The following description relates to integrated circuits (“ICs”). More particularly, the following description relates to manufacturing IC dies and wafers.
Microelectronic elements often comprise a thin slab of a semiconductor material, such as silicon or gallium arsenide, commonly called a semiconductor wafer. A wafer can be formed to include multiple integrated chips or dies on a surface of the wafer and/or partly embedded within the wafer. Dies that are separated from a wafer are commonly provided as individual, prepackaged units. In some package designs, the die is mounted to a substrate or a chip carrier, which is in turn mounted on a circuit panel, such as a printed circuit board (PCB). For example, many dies are provided in packages suitable for surface mounting.
Packaged semiconductor dies can also be provided in “stacked” arrangements, wherein one package is provided, for example, on a circuit board or other carrier, and another package is mounted on top of the first package. These arrangements can allow a number of different dies to be mounted within a single footprint on a circuit board and can further facilitate high-speed operation by providing a short interconnection between the packages. Often, this interconnect distance can be only slightly larger than the thickness of the die itself. For interconnection to be achieved within a stack of die packages, interconnection structures for mechanical and electrical connection may be provided on both sides (e.g., faces) of each die package (except for the topmost package).
Additionally, dies or wafers may be stacked in a three-dimensional arrangement as part of various microelectronic packaging schemes. This can include stacking a layer of one or more dies, devices, and/or wafers on a larger base die, device, wafer, substrate, or the like, stacking multiple dies or wafers in a vertical or horizontal arrangement, and various combinations of both. Dies or wafers may be bonded in a stacked arrangement using various bonding techniques, including direct dielectric bonding, non-adhesive techniques, such as ZiBond® or a hybrid bonding technique, such as DBI®, both available from Invensas Bonding Technologies, Inc. (formerly Ziptronix, Inc.), an Xperi company (see for example, U.S. Pat. Nos. 6,864,585 and 7,485,968, which are incorporated herein in their entirety).
There can be a variety of challenges to implementing stacked die and wafer arrangements. When bonding stacked dies using a direct bonding or hybrid bonding technique, it is usually desirable that the surfaces of the dies to be bonded be extremely flat, smooth, and clean. For instance, in general, the surfaces should have a very low variance in surface topology (i.e., nanometer scale variance), so that the surfaces can be closely mated to form a lasting bond.
However, some processing techniques, such as chemical-mechanical polishing (CMP) and the like, which are used to prepare the bonding surfaces can also contribute to forming uneven bonding surfaces, particularly when the bonding surfaces include varying materials of varying densities. For instance, embedded metallic structures at the bonding surface can be excessively recessed during bonding surface polishing, and to a greater degree when the metallic structures have large exposed surface areas.
Further, it can be desirable to bond the embedded metallic structures of adjacent stacked dies to form conductive interconnects between the dies. Generally, the metallic structures are bonded using heated annealing techniques to form diffusion bonds. However, the temperatures used to perform the annealing techniques can often be too great for some desirable packaging schemes or components or at least one or more materials in the package, thus limiting the types of schemes and components or combination of materials that may take advantage of these techniques.
The detailed description is set forth with reference to the accompanying figures. In the figures, the left-most digit(s) of a reference number identifies the figure in which the reference number first appears. The use of the same reference numbers in different figures indicates similar or identical items.
For this discussion, the devices and systems illustrated in the figures are shown as having a multiplicity of components. Various implementations of devices and/or systems, as described herein, may include fewer components and remain within the scope of the disclosure. Alternatively, other implementations of devices and/or systems may include additional components, or various combinations of the described components, and remain within the scope of the disclosure.
Representative techniques and devices are disclosed, including process steps for making use of recesses in interconnect structures to form reliable low temperature metallic (e.g., hybrid) bonds. In various implementations, first metallic interconnect structures may be bonded at ambient temperatures to second metallic interconnect structures using direct bonding techniques, which make use of the recesses in one or both of the first and second interconnect structures. The recesses may be formed in the interconnect structures for this purpose, or recesses resulting from CMP (and the like) may be remedied with this innovative technique. Interconnect pads with larger surface areas and others with deeper dishing can particularly benefit.
In various implementations, a method for forming a microelectronic assembly includes planarizing a bonding surface of a first substrate, where the first substrate includes a first metallic pad embedded into the bonding surface of the first substrate, and depositing a first metallic material onto a surface of the first metallic pad. Also, planarizing a bonding surface of a second substrate, where the second substrate includes a second metallic pad embedded into the bonding surface of the second substrate, and depositing a second metallic material onto a surface of the second metallic pad. Then, bonding the bonding surface of the second substrate to the bonding surface of the first substrate via direct bonding without adhesive.
In an implementation, the method includes depositing the first metallic material and/or the second metallic material via immersion electroless metal deposition, or a like technique. In another implementation, the method includes forming a eutectic alloy mass between the first metallic pad and the second metallic pad, where the eutectic alloy mass or near eutectic composition alloy mass comprises an alloy of the first and second metallic materials.
The method may include forming a first recessed portion in a surface of the first metallic pad and a second recessed portion in a surface of the second metallic pad, and at least partially filling the first recessed portion with the first metallic material and at least partially filling the second recessed portion with the second metallic material. In some embodiments, the method includes depositing a conductive barrier layer onto the surface of the first metallic pad and/or the surface of the second metallic pad prior to depositing the first metallic material or the second metallic material, respectively.
In additional implementations, techniques and methods include forming a microelectronic assembly, comprising a first substrate having a bonding surface with a planarized topography and a first plurality of metallic pads or traces or combinations of thereof at the bonding surface of the first substrate and a second substrate having a bonding surface with a planarized topography, which is bonded to the bonding surface of the first substrate. A second plurality of metallic pads at the bonding surface of the second substrate are bonded to the first plurality of metallic pads. The first plurality of metallic pads and/or the second plurality of metallic pads are comprised of two or more conductive materials.
In some implementations, a first recessed portion is disposed in a surface of the first plurality of metallic pads that extends a preselected depth below the surface of the first plurality of metallic pads, or a preselected depth below the bonding surface of the first substrate. The first recessed portion is at least partially filled with a first conductive material different than a conductive material of the first plurality of metallic pads. Further, a second recessed portion may be disposed in a surface of the second plurality of metallic pads that extends a preselected depth below the surface of the second plurality of metallic pads, or a preselected depth below the bonding surface of the second substrate. The second recessed portion is at least partially filled with a second conductive material different than a conductive material of the second plurality of metallic pads.
In an alternate implementation, a barrier layer is disposed within the first recessed portion and/or the second recessed portion. The barrier layer is comprised of a third conductive material different from the first or second conductive materials and different than the conductive material of the first or second plurality of metallic pads.
In some implementations, an alloy mass (e.g., a eutectic alloy mass) is disposed between the first plurality of metallic pads and the second plurality of metallic pads, where the alloy mass comprises an alloy of the first and second conductive materials. In some examples, the region between the first plurality of metallic pads or the second plurality of metallic pads and the alloy mass is non-linear.
Various implementations and arrangements are discussed with reference to electrical and electronics components and varied carriers. While specific components (i.e., dies, wafers, integrated circuit (IC) chip dies, substrates, etc.) are mentioned, this is not intended to be limiting, and is for ease of discussion and illustrative convenience. The techniques and devices discussed with reference to a wafer, die, substrate, or the like, are applicable to any type or number of electrical components, circuits (e.g., integrated circuits (IC), mixed circuits, ASICS, memory devices, processors, etc.), groups of components, packaged components, structures (e.g., wafers, panels, boards, PCBs, etc.), and the like, that may be coupled to interface with each other, with external circuits, systems, carriers, and the like. Each of these different components, circuits, groups, packages, structures, and the like, can be generically referred to as a “microelectronic component.” For simplicity, unless otherwise specified, components being bonded to another component will be referred to herein as a “die.”
This summary is not intended to give a full description. Implementations are explained in more detail below using a plurality of examples. Although various implementations and examples are discussed here and below, further implementations and examples may be possible by combining the features and elements of individual implementations and examples.
Overview
The order in which the processes 100, and 300-600 are described is not intended to be construed as limiting, and any number of the described process blocks in any of the processes 100, and 300-600 can be combined in any order to implement the processes, or alternate processes. Additionally, individual blocks may be deleted from any of the processes without departing from the spirit and scope of the subject matter described herein. Furthermore, the processes 100, and 300-600 can be implemented in any suitable hardware, software, firmware, or a combination thereof, without departing from the scope of the subject matter described herein. In alternate implementations, other techniques may be included in the processes 100, and 300-600 in various combinations and remain within the scope of the disclosure.
Referring to
A bonding surface 108 of the die 102 can include conductive features 110, such as interconnect structures for example, embedded into the insulating layer 106 and arranged so that the conductive features 110 from respective bonding surfaces 108 can be mated and joined during bonding, if desired. The joined interconnect features 110 can form continuous conductive interconnects (for signals, power, etc.) between stacked dies 102.
Damascene processes (or the like) may be used to form the embedded conductive features 110 in the insulating layer 106. The conductive features 110 may be comprised of metals (e.g., copper, etc.) or other conductive materials, or combinations of materials, and include structures, traces, pads, patterns, and so forth. The conductive features 110 may be included in the insulating layer 106 to provide an electrical and/or thermal path or may instead be configured to balance out the metallization of the bonding surface 108, through the use of additional pads or so-called dummy pads, traces, patterns or the like. After the conductive features 110 are formed, the exposed surface of the die 102, including the insulating layer 106 and the conductive features 110 can be planarized to form a flat bonding surface 108.
As shown in
As shown in
Among the consequences of excessive recesses 112 on the exposed surface of interconnect features 110 is poor flatness of the surface of the interconnect features 110 and much higher temperatures typically needed to form continuous conductive interconnections between the metal features 110 of the dies 102 than the lower temperatures often desired. With conductive features 110 having very large area pads, recesses 112 can be too deep with respect to the opposing interconnect features to mate intimately without undesirable voiding defects, as the metal may not expand enough at annealing temperatures to form a bonded continuous conductive layer. Thus, the poor flatness on the surface of the conductive features 110 often produces defective bonds, when the surface is bonded or attached to other devices or substrates.
However, in various embodiments, dishing or recesses 112 having a preselected depth (“d1”) may be intentionally formed in the surface of a conductive feature 110, to prepare the conductive feature 110 for low temperature (e.g., ambient, room temperature, less than 100° C.) bonding techniques, as disclosed herein. Intentional forming of recesses 112 at a preselected depth (“d1”) may be accomplished while forming the conductive features 110, or may be accomplished afterwards, with planarization, etching, or the like. In some embodiments, the preselected depth (“d1”) of the recess 112 may be dependent on the surface area of the exposed portion of the conductive feature 110. For instance, a conductive feature 110 with a larger surface area and/or thicker conductive layer may have or be provided with a deeper recess 112, and a conductive feature 110 with a smaller surface area and/or thinner conductive layer may have or be provided with a more shallow recess 112.
Techniques and devices include process steps that make use of recesses 112 in interconnect features 110 to form reliable low temperature metallic bonds. In the implementations, first metallic interconnect features 110 at a first die 102 may be bonded at ambient temperatures (e.g., less than 100° C.) to second metallic interconnect features 110 at a second die 102 using direct bonding techniques, which make use of the recesses 112 in one or both of the first and second interconnect features 110. The recesses 112 may be formed in the interconnect features 110 for this purpose, or recesses 112 resulting from CMP (and the like) may be remedied with this innovative technique. Interconnect features 110 with larger surface areas and others with deeper dishing can particularly benefit.
Referring to
In an embodiment, the metal fill layers 114 and 116 at the respective first and second interconnect features 110 fuse together to form the conductive alloy mass 202 at a comparatively lower temperature than needed to fuse the first and second interconnect features 110 (by annealing, etc.). The bonding temperature of the layers comprising the conductive alloy mass 202 (including fill layers 114 and 116) is lower than the bonding temperature of the opposing layers comprising the interconnect features 110 without the fill layers 114 or 116. In some embodiments, the melting point of the fill layer 114 and/or the fill layer 116 is lower than the melting point of the materials of one or both of the first and second interconnect features 110. The materials of the one or more metal fill layers 114, 116 may be selected so that the combination of materials forms an alloy with a higher melting point than either of the fill layers 114 and 116, and of the metal of the first and/or second interconnect features 110.
For instance, as shown at
Although only one depth (“d1”) is shown at
In an implementation, the first fill layer 114 may be selectively electrolessly plated, vapor coated, or deposited by atomic layer deposition methods (or the like) onto the surface of the first interconnect features 110. Also, the first fill layer 114 may be continuous (as shown at
As shown at
In some embodiments, the first fill layer 114 and the second fill layer 116 comprise different materials. However, in an alternate embodiment, the first 114 and second 116 fill layers comprise the same material. In some alternate embodiments, additional fill layers (not shown) may be added to the first 114 and/or the second 116 fill layers (either before or after deposition of the first 114 and/or second 116 fill layers). Although fill layers 114 and 116 are discussed herein as metal layers, each may be a combination of two or more metals, two or more alloys, or the like.
The first 114 and second 116 fill layers may be deposited on the recessed interconnect features 110 by various means in different implementations. In one implementation, an electroless process, such as a direct replacement reaction or an auto-catalytical metal deposition process is used to selectively deposit the fill layer 114, 116 over the recessed interconnect features 110 (e.g., copper) with precision control. In one example, an electroless immersion deposition process may be used. In various embodiments, such a process may be used to deposit first 114 and second 116 fill layers of gold, silver, palladium, nickel, indium, gallium, cobalt, germanium, or any other metals, or combinations of the same, or the like. In the embodiments, the process maintains a low cost, since it uses no lithography, no vacuum, no heat, and no additional CMP is required after deposition.
In another embodiment, an additional CMP step may be performed on one or both the dies 102 (or wafers). Since two or more recesses 112 are possible on the die 102 (or wafer) depending on the different diameters of the pads 110, a polishing or CMP step may remove material from some pads 110 and not from others.
As shown at
In the process, the first fill layer 114 and the second fill layer 116 are pressed together, to bond the interconnect features 110 into a solid interconnect structure 204 at a subsequent temperature lower than 200° C. and preferably lower than 170° C. or 100° C. In one embodiment, the composition of the first fill layer 114 and/or the second fill layer 116 is less than 25% and preferably less than 10% of the bonded conductive feature 204. In some embodiments, the intimate mating of the first fill layer 114 and the second fill layer 116 may comprise thermal deformation of the fill layer 114 and/or the fill layer 116. In other applications, a conductive composite comprising the materials of the interconnect features 110 and the materials of the fill layer 114 of the first die 102 may bond with a conductive composite comprising the materials of the interconnect features 110 and the materials of the fill layer 116 of the second die 102 by thermal deformation and grain boundaries diffusion processes.
As shown at
In an embodiment, the alloy mass 202 comprises an electrically conductive alloy mass 202 joined to the first and second conductive interconnect features 110, where the conductive alloy mass 202 includes a first material comprising the material of the first interconnect feature 110 (of the first die 102), a second material comprising the material of the second interconnect feature 110 (of the second die 102), and at least a third material comprising the materials of either or both of the first fill 114 and the second fill 116. In an embodiment, the third material can be selected to increase the melting point of an alloy including the third material and at least one of the first material or the second material. In various embodiments, the conductive alloy mass 202 includes a third material comprising at least the first fill 114 and a fourth material comprising at least the second fill 116.
In another embodiment, the eutectic alloy mass 202 comprises an electrically conductive alloy mass 202 joined to the first and second conductive interconnect features 110, where the conductive alloy mass 202 includes a first material comprising the material of the first fill 114, a second material comprising the material of the second fill 116, and at least a third material comprising an alloy or a compound of the materials of the first fill 114 and the second fill 116. In the embodiment, the third material can be selected by a selection of the first 114 and second 116 fills to increase the melting point of an alloy including the third material and at least one of the first material or the second material. In various embodiments, the conductive alloy mass 202 includes one or more layers or materials (e.g., metals or other conductive materials) in addition to the materials of the first fill 114 and the second fill 116.
In the embodiments, a concentration of the first material can vary from a relatively higher amount at a location disposed toward the first interconnect feature 110 (or the first die 102) to a relatively lower amount toward the second interconnect feature 110 (or the second die 102), and a concentration of the second material can vary in concentration from a relatively higher amount at a location disposed toward the second interconnect feature 110 (or the second die 102) to a relatively lower amount toward the first interconnect feature 110 (or the first die 102). In an embodiment, the third material has a highest concentration at a location between a first highest concentration of the first material and a second highest concentration of the second material.
In other applications, the concentration of the first fill layer 114 or second fill layer 116 in the bonded conductive feature 204 is less than 25% and preferably less than 10% of the bonded conductive feature 204. Also, in some embodiments, after the initial bonding operation, materials of the first fill layer 114 or the second fill layer 116 may diffuse and/or inter-diffuse into the first or second conductive features 110 during subsequent processing steps or during field use. Thus, the alloy mass 202 formed by the first and second fill layers 114, 116 may comprise a distinct region in the bonded conductive features 204. In other situations as discussed earlier, the first fill layer 114 or the second fill layer 116 may diffuse into the first or second conductive features 110, and their concentration can be more diffuse, where the local concentration of the first fill layer 114 or the second fill layer 116 is less than 5%, and preferably less than 1% of the surrounding conductive material (e.g., the material of interconnects 110).
In various implementations, the alloy mass 202 is formed at low temperatures (e.g., ambient, room temperature, less than 100° C.) and provides a bond with reliable strength and conductivity without higher temperature annealing. For instance, the strength and reliability of the low temperature bond including the alloy mass 202 can be equivalent to or substantially similar to a bond formed through higher temperature annealing.
Although the interconnects 204 between the bonded dies 102 may be formed using the low temperature alloy mass 202, in some embodiments, at least one or more interconnects 204 between the bonded dies 102 may be formed using a hybrid bonding of metal material (e.g. copper) from one interconnect 110 of a first die 102, to metal material (e.g. copper) from another interconnect 110 of a second die 102. For example, while some interconnects 204 are formed with an alloy 202 within the interconnect 204, there may be other interconnects 204 with no alloy 202 within the interconnect 204. In some other embodiments, the contact region between bonded interconnects 110 may be partially formed of a combination of an alloy 202, a copper-to-copper bond, or even include some voids.
In practice the bottom and the top substrates 104 may be similar or identical in geometric proportions. As shown at
In various embodiments, the techniques described herein can be used to remedy or mitigate the effects of unintentionally recessed interconnect structures in the surfaces of microelectronic components to be bonded. At least partially filling the excessive recesses 112 in the interconnect features 110 with the one or more additional metal fill layers (114, 116) provides for an improved bonding surface (e.g., less surface topology variance). Direct and hybrid bonding with the improved surface flatness can result in improved and more reliable bonds between the microelectronic components (e.g., dies 102). Further, improved bonds between the interconnect features 110 of the respective dies 102 is achievable with lower temperatures due to the alloy mass 202 formed at the bond joint.
As mentioned above, in other implementations, recesses 112 may be intentionally formed in the exposed surfaces of one or more of the interconnect features 110 to be bonded, to apply the techniques described. For example, either of these scenarios can be illustrated with regard to the process 300 of
In various implementations, the recess 112 can be intentionally created by patterning and etching the features 110, for example. A photoresist can be applied (not shown) to the feature 110 surface to pattern the feature 110 for predetermined recess 112 locations. The resist can be exposed and then the surface of the feature 110 etched to form the desired recess(es) 112. In various implementations, the predetermined recesses 112 can have a depth “d1” of tens of nanometers to hundreds of nanometers (e.g., 50 to 500 nm), or even deeper as desired.
In alternate implementations, the recess 112 can be created by CMP, or the like, for example when the recess 112 is formed on a large metallic feature 110 during planarization, as described above. In an example, the depth “d1” of the recess 112 can be greater than 15 nm.
As shown at
In an embodiment, the process 300 includes adding one or more fill layers 114, 116, as described above to mitigate the recess(es) 112 and the gaps 302. For instance, as shown at
As shown at
In some embodiments, a small gap may remain within the alloy mass 202 after bonding (not shown). If the gap is small, it may be inconsequential. However, if the gap is large, it may lead to failures. In that case, the thickness of one or both of the first 114 and/or second 116 fill layers can be increased prior to bonding. Alternately, one or more additional fill layers can be added (additional to the first 114 and second 116 fill layers) prior to bonding to reduce or eliminate the gap.
In various embodiments, the alloy mass 202 has a non-linear concentration of materials, as described above. For example, within the alloy mass 202, a concentration of the material of the first fill 114 can vary from a relatively higher amount at a location disposed toward the first interconnect feature 110 (or the first die 102) to a relatively lower amount toward the second interconnect feature 110 (or the second die 102), and a concentration of the material of the second fill can vary in concentration from a relatively higher amount at a location disposed toward the second interconnect feature 110 (or the second die 102) to a relatively lower amount toward the first interconnect feature 110 (or the first die 102). In an embodiment, a third material comprising an alloy or compound of the first 114 and second 116 materials has a highest concentration within the alloy mass 202 at a location between a first highest concentration of the first material and a second highest concentration of the second material.
In various implementations, the alloy mass 202 is formed at low temperatures (e.g., ambient, room temperature, less than 150° C.) and provides a bond with reliable strength and adequate conductivity. For instance, the strength of the low temperature bond including the alloy mass 202 is equivalent to or substantially similar to a bond formed through higher temperature annealing.
Referring to
At
In an implementation, the electroless process comprises an immersion silver, copper, or gold process. In another implementation, a seed deposition of palladium, for example, is followed by a deposition of nickel, or the like. For instance, the nickel deposition may be made by a hypophosphite-based immersion process, after depositing the seed layer. In various embodiments, the reducing agent for the immersion process includes one or more of sodium hypophosphite, sodium borohydride, dimethylamine borane, hydrazine, or the like.
At
The electroless deposition technique has several advantages, including the lack of a need for lithography, no vacuum or heat is used, and no additional CMP is required after deposition. Other advantages will also be apparent to a person having skill in the art.
At block 604, the process includes depositing a first metallic material (such as first fill layer 114, for example) onto a surface of the first metallic pad. In an implementation, the process includes forming a first recessed portion (such as recess 112, for example) in a surface of the first metallic pad and at least partially filling the first recessed portion with the first metallic material. In various embodiments, the recess is the product of one or more process steps, and may be intentional or unintentional.
In an implementation, the process includes depositing a conductive barrier layer (such as barrier 402, for example) onto the surface of the first metallic pad prior to depositing the first metallic material. In an alternate embodiment, the process includes depositing multiple fill layers, barrier layers, or combinations of the same.
At block 606, the process includes planarizing a bonding surface of a second substrate (such as a second die 102, for example). The second substrate includes a second metallic pad embedded into the bonding surface of the second substrate.
At block 608, the process includes depositing a second metallic material (such as second fill layer 116, for example) onto a surface of the second metallic pad. In an implementation, the process includes forming a second recessed portion in a surface of the second metallic pad and at least partially filling the second recessed portion with the second metallic material. In various embodiments, if present, the recess is the product of one or more process steps, and may be intentional or unintentional.
In an implementation, the process includes depositing a conductive barrier layer (such as barrier layer 404, for example) onto the surface of the second metallic pad prior to depositing the second metallic material. In an alternate embodiment, the process includes depositing multiple fill layers, barrier layers, or combinations of the same.
In an implementation, the process includes depositing the first metallic material and/or the second metallic material via immersion electroless metal deposition. In some embodiments, the melting point of the first fill layer and/or the second fill layer may be higher than the melting point of the conductive features 110. For example, the first fill layer and/or the second fill layer may be comprised of a very thin layer of nickel, cobalt, or manganese, or their various alloys, while the conductive features may be comprised of copper or of copper alloys, for example.
The deposited first fill layer and/or the second fill layer may be continuous or discontinuous, and the thickness of the first fill layer and/or the second fill layer may range between 0.5 to 500 nm, and preferably between 1 to less than 50 nm. In some embodiments, the first fill layer and/or the second fill layer may be comprised of an alloy of at least one higher-temperature melting point metal and at least one lower-temperature melting point metal, for example, a cobalt-tin or cobalt-indium alloy, or the like, or an element with a relatively low concentration of one or more impurities. The composition of the alloy or element may include a proportion of the fill material (or impurities) that is less than 2% of the total composition of the interconnect pads combined, or less than 5000 ppm, or less than 500 ppm.
In one embodiment, the first fill layer and/or the second fill layer is thinner than the respective conductive feature. In one application, the first fill layer and/or the second fill layer is at least 5 times thinner than the thickness of the respective conductive feature.
At block 610, the process includes bonding the bonding surface of the second substrate to the bonding surface of the first substrate via direct dielectric-to-dielectric bonding without adhesive. In an implementation, the process includes pressing the first metallic pad to the second metallic pad during the bonding, and forming an alloy mass (such as alloy mass 204, for example) between the first metallic pad and the second metallic pad. In the implementation, the alloy mass comprises an alloy of the first and second metallic materials. In an embodiment, the process includes bonding the second metallic pad to the first metallic pad via the alloy mass, to form a single solid interconnect structure (such as interconnect structure 204, for example). In another embodiment, a concentration of the first metallic material and a concentration of the second metallic material of the alloy mass is non-linear throughout the alloy mass.
During the bonding process, the conductive features of the top substrate and the composite conductive features of the bottom substrate (comprising the lower melting point conductive features and the higher melting point fill layer), thermally deforms to mate intimately, and atoms from the conductive features (for example copper) diffuse into the fill layer (for example cobalt). In this configuration, the bonded substrate can include a portion having a conductive interconnect structure comprised of mostly copper, for example, and another portion having an interconnect structure including an alloy mass (for example, a copper-cobalt alloy mass) comprised of the conductive feature (e.g., copper) and a fill layer (e.g., cobalt).
In various embodiments, some process steps may be modified or eliminated, in comparison to the process steps described herein.
The techniques, components, and devices described herein are not limited to the illustrations of
Although the implementations of the disclosure have been described in language specific to structural features and/or methodological acts, it is to be understood that the implementations are not necessarily limited to the specific features or acts described. Rather, the specific features and acts are disclosed as representative forms of implementing example devices and techniques.
This application is a Continuation of U.S. patent application Ser. No. 16/363,894, filed Mar. 25, 2019, which claims the benefit under 35 U.S.C. § 119(e)(1) of U.S. Provisional Application No. 62/656,264, filed Apr. 11, 2018, both of which are hereby incorporated by reference in their entirety.
Number | Name | Date | Kind |
---|---|---|---|
4939568 | Kato et al. | Jul 1990 | A |
4998665 | Hayashi | Mar 1991 | A |
5087585 | Hayashi | Feb 1992 | A |
5236118 | Bower et al. | Aug 1993 | A |
5322593 | Hasegawa et al. | Jun 1994 | A |
5413952 | Pages et al. | May 1995 | A |
5442235 | Parrillo et al. | Aug 1995 | A |
5489804 | Pasch | Feb 1996 | A |
5501003 | Bernstein | Mar 1996 | A |
5503704 | Bower et al. | Apr 1996 | A |
5516727 | Broom | May 1996 | A |
5610431 | Martin | Mar 1997 | A |
5734199 | Kawakita et al. | Mar 1998 | A |
5753536 | Sugiyama et al. | May 1998 | A |
5771555 | Eda et al. | Jun 1998 | A |
5821692 | Rogers et al. | Oct 1998 | A |
5866942 | Suzuki et al. | Feb 1999 | A |
5985739 | Plettner et al. | Nov 1999 | A |
5998808 | Matsushita | Dec 1999 | A |
6008126 | Leedy | Dec 1999 | A |
6063968 | Hubner et al. | May 2000 | A |
6071761 | Jacobs | Jun 2000 | A |
6080640 | Gardner et al. | Jun 2000 | A |
6097096 | Gardner et al. | Aug 2000 | A |
6117784 | Uzoh | Sep 2000 | A |
6123825 | Uzoh et al. | Sep 2000 | A |
6147000 | You et al. | Nov 2000 | A |
6232150 | Lin et al. | May 2001 | B1 |
6258625 | Brofman et al. | Jul 2001 | B1 |
6259160 | Lopatin et al. | Jul 2001 | B1 |
6265775 | Seyyedy | Jul 2001 | B1 |
6297072 | Tilmans et al. | Oct 2001 | B1 |
6316786 | Mueller et al. | Nov 2001 | B1 |
6333120 | DeHaven et al. | Dec 2001 | B1 |
6333206 | Ito et al. | Dec 2001 | B1 |
6348709 | Graettinger et al. | Feb 2002 | B1 |
6374770 | Lee | Apr 2002 | B1 |
6409904 | Uzoh et al. | Jun 2002 | B1 |
6423640 | Lee et al. | Jul 2002 | B1 |
6465892 | Suga | Oct 2002 | B1 |
6528894 | Akram et al. | Mar 2003 | B1 |
6552436 | Burnette et al. | Apr 2003 | B2 |
6555917 | Heo | Apr 2003 | B1 |
6579744 | Jiang | Jun 2003 | B1 |
6583515 | James et al. | Jun 2003 | B1 |
6589813 | Park | Jul 2003 | B1 |
6600224 | Farquhar et al. | Jul 2003 | B1 |
6624003 | Rice | Sep 2003 | B1 |
6627814 | Stark | Sep 2003 | B1 |
6632377 | Brusic et al. | Oct 2003 | B1 |
6660564 | Brady | Dec 2003 | B2 |
6667225 | Hau-Riege | Dec 2003 | B2 |
6828686 | Park | Dec 2004 | B2 |
6837979 | Uzoh et al. | Jan 2005 | B2 |
6864585 | Enquist | Mar 2005 | B2 |
6887769 | Kellar et al. | May 2005 | B2 |
6902987 | Tong et al. | Jun 2005 | B1 |
6908027 | Tolchinsky et al. | Jun 2005 | B2 |
6909194 | Farnworth et al. | Jun 2005 | B2 |
6962835 | Tong et al. | Nov 2005 | B2 |
6974769 | Basol et al. | Dec 2005 | B2 |
7045453 | Canaperi et al. | May 2006 | B2 |
7078811 | Suga | Jul 2006 | B2 |
7105980 | Abbott et al. | Sep 2006 | B2 |
7109063 | Jiang | Sep 2006 | B2 |
7126212 | Enquist et al. | Oct 2006 | B2 |
7193423 | Dalton et al. | Mar 2007 | B1 |
7238919 | Kaneko et al. | Jul 2007 | B2 |
7354798 | Pogge et al. | Apr 2008 | B2 |
7485968 | Enquist et al. | Feb 2009 | B2 |
7750488 | Patti et al. | Jul 2010 | B2 |
7803693 | Trezza | Sep 2010 | B2 |
7998335 | Feeney et al. | Aug 2011 | B2 |
8039966 | Yang et al. | Oct 2011 | B2 |
8168532 | Haneda et al. | May 2012 | B2 |
8183127 | Patti et al. | May 2012 | B2 |
8241961 | Kim et al. | Aug 2012 | B2 |
8242600 | Yang et al. | Aug 2012 | B2 |
8314007 | Vaufredaz | Nov 2012 | B2 |
8349635 | Gan et al. | Jan 2013 | B1 |
8377798 | Peng et al. | Feb 2013 | B2 |
8435421 | Keleher et al. | May 2013 | B2 |
8441131 | Ryan | May 2013 | B2 |
8476146 | Chen et al. | Jul 2013 | B2 |
8476165 | Trickett et al. | Jul 2013 | B2 |
8482132 | Yang et al. | Jul 2013 | B2 |
8501537 | Sadaka et al. | Aug 2013 | B2 |
8524533 | Tong et al. | Sep 2013 | B2 |
8620164 | Heck et al. | Dec 2013 | B2 |
8647987 | Yang et al. | Feb 2014 | B2 |
8697493 | Sadaka | Apr 2014 | B2 |
8716105 | Sadaka et al. | May 2014 | B2 |
8728934 | Uzho et al. | May 2014 | B2 |
8802538 | Liu | Aug 2014 | B1 |
8809123 | Liu et al. | Aug 2014 | B2 |
8841002 | Tong | Sep 2014 | B2 |
8988299 | Kam et al. | Mar 2015 | B2 |
9000600 | Uzoh et al. | Apr 2015 | B2 |
9093350 | Endo et al. | Jul 2015 | B2 |
9123703 | Uzoh et al. | Sep 2015 | B2 |
9142517 | Liu et al. | Sep 2015 | B2 |
9171756 | Enquist et al. | Oct 2015 | B2 |
9184125 | Enquist et al. | Nov 2015 | B2 |
9224704 | Landru | Dec 2015 | B2 |
9230941 | Chen et al. | Jan 2016 | B2 |
9257399 | Kuang et al. | Feb 2016 | B2 |
9269612 | Chen et al. | Feb 2016 | B2 |
9299736 | Chen et al. | Mar 2016 | B2 |
9312229 | Chen et al. | Apr 2016 | B2 |
9318385 | Uzoh et al. | Apr 2016 | B2 |
9331149 | Tong et al. | May 2016 | B2 |
9337235 | Chen et al. | May 2016 | B2 |
9343330 | Brusic et al. | May 2016 | B2 |
9349669 | Uzoh et al. | May 2016 | B2 |
9368866 | Yu | Jun 2016 | B2 |
9385024 | Tong et al. | Jul 2016 | B2 |
9394161 | Cheng et al. | Jul 2016 | B2 |
9431368 | Enquist et al. | Aug 2016 | B2 |
9437572 | Chen et al. | Sep 2016 | B2 |
9443796 | Chou et al. | Sep 2016 | B2 |
9461007 | Chun et al. | Oct 2016 | B2 |
9496239 | Edelstein et al. | Nov 2016 | B1 |
9536848 | England et al. | Jan 2017 | B2 |
9559081 | Lai et al. | Jan 2017 | B1 |
9620481 | Edelstein et al. | Apr 2017 | B2 |
9633971 | Uzoh | Apr 2017 | B2 |
9656852 | Cheng et al. | May 2017 | B2 |
9723716 | Meinhold | Aug 2017 | B2 |
9728521 | Tsai et al. | Aug 2017 | B2 |
9741620 | Uzoh et al. | Aug 2017 | B2 |
9799587 | Fujii et al. | Oct 2017 | B2 |
9852988 | Enquist et al. | Dec 2017 | B2 |
9881882 | Hsu et al. | Jan 2018 | B2 |
9893004 | Yazdani | Feb 2018 | B2 |
9899442 | Katkar | Feb 2018 | B2 |
9929050 | Lin | Mar 2018 | B2 |
9941241 | Edelstein et al. | Apr 2018 | B2 |
9941243 | Kim et al. | Apr 2018 | B2 |
9953941 | Enquist | Apr 2018 | B2 |
9960142 | Chen et al. | May 2018 | B2 |
10002844 | Wang et al. | Jun 2018 | B1 |
10026605 | Doub et al. | Jul 2018 | B2 |
10075657 | Fahim et al. | Sep 2018 | B2 |
10147641 | Enquist et al. | Dec 2018 | B2 |
10204893 | Uzoh et al. | Feb 2019 | B2 |
10262963 | Enquist | Apr 2019 | B2 |
10269708 | Enquist et al. | Apr 2019 | B2 |
10269756 | Uzoh | Apr 2019 | B2 |
10276619 | Kao et al. | Apr 2019 | B2 |
10276909 | Huang et al. | Apr 2019 | B2 |
10314175 | Sato et al. | Jun 2019 | B2 |
10418277 | Cheng et al. | Sep 2019 | B2 |
10434749 | Tong et al. | Oct 2019 | B2 |
10446456 | Shen et al. | Oct 2019 | B2 |
10446487 | Huang et al. | Oct 2019 | B2 |
10446532 | Uzoh et al. | Oct 2019 | B2 |
10508030 | Katkar et al. | Dec 2019 | B2 |
10515913 | Katkar et al. | Dec 2019 | B2 |
10522499 | Enquist et al. | Dec 2019 | B2 |
10707087 | Uzoh et al. | Jul 2020 | B2 |
10784191 | Huang et al. | Sep 2020 | B2 |
10790262 | Uzoh et al. | Sep 2020 | B2 |
10840135 | Uzoh | Nov 2020 | B2 |
10840205 | Fountain, Jr. et al. | Nov 2020 | B2 |
10854578 | Morein | Dec 2020 | B2 |
10879212 | Uzoh et al. | Dec 2020 | B2 |
10886177 | DeLaCruz et al. | Jan 2021 | B2 |
10892246 | Uzoh | Jan 2021 | B2 |
10923408 | Huang et al. | Feb 2021 | B2 |
10923413 | DeLaCruz | Feb 2021 | B2 |
10950547 | Mohammed et al. | Mar 2021 | B2 |
10964664 | Mandalapu et al. | Mar 2021 | B2 |
10985133 | Uzoh | Apr 2021 | B2 |
10991804 | DeLaCruz et al. | Apr 2021 | B2 |
10998292 | Lee et al. | May 2021 | B2 |
11004757 | Katkar et al. | May 2021 | B2 |
11011494 | Gao et al. | May 2021 | B2 |
11011503 | Wang et al. | May 2021 | B2 |
11031285 | Katkar et al. | Jun 2021 | B2 |
11056348 | Theil | Jul 2021 | B2 |
11088099 | Katkar et al. | Aug 2021 | B2 |
11127738 | DeLaCruz et al. | Sep 2021 | B2 |
11158606 | Gao et al. | Oct 2021 | B2 |
11171117 | Gao et al. | Nov 2021 | B2 |
11176450 | Teig et al. | Nov 2021 | B2 |
11244920 | Uzoh | Feb 2022 | B2 |
11256004 | Haba et al. | Feb 2022 | B2 |
11264357 | DeLaCruz et al. | Mar 2022 | B1 |
11276676 | Enquist et al. | Mar 2022 | B2 |
11329034 | Tao et al. | May 2022 | B2 |
11348898 | DeLaCruz et al. | May 2022 | B2 |
11355443 | Huang et al. | Jun 2022 | B2 |
11515279 | Uzoh et al. | Nov 2022 | B2 |
20020000328 | Motomura et al. | Jan 2002 | A1 |
20020003307 | Suga | Jan 2002 | A1 |
20020025665 | Juengling | Feb 2002 | A1 |
20020047208 | Uzoh et al. | Apr 2002 | A1 |
20020074670 | Suga | Jun 2002 | A1 |
20020094661 | Enquist et al. | Jul 2002 | A1 |
20030092220 | Akram | May 2003 | A1 |
20030157748 | Kim et al. | Aug 2003 | A1 |
20040052390 | Morales et al. | Mar 2004 | A1 |
20040052930 | Basol et al. | Mar 2004 | A1 |
20040084414 | Sakai et al. | May 2004 | A1 |
20040238492 | Catabay et al. | Dec 2004 | A1 |
20060024950 | Choi et al. | Feb 2006 | A1 |
20060057945 | Hsu et al. | Mar 2006 | A1 |
20060220197 | Kobrinsky | Oct 2006 | A1 |
20070096294 | Ikeda et al. | May 2007 | A1 |
20070111386 | Kim et al. | May 2007 | A1 |
20080122092 | Hong | May 2008 | A1 |
20080237053 | Andricacos et al. | Oct 2008 | A1 |
20090197408 | Lehr et al. | Aug 2009 | A1 |
20090200668 | Yang et al. | Aug 2009 | A1 |
20100255262 | Chen et al. | Oct 2010 | A1 |
20100327443 | Kim | Dec 2010 | A1 |
20110074040 | Frank et al. | Mar 2011 | A1 |
20110084403 | Yang et al. | Apr 2011 | A1 |
20120211894 | Aoyagi | Aug 2012 | A1 |
20120212384 | Kam et al. | Aug 2012 | A1 |
20130009321 | Kagawa et al. | Jan 2013 | A1 |
20130020704 | Sadaka | Jan 2013 | A1 |
20130221527 | Yang et al. | Aug 2013 | A1 |
20130252399 | Leduc | Sep 2013 | A1 |
20130320556 | Liu et al. | Dec 2013 | A1 |
20140153210 | Uzoh | Jun 2014 | A1 |
20140175655 | Chen et al. | Jun 2014 | A1 |
20140225795 | Yu | Aug 2014 | A1 |
20140252635 | Tran et al. | Sep 2014 | A1 |
20140264948 | Chou et al. | Sep 2014 | A1 |
20140353828 | Edelstein et al. | Dec 2014 | A1 |
20150064498 | Tong | Mar 2015 | A1 |
20150108644 | Kuang et al. | Apr 2015 | A1 |
20150206823 | Lin et al. | Jul 2015 | A1 |
20150279888 | Chen | Oct 2015 | A1 |
20150340269 | Rivoire et al. | Nov 2015 | A1 |
20150364434 | Chen | Dec 2015 | A1 |
20150380368 | Momose et al. | Dec 2015 | A1 |
20160020183 | Chuang et al. | Jan 2016 | A1 |
20160133598 | Baudin et al. | May 2016 | A1 |
20160276383 | Chuang et al. | Sep 2016 | A1 |
20160343682 | Kawasaki | Nov 2016 | A1 |
20170025381 | Tsai | Jan 2017 | A1 |
20170047307 | Uzoh | Feb 2017 | A1 |
20170069575 | Haba et al. | Mar 2017 | A1 |
20170086320 | Barber | Mar 2017 | A1 |
20170194271 | Hsu et al. | Jul 2017 | A1 |
20170355040 | Utsumi et al. | Dec 2017 | A1 |
20180151523 | Chen et al. | May 2018 | A1 |
20180175012 | Wu et al. | Jun 2018 | A1 |
20180182639 | Uzoh et al. | Jun 2018 | A1 |
20180182665 | Uzoh et al. | Jun 2018 | A1 |
20180182666 | Uzoh et al. | Jun 2018 | A1 |
20180190580 | Haba et al. | Jul 2018 | A1 |
20180190583 | DeLaCruz et al. | Jul 2018 | A1 |
20180219038 | Gambino et al. | Aug 2018 | A1 |
20180273377 | Katkar et al. | Sep 2018 | A1 |
20180295718 | Uzoh et al. | Oct 2018 | A1 |
20180323177 | Yu et al. | Nov 2018 | A1 |
20180323227 | Zhang et al. | Nov 2018 | A1 |
20180331066 | Uzoh et al. | Nov 2018 | A1 |
20190096741 | Uzoh et al. | Mar 2019 | A1 |
20190115277 | Yu et al. | Apr 2019 | A1 |
20190131277 | Yang et al. | May 2019 | A1 |
20190198407 | Huang et al. | Jun 2019 | A1 |
20190198409 | Katkar et al. | Jun 2019 | A1 |
20190265411 | Huang et al. | Aug 2019 | A1 |
20190295954 | Nomura | Sep 2019 | A1 |
20190333550 | Fisch | Oct 2019 | A1 |
20190348336 | Katkar et al. | Nov 2019 | A1 |
20190385935 | Gao et al. | Dec 2019 | A1 |
20190385966 | Gao | Dec 2019 | A1 |
20190393086 | Uzoh | Dec 2019 | A1 |
20200006280 | Shah et al. | Jan 2020 | A1 |
20200013637 | Haba | Jan 2020 | A1 |
20200013765 | Fountain, Jr. et al. | Jan 2020 | A1 |
20200035641 | Fountain, Jr. et al. | Jan 2020 | A1 |
20200075520 | Gao et al. | Mar 2020 | A1 |
20200075534 | Gao | Mar 2020 | A1 |
20200075553 | DeLaCruz et al. | Mar 2020 | A1 |
20200098711 | Choi | Mar 2020 | A1 |
20200126906 | Uzoh et al. | Apr 2020 | A1 |
20200194396 | Uzoh | Jun 2020 | A1 |
20200227367 | Haba et al. | Jul 2020 | A1 |
20200243380 | Uzoh et al. | Jul 2020 | A1 |
20200279821 | Haba et al. | Sep 2020 | A1 |
20200294908 | Haba et al. | Sep 2020 | A1 |
20200328162 | Haba et al. | Oct 2020 | A1 |
20200328164 | DeLaCruz et al. | Oct 2020 | A1 |
20200328165 | DeLaCruz et al. | Oct 2020 | A1 |
20200335408 | Gao et al. | Oct 2020 | A1 |
20200365575 | Uzoh et al. | Nov 2020 | A1 |
20200371154 | DeLaCruz et al. | Nov 2020 | A1 |
20200381389 | Uzoh et al. | Dec 2020 | A1 |
20200395321 | Katkar et al. | Dec 2020 | A1 |
20200411483 | Uzoh et al. | Dec 2020 | A1 |
20210098412 | Haba et al. | Apr 2021 | A1 |
20210118864 | DeLaCruz et al. | Apr 2021 | A1 |
20210143125 | DeLaCruz et al. | May 2021 | A1 |
20210181510 | Katkar et al. | Jun 2021 | A1 |
20210193603 | Katkar et al. | Jun 2021 | A1 |
20210193624 | DeLaCruz et al. | Jun 2021 | A1 |
20210193625 | DeLaCruz et al. | Jun 2021 | A1 |
20210242152 | Fountain, Jr. et al. | Aug 2021 | A1 |
20210296282 | Gao et al. | Sep 2021 | A1 |
20210305202 | Uzoh et al. | Sep 2021 | A1 |
20210335737 | Katkar et al. | Oct 2021 | A1 |
20210366820 | Uzoh | Nov 2021 | A1 |
20210407941 | Haba | Dec 2021 | A1 |
20220077063 | Haba | Mar 2022 | A1 |
20220077087 | Haba | Mar 2022 | A1 |
20220130787 | Uzoh | Apr 2022 | A1 |
20220139867 | Uzoh | May 2022 | A1 |
20220139869 | Gao et al. | May 2022 | A1 |
20220165692 | Uzoh et al. | May 2022 | A1 |
20220208650 | Gao et al. | Jun 2022 | A1 |
20220208702 | Uzoh | Jun 2022 | A1 |
20220208723 | Katkar et al. | Jun 2022 | A1 |
20220246497 | Fountain, Jr. et al. | Aug 2022 | A1 |
20220285303 | Mirkarimi et al. | Sep 2022 | A1 |
20220319901 | Suwito et al. | Oct 2022 | A1 |
20220320035 | Uzoh et al. | Oct 2022 | A1 |
20220320036 | Gao et al. | Oct 2022 | A1 |
20230005850 | Fountain, Jr. | Jan 2023 | A1 |
20230019869 | Mirkarimi et al. | Jan 2023 | A1 |
20230036441 | Haba et al. | Feb 2023 | A1 |
20230067677 | Lee et al. | Mar 2023 | A1 |
20230069183 | Haba | Mar 2023 | A1 |
20230100032 | Haba et al. | Mar 2023 | A1 |
20230115122 | Uzoh et al. | Apr 2023 | A1 |
20230122531 | Uzoh | Apr 2023 | A1 |
20230123423 | Gao et al. | Apr 2023 | A1 |
20230125395 | Gao et al. | Apr 2023 | A1 |
20230130259 | Haba et al. | Apr 2023 | A1 |
Number | Date | Country |
---|---|---|
2000-183061 | Jun 2000 | JP |
2002-353416 | Dec 2002 | JP |
2013-033786 | Feb 2013 | JP |
2016021497 | Feb 2016 | JP |
2018-129475 | Aug 2018 | JP |
2018-160519 | Oct 2018 | JP |
10-2008-0050129 | Jun 2008 | KR |
10-2016-0066272 | Jun 2016 | KR |
WO 2005043584 | May 2005 | WO |
Entry |
---|
Akolkar, R., “Current status and advances in Damascene Electrodeposition,” Encyclopedia of Interfacial Chemistry: Surface Science and Electrochemistry, 2017, 8 pages. |
Che, F.X. et al., “Study on Cu protrusion of through-silicon via,” IEEE Transactions on Components, Packaging and Manufacturing Technology, May 2013, vol. 3, No. 5, pp. 732-739. |
Dela Pena, Eden M. et al., “Electrodeposited copper using direct and pulse currents from electrolytes containing low concentration of additives,” School of Chemical and Process Engineering, University of Strathclyde, 2018 Surface and Coating Technology, 40 pages. |
De Messemaeker, Joke et al., “Correlation between Cu microstructure and TSV Cu pumping,” 2014 Electronic Components & Technology Conference, pp. 613-619. |
Di Cioccio, L. et al., “An overview of patterned metal/dielectric surface bonding: Mechanism, alignment and characterization,” Journal of The Electrochemical Society, 2011, vol. 158, No. 6, pp. P81-P86. |
Ganesan, Kousik, “Capable copper electrodeposition process for integrated circuit—substrate packaging manufacturing,” A dissertation presented in partial fulfillment of the requirments for the degree Doctor of Philosophy, Arizona State University, May 2018, 320 pages. |
Gondcharton, P. et al., “Kinetics of low temperature direct copper-copper bonding,” Microsyst Technol, 2015, vol. 21, pp. 995-1001. |
Heryanto, A. et al., “Effect of copper TSV annealing on via protrustion for TSV wafer fabrication,” Journal of Electronic Materials, 2012, vol. 41, No. 9, pp. 2533-2542. |
Hobbs, Anthony et al., “Evolution of grain and micro-void structure in electroplated copper interconnects,” Materials Transactions, 2002, vol. 43, No. 7, pp. 1629-1632. |
Huang, Q., “Effects of impurity elements on isothermal grain growth of electroplated copper,” Journal of The Electrochemical Society, 2018, vol. 165, No. 7, pp. D251-D257. |
Huang, Q., “Impurities in the electroplated sub-50 nm Cu lines: The effects of the plating additives,” Journal of The Electrochemical Society, 2014, vol. 161, No. 9, pp. D388-D394. |
International Search Report and Written Opinion for PCT/US2019/024083, dated Jul. 11, 2019, 15 pages. |
Jiang, T. et al., “Plasticity mechanism for copper extrusion in through-silicon vias for three-dimensional interconnects,” Applied Physics Letters, 2013, vol. 103, pp. 211906-1-211906-5. |
Juang, Jing-Ye et al., “Copper-to-copper direct bonding on highly (111)-oriented nanotwinned copper in no-vacuum ambient,” Scientific Reports, Sep. 17, 2018, vol. 8, 11 pages. |
Ker, Ming-Dou et al., “Fully process-compatible layout design on bond pad to improve wire bond reliability in CMOS Ics,” IEEE Transactions on Components and Packaging Technologies, Jun. 2002, vol. 25, No. 2, pp. 309-316. |
Kim, Myung Jun et al., “Characteristics of pulse-reverse electrodeposited Cu thin film,” I. Effects of Anodic Step in the Absence of an Organic Additives, Journal of The Electrochemical Society, 2012, vol. 159, No. 9, pp. D538-D543. |
Kim, Myung Jun et al., “Characteristics of pulse-reverse electrodeposited Cu thin film,” II. Effects of Organic Additives, Journal of The Electrochemical Society, 2012, vol. 159, No. 9, pp. D544-D548. |
Liu, C. et al., “Low-temperature direct copper-to-copper bonding enabled by creep on (111) surfaces of nanotwinned Cu,” Scientific Reports, May 12, 2015, 5:09734, pp. 1-11. |
Liu, Chien-Min et al., “Effect of grain orientations of Cu seed layers on the growth of <111>-oriented nanotwinned Cu,” Scientific Reports, 2014, vol. 4, No. 6123, 4 pages. |
Liu, Zi-Yu et al. “Detection and formation mechanism of micro-defects in ultrafine pitch Cu-Cu direct bonding,” Chin. Phys. B, 2016, vol. 25, No. 1, pp. 018103-1-018103-7. |
Lu, L. et al., “Grain growth and strain release in nanocrystalline copper,” Journal of Applied Physics, vol. 89, Issue 11, pp. 6408. |
Mendez, Julie Marie, “Characterization of copper electroplating and electropolishing processes for semiconductor interconnect metallization,” Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy, Department of Chemical Engineering, Case Western Reserve University, Aug. 2009, 140 pages. |
Menk, L.A. et al., “Galvanostatic plating with a single additive electrolyte for bottom-up filling of copper in Mesoscale TSVs,” Microsystems and Engineering Sciences Applications (MESA) Complex, Sandia National Laboratories, Albuquerque, New Mexico, 2019 J. Electrochem. Soc. 166, 17 pages. |
Moriceau, H. et al., “Overview of recent direct wafer bonding advances and applications,” Advances in Natural Sciences—Nanoscience and Nanotechnology, 2010, 11 pages. |
Mott, D. et al., “Synthesis of size-controlled and shaped copper nanoparticles,” Langmuir, 2007, vol. 23, No. 10, pp. 5740-5745. |
Nakanishi, H. et al., “Studies on SiO2-SiO2 bonding with hydrofluoric acid. Room temperature and low stress bonding technique for MEMS,” Sensors and Actuators, 2000, vol. 79, pp. 237-244. |
Oberhammer, J. et al., “Sealing of adhesive bonded devices on wafer level,” Sensors and Actuators A, 2004, vol. 110, No. 1-3, pp. 407-412, see pp. 407-412, and Figures 1(a)-1(I), 6 pages. |
Ortleb, Thomas et al., “Controlling macro and micro surface topography for a 45nm copper CMP process using a high resolution profiler,” Proc. of SPIE, 2008, vol. 6922, 11 pages. |
Parthasaradhy, N.V., “Practical Electroplating Handbook,” 1989, Prentice-Hall, Inc., pp. 54-56. |
Plobi, A. et al., “Wafer direct bonding: tailoring adhesion between brittle materials,” Materials Science and Engineering Review Journal, 1999, R25, 88 pages. |
Saraswat, Stanford Presentation, Cu Interconnect slides, web page web.stanford.edu/class/ee311/NOTES/Cu_Interconnect_Slides.pdf, 19 pages. |
Song, Xiaohui, “Atomic study of copper-copper bonding using nanoparticles,” Journal of Electronic Packaging, Jun. 2020, vol. 142, 5 pages. |
Song, Xiaoning, “Microstructure and mechanical properties of electrodeposited copper films,” A thesis submitted to the College of Engineering and Physical Sciences of the University of Birmingham, 2011, web page etheses.bham.ac.uk/id/eprint/1764/, 111 pages. |
Suga et al., “Bump-less interconnect for next generation system packaging,” Electronic Components and Technology Conference, 2001, IEEE, pp. 1003-1008. |
Suga, T., “Feasibility of surface activated bonding for ultra-fine pitch interconnection—A new concept of bump-less direct bonding for system level packaging,” The University of Tokyo, Research Center for Science and Technology, 2000 Electronic Components and Technology Conference, 2000 IEEE, pp. 702-705. |
Swingle, Karen D., “Nanograin Copper Deposition Using an Impinging Jet Electrode,” A Thesis submitted in partial satisfaction of the requirements of the degree of Master of Science, University of California, San Diego, 2013, 102 pages. |
Takahashi, K. et al., “Transport phenomena that control electroplated copper filling of submicron vias and trenches,” Journal of The Electrochemical Society, 1999, vol. 146, No. 12, pp. 4499-4503. |
Zheng, Z. et al., “Study of grain size effect of Cu metallization on interfacial microstructures of solder joints,” Microelectronics Reliability, 2019, vol. 99, pp. 44-51. |
Basol et al., “Study on the Mechanism of Electrochemical Mechanical Deposition of Copper Layers,”Nu Tool Inc., 1655 McCandless Drive, Milpitas, CA 95035, Electrochemical Processes in ULSI and MEMS, Proceedings of the International Symposium; Proceedings vol. 2004-17, pp. 155-160. |
Khan, Muhammed et al., “Damascene Process and Chemical Mechanical Planarization,” http://www.ece.umd.edu/class/enee416/GroupActivities/Damascene%20Presentation.pdf, 25 pages. |
Number | Date | Country | |
---|---|---|---|
20230268307 A1 | Aug 2023 | US |
Number | Date | Country | |
---|---|---|---|
62656264 | Apr 2018 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 16995988 | Aug 2020 | US |
Child | 18058693 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 16363894 | Mar 2019 | US |
Child | 16995988 | US |