1. Field of the Invention
The invention relates to a lithographic apparatus, a substrate handling method and a substrate handler.
2. Description of the Related Art
A lithographic apparatus is a machine that applies a desired pattern onto a substrate, usually onto a target portion of the substrate. A lithographic apparatus can be used, for example, in the manufacture of integrated circuits (ICs). In such a case, a patterning device, which is alternatively referred to as a mask or a reticle, may be used to generate a circuit pattern to be formed on an individual layer of the IC. This pattern can be transferred onto a target portion (e.g., including part of, one, or several dies) on a substrate (e.g., a silicon wafer). Transfer of the pattern is typically via imaging onto a layer of radiation-sensitive material (resist) provided on the substrate. In general, a single substrate will contain a network of adjacent target portions that are successively patterned. Conventional lithographic apparatus include so-called steppers, in which each target portion is irradiated by exposing an entire pattern onto the target portion at once, and so-called scanners, in which each target portion is irradiated by scanning the pattern through a radiation beam in a given direction (the “scanning”-direction) while synchronously scanning the substrate parallel or anti-parallel to this direction. It is also possible to transfer the pattern from the patterning device to the substrate by imprinting the pattern onto the substrate.
A wafer handler system transports a substrate (e.g., a wafer) into a substrate table compartment (e.g., a wafer stage compartment). The substrate is positioned by a gripper of the handler above the substrate table and pins projecting from the substrate table take over the wafer. When the gripper is retrieved the pins move down and load the wafer onto the wafer table.
When the wafer is loaded on the wafer table, stresses may be introduced in the wafer because of friction between burls of the wafer table and the wafer. These stresses may lead to wafer deformation and consequential projection errors.
This section is for the purpose of summarizing some aspects of the present invention and to briefly introduce some preferred embodiments. Simplifications or omissions may be made to avoid obscuring the purpose of the section. Such simplifications or omissions are not intended to limit the scope of the present invention.
It is desirable to position a substrate onto the substrate table with a low stress.
According to an embodiment of the invention, there is provided a lithographic apparatus arranged to transfer a pattern from a patterning device onto a substrate, the lithographic apparatus comprising: a substrate table constructed to hold a substrate; and a gripper arranged to position the substrate on the substrate table, the gripper comprising an electrostatic clamp arranged to clamp the substrate at a top side thereof, wherein a stiffness of the clamp is lower than an average stiffness of the to be gripped substrate.
According to another embodiment of the invention, there is provided a substrate handling method comprising positioning the substrate by means of a gripper on a substrate table of a lithographic apparatus, the method comprising clamping the substrate at a top side thereof by means of an electrostatic clamp of the gripper, wherein a stiffness of the clamp is lower than an average stiffness of the to be gripped substrate.
According to yet another embodiment of the invention there is provided a substrate handler for handling a substrate, the substrate handler comprising a gripper for gripping the substrate and positioning the substrate on a substrate table, wherein the gripper comprises an electrostatic clamp arranged to clamp the substrate at a top side thereof, wherein a stiffness of the clamp is lower than an average stiffness of the to be gripped substrate.
Further features and advantages of the invention, as well as the structure and operation of various embodiments of the present invention, are described in detail below with reference to the accompanying drawings. The invention is not limited to the specific embodiments described herein. Such embodiments are presented herein for illustrative purposes only. Additional embodiments will be apparent to persons skilled in the relevant art(s) based on the teachings contained herein. The Summary and Abstract sections of this patent document may describe one or more, but not all exemplary embodiments of the invention as contemplated by the inventor(s).
The accompanying drawings, which are incorporated herein and form a part of the specification, illustrate the present invention and, together with the description, further serve to explain the principles of the invention and to enable a person skilled in the pertinent art to make and use the invention. In the drawings, like reference numbers may indicate identical or functionally similar elements. The drawing in which an element first appears is generally indicated by the left-most digit in the corresponding reference number. The accompanying drawings, which are incorporated in and constitute part of the specification, illustrate embodiments of the invention and, together with the general description given above and the detailed descriptions of embodiments given below, serve to explain the principles of the present invention. Embodiments of the invention will now be described, by way of example only, with reference to the accompanying schematic drawings in which corresponding reference symbols indicate corresponding parts, and in which:
Features and advantages of the present invention will become more apparent from the detailed description set forth below when taken in conjunction with the drawings, in which like reference characters identify corresponding elements throughout. In the drawings, like reference numbers generally indicate identical, functionally similar, and/or structurally similar elements.
References in the specification to “one embodiment,” “an embodiment,” “an example embodiment,” etc., indicate that the embodiment described may include a particular feature, structure, or characteristic, but every embodiment may not necessarily include the particular feature, structure, or characteristic. Moreover, such phrases are not necessarily referring to the same embodiment. Further, when a particular feature, structure, or characteristic is described in connection with an embodiment, it is submitted that it is within the knowledge of one skilled in the art to affect such feature, structure, or characteristic in connection with other embodiments whether or not explicitly described.
It should be understood that spatial descriptions (e.g., “above,” “below,” “left,” “right,” “up,” “down,” “top,” “bottom,” etc.) used herein are for purposes of illustration only, and that practical implementations of the structures described herein can be spatially arranged in any orientation or manner.
The invention will be better understood from the following descriptions of various embodiments of the invention. Thus, specific embodiments are views of the invention, but each does not itself represent the whole invention. In many cases individual elements from one particular embodiment may be substituted for different elements in another embodiment carrying out a similar or corresponding function.
The illumination system may include various types of optical components, such as refractive, reflective, magnetic, electromagnetic, electrostatic or other types of optical components, or any combination thereof, for directing, shaping, or controlling radiation.
The mask support structure supports, i.e., bears the weight of, the patterning device.
It holds the patterning device in a manner that depends on the orientation of the patterning device, the design of the lithographic apparatus, and other conditions, such as for example whether or not the patterning device is held in a vacuum environment. The mask support structure can use mechanical, vacuum, electrostatic or other clamping techniques to hold the patterning device. The mask support structure may be a frame or a table, for example, which may be fixed or movable as required. The mask support structure may ensure that the patterning device is at a desired position, for example with respect to the projection system. Any use of the terms “reticle” or “mask” herein may be considered synonymous with the more general term “patterning device.”
The term “patterning device” used herein should be broadly interpreted as referring to any device that can be used to impart a radiation beam with a pattern in its cross-section so as to create a pattern in a target portion of the substrate. It should be noted that the pattern imparted to the radiation beam may not exactly correspond to the desired pattern in the target portion of the substrate, for example if the pattern includes phase-shifting features or so called assist features. Generally, the pattern imparted to the radiation beam will correspond to a particular functional layer in a device being created in the target portion, such as an integrated circuit.
The patterning device may be transmissive or reflective. Examples of patterning devices include masks, programmable mirror arrays, and programmable LCD panels. Masks are well known in lithography, and include mask types such as binary, alternating phase-shift, and attenuated phase-shift, as well as various hybrid mask types. An example of a programmable mirror array employs a matrix arrangement of small mirrors, each of which can be individually tilted so as to reflect an incoming radiation beam in different directions. The tilted mirrors impart a pattern in a radiation beam which is-reflected by the mirror matrix.
The term “projection system” used herein should be broadly interpreted as encompassing any type of projection system, including refractive, reflective, catadioptric, magnetic, electromagnetic and electrostatic optical systems, or any combination thereof, as appropriate for the exposure radiation being used, or for other factors such as the use of an immersion liquid or the use of a vacuum. Any use of the term “projection lens” herein may be considered as synonymous with the more general term “projection system.”
As here depicted, the apparatus is of a transmissive type (e.g., employing a transmissive mask). Alternatively, the apparatus may be of a reflective type (e.g., employing a programmable mirror array of a type as referred to above, or employing a reflective mask).
The lithographic apparatus may be of a type having two (dual stage) or more substrate tables or “substrate supports” (and/or two or more mask tables or “mask supports”). In such “multiple stage” machines the additional tables or supports may be used in parallel, or preparatory steps may be carried out on one or more tables or supports while one or more other tables or supports are being used for exposure.
The lithographic apparatus may also be of a type wherein at least a portion of the substrate may be covered by a liquid having a relatively high refractive index, e.g., water, so as to fill a space between the projection system and the substrate. An immersion liquid may also be applied to other spaces in the lithographic apparatus, for example, between the mask and the projection system. Immersion techniques can be used to increase the numerical aperture of projection systems. The term “immersion” as used herein does not mean that a structure, such as a substrate, must be submerged in liquid, but rather only means that a liquid is located between the projection system and the substrate during exposure.
Illuminator IL receives a radiation beam from a radiation source SO. The source and the lithographic apparatus may be separate entities, for example when the source is an excimer laser. In such cases, the source is not considered to form part of the lithographic apparatus and the radiation beam is passed from the source SO to the illuminator IL with the aid of a beam delivery system BD including, for example, suitable directing mirrors and/or a beam expander. In other cases the source may be an integral part of the lithographic apparatus, for example when the source is a mercury lamp. The source SO and the illuminator IL, together with the beam delivery system BD if required, may be referred to as a radiation system.
The illuminator IL may include an adjuster AD configured to adjust the angular intensity distribution of the radiation beam. Generally, at least the outer and/or inner radial extent (commonly referred to as σ-outer and σ-inner, respectively) of the intensity distribution in a pupil plane of the illuminator can be adjusted. In addition, the illuminator IL may include various other components, such as an integrator IN and a condenser CO. The illuminator may be used to condition the radiation beam, to have a desired uniformity and intensity distribution in its cross-section.
The radiation beam B is incident on the patterning device (e.g., mask MA), which is held on the mask support structure (e.g., mask table MT), and is patterned by the patterning device. Having traversed the mask MA, the radiation beam B passes through the projection system PS, which focuses the beam onto a target portion C of the substrate W. With the aid of the second positioning device PW and position sensor IF (e.g., an interferometric device, linear encoder or capacitive sensor), the substrate table WT can be moved accurately, e.g., so as to position different target portions C in the path of the radiation beam B. Similarly, the first positioning device PM and another position sensor (which is not explicitly depicted in
The depicted apparatus could be used in at least one of the following modes:
1. In step mode, the mask table MT or “mask support” and the substrate table WT or “substrate support” are kept essentially stationary, while an entire pattern imparted to the radiation beam is projected onto a target portion C at one time (i.e., a single static exposure). The substrate table WT or “substrate support” is then shifted in the X and/or Y direction so that a different target portion C can be exposed. In step mode, the maximum size of the exposure field limits the size of the target portion C imaged in a single static exposure.
2. In scan mode, the mask table MT or “mask support” and the substrate table WT or “substrate support” are scanned synchronously while a pattern imparted to the radiation beam is projected onto a target portion C (i.e., a single dynamic exposure). The velocity and direction of the substrate table WT or “substrate support” relative to the mask table MT or “mask support” may be determined by the (de-)magnification and image reversal characteristics of the projection system PS. In scan mode, the maximum size of the exposure field limits the width (in the non-scanning direction) of the target portion in a single dynamic exposure, whereas the length of the scanning motion determines the height (in the scanning direction) of the target portion.
3. In another mode, the mask table MT or “mask support” is kept essentially stationary holding a programmable patterning device, and the substrate table WT or “substrate support” is moved or scanned while a pattern imparted to the radiation beam is projected onto a target portion C. In this mode, generally a pulsed radiation source is employed and the programmable patterning device is updated as required after each movement of the substrate table WT or “substrate support” or in between successive radiation pulses during a scan. This mode of operation can be readily applied to maskless lithography that utilizes programmable patterning device, such as a programmable mirror array of a type as referred to above.
Combinations and/or variations on the above described modes of use or entirely different modes of use may also be employed.
In an embodiment, the electrostatic clamp is arranged to clamp the substrate along an outer edge thereof. By clamping (at least part of) a circumferential outer zone of the top surface of the substrate, also referred to as an exclusion area of the substrate, any effects (such as damage) on structures or patterns on the substrate may be avoided. Furthermore, as the clamp contacts a circumferential part or a segment of a circumferential part of the substrate surface, local thermal spot effects onto the substrate as a result of the heat-load from the gripper may be avoided. In case a thermal effect on the substrate occurs, its more global nature as a result of contacting the edge of the substrate, may have less effects and may more easily be compensated, for example by a suitable modeling. Still further, the substrate may be positioned on the substrate table involving little mechanical stress in the substrate. This is because clamping the substrate along the edge thereof allows to place the substrate onto the substrate table (e.g., onto burls of the substrate table) starting with a center of the substrate, due to some degree of bending of the substrate as a result of gravity force, followed by a contacting of the substrate circularly from the center towards the edge thereof, so that the substrate may be placed onto the burls with a low amount of mechanical stress. Furthermore, as the edge of the substrate, where the clamp contacts it, is commonly not supported by burls, any stresses imposed on the substrate by the clamp, may relax more freely, as the edge of the substrate us relatively free, even when positioned onto (e.g., the burls of) the substrate table.
The electrostatic clamp comprises an electrode ELE, and an isolation layer that isolates the electrode from the substrate, such as in this example the dielectric layer DEL. The dielectric and isolation layers may exhibit a low thermal conductivity thereby to further reduce a thermal coupling between the gripper and the substrate. A ground electrode GRE may be provided which may provide that the electrostatic field is shielded and/or kept in local area. The ground electrode GRE may, as depicted in
A monopolar clamp may be provided (i.e., a clamp that applies a single voltage). In order to reduce an effect onto the substrate (e.g., charging of the substrate), a bipolar electrical clamp may be applied that comprises two electrodes, whereby two substantially opposite voltages are applied to the electrodes, which may reduce a effect of charging etc. onto the substrate.
In the depicted embodiments, a thickness of the dielectric layer may be in an order of magnitude of 10 to 50 micrometers, so as to provide a reliable breakdown strength. In order to avoid an effect of an electrostatic field on a pattern or structure on the substrate (such as a semiconductor structure), a margin may be kept between an inner diameter of the electrodes and an outer diameter of the area of the substrate where the pattern is to be provided (e.g., the area of the substrate surface that is to be irradiated by the lithographic apparatus), the safety margin may e.g., be in an order of magnitude of 0.1-0.2 millimeters, i.e., an inner diameter of the electrode exceeding an outer diameter of the patterned or to be patterned area by 0.2-0.4 millimeters.
Several possibilities are described for handling substrate un-flatness. A possible solution is to provide that a contacting surface at which the clamp contacts the substrate surface is flatter than an average (to be expected) flatness of the to be clamped substrate. In order for the substrate to follow the flatness of the clamp, a stiffness of the clamp may exceed an average stiffness of the substrate. As an alternative, the stiffness of the clamp may be lower than an average stiffness of the to be gripped substrate, so as to allow the contacting surface of the clamp to follow a surface of the substrate. As a further possibility, the clamp may comprise at least two radial segments that are arranged to be movable independently of each other so as to follow a surface of the substrate.
The clamp may comprise an air knife so as to remove any remaining immersion liquid on the surface of the substrate, for example in immersion applications. The lithographic apparatus may be arranged to move the clamp over a part of the surface of the substrate for immersion liquid removal by the air knife.
The invention may also be embodied as a substrate handling method comprising positioning the substrate by means of a gripper on a substrate table of a lithographic apparatus, the method comprising clamping the substrate at a top side thereof by means of an electrostatic clamp of the gripper. In an embodiment, the method comprises clamping at least part of a circumferential outer zone of the substrate top surface. Still further, the invention may be embodied as a substrate handler for handling a substrate, the substrate handler comprising a gripper for gripping the substrate and positioning the substrate on a substrate table, wherein the gripper comprises an electrostatic clamp arranged to clamp the substrate at a top side thereof. It is noted that with the substrate handling method and with the substrate handler, the same or similar effects may be achieved as with the lithographic apparatus according to the invention. Also the same or similar embodiments may be provided, thereby achieving same or similar effects.
It may be beneficial to increase the friction between the gripper and the substrate so that the gripper is able to move the substrate at higher accelerations and velocities in a plane parallel to the top surface of the substrate. This can lead to faster loading and unloading of a substrate.
To increase the friction, the gripper may be provided with one or more coils CL, see
A temperature and temperature distribution of the substrate is a relevant parameter when the substrate is held by the gripper. During such gripping, an environment of the gripper may locally or globally change a temperature of the substrate. In accordance with the embodiment depicted in
As depicted in
It is noted that the gripper as explained above with reference to
In order to load the substrate from the substrate buffer location onto the substrate table, various solutions are possible: in a first embodiment, as schematically depicted in
It is noted that the carousel (or other type of buffer, such as a stack type buffer) may comprise a plurality of grippers and associated temperature conditioning devices. Likewise, for each gripper and associated temperature conditioning device, a substrate position measurement device and an actuator, such as a gripper positioning unit, may be provided so as to allow the buffer to contain a plurality of substrates, and to load them onto the substrate table of the lithographic apparatus, for example using the buffer as a first in first out type of conditioned storage.
Although specific reference may be made in this text to the use of lithographic apparatus in the manufacture of ICs, it should be understood that the lithographic apparatus described herein may have other applications, such as the manufacture of integrated optical systems, guidance and detection patterns for magnetic domain memories, flat-panel displays, liquid-crystal displays (LCDs), thin-film magnetic heads, etc. The skilled artisan will appreciate that, in the context of such alternative applications, any use of the terms “wafer” or “die” herein may be considered as synonymous with the more general terms “substrate” or “target portion,” respectively. The substrate referred to herein may be processed, before or after exposure, in for example a track (a tool that typically applies a layer of resist to a substrate and develops the exposed resist), a metrology tool and/or an inspection tool. Where applicable, the disclosure herein may be applied to such and other substrate processing tools. Further, the substrate may be processed more than once, for example in order to create a multi-layer IC, so that the term substrate used herein may also refer to a substrate that already contains multiple processed layers.
Although specific reference may have been made above to the use of embodiments of the invention in the context of optical lithography, it will be appreciated that the invention may be used in other applications, for example imprint lithography, and where the context allows, is not limited to optical lithography. In imprint lithography a topography in a patterning device defines the pattern created on a substrate. The topography of the patterning device may be pressed into a layer of resist supplied to the substrate whereupon the resist is cured by applying electromagnetic radiation, heat, pressure or a combination thereof. The patterning device is moved out of the resist leaving a pattern in it after the resist is cured.
The terms “radiation” and “beam” used herein encompass all types of electromagnetic radiation, including ultraviolet (UV) radiation (e.g., having a wavelength of or about 365, 248, 193, 157 or 126 nm) and extreme ultra-violet (EUV) radiation (e.g., having a wavelength in the range of 5-20 nm), as well as particle beams, such as ion beams or electron beams.
The term “lens,” where the context allows, may refer to any one or combination of various types of optical components, including refractive, reflective, magnetic, electromagnetic and electrostatic optical components.
While specific embodiments of the invention have been described above, it will be appreciated that the invention may be practiced otherwise than as described. For example, the invention may take the form of a computer program containing one or more sequences of machine-readable instructions describing a method as disclosed above, or a data storage medium (e.g., semiconductor memory, magnetic or optical disk) having such a computer program stored therein.
The Detailed Description section, and not the Summary and Abstract sections, is intended to be used to interpret the claims. The Summary and Abstract sections can set forth one or more but not all exemplary embodiments of the present invention as contemplated by the inventor(s), and thus, are not intended to limit the present invention and the appended claims in any way.
Various embodiments of the present invention have been described above. It should be understood that they have been presented by way of example only, and not limitation. It will be apparent to persons skilled in the relevant art that various changes in form and detail can be made from those specifically described without departing from the spirit and scope of the invention. Thus, the breadth and scope of the present invention should not be limited by any of the above-described exemplary embodiments, but should be defined only in accordance with the following claims and their equivalents.
The invention has been described above with the aid of functional building blocks illustrating the implementation of specified functions and relationships thereof. The boundaries of these functional building blocks have been arbitrarily defined herein for the convenience of the description. Alternate boundaries can be defined so long as the specified functions and relationships thereof are appropriately performed.
The foregoing description of the specific embodiments will so fully reveal the general nature of the invention that others can, by applying knowledge within the skill of the art, readily modify and/or adapt for various applications such specific embodiments, without undue experimentation, without departing from the general concept of the present invention. Therefore, such adaptations and modifications are intended to be within the meaning and range of equivalents of the disclosed embodiments, based on the teaching and guidance presented herein. It is to be understood that the phraseology or terminology herein is for the purpose of description and not of limitation, such that the terminology or phraseology of the present specification is to be interpreted by the skilled artisan in light of the teachings and guidance.
The descriptions above are intended to be illustrative, not limiting. Thus, it will be apparent to one skilled in the art that modifications may be made to the invention as described without departing from the scope of the claims set out below.
This application claims the benefit under 35 U.S.C. §119(e) to U.S. Provisional Patent Application No. 61/538,612, filed Sep. 23, 2011 and U.S. Provisional Patent Application No. 61/547,220, filed Oct. 14, 2011, which are incorporated by reference herein in their entirety.
Number | Date | Country | |
---|---|---|---|
61538612 | Sep 2011 | US | |
61547220 | Oct 2011 | US |