1. Field
A method for manufacturing low etch pit density (EPD) GaAs wafers that can be used to manufacture Heterostructure Bipolar Transistors (HBT) and pseudo-morphic High Electron Mobility (pHEMT) devices is provided.
2. Description of Related Information
It is well known in the Gallium Arsenide (GaAs) industry that a etch pit density (EPD) level of a substrate is very important in minority carrier device reliability and in the yield of devices from the substrate. However, in GaAs electronic devices, such as hetero-structure bipolar transistors (HBTs) and pseudomorphic high electron mobility transistors (pHEMTs), substrate EPD is not known to be a determining factor in device yield.
Wafer annealing is well known. In addition, ingot annealing is known as described in “Improved Uniformity of LEC Undoped Gallium Arsenide Produced by High Temperature Annealing” by Rumsby et al., GaAs IC Symposium, pp. 34-37 (1983).
Techniques for growing semiconductor crystals using a vertical gradient freeze (VGF) and carbon doping are known, such as those disclosed in U.S. Pat. No. 6,896,729 to Liu et al. It is desirable to provide a method for manufacturing low etch pit density (EPD) InGaP and GaAs wafers using annealing and VGF and it is to this end that the present invention is directed.
The accompanying drawings, which constitute a part of this specification, illustrate various implementations and aspects of the present invention and, together with the description, explain principles consistent with the innovations herein. In the drawings:
The method is particularly applicable to manufacturing a GaAs substrate and it is in this context that the method will be described. It will be appreciated, however, that the method has greater utility since it can be used, for example, to manufacture other types of substrates, such as indium phosphide (InP), gallium phosphide (GaP) and other related III-V compound semiconductors.
Returning to
Referring again to
To achieve the low EPD, several VGF parameters are carefully controlled . The parameters may include the shape of the melt/crystal interface which is controlled to be concave or convex to the melt front at ±2 mm, crystallization velocity from 2-16 mm/hour, the temperature gradient at the melt/crystal interface between 0.1 to 2 degrees C. and/or a total temperature gradient of between 1 to 4 degrees C.
Once the VGF crystals are grown (and optionally tested), a well known ingot shaping process (108) is conducted and the shaped ingot may also be tested (109). Once the ingot is shaped, the ingot is sliced into wafers (110) and the wafers may be optionally tested (111). The above processes may also be used to product InGaP wafers. As a result of this process, low EPD GaAs/InGaP wafers are produced.
Once the low EPD wafers have been sliced from the ingot, a wafer annealing process (112) is performed wherein the annealed wafers may be tested (113). Instead of the typical three-stage annealing process, a one-stage annealing process is used. During that process the wafers are loaded vertically into a horizontal quartz boat and inserted in a horizontal quartz ampoule along with the required Arsenic lumps. These Arsenic lumps are carefully weighed to provide the needed vapor pressure at the annealing temperature to avoid any Arsenic dissociation from the substrates. The ampoule is then pumped down to a high vacuum level (<5E-3 Torr) and sealed. The ampoule and its contents are then inserted into a horizontal 3-zone furnace and the heating of the ampoule and its contents to the desired set (platform) temperature is initiated. When the platform temperature (900 C to 1050 C) is reached it is held constant for several hours (10 to 48 hours). Subsequently, the heating is decreased and the ampoule is allowed to cool down to room temperature within a set time (6 to 24 hrs). During the one-stage annealing process, the oxygen level in the GaAs wafers is controlled by adjusting the vacuum level in the ampoule The annealing process conditions were optimized for heating rate, platform temperature and cooling rate to achieve very low LPD levels (<1/cm2). As a result of the annealing process, the wafer has light point defects as low as <<1/cm2 with particle size >0.3 μm. In addition, the wafer may have as low as <120 particles/wafer, particle size >0.3 μm for 6″ wafers.
Once the low EPD wafers are annealed and optionally tested, a known wafer polishing process (114) is performed that polishes the low EPD wafers and the polished wafers may be optionally tested (115). Once the wafers are polished, the wafers are cleaned (116) and optionally tested (117) and then packaged for shipping to customers (118).
The EPD measurements are performed in accordance with SEMI M36-0699 and ASTM Test Method F1404-92. An example of the EPD level as measured at 37 points (each point having an area of 0.024 cm2) is shown in
While the foregoing has been with reference to a particular embodiment of the invention, it will be appreciated by those skilled in the art that changes in this embodiment may be made without departing from the principles and spirit of the invention, the scope of which is defined by the appended claims.
This is a continuation of application Ser. No. 11/801,712, filed May 9, 2007, published as US2008/0280427A1, now U.S. Pat. No. 7,566,641, which are incorporated herein by reference in entirety.
| Number | Date | Country | |
|---|---|---|---|
| Parent | 11801712 | May 2007 | US |
| Child | 12506209 | US |