The present invention relates generally to micromechanical resonators, and more particularly, to multi-frequency high-Q tunable micromechanical resonators.
In Asia, Europe, and North America, multiple frequency standards and infrastructures have been established with which cellular handsets must comply in order to provide connectivity for users. Thus, multi-band cellular handsets are required. Currently, the frequency standards in use are nominally 850, 900, 1800, and 1900 MHz. The latest technology also requires filters at 2.4 GHz and 5 GHz. Although purely digital WCDMA networks are evolving across the globe, analog protocols at 850 and 900 MHz must also be supported for connectivity is less-developed areas. In the United States, the FCC mandates freeing the currently occupied 300-800 MHz analog (video) broadcast bands may enable mobile communications over this spectrum. For these reasons, cellular handsets will also require analog band and low-UHF compliance for years to come.
Piezoelectric thin film resonators, which can be subcategorized into solidly mounted resonators and film bulk acoustic resonators, have been proposed for traditional surface acoustic wave filter replacement. However, since thin film resonators utilize the thickness dilation of a thin deposited film, obtaining resonators with widely dispersed frequencies would typically require film deposition at multiple thicknesses. The piezoelectric films are typically sandwiched on both sides with metal electrodes. One technique to provide frequency variance, although difficult to implement, is provided by selective deposition of metal electrodes. However, obtaining the 2:1 frequency ratio between 900 MHz and 1800 MHz is not feasible.
Independent groups have demonstrated bandpass filters at 900 MHz and 1900 MHz using thin film resonators. The 1900 MHz film bulk acoustic resonator filters, which are integrated with electronics, are currently in production for handsets which use a US-based PCS network. However, filter solution at multiple frequencies on a single die or single package are not known to exist. For this reason, single-chip integrated thin film resonator-based bandpass filters have not penetrated markets that utilize multiple frequency standards such as Asia and Europe.
With increasing demand for higher level of integration in existing electronic systems and emerging applications, alternatives to bulky frequency selective components and resonant sensors are necessary. Micromechanical resonators are choice candidates owing to their small size and ease of integration. Several demonstrations of capacitively transduced, silicon micromechanical resonators with high Q have been demonstrated. Typical capacitive UHF resonators require large polarization voltages and ultra-thin electrode-to-resonator gap spacing to achieve motional impedances (R1) less than 1 kohm. These two requirements pose additional demands on resonator fabrication and interface circuits. In contrast, piezoelectric resonators can be fabricated with relative ease using low temperature processes and have lower R.sub.1 due to greater coupling.
Examples of piezoelectric resonators include quartz crystal units, surface acoustic wave (SAW) resonators and thin-film bulk acoustic resonators (FBAR). The main drawbacks of crystal units and SAW devices are their bulky size and incompatibility for microelectronic integration. On the other hand, FBARs can be integrated with on-chip electronics and have been demonstrated at GHz frequencies. Since FBARs utilize the thickness vibration of a thin film, obtaining multiple dispersed frequency standards on a single substrate is challenging.
It would be desirable to have multi-frequency high-Q tunable micromechanical resonators for use in multi-band cellular handsets, and the like. It would also be desirable to have composite bulk acoustic resonators implement dispersed-frequency devices simultaneously on a single substrate.
The various features and advantages of the present invention may be more readily understood with reference to the following detailed description taken in conjunction with the accompanying drawings, wherein like reference numerals designate like structural elements, and in which:
a shows the structure of a second exemplary composite bulk acoustic resonator;
b shows the structure of a third exemplary composite bulk acoustic resonator;
c shows the structure of a fourth exemplary composite bulk acoustic resonator;
a are scanning electron microscope (SEM) views of exemplary reduced-to-practice composite bulk acoustic resonators;
a-3e illustrate an exemplary fabrication process flow for fabricating composite bulk acoustic resonators;
Referring to the drawing figures, disclosed are multi-frequency micromechanical resonator 10 that simultaneously implements UHF resonators and filters with widely-dispersed frequencies while having the same piezoelectric film thickness.
More particularly, lateral and thickness mode low-impedance UHF resonators 10 are disclosed that implement dispersed-frequency devices simultaneously on a single support substrate 11 (
U.S. Pat. No. 6,909,221 assigned to the assignee of the present invention describes the basic structure and fabrication methods relating to piezoelectric on semiconductor-on-insulator microelectromechanical resonators, and in particular, generally describes bulk mode resonators and their fabrication. The contents of U.S. Pat. No. 6,909,221 are incorporated herein by reference in its entirety. The presently disclosed multi-frequency micromechanical resonators 10 improve upon the teachings contained in U.S. Pat. No. 6,909,221.
Described herein are exemplary UHF composite piezoelectrically transduced single-crystal-silicon (SCS) resonators 10 operating in lateral bulk acoustic modes that alleviate the constraints discussed in the Background section. A distinctive aspect of the resonators 10 lies in the use of thin-film piezoelectric material primarily for transduction of the resonator 10. An exemplary high order composite bulk acoustic resonator (CBAR) is shown in
More particular,
Resonator apparatus 22 is formed on the silicon-on-insulator substrate 21. The resonator apparatus 22 comprises a piezoelectric stack 20 formed on top of the silicon device layer 13. The piezoelectric stack 20 comprises a lower conductive metal layer 14, which may be gold, for example, formed on the silicon device layer 14. An oxide layer 15, such as zinc oxide, for example, is formed on the lower conductive metal layer 14. A plurality of interdigitated conductive electrodes 16, which may be aluminum, for example, are formed on the zinc oxide layer 15. The plurality of interdigitated conductive electrodes 16 are respectively coupled by way of tethers 17 to conductive pads 16a, which may be aluminum, for example, formed on the oxide layer 12. One conductive pad 16a comprises a excitation port 16a that is electrically insulated from the substrate 21, and another conductive pad 16b comprises a sense port 16b that is electrically insulated from the substrate 21. The handle silicon layer 11, and buried oxide layer 12 are removed from beneath the device silicon layer 13 and piezoelectric stack 20 in order to release the resonator apparatus 22 and allow it to resonate. The conductive pads 16a, 16b and the structure under them form anchors 24 that anchor the resonator apparatus 22 to the substrate 11.
There are several advantages of utilizing silicon as a structural material, i.e., the substrate 21. The properties of single crystal silicon are stable and well-characterized to enable design for manufacturability. In addition, single crystal silicon has low acoustic loss and an energy density much greater than that of quartz for high Q and good linearity. The anisotropic properties of silicon provide clean mode shapes that lead to good piezoelectric coupling for low R1. Silicon also provides increased structural integrity to produce a relatively large suspended composite bulk acoustic resonator 10 as is shown in
a shows the structure of a second exemplary composite bulk acoustic resonator 10. The second exemplary composite bulk acoustic resonator 10 has a structure that is substantially the same as the resonator 10 shown in
b shows the structure of a third exemplary composite bulk acoustic resonator 10. The third exemplary composite bulk acoustic resonator 10 has a structure that is substantially the same as the resonator 10 shown in
c shows the structure of a fourth exemplary composite bulk acoustic resonator 10. The fourth exemplary composite bulk acoustic resonator 10 has a structure that is substantially the same as the resonator 10 shown in
a are scanning electron microscope (SEM) views of exemplary reduced-to-practice composite bulk acoustic resonators 10.
In order to implement the multi-frequency aspects of the resonator 10, the piezoelectric film 20 has a single thickness (i.e., substantially the same thickness throughout its extent). The resonator apparatus 22 thus has a lithographically-defined resonant frequency. The plurality of interdigitated electrodes 16 are configured so that they excite predetermined lateral resonating modes in the piezoelectric film 20. The resonator apparatus 22 operates in a bulk acoustic resonant mode.
The currently used fabrication process for producing the composite bulk acoustic resonator 10 uses five masks, as illustrated in the flow diagrams shown in
Initial reduced-to-practice embodiments of composite bulk acoustic resonators 10 were beams and plates that showed equivalent resistances less than 2 kilo-ohms. This composite bulk acoustic resonator 10 has good linearity as the 1 dB compression point occurs for a 10 dBm input. The motional impedance of this resonator 10 is 450 ohms. Similar structures incorporating low-loss single crystal silicon exhibited quality factors up to 12000 in low vacuum.
Using an electrical-equivalent model of the fundamental-mode composite bulk acoustic resonator 10, the motional resistance is,
where tSi and tf are the thickness of the device layer 13 and piezoelectric film 20, respectively, Ei and ρ are the directional elasticity and mass density of silicon, d31 and Ef are the piezoelectric constant and elasticity of the piezoelectric film 20, w is the width of the electrode 16 (normal to the direction of motion), and Q is the quality factor. Of particular interest is that the length (and frequency) can be changed without affecting R1. To reduce R1, the easiest solution is to increase the width w of the electrode 16.
High-order modes are used to provide a further reduction in R1 for RF applications. For an nth-mode resonator 10, the transduction area is increased by a factor of n. The resonator 10 shown in
for odd n, when n>1. In addition to lower R1, a high-order mode resonator 10 provides improved dimensional control. The frequency sensitivity to process variations is reduced by a factor of n in an nth-mode resonator 10.
The composite bulk acoustic resonator 10 shown in
Resonators 10 were tested using a Suss RF probe station with an Agilent E5071B network analyzer at atmospheric pressure. SOLT calibration was performed using GSG probes. Two-port s-parameter measurements were taken, from which the motional impedance is:
where RL is the termination impedance.
The 9th-mode composite bulk acoustic resonator 10 shown in
To enable higher frequency resonators, the finger pitch is reduced. A 75 μm by 80 μm composite bulk acoustic resonator 10 with LP=5 μm is shown in
One attractive aspect is the ability to fabricate thickness mode resonators 10 next to lateral composite bulk acoustic resonators 10. A small composite thickness mode resonator 10 exhibited resonance at 2.5 GHz and quality factors of 1200 (
The technology disclosed herein offers a multi-standard single-chip solution that complements film bulk acoustic resonator technology. The technology disclosed herein permits implementation of combinations of filters for DVB, GSM, and WCDMA applications on the same chip in a post-CMOS process.
In addition, 1800, 1900, and 2400 MHz resonators 10 may be obtained by selectively depositing thicker metal electrode 16 for mass loading. Lower frequency resonators and filters (e.g., 900 MHz) may be obtained by the use of lateral vibration modes. Using a piezoelectric film 20 having a single thickness, a predetermined structural topology and electrode configuration excites lateral modes having a lithographically-defined frequency that differs from the higher frequency modes. Therefore, the same piezoelectric film 20 can be utilized to fabricate resonators 10 with widely-dispersed frequencies for multiple operating standards.
High-order lateral-mode UHF micromechanical piezoelectric resonators 10 with lithographically-defined frequencies are disclosed herein. In one embodiment, a piezoelectric stack 20 is deposited on top of a single crystal silicon (SCS) substrate 21. Single crystal silicon is a preferred material for fabricating the micromechanical resonator 10 since (1) Q values greater than 100,000 are possible, (2) it has an energy density three orders greater than quartz, (3) it has ideal extensional modes of resonance not found in any other materials, and (4) its material properties are stable, well-characterized and repeatable to enable design for manufacturability, and it enables a high-yield fabrication technology (described below). Finally, a piezoelectric transduction scheme is employed in lieu of capacitive transduction for its greater electromechanical coupling and enabling feature for the designs disclosed herein.
Although piezoelectric micromechanical resonators for UHF applications have been proposed for over two decades, the resonators 10 disclosed herein are superior because they preferably incorporates a single crystal silicon substrate 21 and piezoelectric films 20 that enable operational performance that has been previously unattainable. A primary aspect of the resonator 10 lies in the ability to lithographically-define its resonant frequency. The single crystal silicon substrate 20 together with the piezoelectric film 20 also enables resonator configuration and mode of operation that has superior power handling, a greater quality factor at UHF frequencies, and exceptional manufacturability. An optimized design, when integrated with electronics, is also more tunable than all existing UHF technologies.
In one embodiment, the design incorporates piezoelectric transduction to implement a high-order extensional-mode resonant structure (resonator apparatus 22) on a silicon-on-insulator (SOI) substrate 21. The resonator 10 may comprise alternative substrates 21 or the underlying substrate 21 may be removed during processing. Typically, a 1 GHz resonator 10 has a frequency-defining dimension of 4 μm. Since dimensional variation lead to frequency variations, frequency accuracy is normally difficult to obtain with geometries of this size. However, the use of a high-order mode addresses this issue. For example, the same 1 GHz resonator 10 operating in its n=50 mode has a lateral frequency-defining dimension of 200 μm. Thus, the frequency accuracy is improved by a factor of n. The optimized configuration of the resonator 10 also reduces parasitic shunt, series, and parallel elements to enable tuning.
A method disclosed below may be used to fabricate the resonator 10 and allows for integration of the resonator 10 with microelectronics devices on the same substrate 21. In the prior art, there are two types of micromachining processes that limit their use on a prefabricated substrate: high temperature processes and device release processes. Liquid and vapor forms of hydrofluoric acid (HF) are typically used to remove sacrificial and buried oxide layers during processing. Since HF degrades most materials during prolonged exposure, removal of buried oxide for a device larger than 20 μm is difficult.
In producing exemplary resonators 10, a pre-processed SOI substrate 21 having a buried cavity 19 may be used. A handle silicon layer 11 is processed to form the oxide film 12 or layer 12 thereon. A cavity 19 is then formed in the oxide film 12 or layer 12. A device silicon layer 13 is then formed on top of the oxide film 12 or layer 12 to complete the SOI substrate 11. Then, metal films 14, 16 (interdigitated electrodes 14, 16) and piezoelectric films 15 are deposited and patterned on the device silicon layer 13 that are compatible with existing thin film resonator technologies. Prior to packaging, trenches are etched through the piezoelectric stack 20 into the device silicon layer 13 to define lateral dimensions of the resonator apparatus 22. Since the buried cavity 19 is present beneath the metal films 14, 16 and piezoelectric films 15 comprising the resonator apparatus 22, the resonator apparatus 22 is fully released.
Electromechanical coupling for high-order resonant modes of the resonator 10 may be optimized using different electrode configurations. From the strain function, it can be seen that regions with opposing phase are electrically connected using full-length electrodes interdigitated 16. Regions with different phase lead to charge cancellation. Therefore, to optimize the electromechanical coupling, the electrode configuration shown in
With this configuration, only electrode regions with equal phase are connected. Although the device is asymmetric, this is the optimized electrode configuration for a one dimensional extensional-mode block resonator 10. The electromechanical coupling coefficients are:
η1=N1(2d31EPb1),η2=N2(2d31EPb2),
where N1 and N2 are the number of electrode regions for the input and output electrodes, respectively. Arbitrarily defining that the input electrode area is larger,
N
1=(n+1)/2,N2=(n−1)/2.
Therefore, the product of the input and output electromechanical coupling coefficients for this interdigitated electrode configuration is:
η1η2=(η1η2)INTERDIG=(n2−1)(d31EPw)2.
η=d31EPw for full-length half-width interdigitated electrodes 14, 16, and (η1η2)full=(d31EPW)2.
The advantage in using the interdigitated electrodes 14, 16 is evident in the motional resistances:
Using the new electrode configuration, the motional resistances are reduced by a factor of n2−1 and can be expressed in terms of design parameters:
This equation shows that the motional resistance decreases as a function of mode number, Rx(n)αn/(n2−1). This is the case only because motional current increases with frequency. If the mechanical response from the input voltage is compared, then
Z(s)/V1(s)=η1M(s).
Thus, improved micromechanical resonators have been disclosed. It is to be understood that the above-described embodiments are merely illustrative of some of the many specific embodiments that represent applications of the principles discussed above. Clearly, numerous and other arrangements can be readily devised by those skilled in the art without departing from the scope of the invention.
This application claims priority to U.S. application Ser. No. 12/009,527, filed Jan. 18, 2008, which claims priority to U.S. Provisional Application Ser. No. 60/885,747, filed Jan. 19, 2007, the disclosures of which are hereby incorporated herein by reference.
This invention was made with Government Support under contract/grant DAAH01-1-R004 awarded by the US Army Aviation and Missile Command. The Government has certain rights in the invention.
Number | Date | Country | |
---|---|---|---|
60885747 | Jan 2007 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12009527 | Jan 2008 | US |
Child | 12618368 | US |