The present invention relates to the field of memory device structure fabrication.
Electronic systems and devices have made a significant contribution towards the advancement of modern society and have facilitated increased productivity and reduced costs in analyzing and communicating information in a variety of business, science, education, and entertainment applications. These electronic systems and devices typically include information storage capabilities. Ever greater desire and market pressure for more storage capabilities in smaller devices creates a demand for increased storage component densities. However, as a practical matter there a number of issues (e.g., fabrication considerations, photolithograph capabilities, electrical interference between components, etc.) that limit conventional device component densities.
Some memory devices include storage components that operate based upon electromagnetic principles. Magnetic memory devices typically store information by adjusting and holding magnetic fields within components of the device. Stored information (e.g., bits, logical ones and zeros, true/false indications, etc.) corresponds to a state of the magnetic fields and resulting electrically resistive characteristics. A memory cell that includes a magnetic tunnel junction (MTJ) is one type of magnetic memory structure. A MTJ typically includes ferromagnetic portions separated by a non-magnetic material. The magnetic orientation or spin of a ferromagnetic portion can be altered and results in a change to the electrical resistive characteristics of the device. The change in resistive characteristics can have different impacts on an electric current passing through the structure. The state or characteristics of the current are associated with indications of the stored information.
Limitations on lithographic processes used to create a MTJ are usually the deciding factor in dictating the pitch or distance between memory cells. Given resolution limitations of conventional lithographic processes, the resulting relatively large pitch between conventional MTJ memory cells leads to corresponding limits on traditional density compaction. A MTJ typically has a circular configuration and is referred to as a pillar MTJ (pMTJ). Conventional lithography tools currently can typically print MTJ circles or pillars down to sizes of approximately 70 nm in diameter with 20 nm separation between adjacent MTJs. This results in a conventional pitch of about 90 nm. The size of a traditional MTJ can optionally be trimmed down (e.g., to 20 or 30 nm) to make smaller pillars. However, due to the initial lithographic process placement or separation of the pMTJ (e.g., 90 nm) the density remains substantially the same as the initial pitch limitation even if the MTJ is trimmed. While trimming down from the initial size to a smaller final size may enable improved current or voltage characteristic, trimming traditionally does not help increase density. Thus, traditional memory cell pitch and density improvement is typically limited by lithography capabilities
Embodiments of the present invention facilitate efficient and effective increased memory cell density configuration. In one embodiment, a magnetic memory fabrication method comprises: forming a first pitch reference component; forming a second pitch reference component; forming a first pillar magnetic tunnel junction (pMTJ) located in a first level in the semiconductor device using a first run lithographic process; forming a second pillar magnetic tunnel junction (pMTJ) located in a second level in the semiconductor device using a second run lithographic process, wherein the location of the second pMTJ with respect to the first pMTJ is coordinated based upon a reference pitch distance between the first pitch reference component and first pitch reference component. In one exemplary implementation, the first pitch reference component is a first switch coupled to the first pMTJ and the second pitch reference component is a second switch coupled to the second pMTJ. The reference component size can be based upon a minimum lithographic processing dimension. A minimum lithographic processing dimension associated with the first pitch reference component and the second pitch reference component is less than a minimum lithographic processing dimension associated with the first pMTJ and the second pMTJ. The smallest dimension can correspond to a conductive line trace. The pMTJ can be formed using a hard mask and ion beam etch.
The reference component size can be based upon a minimum trimming processing dimension. The first pMTJ and the second pMTJ can also be trimmed. In one exemplary implementation, the first pitch reference component is a first switch coupled to the first pMTJ and the second pitch reference component is a second switch coupled to the second pMTJ. The pMTJs can be formed using a hard mask and ion beam etch. The first switch and second switches can be transistors.
In one embodiment, a memory cell fabrication method comprises: forming a first pMTJ located in a first level in the semiconductor device, wherein the first pMTJ is associated with a first memory cell; and forming a second pMTJ located in a second level in the semiconductor device, wherein the second pMTJ is associated with a second memory cell, wherein the location of the second pMTJ with respect to the first pMTJ is coordinated to comply with a reference pitch. In one exemplary implementation, the method further comprises: forming a first pitch reference component, wherein the first pitch reference component is associated with the first pillar magnetic tunnel junction (pMTJ) memory cell; and forming a second pitch reference component, wherein the second pitch reference component is associated with the first pMTJ memory cell, wherein a pitch between the first pitch reference component and the second pitch reference component is used to determine the reference pitch. In one exemplary implementation, fabrication processes utilized to form the first pitch reference component and the second pitch reference have a greater resolution than fabrication processes utilized to form the first pMTJ and second pMTJ. A portion of the second pMTJ overlaps a portion of the first pMTJ and the overlap is coordinated to comply with a reference pitch associated with other components and an offset in pattern difference between the first level and the second level corresponds to the offset. A first lithographic mask can be utilized to form the first pMTJ and a second lithographic mask can be utilized to form the second pMTJ, wherein lithographic patterns for forming the first pMTJ and second pMTJ are the same except they are offset from one another to correspond to the overlap. In one embodiment, lithographic printing capabilities with respect to the first pitch reference component and the second pitch reference component are used to set the reference pitch.
In one embodiment, a memory cell array formation method comprises: forming a first memory cell with a first magnetic tunnel junction (MTJ) located in a first level, forming a second memory cell with a second magnetic tunnel junction (MTJ) located in a second level, a pitch distance between the second pMTJ and the first pMTJ is based upon the reference pitch. A third component can be included in the first memory cell and a fourth component can be included in the second memory cell, wherein the reference pitch is based upon a pitch between the third component and fourth component. The memory array can be included a magnoresistive random access memory (MRAM). Respective edges of the first pMTJ and second pMTJ can be located with respect to a plane perpendicular to the first and second level. A portion of the first pMTJ and a portion of the second pMTJ can overlap each other and the plane perpendicular to the first and second level traverses the overlap. A portion of the first pMTJ and a portion of the second pMTJ can have a space between each other, and the plane perpendicular to the first and second level and the plane perpendicular to the first and second level traverses the space. Respective edges of the first pMTJ and the second pMTJ can be aligned with the plane perpendicular to the first and second level.
The accompanying drawings, which are incorporated in and form a part of this specification, are included for exemplary illustration of the principles of the present invention and not intended to limit the present invention to the particular implementations illustrated therein. The drawings are not to scale unless otherwise specifically indicated.
Reference will now be made in detail to the preferred embodiments of the invention, examples of which are illustrated in the accompanying drawings. While the invention will be described in conjunction with the preferred embodiments, it will be understood that they are not intended to limit the invention to these embodiments. On the contrary, the invention is intended to cover alternatives, modifications and equivalents, which may be included within the spirit and scope of the invention as defined by the appended claims. Furthermore, in the following detailed description of the present invention, numerous specific details are set forth in order to provide a thorough understanding of the present invention. However, it will be obvious to one ordinarily skilled in the art that the present invention may be practiced without these specific details. In other instances, well known methods, procedures, components, and circuits have not been described in detail as not to unnecessarily obscure aspects of the current invention.
Embodiments of the present invention facilitate convenient and efficient increased memory cell density configuration. In one embodiment, a first portion of a first memory cell is located in a first layer and a first portion of a second memory cell is located in a second layer. The first portion of a first memory cell overlaps the first portion of the second memory cell. The first portions of the respective memory cells can be portions of magnetic tunnel junctions (MTJs). In one embodiment, a portion of a MTJ in one memory cell is in one layer of a semiconductor device and a portion of a MTJ in another memory cell is in another layer, wherein the MTJ portions overlap results in decreased pitch between memory cells. The amount of overlap of the MTJs can correspond to a difference between a first minimum lithographic process printing limitation and a second minimum lithographic process printing limitation. The first minimum lithographic process printing limitation can be associated with a MTJ component formation, and the second minimum lithographic process printing limitation can be associated with formation of another component (e.g., a switch, a via, etc.) of the respective memory cells. The other components can be located in a level that is different than the levels that include the MTJs.
It is appreciated MTJs can be included in a variety of devices. In one embodiment, an MTJ is included in magnetoresistive random-access memory (MRAM). The MTJs can have various configurations. In one embodiment, the MTJs can be configured as pillar MTJSs (pMTJs). The pMTJ can be considered a 3D MTJ structure.
Various processes can be utilized to fabricate a memory cell. In one embodiment, a fabrication process utilized to form a portion of a memory cell can have a greater resolution limitation than another fabrication process utilized to form another portion of the memory cell. A portion of one memory cell is fabricated in a layer of a semiconductor and overlaps a portion of another memory cell fabricated in another layer of the semiconductor. The difference in resolution limitations can be due to various aspects of the fabrication processes (e.g., different types of lithographic processes, different shapes of sub-components being formed, etc.). In one exemplary implementation, a fabrication process of a portion of a memory cell has a greater resolution than a fabrication process of another portion of a memory cell. Fabrication of a subcomponent of respective memory cells can have greater resolution capability than fabrication of another subcomponent of the respective memory cells, and a subcomponent with lesser resolution in a memory cell can overlap a subcomponent with lesser resolution in another memory cell. In one embodiment, the portions of sub-components of respective memory cells that overlap are portions of MTJs and other portions (e.g. transistors, vias, etc.) of the memory cell are formed by fabrication processes with greater resolution capabilities than fabrication of the MTJ. It is appreciated the MTJ can be included in a variety of devices. In one embodiment, an MTJ is included in magnetoresistive random-access memory (MRAM).
In one embodiment, the lithographic process utilized to create the reference components allows reference components to have a smaller size and pitch than lithographic process limitation utilized to create the pMTJs. Reference components (e.g., switch 114, via 113, etc.) can have a smaller size and pitch than the pMTJs (e.g., 112, etc.) in the x-y plane (e.g., smaller width, length, etc.). In one exemplary implementation, the lithographic process utilized to create the reference components can also allow the space between reference components in the same level or plane to have smaller spacing than a lithographic process utilized to create pMTJs in the same level or plane.
In one embodiment, memory cell configuration 100A includes levels or layers 10, 20, 30, 40, 50, 60, and 70. Contact 121 is included in level 70. The pMTJ 122 is included in level 60. Contact 111 is included in level 50. In one exemplary implementation, level 50 is an interconnection or redistribution layer. The pMTJ 112 is included in layer 40. The vias 113 and 124 are included in layer 30. The switches 114 and 124 are included in layer 20. Layer 10 is a substrate layer. It is appreciated there can be variations to the component and layer configurations. In one exemplary implementation, portions of via 123 are also included in layers 40, 50, and 60 in addition to layer 30. In one exemplary implementation, portions of contact 111 are also included in layers 60 and 70 and extend to be parallel or equal with the top of contact 121. It is appreciated that there can be additional layers (e.g., below, above, in between, etc.) of components. Additional layers can include various components (e.g., pMTJs, vias, switches, lines or traces, other components, etc.).
It is appreciated the relative location or configuration relationship of pMTJs in different levels can vary. In one embodiment, the relative location of the pMTJs is based upon a differences in location with respect to a plane perpendicular to the layers or levels. With reference to
In one embodiment, an edge in respective pMTJs in different levels can align with one another in a plane perpendicular to the levels. In one embodiment, there is not an overlap or spacing between planes of a respective edge of pMTJs in different levels. In one exemplary implementation, there is no overlap (e.g., distance 155 in
In one embodiment, respective edges of the first pMTJ and second pMTJ are located with respect to a plane perpendicular to the first and second level. A portion of the first pMTJ and a portion of the second pMTJ can overlap each other and the plane perpendicular to the first and second level traverses the overlap. A portion of the first pMTJ and a portion of the second pMTJ can have a space between each other, and the plane perpendicular to the first and second level traverses the space. The respective edges of the first pMTJ and the second pMTJ can be aligned with the plane perpendicular to the first and second level. In one exemplary implementation, the respective edges are the edges of the pMTJ closest to the plane perpendicular to the levels. The respective edges can be edges of pMTJs closest to a plane similar to plane 199.
In one embodiment, a pitch between memory cells with pMTJs in different levels can be smaller than a pitch between memory cells with pMTJs in the same level.
In one embodiment, the pMTJs are included in a MRAM. The pMTJs are coupled to selector switches that are utilized to select or not select the memory cell during various operations (e.g., read, write, erase, etc.). In one exemplary implementation, adjacent switches (in the X and Y directions) are connected to a pMTJ in a different level from one another and portions of the pMTJs can overlap. The resulting reduced memory cell pitch size enables increased memory cell density and higher information or bits/area capacity for an MRAM chip.
It is appreciated there can be multiple memory cells configured in memory cell arrays. In one embodiment, when viewed in the projection of
In one embodiment without overlap, the pitch size of the memory cells remains relatively constant or the same even though components or structures formed by an initial photo resist processes are trimmed significantly.
The solid line 511 indicates the lithographic printing or formation boundaries of pMTJ 510 in one fabrication level and the solid line 531 indicates the lithographic printing or formation boundaries of pMTJ 530 in another fabrication level. The dashed line 512 indicates the trimming boundaries of pMTJ 510 in the first level and the dashed line 532 indicates the trimming boundaries of pMTJ 530 in the second level. The pMTJ 510 and pMTJ 530 still include an overlap 552 after trimming. The pitch 591 is smaller than pitch 592 as the pMTJs 510 and 530 associated with pitch 591 have an overlap and the pMTJs 570 and 580 associated with pitch 592 do not overlap.
In one embodiment, placement of a pMTJ can be configured based upon considerations or coordination associated with multiple pitch reference components. In one exemplary implementation, the placement of a pMTJ is configured based upon a lithographic limitation associated with formation of a switch and a lithographic limitation associated with the formation of a via. With reference back to
It is appreciated that configurations of pMTJ overlapping can vary.
It is appreciated pitch reference component sizes may vary. In one embodiment, the locations of respective pMTJs in different levels and corresponding overlaps are coordinated to accommodate differences in pitch reference component sizes.
The first magnetic layer 814 is disposed over seed layer 810. SAF layer 820 also has an antiferromagnetic coupling layer 816 disposed over the first magnetic layer 814. Furthermore, a nonmagnetic spacer 840 is disposed on top of MTJ 830 and a polarizer 850 is disposed on top of the nonmagnetic spacer 840. Polarizer 850 is a magnetic layer that has a magnetic direction that may be parallel to its plane and orthogonal to the magnetic direction of the reference layer 832 and free layer 836. Polarizer 850 is provided to polarize a current of electrons (“spin-aligned electrons”) applied to MTJ structure 830. A capping layer 860 can be provided on top of perpendicular polarizer 850 to protect the layers below on MTJ stack 800. Finally, a hard mask 870 is deposited over capping layers 860 and is provided to pattern the underlying layers of the MTJ structure 800, using a reactive ion etch (RIE) and ion beam etch processes. In one embodiment, the MTJ structure is similar to portions of a pMTJ (e.g., pMTJ 112, 122, 132, 142, 612, 622, 421, 422, etc.)
In block 910, switch structures are formed. In one embodiment, the switches are transistors. The transistors can be a complimentary metal oxide silicon (CMOS) transistors. In one exemplary implementation, a switch is configured to selectively operate a memory cell during various activities (e.g., read, write, erase, etc.).
In block 920, conductor vias are formed. The conductor vias are coupled to the switches. In one embodiment, formation of the conductor vias include, leveling or smoothing off (e.g., CMP, etc.) the top of the vias, depositing an insulation layer (e.g., oxide, etc.), etching a via space in the insulation layer, and filling the space in with a via conductor (e.g., metal, etc.).
In block 930, MTJ structures or components are formed. One group of MTJ structures are formed in one layer of the semiconductor and another group of MTJ structures is form in another layer. The location of portions of the MTJ structure formed in one layer and portions of the MTJ structure formed in the other layer can be coordinated based upon a reference pitch. Portions of the MTJ structure formed in one layer can overlap portions of the MTJ structure formed in the other layer. The MTJ structures are coupled to the vias. In one embodiment, the MTJ structures are coupled to the vias in an alternating pattern so that groups of MTJs from different layers are coupled to every other switch structure respectively in an X and Y planar direction. In one embodiment, the MTJs are formed in a circular or pillar configuration. In one exemplary implementation, the formation of the MTJs can include magnetic material deposition (pMTJ), hard mask deposition, pMTJ annealing, photolithography for pillar definition, reactive ion retching of hard mask, ion beam etching of the pMTJ to form pillars, insulator deposition and smoothing the surface with CMP (chemical mechanical polishing) for the next level of pMTJ formation and so on.
In block 940, contacts are formed. The contacts are coupled to the MTJs.
It is appreciated that multiple layers of MTJs can be fabricated. It is appreciated, there can be more than 2 layers or levels (e.g., 3, 4, 5, etc.) than include MTJs, pMTJs, and so on. Again, it is appreciated MTJs in different levels can be configured or located based upon a reference pitch. MTJs in different levels can include overlapping portions. It is appreciated other components of the memory cell (e.g., switches, transistors, vias, contacts, traces, etc.) can be included in multiple levels. The components (e.g., switches, transistors, vias, contacts. traces, etc.) can be configured or located based upon a reference pitch. Components in different levels can include overlapping portions. In one embodiment, similar lithographic mask patterns are utilized to form different layers of MTJs. In one exemplary implementation, similar lithographic masks utilized to form layers in which MTJs overlap, except the respective lithographic masks include an offset in the patterns of another and the offset corresponds to the overlap. The MTJ fabrication in multiple layers can include multiple anneal processes. In one exemplary implementation, the number of MTJ layers is coordinated and balanced with impacts associated with the annealing processes.
Various processes can be utilized to fabricate a memory cell. In one embodiment, a fabrication process utilized to form a portion of a memory cell can have a greater resolution limitation than another fabrication process utilized to form another portion of the memory cell.
In block 1010, a portion of one memory cell is fabricated in a layer of a semiconductor. The portion is fabricated using one fabrication process that has a first set of fabrication limitations. The set of limitations can be resolution limitations. The set of limitations can correspond to the type of fabrication process. The fabrication process can be a lithographic process. The lithographic process can include an ion beam etch process, a plasma etch process, a reactive etch process, and so on. In one embodiment, the portion of the memory cell can be a subcomponent. The memory cell subcomponent can be a switch, via, and so on. In one exemplary implementation, the portion overlaps a portion of another memory cell. The portion can be in a different layer as the portion of the of the other memory cell. In one exemplary implementation, the portion does not overlap a portion of another memory cell. The portion can be in the same layer as the portion of the of the other memory cell. The overlapped portion of the other memory cell is in a different layer.
In block 1020, another portion of the memory cell is fabricated. The other portion is fabricated using a fabrication process that has a second set of fabrication limitations. The second set of fabrications limitations can include different resolution limitations than the first set of fabrication limitations. The set of limitations can correspond to the type of fabrication process. The fabrication process can be a lithographic process. The lithographic process can include an ion beam etch process, a plasma etch process, a reactive etch process, and so on. In one embodiment, the portion of the memory cell can be a subcomponent. The memory cell subcomponent can be a pMTJ. The portion can be fabricated to overlap a portion of another memory cell. The overlapped portion of the other memory cell is in a different layer.
In block 1110, a first pitch reference component is formed. The first pitch reference component can be a switch. The reference component size can be based upon a minimum lithographic processing dimension. The reference component size can be reduced and based upon a minimum trimming processing dimension.
In block 1120, a second pitch reference component is formed. The second pitch reference component can be a switch. The reference component size can be based upon a minimum lithographic processing dimension.
In block 1130, a first pillar magnetic tunnel junction (pMTJ) located in a first level in a semiconductor device is formed using a first run lithographic process. The first pitch reference component is coupled to the first pMTJ.
In block 1140, a second pillar magnetic tunnel junction (pMTJ) located in a second level in the semiconductor device if formed using a second run lithographic process. The second pitch reference component is coupled to the second pMTJ.
In one embodiment, the location of the second pMTJ with respect to the first pMTJ is coordinated to comply with a reference pitch for memory cells. The location of the second pMTJ and the second pMTJ with respect to each other and a plane perpendicular to the first level and the second level can be coordinated to comply with a reference pitch for the memory cells. A portion of the second MTJ can overlap a portion of the first MTJ and the plane perpendicular to the first level and the second level traverses the overlap. There can be a space between the second MTJ and the first MTJ, and the plane perpendicular to the first level and the second level traverses the space. Respective edges of the second MTJ and the first MTJ are aligned along the plane perpendicular to the first level and the second level. The MTJs can be included in a pillar configuration and included in pMTJs.
In one embodiment, a portion of the second pMTJ overlaps a portion of the first pMTJ wherein the overlap corresponds to an offset in pattern difference between the first level and the second level. A first lithographic mask can be utilized to form the first pMTJ and a second lithographic mask can be utilized to form the second pMTJ, wherein lithographic patterns for forming the first pMTJ and second pMTJ are the same except they are offset from one another to correspond to the overlap.
In one embodiment, a minimum lithographic processing dimension associated with the first pitch reference component and the second pitch reference component is less than a minimum/lithographic processing dimension associated with the first pMTJ and the second pMTJ. The fabrication processes utilized to form the first pitch reference component and the second pitch reference have a greater resolution than fabrication processes utilized to form the first pMTJ and second pMTJ. The smallest dimension can correspond to a conductive line trace. The pMTJs can be formed using a hard mask and ion beam etch. The first pMTJ and the second pMTJ can also be trimmed. In one embodiment, the memory cells are included in memory cell array of a memory device. The memory device can be a magnoresistive random access memory (MRAM).
Embodiments of the present invention can facilitate efficient and effective memory cell density configuration. In one embodiment, MTJ components of a memory cell are configured in different levels and the pitch between the MTJ components of between memory cells can be adjusted or based upon a reference pitch. The reference pitch can correspond to components formed by processes that facilitate relatively tight or close pitches. In one exemplary implementation, the reference pitch can be narrower than pitches otherwise associated with traditional magnetic memory cell formation. The closer or tighter pitches can enable increased memory cell density. The increased memory cell density in turn can enable greater information storage per device area.
Some portions of the detailed descriptions are presented in terms of procedures, logic blocks, processing, and other symbolic representations of operations on data bits within a computer memory. These descriptions and representations are the means generally used by those skilled in data processing arts to effectively convey the substance of their work to others skilled in the art. A procedure, logic block, process, etc., is here, and generally, conceived to be a self-consistent sequence of steps or instructions leading to a desired result. The steps include physical manipulations of physical quantities. Usually, though not necessarily, these quantities take the form of electrical, magnetic, optical, or quantum signals capable of being stored, transferred, combined, compared, and otherwise manipulated in a computer system. It has proven convenient at times, principally for reasons of common usage, to refer to these signals as bits, values, elements, symbols, characters, terms, numbers, or the like.
The terms “first,” “second,” “third,” “fourth,” and the like in the description and in the claims, if any, are used for distinguishing between similar elements and not necessarily for describing a particular sequential or chronological order. It is to be understood that any terms so used are interchangeable under appropriate circumstances such that the embodiments described herein are, for example, capable of operation in sequences other than those illustrated or otherwise described herein. Similarly, if a method is described herein as comprising a series of steps, the order of such steps as presented herein is not necessarily the only order in which such steps may be performed, and certain of the stated steps may possibly be omitted and/or certain other steps not described herein may possibly be added to the method.
It should be borne in mind, however, that all of these and similar terms are associated with the appropriate physical quantities and are merely convenient labels applied to these quantities. Unless specifically stated otherwise as apparent from the following discussions, it is appreciated that throughout the present application, discussions utilizing terms such as “processing”, “computing”, “calculating”, “determining”, “displaying” or the like, refer to the action and processes of a computer system, or similar processing device (e.g., an electrical, optical, or quantum, computing device), that manipulates and transforms data represented as physical (e.g., electronic) quantities. The terms refer to actions and processes of the processing devices that manipulate or transform physical quantities within a computer system's component (e.g., registers, memories, other such information storage, transmission or display devices, etc.) into other data similarly represented as physical quantities within other components.
It is appreciated that embodiments of the present invention can be compatible and implemented with a variety of different types of tangible memory or storage (e.g., RAM, DRAM, flash, hard drive, CD, DVD, etc.). The memory or storage, while able to be changed or rewritten, can be considered a non-transitory storage medium. By indicating a non-transitory storage medium it is not intend to limit characteristics of the medium, and can include a variety of storage mediums (e.g., programmable, erasable, nonprogrammable, read/write, read only, etc.) and “non-transitory” computer-readable media comprises all computer-readable media, with the sole exception being a transitory, propagating signal.
It is appreciated that the specification includes a listing of exemplary concepts or embodiments associated with the novel approach. It is also appreciated that the listing is not exhaustive and does not necessarily include all possible implementation. The concepts and embodiments can be implemented in hardware. In one embodiment, the methods or process describe operations performed by various processing components or units. In one exemplary implementation, instructions, or directions associated with the methods, processes, operations etc. can be stored in a memory and cause a processor to implement the operations, functions, actions, etc.
It is appreciated that a memory storage management systems and methods can include the exemplary concepts or embodiments. It is also appreciated that the listing is not exhaustive and does not necessarily include all possible implementations. The concepts and embodiments can be implemented in hardware, firmware, software, and so on. In one embodiment, the following concepts include methods or processes that describe operations performed by various processing components or units. In one exemplary implementation, instructions or directions associated with the methods, processes, operations etc. can be stored in a memory and cause a processor to implement the operations, functions, actions, etc.
The foregoing descriptions of specific embodiments of the present invention have been presented for purposes of illustration and description. They are not intended to be exhaustive or to limit the invention to the precise forms disclosed, and obviously many modifications and variations are possible in light of the above teaching. The embodiments were chosen and described in order to best explain the principles of the invention and its practical application, to thereby enable others skilled in the art to best utilize the invention and various embodiments with various modifications as are suited to the particular use contemplated. It is intended that the scope of the invention be defined by the Claims appended hereto and their equivalents. The listing of steps within method claims do not imply any particular order to performing the steps, unless explicitly stated in the claim.
Number | Name | Date | Kind |
---|---|---|---|
4597487 | Crosby et al. | Jul 1986 | A |
5541868 | Prinz | Jul 1996 | A |
5559952 | Fujimoto | Sep 1996 | A |
5629549 | Johnson | May 1997 | A |
5640343 | Gallagher et al. | Jun 1997 | A |
5654566 | Johnson | Aug 1997 | A |
5691936 | Sakakima et al. | Nov 1997 | A |
5695846 | Lange et al. | Dec 1997 | A |
5695864 | Slonczewski | Dec 1997 | A |
5732016 | Chen et al. | Mar 1998 | A |
5751647 | O'Toole | May 1998 | A |
5856897 | Mauri | Jan 1999 | A |
5896252 | Kanai | Apr 1999 | A |
5966323 | Chen et al. | Oct 1999 | A |
6016269 | Peterson et al. | Jan 2000 | A |
6055179 | Koganei et al. | Apr 2000 | A |
6064948 | West | May 2000 | A |
6075941 | Itoh | Jun 2000 | A |
6097579 | Gill | Aug 2000 | A |
6112295 | Bhamidipati et al. | Aug 2000 | A |
6124711 | Tanaka et al. | Sep 2000 | A |
6134138 | Lu et al. | Oct 2000 | A |
6140838 | Johnson | Oct 2000 | A |
6154139 | Kanai et al. | Nov 2000 | A |
6154349 | Kanai et al. | Nov 2000 | A |
6172902 | Wegrowe et al. | Jan 2001 | B1 |
6233172 | Chen et al. | May 2001 | B1 |
6233690 | Choi et al. | May 2001 | B1 |
6243288 | Ishikawa et al. | Jun 2001 | B1 |
6252798 | Satoh et al. | Jun 2001 | B1 |
6256223 | Sun | Jul 2001 | B1 |
6292389 | Chen et al. | Sep 2001 | B1 |
6347049 | Childress et al. | Feb 2002 | B1 |
6376260 | Chen et al. | Apr 2002 | B1 |
6385082 | Abraham et al. | May 2002 | B1 |
6436526 | Odagawa et al. | Aug 2002 | B1 |
6442681 | Ryan et al. | Aug 2002 | B1 |
6447935 | Zhang et al. | Sep 2002 | B1 |
6458603 | Kersch et al. | Oct 2002 | B1 |
6493197 | Ito et al. | Dec 2002 | B2 |
6522137 | Sun et al. | Feb 2003 | B1 |
6532164 | Redon et al. | Mar 2003 | B2 |
6538918 | Swanson et al. | Mar 2003 | B2 |
6545903 | Savtchenko et al. | Apr 2003 | B1 |
6545906 | Savtchenko et al. | Apr 2003 | B1 |
6563681 | Sasaki et al. | May 2003 | B1 |
6566246 | deFelipe et al. | May 2003 | B1 |
6603677 | Redon et al. | Aug 2003 | B2 |
6608776 | Hidaka | Aug 2003 | B2 |
6635367 | Igarashi et al. | Oct 2003 | B2 |
6653153 | Doan et al. | Nov 2003 | B2 |
6654278 | Engel et al. | Nov 2003 | B1 |
6677165 | Lu et al. | Jan 2004 | B1 |
6710984 | Yuasa et al. | Mar 2004 | B1 |
6713195 | Wang et al. | Mar 2004 | B2 |
6714444 | Huai et al. | Mar 2004 | B2 |
6731537 | Kanamori | May 2004 | B2 |
6744086 | Daughton et al. | Jun 2004 | B2 |
6750491 | Sharma et al. | Jun 2004 | B2 |
6751074 | Inomata et al. | Jun 2004 | B2 |
6765824 | Kishi et al. | Jul 2004 | B2 |
6772036 | Eryurek et al. | Aug 2004 | B2 |
6773515 | Li et al. | Aug 2004 | B2 |
6777730 | Daughton et al. | Aug 2004 | B2 |
6785159 | Tuttle | Aug 2004 | B2 |
6807091 | Saito | Oct 2004 | B2 |
6812437 | Levy et al. | Nov 2004 | B2 |
6829161 | Huai et al. | Dec 2004 | B2 |
6835423 | Chen et al. | Dec 2004 | B2 |
6838740 | Huai et al. | Jan 2005 | B2 |
6839821 | Estakhri | Jan 2005 | B2 |
6842317 | Sugita et al. | Jan 2005 | B2 |
6842366 | Chan | Jan 2005 | B2 |
6847547 | Albert et al. | Jan 2005 | B2 |
6879512 | Luo | Apr 2005 | B2 |
6887719 | Lu et al. | May 2005 | B2 |
6888742 | Nguyen et al. | May 2005 | B1 |
6902807 | Argoitia et al. | Jun 2005 | B1 |
6906369 | Ross et al. | Jun 2005 | B2 |
6920063 | Huai et al. | Jul 2005 | B2 |
6933155 | Albert et al. | Aug 2005 | B2 |
6936479 | Sharma | Aug 2005 | B2 |
6938142 | Pawlowski | Aug 2005 | B2 |
6956257 | Zhu et al. | Oct 2005 | B2 |
6958507 | Atwood et al. | Oct 2005 | B2 |
6958927 | Nguyen et al. | Oct 2005 | B1 |
6967863 | Huai | Nov 2005 | B2 |
6980469 | Kent et al. | Dec 2005 | B2 |
6984529 | Stojakovic et al. | Jan 2006 | B2 |
6985385 | Nguyen et al. | Jan 2006 | B2 |
6992359 | Nguyen et al. | Jan 2006 | B2 |
6995962 | Saito et al. | Feb 2006 | B2 |
7002339 | Kawabata et al. | Feb 2006 | B2 |
7002839 | Kawabata et al. | Feb 2006 | B2 |
7005958 | Wan | Feb 2006 | B2 |
7006371 | Matsuoka | Feb 2006 | B2 |
7006375 | Covington | Feb 2006 | B2 |
7009877 | Huai et al. | Mar 2006 | B1 |
7033126 | Van Den Berg | Apr 2006 | B2 |
7041598 | Sharma | May 2006 | B2 |
7045368 | Hong et al. | May 2006 | B2 |
7054119 | Sharma et al. | May 2006 | B2 |
7057922 | Fukumoto | Jun 2006 | B2 |
7095646 | Slaughter et al. | Aug 2006 | B2 |
7098494 | Pakala et al. | Aug 2006 | B2 |
7106624 | Huai et al. | Sep 2006 | B2 |
7110287 | Huai et al. | Sep 2006 | B2 |
7149106 | Mancoff et al. | Dec 2006 | B2 |
7161829 | Huai et al. | Jan 2007 | B2 |
7170778 | Kent et al. | Jan 2007 | B2 |
7187577 | Wang | Mar 2007 | B1 |
7190611 | Nguyen et al. | Mar 2007 | B2 |
7203129 | Lin et al. | Apr 2007 | B2 |
7203802 | Huras | Apr 2007 | B2 |
7227773 | Nguyen et al. | Jun 2007 | B1 |
7233039 | Huai et al. | Jun 2007 | B2 |
7242045 | Nguyen et al. | Jul 2007 | B2 |
7245462 | Huai et al. | Jul 2007 | B2 |
7262941 | Li et al. | Aug 2007 | B2 |
7273780 | Kim | Sep 2007 | B2 |
7283333 | Gill | Oct 2007 | B2 |
7307876 | Kent et al. | Dec 2007 | B2 |
7313015 | Bessho | Dec 2007 | B2 |
7324387 | Bergemont et al. | Jan 2008 | B1 |
7324389 | Cernea | Jan 2008 | B2 |
7335960 | Han et al. | Feb 2008 | B2 |
7351594 | Bae et al. | Apr 2008 | B2 |
7352021 | Bae et al. | Apr 2008 | B2 |
7369427 | Dia et al. | May 2008 | B2 |
7372722 | Jeong | May 2008 | B2 |
7376006 | Bednorz et al. | May 2008 | B2 |
7386765 | Ellis | Jun 2008 | B2 |
7404017 | Kuo | Jul 2008 | B2 |
7421535 | Jarvis et al. | Sep 2008 | B2 |
7436699 | Tanizaki | Oct 2008 | B2 |
7449345 | Horng et al. | Nov 2008 | B2 |
7453719 | Sakimura | Nov 2008 | B2 |
7476919 | Hong et al. | Jan 2009 | B2 |
7502249 | Ding | Mar 2009 | B1 |
7502253 | Rizzo | Mar 2009 | B2 |
7508042 | Gun | Mar 2009 | B2 |
7511985 | Horii | Mar 2009 | B2 |
7515458 | Hung et al. | Apr 2009 | B2 |
7515485 | Lee | Apr 2009 | B2 |
7532503 | Morise et al. | May 2009 | B2 |
7541117 | Ogawa | Jun 2009 | B2 |
7542326 | Yoshimura | Jun 2009 | B2 |
7573737 | Kent et al. | Aug 2009 | B2 |
7576956 | Huai | Aug 2009 | B2 |
7582166 | Lampe | Sep 2009 | B2 |
7598555 | Papworth Parkin | Oct 2009 | B1 |
7602000 | Sun et al. | Oct 2009 | B2 |
7619431 | DeWilde et al. | Nov 2009 | B2 |
7633800 | Adusumilli et al. | Dec 2009 | B2 |
7642612 | Intili et al. | Jan 2010 | B2 |
7660161 | Van Tran | Feb 2010 | B2 |
7663171 | Inokuchi et al. | Feb 2010 | B2 |
7675792 | Bedeschi | Mar 2010 | B2 |
7696551 | Xiao | Apr 2010 | B2 |
7733699 | Roohparvar | Jun 2010 | B2 |
7739559 | Suzuki et al. | Jun 2010 | B2 |
7773439 | Do et al. | Aug 2010 | B2 |
7776665 | Izumi et al. | Aug 2010 | B2 |
7796439 | Arai | Sep 2010 | B2 |
7810017 | Radke | Oct 2010 | B2 |
7821818 | Dieny et al. | Oct 2010 | B2 |
7852662 | Yang | Dec 2010 | B2 |
7861141 | Chen | Dec 2010 | B2 |
7881095 | Lu | Feb 2011 | B2 |
7911832 | Kent et al. | Mar 2011 | B2 |
7916515 | Li | Mar 2011 | B2 |
7936595 | Han et al. | May 2011 | B2 |
7936598 | Zheng et al. | May 2011 | B2 |
7983077 | Park | Jul 2011 | B2 |
7986544 | Kent et al. | Jul 2011 | B2 |
8008095 | Assefa et al. | Aug 2011 | B2 |
8028119 | Miura | Sep 2011 | B2 |
8041879 | Erez | Oct 2011 | B2 |
8055957 | Kondo | Nov 2011 | B2 |
8058925 | Rasmussen | Nov 2011 | B2 |
8059460 | Jeong et al. | Nov 2011 | B2 |
8072821 | Arai | Dec 2011 | B2 |
8077496 | Choi | Dec 2011 | B2 |
8080365 | Nozaki | Dec 2011 | B2 |
8088556 | Nozaki | Jan 2012 | B2 |
8094480 | Tonomura | Jan 2012 | B2 |
8102701 | Prejbeanu et al. | Jan 2012 | B2 |
8105948 | Zhong et al. | Jan 2012 | B2 |
8120949 | Ranjan et al. | Feb 2012 | B2 |
8143683 | Wang et al. | Mar 2012 | B2 |
8144509 | Jung | Mar 2012 | B2 |
8148970 | Fuse | Apr 2012 | B2 |
8159867 | Cho et al. | Apr 2012 | B2 |
8201024 | Burger | Jun 2012 | B2 |
8223534 | Chung | Jul 2012 | B2 |
8255742 | Ipek | Aug 2012 | B2 |
8278996 | Miki | Oct 2012 | B2 |
8279666 | Dieny et al. | Oct 2012 | B2 |
8295073 | Norman | Oct 2012 | B2 |
8295082 | Chua-Eoan | Oct 2012 | B2 |
8334213 | Mao | Dec 2012 | B2 |
8345474 | Oh | Jan 2013 | B2 |
8349536 | Nozaki | Jan 2013 | B2 |
8362580 | Chen et al. | Jan 2013 | B2 |
8363465 | Kent et al. | Jan 2013 | B2 |
8374050 | Zhou et al. | Feb 2013 | B2 |
8386836 | Burger | Feb 2013 | B2 |
8415650 | Greene | Apr 2013 | B2 |
8416620 | Zheng et al. | Apr 2013 | B2 |
8422286 | Ranjan et al. | Apr 2013 | B2 |
8422330 | Hatano et al. | Apr 2013 | B2 |
8432727 | Ryu | Apr 2013 | B2 |
8441844 | El Baraji | May 2013 | B2 |
8456883 | Liu | Jun 2013 | B1 |
8456926 | Ong et al. | Jun 2013 | B2 |
8477530 | Ranjan et al. | Jul 2013 | B2 |
8492381 | Kuroiwa et al. | Jul 2013 | B2 |
8492881 | Kuroiwa et al. | Jul 2013 | B2 |
8495432 | Dickens | Jul 2013 | B2 |
8535952 | Ranjan et al. | Sep 2013 | B2 |
8539303 | Lu | Sep 2013 | B2 |
8542524 | Keshtbod et al. | Sep 2013 | B2 |
8549303 | Fifield et al. | Oct 2013 | B2 |
8558334 | Ueki et al. | Oct 2013 | B2 |
8559215 | Zhou et al. | Oct 2013 | B2 |
8574928 | Satoh et al. | Nov 2013 | B2 |
8582353 | Lee | Nov 2013 | B2 |
8590139 | Op DeBeeck et al. | Nov 2013 | B2 |
8592927 | Jan | Nov 2013 | B2 |
8593868 | Park | Nov 2013 | B2 |
8609439 | Prejbeanu et al. | Dec 2013 | B2 |
8617408 | Balamane | Dec 2013 | B2 |
8625339 | Ong | Jan 2014 | B2 |
8634232 | Oh | Jan 2014 | B2 |
8667331 | Hori | Mar 2014 | B2 |
8687415 | Parkin et al. | Apr 2014 | B2 |
8705279 | Kim | Apr 2014 | B2 |
8716817 | Saida | May 2014 | B2 |
8716818 | Yoshikawa et al. | May 2014 | B2 |
8722543 | Belen | May 2014 | B2 |
8737137 | Choy et al. | May 2014 | B1 |
8755222 | Kent et al. | Jun 2014 | B2 |
8779410 | Sato et al. | Jul 2014 | B2 |
8780617 | Kang | Jul 2014 | B2 |
8792269 | Abedifard | Jul 2014 | B1 |
8802451 | Malmhall | Aug 2014 | B2 |
8810974 | Noel et al. | Aug 2014 | B2 |
8817525 | Ishihara | Aug 2014 | B2 |
8832530 | Pangal et al. | Sep 2014 | B2 |
8852760 | Wang et al. | Oct 2014 | B2 |
8853807 | Son et al. | Oct 2014 | B2 |
8860156 | Beach et al. | Oct 2014 | B2 |
8862808 | Tsukamoto et al. | Oct 2014 | B2 |
8867258 | Rao | Oct 2014 | B2 |
8883520 | Satoh et al. | Nov 2014 | B2 |
8902628 | Ha | Dec 2014 | B2 |
8966345 | Wilkerson | Feb 2015 | B2 |
8987849 | Jan | Mar 2015 | B2 |
9019754 | Bedeschi | Apr 2015 | B1 |
9025378 | Tokiwa | May 2015 | B2 |
9026888 | Kwok | May 2015 | B2 |
9030899 | Lee | May 2015 | B2 |
9036407 | Wang et al. | May 2015 | B2 |
9037812 | Chew | May 2015 | B2 |
9043674 | Wu | May 2015 | B2 |
9070441 | Otsuka et al. | Jun 2015 | B2 |
9070855 | Gan et al. | Jun 2015 | B2 |
9076530 | Gomez et al. | Jul 2015 | B2 |
9082888 | Kent et al. | Jul 2015 | B2 |
9104581 | Fee et al. | Aug 2015 | B2 |
9104595 | Sah | Aug 2015 | B2 |
9130155 | Chepulskyy et al. | Sep 2015 | B2 |
9136463 | Li | Sep 2015 | B2 |
9140247 | Kim | Sep 2015 | B2 |
9165629 | Chih | Oct 2015 | B2 |
9165787 | Kang | Oct 2015 | B2 |
9166155 | Deshpande | Oct 2015 | B2 |
9178958 | Lindamood | Nov 2015 | B2 |
9189326 | Kalamatianos | Nov 2015 | B2 |
9190471 | Yi et al. | Nov 2015 | B2 |
9196332 | Zhang et al. | Nov 2015 | B2 |
9229306 | Mekhanik et al. | Jan 2016 | B2 |
9229853 | Khan | Jan 2016 | B2 |
9231191 | Huang et al. | Jan 2016 | B2 |
9245608 | Chen et al. | Jan 2016 | B2 |
9250990 | Motwani | Feb 2016 | B2 |
9250997 | Kim et al. | Feb 2016 | B2 |
9251896 | Ikeda | Feb 2016 | B2 |
9257483 | Ishigaki | Feb 2016 | B2 |
9263667 | Pinarbasi | Feb 2016 | B1 |
9286186 | Weiss | Mar 2016 | B2 |
9298552 | Leem | Mar 2016 | B2 |
9299412 | Naelmi | Mar 2016 | B2 |
9317429 | Ramanujan | Apr 2016 | B2 |
9324457 | Takizawa | Apr 2016 | B2 |
9337412 | Pinarbasi et al. | May 2016 | B2 |
9341939 | Yu et al. | May 2016 | B1 |
9342403 | Keppel et al. | May 2016 | B2 |
9349482 | Kim et al. | May 2016 | B2 |
9351899 | Bose et al. | May 2016 | B2 |
9362486 | Kim et al. | Jun 2016 | B2 |
9378817 | Kawai | Jun 2016 | B2 |
9379314 | Park et al. | Jun 2016 | B2 |
9389954 | Pelley et al. | Jul 2016 | B2 |
9396065 | Webb et al. | Jul 2016 | B2 |
9396991 | Arvin et al. | Jul 2016 | B2 |
9401336 | Arvin et al. | Jul 2016 | B2 |
9406876 | Pinarbasi | Aug 2016 | B2 |
9418721 | Bose | Aug 2016 | B2 |
9431084 | Bose et al. | Aug 2016 | B2 |
9449720 | Lung | Sep 2016 | B1 |
9450180 | Annunziata | Sep 2016 | B1 |
9455013 | Kim | Sep 2016 | B2 |
9466789 | Wang et al. | Oct 2016 | B2 |
9472282 | Lee | Oct 2016 | B2 |
9472748 | Kuo et al. | Oct 2016 | B2 |
9484527 | Han et al. | Nov 2016 | B2 |
9488416 | Fujita et al. | Nov 2016 | B2 |
9490054 | Jan | Nov 2016 | B2 |
9508456 | Shim | Nov 2016 | B1 |
9520128 | Bauer et al. | Dec 2016 | B2 |
9520192 | Naeimi et al. | Dec 2016 | B2 |
9548116 | Roy | Jan 2017 | B2 |
9548445 | Lee et al. | Jan 2017 | B2 |
9553102 | Wang | Jan 2017 | B2 |
9583167 | Chung | Feb 2017 | B2 |
9594683 | Dittrich | Mar 2017 | B2 |
9600183 | Tomishima et al. | Mar 2017 | B2 |
9608038 | Wang et al. | Mar 2017 | B2 |
9614007 | Boniardi | Apr 2017 | B2 |
9634237 | Lee et al. | Apr 2017 | B2 |
9640267 | Tani | May 2017 | B2 |
9646701 | Lee | May 2017 | B2 |
9652321 | Motwani | May 2017 | B2 |
9662925 | Raksha et al. | May 2017 | B2 |
9697140 | Kwok | Jul 2017 | B2 |
9720616 | Yu | Aug 2017 | B2 |
9728712 | Kardasz et al. | Aug 2017 | B2 |
9741926 | Pinarbasi et al. | Aug 2017 | B1 |
9772555 | Park et al. | Sep 2017 | B2 |
9773974 | Pinarbasi et al. | Sep 2017 | B2 |
9780300 | Zhou et al. | Oct 2017 | B2 |
9793319 | Gan et al. | Oct 2017 | B2 |
9853006 | Arvin et al. | Dec 2017 | B2 |
9853206 | Pinarbasi et al. | Dec 2017 | B2 |
9853292 | Loveridge et al. | Dec 2017 | B2 |
9858976 | Ikegami | Jan 2018 | B2 |
9859333 | Kim et al. | Jan 2018 | B2 |
9865806 | Choi et al. | Jan 2018 | B2 |
9935258 | Chen et al. | Apr 2018 | B2 |
10008662 | You | Jun 2018 | B2 |
10026609 | Sreenivasan et al. | Jul 2018 | B2 |
10038137 | Chuang | Jul 2018 | B2 |
10042588 | Kang | Aug 2018 | B2 |
10043851 | Shen | Aug 2018 | B1 |
10043967 | Chen | Aug 2018 | B2 |
10062837 | Kim et al. | Aug 2018 | B2 |
10115446 | Louie et al. | Oct 2018 | B1 |
10134988 | Fennimore et al. | Nov 2018 | B2 |
10163479 | Berger et al. | Dec 2018 | B2 |
10186614 | Asami | Jan 2019 | B2 |
20020090533 | Zhang et al. | Jul 2002 | A1 |
20020105823 | Redon et al. | Aug 2002 | A1 |
20030085186 | Fujioka | May 2003 | A1 |
20030117840 | Sharma et al. | Jun 2003 | A1 |
20030151944 | Saito | Aug 2003 | A1 |
20030197984 | Inomata et al. | Oct 2003 | A1 |
20030218903 | Luo | Nov 2003 | A1 |
20040012994 | Slaughter et al. | Jan 2004 | A1 |
20040026369 | Ying | Feb 2004 | A1 |
20040061154 | Huai et al. | Apr 2004 | A1 |
20040094785 | Zhu et al. | May 2004 | A1 |
20040130936 | Nguyen et al. | Jul 2004 | A1 |
20040173315 | Leung | Sep 2004 | A1 |
20040257717 | Sharma et al. | Dec 2004 | A1 |
20050041342 | Huai et al. | Feb 2005 | A1 |
20050051820 | Stojakovic et al. | Mar 2005 | A1 |
20050063222 | Huai et al. | Mar 2005 | A1 |
20050104101 | Sun et al. | May 2005 | A1 |
20050128842 | Wei | Jun 2005 | A1 |
20050136600 | Huai | Jun 2005 | A1 |
20050158881 | Sharma | Jul 2005 | A1 |
20050180202 | Huai et al. | Aug 2005 | A1 |
20050184839 | Nguyen et al. | Aug 2005 | A1 |
20050201023 | Huai et al. | Sep 2005 | A1 |
20050237787 | Huai et al. | Oct 2005 | A1 |
20050280058 | Pakala et al. | Dec 2005 | A1 |
20060018057 | Huai | Jan 2006 | A1 |
20060049472 | Diao et al. | Mar 2006 | A1 |
20060077734 | Fong | Apr 2006 | A1 |
20060087880 | Mancoff et al. | Apr 2006 | A1 |
20060092696 | Bessho | May 2006 | A1 |
20060132990 | Morise et al. | Jun 2006 | A1 |
20060227465 | Inokuchi et al. | Oct 2006 | A1 |
20070019337 | Apalkov et al. | Jan 2007 | A1 |
20070096229 | Yoshikawa | May 2007 | A1 |
20070242501 | Hung et al. | Oct 2007 | A1 |
20080049488 | Rizzo | Feb 2008 | A1 |
20080079530 | Weidman et al. | Apr 2008 | A1 |
20080112094 | Kent et al. | May 2008 | A1 |
20080151614 | Guo | Jun 2008 | A1 |
20080259508 | Kent et al. | Oct 2008 | A2 |
20080297292 | Viala et al. | Dec 2008 | A1 |
20090046501 | Ranjan et al. | Feb 2009 | A1 |
20090072185 | Raksha et al. | Mar 2009 | A1 |
20090091037 | Assefa et al. | Apr 2009 | A1 |
20090098413 | Kanegae | Apr 2009 | A1 |
20090146231 | Kuper et al. | Jun 2009 | A1 |
20090161421 | Cho et al. | Jun 2009 | A1 |
20090209102 | Zhong et al. | Aug 2009 | A1 |
20090231909 | Dieny et al. | Sep 2009 | A1 |
20100019297 | Hwang | Jan 2010 | A1 |
20100124091 | Cowburn | May 2010 | A1 |
20100162065 | Norman | Jun 2010 | A1 |
20100193891 | Wang et al. | Aug 2010 | A1 |
20100246254 | Prejbeanu et al. | Sep 2010 | A1 |
20100271870 | Zheng et al. | Oct 2010 | A1 |
20100290275 | Park et al. | Nov 2010 | A1 |
20110032645 | Noel et al. | Feb 2011 | A1 |
20110058412 | Zheng et al. | Mar 2011 | A1 |
20110061786 | Mason | Mar 2011 | A1 |
20110089511 | Keshtbod et al. | Apr 2011 | A1 |
20110133298 | Chen et al. | Jun 2011 | A1 |
20120052258 | Op DeBeeck et al. | Mar 2012 | A1 |
20120069649 | Ranjan et al. | Mar 2012 | A1 |
20120155156 | Watts | Jun 2012 | A1 |
20120155158 | Higo | Jun 2012 | A1 |
20120181642 | Prejbeanu et al. | Jul 2012 | A1 |
20120188818 | Ranjan et al. | Jul 2012 | A1 |
20120280336 | Jan et al. | Nov 2012 | A1 |
20120280339 | Zhang et al. | Nov 2012 | A1 |
20120294078 | Kent et al. | Nov 2012 | A1 |
20120299133 | Son et al. | Nov 2012 | A1 |
20130001506 | Sato et al. | Jan 2013 | A1 |
20130001652 | Yoshikawa et al. | Jan 2013 | A1 |
20130021841 | Zhou et al. | Jan 2013 | A1 |
20130244344 | Malmhall et al. | Sep 2013 | A1 |
20130267042 | Satoh et al. | Oct 2013 | A1 |
20130270661 | Yi et al. | Oct 2013 | A1 |
20130307097 | Yi et al. | Nov 2013 | A1 |
20130341801 | Satoh et al. | Dec 2013 | A1 |
20140009994 | Parkin et al. | Jan 2014 | A1 |
20140042571 | Gan et al. | Feb 2014 | A1 |
20140070341 | Beach et al. | Mar 2014 | A1 |
20140103472 | Kent et al. | Apr 2014 | A1 |
20140136870 | Breternitz et al. | May 2014 | A1 |
20140151837 | Ryu | Jun 2014 | A1 |
20140169085 | Wang et al. | Jun 2014 | A1 |
20140175583 | Doyle | Jun 2014 | A1 |
20140177316 | Otsuka et al. | Jun 2014 | A1 |
20140217531 | Jan | Aug 2014 | A1 |
20140252439 | Guo | Sep 2014 | A1 |
20140264671 | Chepulskyy et al. | Sep 2014 | A1 |
20140281284 | Block et al. | Sep 2014 | A1 |
20150056368 | Wang et al. | Feb 2015 | A1 |
20150279904 | Pinarbasi et al. | Oct 2015 | A1 |
20160087193 | Pinarbasi et al. | Mar 2016 | A1 |
20160163973 | Pinarbasi | Jun 2016 | A1 |
20160218278 | Pinarbasi et al. | Jul 2016 | A1 |
20160283385 | Boyd et al. | Sep 2016 | A1 |
20160315118 | Kardasz et al. | Oct 2016 | A1 |
20160378592 | Ikegami et al. | Dec 2016 | A1 |
20170062712 | Choi et al. | Mar 2017 | A1 |
20170123991 | Sela et al. | May 2017 | A1 |
20170133104 | Darbari et al. | May 2017 | A1 |
20170199459 | Ryu et al. | Jul 2017 | A1 |
20170256584 | Sanuki | Sep 2017 | A1 |
20180033957 | Zhang | Feb 2018 | A1 |
20180097006 | Kim et al. | Apr 2018 | A1 |
20180114589 | El-Baraji et al. | Apr 2018 | A1 |
20180119278 | Kornmeyer | May 2018 | A1 |
20180121117 | Berger et al. | May 2018 | A1 |
20180121355 | Berger et al. | May 2018 | A1 |
20180121361 | Berger et al. | May 2018 | A1 |
20180122446 | Berger et al. | May 2018 | A1 |
20180122447 | Berger et al. | May 2018 | A1 |
20180122448 | Berger et al. | May 2018 | A1 |
20180122449 | Berger et al. | May 2018 | A1 |
20180122450 | Berger et al. | May 2018 | A1 |
20180130945 | Choi et al. | May 2018 | A1 |
20180211821 | Kogler | Jul 2018 | A1 |
20180233362 | Glodde | Aug 2018 | A1 |
20180233363 | Glodde | Aug 2018 | A1 |
20180248110 | Kardasz et al. | Aug 2018 | A1 |
20180248113 | Pinarbasi et al. | Aug 2018 | A1 |
20180269254 | Sugioka | Sep 2018 | A1 |
20180285714 | Torng | Oct 2018 | A1 |
20180286916 | Wang | Oct 2018 | A1 |
20180331279 | Shen | Nov 2018 | A1 |
20190067566 | Nagel | Feb 2019 | A1 |
20190206936 | Pinarbasi | Jul 2019 | A1 |
Number | Date | Country |
---|---|---|
2766141 | Jan 2011 | CA |
105706259 | Jun 2016 | CN |
1345277 | Sep 2003 | EP |
2817998 | Jun 2002 | FR |
2832542 | May 2003 | FR |
2910716 | Jun 2008 | FR |
H10-004012 | Jan 1998 | JP |
H11-120758 | Apr 1999 | JP |
H11-352867 | Dec 1999 | JP |
2001-195878 | Jul 2001 | JP |
2002-261352 | Sep 2002 | JP |
2002-357489 | Dec 2002 | JP |
2003-318461 | Nov 2003 | JP |
2005-044848 | Feb 2005 | JP |
2005-150482 | Jun 2005 | JP |
2005-535111 | Nov 2005 | JP |
2006128579 | May 2006 | JP |
2008-524830 | Jul 2008 | JP |
2009-027177 | Feb 2009 | JP |
2013-012546 | Jan 2013 | JP |
2014-039061 | Feb 2014 | JP |
5635666 | Dec 2014 | JP |
2015-002352 | Jan 2015 | JP |
10-2014-015246 | Sep 2014 | KR |
2014-062681 | Apr 2014 | NO |
2009-080636 | Jul 2009 | WO |
2011-005484 | Jan 2011 | WO |
Entry |
---|
US 7,026,672 B2, 04/2006, Grandis (withdrawn) |
Bhatti Sabpreet et al., “Spintronics Based Random Access Memory: a Review,” Material Today, Nov. 2107, pp. 530-548, vol. 20, No. 9, Elsevier. |
Helia Naeimi, et al., “STTRAM Scaling and Retention Failure,” Intel Technology Journal, vol. 17, Issue 1, 2013, pp. 54-75 (22 pages). |
S. Ikeda, et al, “A Perpendicular-Anisotropy CoFeB—MgO Magnetic Tunnel Junction”, Nature Materials, vol. 9, Sep. 2010, pp. 721-724 (4 pages). |
R.H. Kock, et al., “Thermally Assisted Magnetization Reversal in Submicron-Sized Magnetic Thin Films”, Physical Review Letters, The American Physical Society, vol. 84, No. 23, Jun. 5, 2000, pp. 5419-5422 (4 pages). |
K.J. Lee, et al., “Analytical Investigation of Spin-Transfer Dynamics Using Perpendicular-to-Plane Polarizer”, Applied Physics Letters, American Insitute of Physics, vol. 86, (2005), pp. 022505-1 to 022505-3 (3 pages). |
Kirsten Martens, et al., “Thermally Induced Magnetic Switching in Thin Ferromagnetic Annuli”, NSF grants PHY-0351964 (DLS), 2005, 11 pages. |
Kristen Martens, et al., “Magnetic Reversal in Nanoscropic Ferromagnetic Rings”, NSF grants PHY-0351964 (DLS) 2005, 23 pages. |
“Magnetic Technology Spintronics, Media and Interface”, Data Storage Institute, R&D Highlights, Sep. 2010, 3 pages. |
Daniel Scott Matic, “A Magnetic Tunnel Junction Compact Model for STT-RAM and MeRAM”, Master Thesis University of California, Los Angeles, 2013, pp. 43. |
Number | Date | Country | |
---|---|---|---|
20190207103 A1 | Jul 2019 | US |