or at least one of Z to each be present. Additionally, conjunctive language such as the phrase “at least one of X, Y, and Z,” unless specifically stated otherwise, should also be understood to mean X, Y, Z, or any combination thereof, including “X, Y, and/or Z.”
This written description uses examples to disclose various embodiments, which include the best mode, to enable any person skilled in the art to practice those embodiments, including making and using any devices or systems and performing any incorporated methods. The patentable scope is defined by the claims, and may include other examples that occur to those skilled in the art. Such other examples are intended to be within the scope of the claims if they have structural elements that do not differ from the literal language of the claims, or if they include equivalent structural elements with insubstantial differences from the literal languages of the claims.
Number | Date | Country | Kind |
---|---|---|---|
202111137602.8 | Sep 2021 | CN | national |
202111306143.1 | Nov 2021 | CN | national |
This application is a continuation of U.S. patent application Ser. No. 17/571,271 filed on Jan. 7, 2022, which claims priority to Chinese Patent Application No. 202111137602.8 filed on Sep. 27, 2021, titled Liquid Cooled Test Socket for Testing Semiconductor Integrated Circuit Chips, and Chinese Patent Application No. 202111306143.1 filed on Nov. 5, 2021, titled Liquid Cooled Test System for Testing Semiconductor Integrated Circuit Chips, the entire contents of which are incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
Parent | 17571271 | Jan 2022 | US |
Child | 18405335 | US |