The present invention relates to a lithographic apparatus and a device manufacturing method.
A lithographic apparatus is a machine that applies a desired pattern onto a target portion of a substrate. Lithographic apparatus can be used, for example, in the manufacture of integrated circuits (ICs). In that circumstance, a patterning device, such as a mask, may be used to generate a circuit pattern corresponding to an individual layer of the IC, and this pattern can be imaged onto a target portion (e.g. comprising part of, one or several dies) on a substrate (e.g. a silicon wafer) that has a layer of radiation-sensitive material (resist). In general, a single substrate will contain a network of adjacent target portions that are successively exposed. Known lithographic apparatus include so-called steppers, in which each target portion is irradiated by exposing an entire pattern onto the target portion in one go, and so-called scanners, in which each target portion is irradiated by scanning the pattern through the projection beam in a given direction (the “scanning”-direction) while synchronously scanning the substrate parallel or anti-parallel to this direction.
It has been proposed to immerse the substrate in the lithographic projection apparatus in a liquid having a relatively high refractive index, e.g. water, so as to fill a space between the final element of the projection system and the substrate. The point of this is to enable imaging of smaller features since the exposure radiation will have a shorter wavelength in the liquid. (The effect of the liquid may also be regarded as increasing the effective NA of the system and also increasing the depth of focus.)
However, submersing the substrate or substrate and substrate table in a bath of liquid (see, for example, U.S. Pat. No. 4,509,852, hereby incorporated in its entirety by reference) means that there is a large body of liquid that must be accelerated during a scanning exposure. This requires additional or more powerful motors and turbulence in the liquid may lead to undesirable and unpredictable effects.
One of the solutions proposed is for a liquid supply system to provide liquid on only a localized area of the substrate and in between the final element of the projection system and the substrate using a liquid confinement system (the substrate generally has a larger surface area than the final element of the projection system). One way which has been proposed to arrange for this is disclosed in PCT patent application WO 99/49504, hereby incorporated in its entirety by reference. As illustrated in
The presence of liquid in a lithography apparatus results in the surrounding gas (e.g., air) becoming very humid. Humidity levels of up to 100% are possible. Moisture in the gas can enter other parts of the lithography apparatus thus contaminating other machine parts and measurement components so the operation and accurate measurement of the lithography apparatus may become compromised. The moisture in the gas may cause rusting of machine parts and therefore may reduce the life span of the lithography apparatus. Accordingly, it would be advantageous, for example, to provide a method of confining and/or removing humid gas.
According to an aspect of the invention, there is provided a lithographic apparatus, comprising:
an illumination system configured to condition beam of radiation;
a support structure configured to hold a patterning device, the patterning device configured to pattern the beam of radiation according to a desired pattern;
a substrate table configured to hold a substrate;
a projection system configured to project the patterned beam onto a target portion of the substrate;
a liquid supply system configured to at least partly fill a space between the projection system and the substrate with a liquid; and
a gas flow port configured to create a flow of gas to remove humid gas in a space above and in contact with the liquid, to confine the humid gas in the space, or both.
The humid gas above (where down is the direction of propagation of the projection beam) the liquid may thus be confined to or removed from a small volume relative to the projection apparatus. In an embodiment, there may be no rigid connection between parts of the apparatus so relative movement between the parts of the apparatus may occur freely. The gas used should be clean and dry to avoid damage to the apparatus and to absorb the humidity.
In an embodiment, the gas flow port comprises a vacuum inlet, which may also remove a contaminant from the system. The contaminant removed can be solid particles (which could damage the apparatus by scratching it), liquid particles or gaseous particles other than the gas itself. The vacuum inlet may be annular shaped, the projection system being arranged at the center of the annulus.
In an embodiment, the gas flow port comprises a passage through which the flow of gas flows. The passage bounds the volume of humid gas and the clean, dry gas flowing through the passage helps to prevent the humid gas from escaping. The passage may be formed at least partly by a part of the projection system and the gas flow port.
The lithographic apparatus may further comprise a cover, the cover forming a part of the passage, the cover being joined to the projection system by a seal. The cover may thus provides a gastight cover to the projection system, helping to prevent humid gas from entering the projection system or the remainder of the lithographic apparatus. The seal should be flexible and is, in an embodiment, a glue. Relative movement between parts of the lithographic apparatus may therefore not be compromised.
The liquid supply system may comprise a liquid confinement structure extending along at least part of the boundary of a space between the projection system and the substrate. In an embodiment, the gas flow port is arranged so that a flow of gas is provided at least partly between the liquid confinement structure and the projection system. Due to the presence of the gas flow port, relative movement between the liquid confinement structure and the projection system may take place. In an embodiment, the lithographic apparatus is arranged so that the gas flow port is arranged between the projection system and the liquid confinement structure. The liquid confinement structure optionally comprises a gas seal inlet configured to form a gas seal between the liquid confinement structure and a surface of the substrate. Humid gas is therefore confined by the substrate, the gas seal inlet, the liquid confinement structure, the gas flow port and the projection system. In an embodiment, the liquid confinement structure is mounted onto a base frame of the lithographic projection apparatus. In an embodiment, the liquid confinement structure is movable relative to the base frame in the Z, Rx and Ry directions (where the Z direction is the direction of propagation of the projection beam) but fixed in all other directions.
According to a further aspect of the invention, there is provided a device manufacturing method, comprising:
providing a liquid to a space between a projection system and a substrate;
flowing a gas in a space above and in contact the liquid to remove humid gas in the space, to confine the humid gas in the space, or both; and
projecting a patterned beam of radiation using the projection system onto a target portion of the substrate through the liquid.
An embodiment of the invention easily may be used with the liquid supply system illustrated in
Although specific reference may be made in this text to the use of lithographic apparatus in the manufacture of ICs, it should be understood that the lithographic apparatus described herein may have other applications, such as the manufacture of integrated optical systems, guidance and detection patterns for magnetic domain memories, liquid-crystal displays (LCDs), thin-film magnetic heads, etc. The skilled artisan will appreciate that, in the context of such alternative applications, any use of the terms “wafer” or “die” herein may be considered as synonymous with the more general terms “substrate” or “target portion”, respectively. The substrate referred to herein may be processed, before or after exposure, in for example a track (a tool that typically applies a layer of resist to a substrate and develops the exposed resist) or a metrology or inspection tool. Where applicable, the disclosure herein may be applied to such and other substrate processing tools. Further, the substrate may be processed more than once, for example in order to create a multi-layer IC, so that the term substrate used herein may also refer to a substrate that already contains multiple processed layers.
The terms “radiation” and “beam” used herein encompass all types of electromagnetic radiation, including ultraviolet (UV) radiation (e.g. having a wavelength of 365, 248, 193, 157 or 126 nm).
The term “patterning device” used herein should be broadly interpreted as referring to any device that can be used to impart a projection beam with a pattern in its cross-section such as to create a pattern in a target portion of the substrate. It should be noted that the pattern imparted to the projection beam may not exactly correspond to the desired pattern in the target portion of the substrate. Generally, the pattern imparted to the projection beam will correspond to a particular functional layer in a device being created in the target portion, such as an integrated circuit.
A patterning device may be transmissive or reflective. Examples of patterning devices include masks, programmable mirror arrays, and programmable LCD panels. Masks are well known in lithography, and include mask types such as binary, alternating phase-shift, and attenuated phase-shift, as well as various hybrid mask types. An example of a programmable mirror array employs a matrix arrangement of small mirrors, each of which can be individually tilted so as to reflect an incoming radiation beam in different directions; in this manner, the reflected beam is patterned. In each example of a patterning device, the support structure may be a frame or table, for example, which may be fixed or movable as required and which may ensure that the patterning device is at a desired position, for example with respect to the projection system. Any use of the terms “reticle” or “mask” herein may be considered synonymous with the more general term “patterning device”.
The term “projection system” used herein should be broadly interpreted as encompassing various types of projection system, including refractive optical systems, reflective optical systems, and catadioptric optical systems, as appropriate for example for the exposure radiation being used, or for other factors such as the use of an immersion fluid or the use of a vacuum. Any use of the term “projection lens” herein may be considered as synonymous with the more general term “projection system”.
The illumination system may also encompass various types of optical components, including refractive, reflective, and catadioptric optical components for directing, shaping, or controlling the projection beam of radiation.
The lithographic apparatus may be of a type having two (dual stage) or more substrate tables (and/or two or more mask tables). In such “multiple stage” machines the additional tables may be used in parallel, or preparatory steps may be carried out on one or more tables while one or more other tables are being used for exposure.
Embodiments of the invention will now be described, by way of example only, with reference to the accompanying schematic drawings in which corresponding reference symbols indicate corresponding parts, and in which:
As here depicted, the apparatus is of a transmissive type (e.g. employing a transmissive mask). Alternatively, the apparatus may be of a reflective type (e.g. employing a programmable mirror array of a type as referred to above).
The illuminator IL receives a beam of radiation from a radiation source SO. The source and the lithographic apparatus may be separate entities, for example when the source is an excimer laser. In such cases, the source is not considered to form part of the lithographic apparatus and the radiation beam is passed from the source SO to the illuminator IL with the aid of a beam delivery system BD comprising for example suitable directing mirrors and/or a beam expander. In other cases the source may be integral part of the apparatus, for example when the source is a mercury lamp. The source SO and the illuminator IL, together with the beam delivery system BD if required, may be referred to as a radiation system.
The illuminator IL may comprise adjusting means AM for adjusting the angular intensity distribution of the beam. Generally, at least the outer and/or inner radial extent (commonly referred to as σ-outer and σ-inner, respectively) of the intensity distribution in a pupil plane of the illuminator can be adjusted. In addition, the illuminator IL generally comprises various other components, such as an integrator IN and a condenser CO. The illuminator provides a conditioned beam of radiation, referred to as the projection beam PB, having a desired uniformity and intensity distribution in its cross-section.
The projection beam PB is incident on the mask MA, which is held on the mask table MT. Having traversed the mask MA, the projection beam PB passes through the projection system PL, which focuses the beam onto a target portion C of the substrate W. With the aid of the second positioner PW and position sensor IF (e.g. an interferometric device), the substrate table WT can be moved accurately, e.g. so as to position different target portions C in the path of the beam PB. Similarly, the first positioner PM and another position sensor (which is not explicitly depicted in
The depicted apparatus can be used in the following preferred modes:
Combinations and/or variations on the above described modes of use or entirely different modes of use may also be employed.
Another liquid supply system solution according to an embodiment of the invention is a liquid supply system with a seal member or a liquid confinement structure which extends along at least a part of a boundary of the space between the final element of the projection system and the substrate table. The seal member is substantially stationary relative to the projection system in the XY plane though there may be some relative movement in the Z direction (in the direction of the optical axis). A seal is formed between the seal member and the surface of the substrate. In an embodiment, the seal is a contactless seal such as a gas seal. Such a system is disclosed in U.S. patent application no. U.S. Ser. No. 10/705,783, hereby incorporated in its entirety by reference.
As shown in
To prevent moisture-laden gas from pervading the entire apparatus, metal membranes may be used to confine the humid gas between the projection system and a liquid confinement structure used to at least partly contain the liquid between the projection system and the substrate. Alternatively, rubber-like Viton fluoroelastomer rings may be used to confine the gas. In such arrangements, however, it may be possible a vibration is transmitted between the projection system and the liquid confinement structure.
As shown in
A vacuum chamber 34 with an inlet 33 is arranged in the volume above the reservoir 10. The outside of the vacuum chamber 34 and cover 35 form a passage 32 along which gas flows towards vacuum chamber 34. In addition to the gas flowing along passage 32, gas from all surrounding areas will flow towards the vacuum chamber 34. The partial vapor pressure of the liquid in the gas above the reservoir 10 is high, and the flow of gas along passage 32 prevents the humid gas from entering the projection system PL.
Additionally or alternatively, the gas flow will absorb humidity from surrounding gas so there is a gradient of humidity, the humidity of the gas decreasing away from the reservoir 10. Thus delicate parts of the apparatus such as mirrors for the interferometer beams are arranged in a dry part of the apparatus so that the humidity doesn't affect measurements made using the interferometer beams. Additionally, if glue is used as seal 40, dry, flowing gas will help to ensure that the glue remains dry and therefore a gastight seal is maintained. Keeping the glue 40 dry also helps prevent it from expanding and thus generating forces which may deform the projection system.
The vacuum chamber 34 can be independent of the projection system as in the example above, or can be part of the projection system PL, or part of the seal member 12 and in any of these circumstances may be actuatable in the Z direction. There may be a plurality of gas passages 32 and vacuum chambers 34 arranged around the projection system PL, or alternatively one annular (or other) shaped vacuum chamber with a slit inlet. Although the example here is of a vacuum chamber i.e. an underpressure generating a gas flow, the gas flow port could equally comprise an overpressure.
A system as described above may be used in conjunction with the liquid supply system shown in
While specific embodiments of the invention have been described above, it will be appreciated that the invention may be practiced otherwise than as described. The description is not intended to limit the invention.
Number | Date | Country | Kind |
---|---|---|---|
03256809 | Oct 2003 | EP | regional |
This application is a continuation of co-pending U.S. patent application Ser. No. 12/010,705, filed Jan. 29, 2008, now allowed, which is a continuation of U.S. patent application Ser. No. 10/961,395, filed Oct. 12, 2004, now U.S. Pat. No. 7,352,433, which claims priority to European patent application EP 03256809.9, filed Oct. 28, 2003, each application is incorporated herein in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
3573975 | Dhaka et al. | Apr 1971 | A |
3648587 | Stevens | Mar 1972 | A |
4346164 | Tabarelli et al. | Aug 1982 | A |
4390273 | Loebach et al. | Jun 1983 | A |
4396705 | Akeyama et al. | Aug 1983 | A |
4480910 | Takanashi et al. | Nov 1984 | A |
4509852 | Tabarelli et al. | Apr 1985 | A |
4704348 | Koizumi et al. | Nov 1987 | A |
5040020 | Rauschenbach et al. | Aug 1991 | A |
5610683 | Takahashi | Mar 1997 | A |
5715039 | Fukuda et al. | Feb 1998 | A |
5825043 | Suwa | Oct 1998 | A |
5900354 | Batchelder | May 1999 | A |
5997963 | Davidson et al. | Dec 1999 | A |
6191429 | Suwa | Feb 2001 | B1 |
6236634 | Lee et al. | May 2001 | B1 |
6555834 | Loopstra | Apr 2003 | B1 |
6560032 | Hatano | May 2003 | B2 |
6600547 | Watson et al. | Jul 2003 | B2 |
6603130 | Bisschops et al. | Aug 2003 | B1 |
6633365 | Suenaga | Oct 2003 | B2 |
7075616 | Derksen et al. | Jul 2006 | B2 |
7098991 | Nagasaka et al. | Aug 2006 | B2 |
20010038442 | Hansell et al. | Nov 2001 | A1 |
20020020821 | Van Santen et al. | Feb 2002 | A1 |
20020163629 | Switkes et al. | Nov 2002 | A1 |
20030030916 | Suenaga | Feb 2003 | A1 |
20030123040 | Almogy | Jul 2003 | A1 |
20030123042 | Laganza et al. | Jul 2003 | A1 |
20030146396 | Loopstra et al. | Aug 2003 | A1 |
20030174408 | Rostalski et al. | Sep 2003 | A1 |
20040000627 | Schuster | Jan 2004 | A1 |
20040021844 | Suenaga | Feb 2004 | A1 |
20040075895 | Lin | Apr 2004 | A1 |
20040109237 | Epple et al. | Jun 2004 | A1 |
20040114117 | Bleeker | Jun 2004 | A1 |
20040118184 | Violette | Jun 2004 | A1 |
20040119954 | Kawashima et al. | Jun 2004 | A1 |
20040125351 | Krautschik | Jul 2004 | A1 |
20040136494 | Lof et al. | Jul 2004 | A1 |
20040160582 | Lof et al. | Aug 2004 | A1 |
20040165159 | Lof et al. | Aug 2004 | A1 |
20040169834 | Richter et al. | Sep 2004 | A1 |
20040169924 | Flagello et al. | Sep 2004 | A1 |
20040180294 | Baba-Ali et al. | Sep 2004 | A1 |
20040180299 | Rolland et al. | Sep 2004 | A1 |
20040207824 | Lof et al. | Oct 2004 | A1 |
20040211920 | Maria Derksen et al. | Oct 2004 | A1 |
20040224265 | Endo et al. | Nov 2004 | A1 |
20040224525 | Endo et al. | Nov 2004 | A1 |
20040227923 | Flagello et al. | Nov 2004 | A1 |
20040253547 | Endo et al. | Dec 2004 | A1 |
20040253548 | Endo et al. | Dec 2004 | A1 |
20040257544 | Vogel et al. | Dec 2004 | A1 |
20040259008 | Endo et al. | Dec 2004 | A1 |
20040259040 | Endo et al. | Dec 2004 | A1 |
20040263808 | Sewell | Dec 2004 | A1 |
20050018156 | Mulkens et al. | Jan 2005 | A1 |
20050030506 | Schuster | Feb 2005 | A1 |
20050036121 | Hoogendam et al. | Feb 2005 | A1 |
20050036183 | Yeo et al. | Feb 2005 | A1 |
20050036184 | Yeo et al. | Feb 2005 | A1 |
20050036213 | Mann et al. | Feb 2005 | A1 |
20050037269 | Levinson | Feb 2005 | A1 |
20050046934 | Ho et al. | Mar 2005 | A1 |
20050048223 | Pawloski et al. | Mar 2005 | A1 |
20050068639 | Pierrat et al. | Mar 2005 | A1 |
20050073670 | Carroll | Apr 2005 | A1 |
20050084794 | Meagley et al. | Apr 2005 | A1 |
20050094116 | Flagello et al. | May 2005 | A1 |
20050100745 | Lin et al. | May 2005 | A1 |
20050110973 | Streefkerk et al. | May 2005 | A1 |
20050117224 | Shafer et al. | Jun 2005 | A1 |
20050122497 | Lyons et al. | Jun 2005 | A1 |
20050128445 | Hoogendam et al. | Jun 2005 | A1 |
20050134817 | Nakamura | Jun 2005 | A1 |
20050141098 | Schuster | Jun 2005 | A1 |
20050190455 | Rostalski et al. | Sep 2005 | A1 |
20050217135 | O'Donnell et al. | Oct 2005 | A1 |
20050217137 | Smith et al. | Oct 2005 | A1 |
20050217703 | O'Donnell | Oct 2005 | A1 |
20060028632 | Hazelton et al. | Feb 2006 | A1 |
20060114445 | Ebihara | Jun 2006 | A1 |
Number | Date | Country |
---|---|---|
206 607 | Feb 1984 | DE |
221 563 | Apr 1985 | DE |
224448 | Jul 1985 | DE |
242880 | Feb 1987 | DE |
0023231 | Feb 1981 | EP |
0418427 | Mar 1991 | EP |
0 605 103 | Jul 1994 | EP |
0 834 773 | Apr 1998 | EP |
1039511 | Sep 2000 | EP |
1420298 | Oct 2003 | EP |
2474708 | Jul 1981 | FR |
A 57-153433 | Sep 1982 | JP |
58-202448 | Nov 1983 | JP |
A 59-19912 | Feb 1984 | JP |
S59-19912 | Feb 1984 | JP |
62-065326 | Mar 1987 | JP |
62-121417 | Jun 1987 | JP |
63-157419 | Jun 1988 | JP |
04-305915 | Oct 1992 | JP |
04-305917 | Oct 1992 | JP |
A 5-62877 | Mar 1993 | JP |
A 5-304072 | Nov 1993 | JP |
06-124873 | May 1994 | JP |
07-132262 | May 1995 | JP |
07-220990 | Aug 1995 | JP |
A 8-316125 | Nov 1996 | JP |
10-228661 | Aug 1998 | JP |
10-255319 | Sep 1998 | JP |
10-303114 | Nov 1998 | JP |
10-340846 | Dec 1998 | JP |
11-176727 | Jul 1999 | JP |
2000-058436 | Feb 2000 | JP |
2001-091849 | Apr 2001 | JP |
2004-193252 | Jul 2004 | JP |
WO 9949504 | Sep 1999 | WO |
WO 02091078 | Nov 2002 | WO |
WO 03077034 | Sep 2003 | WO |
WO 03077036 | Sep 2003 | WO |
WO 03077037 | Sep 2003 | WO |
WO 03085708 | Oct 2003 | WO |
WO 2004019128 | Mar 2004 | WO |
WO 2004053596 | Jun 2004 | WO |
WO 2004053950 | Jun 2004 | WO |
WO 2004053951 | Jun 2004 | WO |
WO 2004053952 | Jun 2004 | WO |
WO 2004053953 | Jun 2004 | WO |
WO 2004053954 | Jun 2004 | WO |
WO 2004053955 | Jun 2004 | WO |
WO 2004053956 | Jun 2004 | WO |
WO 2004053957 | Jun 2004 | WO |
WO 2004053958 | Jun 2004 | WO |
WO 2004053959 | Jun 2004 | WO |
WO 2004055803 | Jul 2004 | WO |
WO 2004057589 | Jul 2004 | WO |
WO 2004057590 | Jul 2004 | WO |
WO 2004077154 | Sep 2004 | WO |
WO 2004081666 | Sep 2004 | WO |
WO 2004090577 | Oct 2004 | WO |
WO 2004090633 | Oct 2004 | WO |
WO 2004090634 | Oct 2004 | WO |
WO 2004092830 | Oct 2004 | WO |
WO 2004092833 | Oct 2004 | WO |
WO 2004093130 | Oct 2004 | WO |
WO 2004093159 | Oct 2004 | WO |
WO 2004093160 | Oct 2004 | WO |
WO 2004095135 | Nov 2004 | WO |
WO 2005001432 | Jan 2005 | WO |
WO 2005003864 | Jan 2005 | WO |
WO 2005006026 | Jan 2005 | WO |
WO 2005008339 | Jan 2005 | WO |
WO 2005013008 | Feb 2005 | WO |
WO 2005015283 | Feb 2005 | WO |
WO 2005017625 | Feb 2005 | WO |
WO 2005019935 | Mar 2005 | WO |
WO 2005022266 | Mar 2005 | WO |
WO 2005024325 | Mar 2005 | WO |
WO 2005024517 | Mar 2005 | WO |
WO 2005034174 | Apr 2005 | WO |
WO 2005054953 | Jun 2005 | WO |
WO 2005054955 | Jun 2005 | WO |
WO 2005062128 | Jul 2005 | WO |
Number | Date | Country | |
---|---|---|---|
20090197211 A1 | Aug 2009 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12010705 | Jan 2008 | US |
Child | 12422140 | US | |
Parent | 10961395 | Oct 2004 | US |
Child | 12010705 | US |