Magnetic tunnel junction (MTJ) fabrication methods and systems

Information

  • Patent Grant
  • 10840439
  • Patent Number
    10,840,439
  • Date Filed
    Friday, December 29, 2017
    7 years ago
  • Date Issued
    Tuesday, November 17, 2020
    4 years ago
Abstract
Embodiments of the present invention facilitate efficient and effective increased memory cell density configuration. In one embodiment, the method comprises: forming a first pitch reference component and a second pitch reference component; forming a first pillar magnetic tunnel junction (pMTJ) located in a first level and a second pMTJ located in a second level, wherein the location of the second pMTJ with respect to the first pMTJ is coordinated based upon a reference pitch distance between the first pitch reference component and first pitch reference component. In one exemplary implementation, the first pitch reference component is a first switch coupled to the first pMTJ and the second pitch reference component is a second switch coupled to the second pMTJ. The reference component size can be based upon a minimum lithographic processing dimension.
Description
FIELD OF THE INVENTION

The present invention relates to the field of memory device structure fabrication.


BACKGROUND OF THE INVENTION

Electronic systems and devices have made a significant contribution towards the advancement of modern society and have facilitated increased productivity and reduced costs in analyzing and communicating information in a variety of business, science, education, and entertainment applications. These electronic systems and devices typically include information storage capabilities. Ever greater desire and market pressure for more storage capabilities in smaller devices creates a demand for increased storage component densities. However, as a practical matter there a number of issues (e.g., fabrication considerations, photolithograph capabilities, electrical interference between components, etc.) that limit conventional device component densities.


Some memory devices include storage components that operate based upon electromagnetic principles. Magnetic memory devices typically store information by adjusting and holding magnetic fields within components of the device. Stored information (e.g., bits, logical ones and zeros, true/false indications, etc.) corresponds to a state of the magnetic fields and resulting electrically resistive characteristics. A memory cell that includes a magnetic tunnel junction (MTJ) is one type of magnetic memory structure. A MTJ typically includes ferromagnetic portions separated by a non-magnetic material. The magnetic orientation or spin of a ferromagnetic portion can be altered and results in a change to the electrical resistive characteristics of the device. The change in resistive characteristics can have different impacts on an electric current passing through the structure. The state or characteristics of the current are associated with indications of the stored information.


Limitations on lithographic processes used to create a MTJ are usually the deciding factor in dictating the pitch or distance between memory cells. Given resolution limitations of conventional lithographic processes, the resulting relatively large pitch between conventional MTJ memory cells leads to corresponding limits on traditional density compaction. A MTJ typically has a circular configuration and is referred to as a pillar MTJ (pMTJ). Conventional lithography tools currently can typically print MTJ circles or pillars down to sizes of approximately 70 nm in diameter with 20 nm separation between adjacent MTJs. This results in a conventional pitch of about 90 nm. The size of a traditional MTJ can optionally be trimmed down (e.g., to 20 or 30 nm) to make smaller pillars. However, due to the initial lithographic process placement or separation of the pMTJ (e.g., 90 nm) the density remains substantially the same as the initial pitch limitation even if the MTJ is trimmed. While trimming down from the initial size to a smaller final size may enable improved current or voltage characteristic, trimming traditionally does not help increase density. Thus, traditional memory cell pitch and density improvement is typically limited by lithography capabilities


SUMMARY

Embodiments of the present invention facilitate efficient and effective increased memory cell density configuration. In one embodiment, a magnetic memory fabrication method comprises: forming a first pitch reference component; forming a second pitch reference component; forming a first pillar magnetic tunnel junction (pMTJ) located in a first level in the semiconductor device using a first run lithographic process; forming a second pillar magnetic tunnel junction (pMTJ) located in a second level in the semiconductor device using a second run lithographic process, wherein the location of the second pMTJ with respect to the first pMTJ is coordinated based upon a reference pitch distance between the first pitch reference component and first pitch reference component. In one exemplary implementation, the first pitch reference component is a first switch coupled to the first pMTJ and the second pitch reference component is a second switch coupled to the second pMTJ. The reference component size can be based upon a minimum lithographic processing dimension. A minimum lithographic processing dimension associated with the first pitch reference component and the second pitch reference component is less than a minimum lithographic processing dimension associated with the first pMTJ and the second pMTJ. The smallest dimension can correspond to a conductive line trace. The pMTJ can be formed using a hard mask and ion beam etch.


The reference component size can be based upon a minimum trimming processing dimension. The first pMTJ and the second pMTJ can also be trimmed. In one exemplary implementation, the first pitch reference component is a first switch coupled to the first pMTJ and the second pitch reference component is a second switch coupled to the second pMTJ. The pMTJs can be formed using a hard mask and ion beam etch. The first switch and second switches can be transistors.


In one embodiment, a memory cell fabrication method comprises: forming a first pMTJ located in a first level in the semiconductor device, wherein the first pMTJ is associated with a first memory cell; and forming a second pMTJ located in a second level in the semiconductor device, wherein the second pMTJ is associated with a second memory cell, wherein the location of the second pMTJ with respect to the first pMTJ is coordinated to comply with a reference pitch. In one exemplary implementation, the method further comprises: forming a first pitch reference component, wherein the first pitch reference component is associated with the first pillar magnetic tunnel junction (pMTJ) memory cell; and forming a second pitch reference component, wherein the second pitch reference component is associated with the first pMTJ memory cell, wherein a pitch between the first pitch reference component and the second pitch reference component is used to determine the reference pitch. In one exemplary implementation, fabrication processes utilized to form the first pitch reference component and the second pitch reference have a greater resolution than fabrication processes utilized to form the first pMTJ and second pMTJ. A portion of the second pMTJ overlaps a portion of the first pMTJ and the overlap is coordinated to comply with a reference pitch associated with other components and an offset in pattern difference between the first level and the second level corresponds to the offset. A first lithographic mask can be utilized to form the first pMTJ and a second lithographic mask can be utilized to form the second pMTJ, wherein lithographic patterns for forming the first pMTJ and second pMTJ are the same except they are offset from one another to correspond to the overlap. In one embodiment, lithographic printing capabilities with respect to the first pitch reference component and the second pitch reference component are used to set the reference pitch.


In one embodiment, a memory cell array formation method comprises: forming a first memory cell with a first magnetic tunnel junction (MTJ) located in a first level, forming a second memory cell with a second magnetic tunnel junction (MTJ) located in a second level, a pitch distance between the second pMTJ and the first pMTJ is based upon the reference pitch. A third component can be included in the first memory cell and a fourth component can be included in the second memory cell, wherein the reference pitch is based upon a pitch between the third component and fourth component. The memory array can be included a magnoresistive random access memory (MRAM). Respective edges of the first pMTJ and second pMTJ can be located with respect to a plane perpendicular to the first and second level. A portion of the first pMTJ and a portion of the second pMTJ can overlap each other and the plane perpendicular to the first and second level traverses the overlap. A portion of the first pMTJ and a portion of the second pMTJ can have a space between each other, and the plane perpendicular to the first and second level and the plane perpendicular to the first and second level traverses the space. Respective edges of the first pMTJ and the second pMTJ can be aligned with the plane perpendicular to the first and second level.





DESCRIPTION OF THE DRAWINGS

The accompanying drawings, which are incorporated in and form a part of this specification, are included for exemplary illustration of the principles of the present invention and not intended to limit the present invention to the particular implementations illustrated therein. The drawings are not to scale unless otherwise specifically indicated.



FIG. 1A is a block diagram of an exemplary memory cell configuration in accordance with one embodiment.



FIG. 1B is a block diagram of another exemplary memory cell configuration in accordance with one embodiment.



FIG. 2 is a block diagram comparison of exemplary memory cell configurations in accordance with one embodiment.



FIG. 3 is a block diagram of a memory array of pMTJ memory cells in which memory pMTJs adjacent to one another in the x and y dimensions alternate between a first level and a second level.



FIG. 4 is a block diagram of an exemplary memory cell array layout without pMTJ overlap and an exemplary memory cell array layout with pMTJ overlap in accordance with one embodiment.



FIG. 5 is a block diagram top view comparison of two pMTJs that do not overlap and two pMTJs that do overlap in accordance with one embodiment.



FIG. 6 is a block diagram of another exemplary configuration of a plurality of memory cells in accordance with one embodiment.



FIG. 7 is a block diagram top view of pitch reference components included in an array in accordance with one embodiment.



FIG. 8 illustrates a magnetic tunnel junction (“MTJ”) in accordance with one embodiment.



FIG. 9 is a flow chart of a fabrication method in accordance with one embodiment.



FIG. 10 is a flow chart of a fabrication processes in accordance with one embodiment.



FIG. 11 is a flow chart of an exemplary memory fabrication method in accordance with one embodiment.





DETAILED DESCRIPTION

Reference will now be made in detail to the preferred embodiments of the invention, examples of which are illustrated in the accompanying drawings. While the invention will be described in conjunction with the preferred embodiments, it will be understood that they are not intended to limit the invention to these embodiments. On the contrary, the invention is intended to cover alternatives, modifications and equivalents, which may be included within the spirit and scope of the invention as defined by the appended claims. Furthermore, in the following detailed description of the present invention, numerous specific details are set forth in order to provide a thorough understanding of the present invention. However, it will be obvious to one ordinarily skilled in the art that the present invention may be practiced without these specific details. In other instances, well known methods, procedures, components, and circuits have not been described in detail as not to unnecessarily obscure aspects of the current invention.


Embodiments of the present invention facilitate convenient and efficient increased memory cell density configuration. In one embodiment, a first portion of a first memory cell is located in a first layer and a first portion of a second memory cell is located in a second layer. The first portion of a first memory cell overlaps the first portion of the second memory cell. The first portions of the respective memory cells can be portions of magnetic tunnel junctions (MTJs). In one embodiment, a portion of a MTJ in one memory cell is in one layer of a semiconductor device and a portion of a MTJ in another memory cell is in another layer, wherein the MTJ portions overlap results in decreased pitch between memory cells. The amount of overlap of the MTJs can correspond to a difference between a first minimum lithographic process printing limitation and a second minimum lithographic process printing limitation. The first minimum lithographic process printing limitation can be associated with a MTJ component formation, and the second minimum lithographic process printing limitation can be associated with formation of another component (e.g., a switch, a via, etc.) of the respective memory cells. The other components can be located in a level that is different than the levels that include the MTJs.


It is appreciated MTJs can be included in a variety of devices. In one embodiment, an MTJ is included in magnetoresistive random-access memory (MRAM). The MTJs can have various configurations. In one embodiment, the MTJs can be configured as pillar MTJSs (pMTJs). The pMTJ can be considered a 3D MTJ structure.


Various processes can be utilized to fabricate a memory cell. In one embodiment, a fabrication process utilized to form a portion of a memory cell can have a greater resolution limitation than another fabrication process utilized to form another portion of the memory cell. A portion of one memory cell is fabricated in a layer of a semiconductor and overlaps a portion of another memory cell fabricated in another layer of the semiconductor. The difference in resolution limitations can be due to various aspects of the fabrication processes (e.g., different types of lithographic processes, different shapes of sub-components being formed, etc.). In one exemplary implementation, a fabrication process of a portion of a memory cell has a greater resolution than a fabrication process of another portion of a memory cell. Fabrication of a subcomponent of respective memory cells can have greater resolution capability than fabrication of another subcomponent of the respective memory cells, and a subcomponent with lesser resolution in a memory cell can overlap a subcomponent with lesser resolution in another memory cell. In one embodiment, the portions of sub-components of respective memory cells that overlap are portions of MTJs and other portions (e.g. transistors, vias, etc.) of the memory cell are formed by fabrication processes with greater resolution capabilities than fabrication of the MTJ. It is appreciated the MTJ can be included in a variety of devices. In one embodiment, an MTJ is included in magnetoresistive random-access memory (MRAM).



FIG. 1A is a block diagram of an exemplary memory cell configuration 100A in accordance with one embodiment. Memory cell configuration 100A includes memory cells 110 and 120. Memory cell 110 includes contact 111, pMTJ 112, via 113, and switch 114. Memory cell 120 includes contact 121, pMTJ 122, via 123, and switch 124. The pMTJ 112 is in a different layer than pMTJ 122 and overlap each other. In one exemplary implementation, the overlap 155 is coordinated with a reference pitch. The reference pitch is associated with a pitch between a first pitch reference component in the memory cell 110 and a second pitch reference component in the memory cell 120. In one exemplary implementation, the first pitch reference component is switch 114 and the second pitch reference component is switch 124 and the reference pitch is the distance 177 or pitch between switch 114 and switch 124. In one embodiment, by overlapping the pMTJ 112 and pMTJ 122 in different layers the memory cells can achieve a pitch of 175 from the middle of memory cell 110 to the middle of memory cell 120.


In one embodiment, the lithographic process utilized to create the reference components allows reference components to have a smaller size and pitch than lithographic process limitation utilized to create the pMTJs. Reference components (e.g., switch 114, via 113, etc.) can have a smaller size and pitch than the pMTJs (e.g., 112, etc.) in the x-y plane (e.g., smaller width, length, etc.). In one exemplary implementation, the lithographic process utilized to create the reference components can also allow the space between reference components in the same level or plane to have smaller spacing than a lithographic process utilized to create pMTJs in the same level or plane.


In one embodiment, memory cell configuration 100A includes levels or layers 10, 20, 30, 40, 50, 60, and 70. Contact 121 is included in level 70. The pMTJ 122 is included in level 60. Contact 111 is included in level 50. In one exemplary implementation, level 50 is an interconnection or redistribution layer. The pMTJ 112 is included in layer 40. The vias 113 and 124 are included in layer 30. The switches 114 and 124 are included in layer 20. Layer 10 is a substrate layer. It is appreciated there can be variations to the component and layer configurations. In one exemplary implementation, portions of via 123 are also included in layers 40, 50, and 60 in addition to layer 30. In one exemplary implementation, portions of contact 111 are also included in layers 60 and 70 and extend to be parallel or equal with the top of contact 121. It is appreciated that there can be additional layers (e.g., below, above, in between, etc.) of components. Additional layers can include various components (e.g., pMTJs, vias, switches, lines or traces, other components, etc.).


It is appreciated the relative location or configuration relationship of pMTJs in different levels can vary. In one embodiment, the relative location of the pMTJs is based upon a differences in location with respect to a plane perpendicular to the layers or levels. With reference to FIG. 1, a plane 199 is perpendicular to the layers or levels. In one embodiment, portions of pMTJs in different levels can overlap each other with respect to a plane perpendicular to the levels. In FIG. 1A there is an overlap 155 of the pMTJs 112 and 122. In one exemplary implementation, plane 199 is in or traverses the overlap 155. In one embodiment, the pMTJs in different levels can have a space or gap between each other with respect to a plane perpendicular to the levels.



FIG. 1B is a block diagram of another exemplary memory cell configuration 100B in accordance with one embodiment. Memory cell configuration 100B is similar to memory cell configuration 100A except a portion of pMTJs in different levels have spacing or gap between pMTJs in different levels. Memory cell configuration 100B includes memory cells 130 and 140. Memory cell 130 includes contact 131, pMTJ 132, via 133, and switch 134. Memory cell 140 includes contact 141, pMTJ 142, via 143, and switch 144. It is appreciated that components of memory cell configuration 100B can be included in multiple layers similar to layers 10 through 70 and so on. The pMTJ 132 is in a different layer than pMTJ 142 but do not overlap each other. In one exemplary implementation, the spacing or gap 157 crossed over a plane 199 perpendicular to the levels. In one exemplary implementation, plane 199 is in or traverses the gap 157. In one exemplary implementation, the spacing or gap 157 is coordinated with or based upon a reference pitch. The reference pitch is associated with a pitch between a first pitch reference component in the memory cell 130 and a second pitch reference component in the memory cell 140. In one exemplary implementation, the first pitch reference component is switch 134 and second pitch reference component is switch 144, and the reference pitch is the distance 178 or pitch between switch 134 and switch 144. In one embodiment, by coordinating the spacing or gap 157 between pMTJ 132 and pMTJ 142 in different layers the memory cells can achieve a pitch of 179 from the middle of memory cell 130 to the middle of memory cell 140.


In one embodiment, an edge in respective pMTJs in different levels can align with one another in a plane perpendicular to the levels. In one embodiment, there is not an overlap or spacing between planes of a respective edge of pMTJs in different levels. In one exemplary implementation, there is no overlap (e.g., distance 155 in FIG. 1A is 0) and no space (e.g., distance 157 in FIG. 1B is 0) between respective edges of pMTJs in different levels.


In one embodiment, respective edges of the first pMTJ and second pMTJ are located with respect to a plane perpendicular to the first and second level. A portion of the first pMTJ and a portion of the second pMTJ can overlap each other and the plane perpendicular to the first and second level traverses the overlap. A portion of the first pMTJ and a portion of the second pMTJ can have a space between each other, and the plane perpendicular to the first and second level traverses the space. The respective edges of the first pMTJ and the second pMTJ can be aligned with the plane perpendicular to the first and second level. In one exemplary implementation, the respective edges are the edges of the pMTJ closest to the plane perpendicular to the levels. The respective edges can be edges of pMTJs closest to a plane similar to plane 199.


In one embodiment, a pitch between memory cells with pMTJs in different levels can be smaller than a pitch between memory cells with pMTJs in the same level. FIG. 2 is a block diagram of exemplary comparison of memory cell configurations in accordance with one embodiment. Memory cell 210 includes contact 211, pMTJ 212, via 213 and switch 214. Memory cell 220 includes contact 221, pMTJ 222, via 223 and switch 224. Memory cell 230 includes contact 231, pMTJ 232, via 233 and switch 234. Memory cell 240 includes contact 241, pMTJ 242, via 243 and switch 244. The pMTJs 212 and 222 are in different layers from one another while the pMTJs 232 and 242 are in the same level as one another. By overlapping the pMTJs 212 and 222 in different levels, the pitch 251 between memory cells 210 and 220 is less or smaller than the memory cell pitch 252 between memory cells 230 and 240.


In one embodiment, the pMTJs are included in a MRAM. The pMTJs are coupled to selector switches that are utilized to select or not select the memory cell during various operations (e.g., read, write, erase, etc.). In one exemplary implementation, adjacent switches (in the X and Y directions) are connected to a pMTJ in a different level from one another and portions of the pMTJs can overlap. The resulting reduced memory cell pitch size enables increased memory cell density and higher information or bits/area capacity for an MRAM chip.


It is appreciated there can be multiple memory cells configured in memory cell arrays. In one embodiment, when viewed in the projection of FIG. 3 which includes multiple planes, pMTJs adjacent to one another in the x and y dimensions (e.g., length and width) are in different levels. In one exemplary implementation, adjacent memory pMTJs alternate levels. FIG. 3 is a block diagram of a memory array of pMTJ memory cells (e.g., 311, 321,312, etc.) in accordance with one embodiment. The pMTJs adjacent to one another in the x and y dimensions alternate between a first level 1 and second level 2. For example, pMTJ memory cell 311 is in level 2 and pMTJ memory cells 321 and 312 are in level 1.



FIG. 4 is a block diagram of an exemplary memory cell array 410 layout without pMTJ overlap and an exemplary memory cell array 420 layout with pMTJ overlap in accordance with one embodiment. Memory cell array 410 includes a plurality of memory cells (e.g., memory cells 411, 412, 414, 415, etc). The layout illustrates the pitch size 488 as defined by lithography limitations. The solid circular lines (e.g., 477, 497, etc.) outlining the memory cells or dots represent the dot size after lithography. The figure also shows the size of the dots or memory cells after trimming. The broken circular lines (e.g., 478, 498, etc.) in the memory cells or dots represent the dot or pMTJ size after trimming. Memory cell array 420 includes a plurality of memory cells (e.g., memory cells 421, 422, 423, 425, etc). The layout illustrates the pitch size 489 is not tied to lithography limitations associated with the pMTJ. In one embodiment, the pitch size 489 corresponds to pitch limitations of components other than the pMTJ.


In one embodiment without overlap, the pitch size of the memory cells remains relatively constant or the same even though components or structures formed by an initial photo resist processes are trimmed significantly. FIG. 5 is a block diagram top view of two pMTJs 570 and 580 that do not overlap and two pMTJs 510 and 520 that overlap in accordance with one embodiment. The solid line 571 indicates the lithographic printing or formation boundaries of a pMTJ 570 in a fabrication level and the solid line 581 indicates the lithographic printing or formation boundaries of pMTJ 580 in the same fabrication level. The dashed line 572 indicates the trimming boundaries of pMTJ 510 and dashed line 582 indicates the trimming boundaries of pMTJ 520. The pitch 592 between pMTJ 570 and pMTJ 580 is determined by the pMTJ lithographic formation limitations or resolution 595 and the spacing limitation 597. The spacing limitation 597 can be influenced or adjusted to compensate for various factors (e.g., minimum spacing lithographic formation limitations, capacitance considerations, electrical interference, etc.).


The solid line 511 indicates the lithographic printing or formation boundaries of pMTJ 510 in one fabrication level and the solid line 531 indicates the lithographic printing or formation boundaries of pMTJ 530 in another fabrication level. The dashed line 512 indicates the trimming boundaries of pMTJ 510 in the first level and the dashed line 532 indicates the trimming boundaries of pMTJ 530 in the second level. The pMTJ 510 and pMTJ 530 still include an overlap 552 after trimming. The pitch 591 is smaller than pitch 592 as the pMTJs 510 and 530 associated with pitch 591 have an overlap and the pMTJs 570 and 580 associated with pitch 592 do not overlap.


In one embodiment, placement of a pMTJ can be configured based upon considerations or coordination associated with multiple pitch reference components. In one exemplary implementation, the placement of a pMTJ is configured based upon a lithographic limitation associated with formation of a switch and a lithographic limitation associated with the formation of a via. With reference back to FIG. 2, the placement of a pMTJ 232 can be configured based upon a lithographic limitation associated with formation of switches 234, 224, and 244 and a lithographic limitation associated with the formation of vias 223 and 243. For example, the placement of via 243 with respect to an edge of switch 244 may limit the placement of the pMTJ 232. If via 243 is limited to a location closer to the middle of the switch 244, this may limit the ability of pMTJ 232 to shift and thus may limit the overlap and resulting pitch.


It is appreciated that configurations of pMTJ overlapping can vary. FIG. 6 is a block diagram of an exemplary memory cell array configuration 600 in accordance with one embodiment. Memory cell configuration 600 includes memory cells 610, 620, 630, and 640. Memory cell 610 includes contact 611, pMTJ 612, via 613, and switch 614. Memory cell 620 includes contact 621, pMTJ 622, via 623, and switch 624. Memory cell 630 includes contact 631, pMTJ 632, via 633, and switch 634. Memory cell 640 includes contact 641, pMTJ 642, via 643, and switch 644. The pMTJs 612 and 632 are in different layers than pMTJ 622 and 642. By overlapping the pMTJs in different levels, the pitch cell between memory cells 610, 620, 630, and 640 can be maintained based upon a reference pitch. A pMTJ on one level can overlap multiple pMTJs on another level. For example, pMTJ 622 in the second level overlaps pMTJs 612 and 632 in the first level, and pMTJs 622 and 642 in the second level overlap pMTJs 632.


It is appreciated pitch reference component sizes may vary. In one embodiment, the locations of respective pMTJs in different levels and corresponding overlaps are coordinated to accommodate differences in pitch reference component sizes. FIG. 7 is a block diagram top view of pitch reference components included in an array in accordance with one embodiment. The pitch reference components include 711,712, 713, 721, 722, 723, 731, 732, and 733. In one embodiment, the pitch reference components can have different shapes (e.g., square, rectangular, circular, etc.). In one exemplary implementation, pitch reference component 731 has a width of 2f in the x direction and a length of 3f in the y direction, where f is the minimum lithographic process distance or resolution available for the device fabrication. The minimum lithographic process distance or resolution available for the device fabrication can correspond to a line or trace width.



FIG. 8 illustrates a magnetic tunnel junction (“MTJ”) 800 in accordance with one embodiment. MTJ 800 includes one or more seed layers 810 provided at the bottom of stack 800 to initiate a desired crystalline growth in the above-deposited layers. An antiferromagnetic layer 812 is disposed over seed layers 810. MTJ 830 is deposited on top of synthetic antiferromagnetic (SAF) layer 820. MTJ 830 includes reference layer 832, which is a magnetic layer, a non-magnetic tunneling barrier layer (i.e., the insulator) 834, and the free layer 836, which is also a magnetic layer. It should be understood that reference layer 832 can actually be part of SAF layer 820, but forms one of the ferromagnetic plates of MTJ 830 when the non-magnetic tunneling barrier layer 834 and free layer 836 are formed on reference layer 832. As shown in FIG. 8, magnetic reference layer 832 has a magnetization direction perpendicular to its plane. As also illustrated in FIG. 8, free layer 836 also has a magnetization direction perpendicular to its plane, but its direction can vary by 180 degrees.


The first magnetic layer 814 is disposed over seed layer 810. SAF layer 820 also has an antiferromagnetic coupling layer 816 disposed over the first magnetic layer 814. Furthermore, a nonmagnetic spacer 840 is disposed on top of MTJ 830 and a polarizer 850 is disposed on top of the nonmagnetic spacer 840. Polarizer 850 is a magnetic layer that has a magnetic direction that may be parallel to its plane and orthogonal to the magnetic direction of the reference layer 832 and free layer 836. Polarizer 850 is provided to polarize a current of electrons (“spin-aligned electrons”) applied to MTJ structure 830. A capping layer 860 can be provided on top of perpendicular polarizer 850 to protect the layers below on MTJ stack 800. Finally, a hard mask 870 is deposited over capping layers 860 and is provided to pattern the underlying layers of the MTJ structure 800, using a reactive ion etch (RIE) and ion beam etch processes. In one embodiment, the MTJ structure is similar to portions of a pMTJ (e.g., pMTJ 112, 122, 132, 142, 612, 622, 421, 422, etc.)



FIG. 9 is a flow chart of an exemplary fabrication method in accordance with one embodiment.


In block 910, switch structures are formed. In one embodiment, the switches are transistors. The transistors can be a complimentary metal oxide silicon (CMOS) transistors. In one exemplary implementation, a switch is configured to selectively operate a memory cell during various activities (e.g., read, write, erase, etc.).


In block 920, conductor vias are formed. The conductor vias are coupled to the switches. In one embodiment, formation of the conductor vias include, leveling or smoothing off (e.g., CMP, etc.) the top of the vias, depositing an insulation layer (e.g., oxide, etc.), etching a via space in the insulation layer, and filling the space in with a via conductor (e.g., metal, etc.).


In block 930, MTJ structures or components are formed. One group of MTJ structures are formed in one layer of the semiconductor and another group of MTJ structures is form in another layer. The location of portions of the MTJ structure formed in one layer and portions of the MTJ structure formed in the other layer can be coordinated based upon a reference pitch. Portions of the MTJ structure formed in one layer can overlap portions of the MTJ structure formed in the other layer. The MTJ structures are coupled to the vias. In one embodiment, the MTJ structures are coupled to the vias in an alternating pattern so that groups of MTJs from different layers are coupled to every other switch structure respectively in an X and Y planar direction. In one embodiment, the MTJs are formed in a circular or pillar configuration. In one exemplary implementation, the formation of the MTJs can include magnetic material deposition (pMTJ), hard mask deposition, pMTJ annealing, photolithography for pillar definition, reactive ion retching of hard mask, ion beam etching of the pMTJ to form pillars, insulator deposition and smoothing the surface with CMP (chemical mechanical polishing) for the next level of pMTJ formation and so on.


In block 940, contacts are formed. The contacts are coupled to the MTJs.


It is appreciated that multiple layers of MTJs can be fabricated. It is appreciated, there can be more than 2 layers or levels (e.g., 3, 4, 5, etc.) than include MTJs, pMTJs, and so on. Again, it is appreciated MTJs in different levels can be configured or located based upon a reference pitch. MTJs in different levels can include overlapping portions. It is appreciated other components of the memory cell (e.g., switches, transistors, vias, contacts, traces, etc.) can be included in multiple levels. The components (e.g., switches, transistors, vias, contacts. traces, etc.) can be configured or located based upon a reference pitch. Components in different levels can include overlapping portions. In one embodiment, similar lithographic mask patterns are utilized to form different layers of MTJs. In one exemplary implementation, similar lithographic masks utilized to form layers in which MTJs overlap, except the respective lithographic masks include an offset in the patterns of another and the offset corresponds to the overlap. The MTJ fabrication in multiple layers can include multiple anneal processes. In one exemplary implementation, the number of MTJ layers is coordinated and balanced with impacts associated with the annealing processes.


Various processes can be utilized to fabricate a memory cell. In one embodiment, a fabrication process utilized to form a portion of a memory cell can have a greater resolution limitation than another fabrication process utilized to form another portion of the memory cell.



FIG. 10 is a flow chart of exemplary fabrication processes in accordance with one embodiment.


In block 1010, a portion of one memory cell is fabricated in a layer of a semiconductor. The portion is fabricated using one fabrication process that has a first set of fabrication limitations. The set of limitations can be resolution limitations. The set of limitations can correspond to the type of fabrication process. The fabrication process can be a lithographic process. The lithographic process can include an ion beam etch process, a plasma etch process, a reactive etch process, and so on. In one embodiment, the portion of the memory cell can be a subcomponent. The memory cell subcomponent can be a switch, via, and so on. In one exemplary implementation, the portion overlaps a portion of another memory cell. The portion can be in a different layer as the portion of the of the other memory cell. In one exemplary implementation, the portion does not overlap a portion of another memory cell. The portion can be in the same layer as the portion of the of the other memory cell. The overlapped portion of the other memory cell is in a different layer.


In block 1020, another portion of the memory cell is fabricated. The other portion is fabricated using a fabrication process that has a second set of fabrication limitations. The second set of fabrications limitations can include different resolution limitations than the first set of fabrication limitations. The set of limitations can correspond to the type of fabrication process. The fabrication process can be a lithographic process. The lithographic process can include an ion beam etch process, a plasma etch process, a reactive etch process, and so on. In one embodiment, the portion of the memory cell can be a subcomponent. The memory cell subcomponent can be a pMTJ. The portion can be fabricated to overlap a portion of another memory cell. The overlapped portion of the other memory cell is in a different layer.



FIG. 11 is a flow chart of memory fabrication method 1100 in accordance with one embodiment. In one exemplary implementation, the location of a second pMTJ and a first pMTJ with respect to one another is coordinated based upon a reference pitch distance. The reference pitch distance can be based upon a pitch between a first pitch reference component and a second pitch reference component. In one embodiment, lithographic printing capabilities with respect to the first pitch reference component and the second pitch reference component is used to set or determine the reference pitch.


In block 1110, a first pitch reference component is formed. The first pitch reference component can be a switch. The reference component size can be based upon a minimum lithographic processing dimension. The reference component size can be reduced and based upon a minimum trimming processing dimension.


In block 1120, a second pitch reference component is formed. The second pitch reference component can be a switch. The reference component size can be based upon a minimum lithographic processing dimension.


In block 1130, a first pillar magnetic tunnel junction (pMTJ) located in a first level in a semiconductor device is formed using a first run lithographic process. The first pitch reference component is coupled to the first pMTJ.


In block 1140, a second pillar magnetic tunnel junction (pMTJ) located in a second level in the semiconductor device if formed using a second run lithographic process. The second pitch reference component is coupled to the second pMTJ.


In one embodiment, the location of the second pMTJ with respect to the first pMTJ is coordinated to comply with a reference pitch for memory cells. The location of the second pMTJ and the second pMTJ with respect to each other and a plane perpendicular to the first level and the second level can be coordinated to comply with a reference pitch for the memory cells. A portion of the second MTJ can overlap a portion of the first MTJ and the plane perpendicular to the first level and the second level traverses the overlap. There can be a space between the second MTJ and the first MTJ, and the plane perpendicular to the first level and the second level traverses the space. Respective edges of the second MTJ and the first MTJ are aligned along the plane perpendicular to the first level and the second level. The MTJs can be included in a pillar configuration and included in pMTJs.


In one embodiment, a portion of the second pMTJ overlaps a portion of the first pMTJ wherein the overlap corresponds to an offset in pattern difference between the first level and the second level. A first lithographic mask can be utilized to form the first pMTJ and a second lithographic mask can be utilized to form the second pMTJ, wherein lithographic patterns for forming the first pMTJ and second pMTJ are the same except they are offset from one another to correspond to the overlap.


In one embodiment, a minimum lithographic processing dimension associated with the first pitch reference component and the second pitch reference component is less than a minimum/lithographic processing dimension associated with the first pMTJ and the second pMTJ. The fabrication processes utilized to form the first pitch reference component and the second pitch reference have a greater resolution than fabrication processes utilized to form the first pMTJ and second pMTJ. The smallest dimension can correspond to a conductive line trace. The pMTJs can be formed using a hard mask and ion beam etch. The first pMTJ and the second pMTJ can also be trimmed. In one embodiment, the memory cells are included in memory cell array of a memory device. The memory device can be a magnoresistive random access memory (MRAM).


Embodiments of the present invention can facilitate efficient and effective memory cell density configuration. In one embodiment, MTJ components of a memory cell are configured in different levels and the pitch between the MTJ components of between memory cells can be adjusted or based upon a reference pitch. The reference pitch can correspond to components formed by processes that facilitate relatively tight or close pitches. In one exemplary implementation, the reference pitch can be narrower than pitches otherwise associated with traditional magnetic memory cell formation. The closer or tighter pitches can enable increased memory cell density. The increased memory cell density in turn can enable greater information storage per device area.


Some portions of the detailed descriptions are presented in terms of procedures, logic blocks, processing, and other symbolic representations of operations on data bits within a computer memory. These descriptions and representations are the means generally used by those skilled in data processing arts to effectively convey the substance of their work to others skilled in the art. A procedure, logic block, process, etc., is here, and generally, conceived to be a self-consistent sequence of steps or instructions leading to a desired result. The steps include physical manipulations of physical quantities. Usually, though not necessarily, these quantities take the form of electrical, magnetic, optical, or quantum signals capable of being stored, transferred, combined, compared, and otherwise manipulated in a computer system. It has proven convenient at times, principally for reasons of common usage, to refer to these signals as bits, values, elements, symbols, characters, terms, numbers, or the like.


The terms “first,” “second,” “third,” “fourth,” and the like in the description and in the claims, if any, are used for distinguishing between similar elements and not necessarily for describing a particular sequential or chronological order. It is to be understood that any terms so used are interchangeable under appropriate circumstances such that the embodiments described herein are, for example, capable of operation in sequences other than those illustrated or otherwise described herein. Similarly, if a method is described herein as comprising a series of steps, the order of such steps as presented herein is not necessarily the only order in which such steps may be performed, and certain of the stated steps may possibly be omitted and/or certain other steps not described herein may possibly be added to the method.


It should be borne in mind, however, that all of these and similar terms are associated with the appropriate physical quantities and are merely convenient labels applied to these quantities. Unless specifically stated otherwise as apparent from the following discussions, it is appreciated that throughout the present application, discussions utilizing terms such as “processing”, “computing”, “calculating”, “determining”, “displaying” or the like, refer to the action and processes of a computer system, or similar processing device (e.g., an electrical, optical, or quantum, computing device), that manipulates and transforms data represented as physical (e.g., electronic) quantities. The terms refer to actions and processes of the processing devices that manipulate or transform physical quantities within a computer system's component (e.g., registers, memories, other such information storage, transmission or display devices, etc.) into other data similarly represented as physical quantities within other components.


It is appreciated that embodiments of the present invention can be compatible and implemented with a variety of different types of tangible memory or storage (e.g., RAM, DRAM, flash, hard drive, CD, DVD, etc.). The memory or storage, while able to be changed or rewritten, can be considered a non-transitory storage medium. By indicating a non-transitory storage medium it is not intend to limit characteristics of the medium, and can include a variety of storage mediums (e.g., programmable, erasable, nonprogrammable, read/write, read only, etc.) and “non-transitory” computer-readable media comprises all computer-readable media, with the sole exception being a transitory, propagating signal.


It is appreciated that the specification includes a listing of exemplary concepts or embodiments associated with the novel approach. It is also appreciated that the listing is not exhaustive and does not necessarily include all possible implementation. The concepts and embodiments can be implemented in hardware. In one embodiment, the methods or process describe operations performed by various processing components or units. In one exemplary implementation, instructions, or directions associated with the methods, processes, operations etc. can be stored in a memory and cause a processor to implement the operations, functions, actions, etc.


It is appreciated that a memory storage management systems and methods can include the exemplary concepts or embodiments. It is also appreciated that the listing is not exhaustive and does not necessarily include all possible implementations. The concepts and embodiments can be implemented in hardware, firmware, software, and so on. In one embodiment, the following concepts include methods or processes that describe operations performed by various processing components or units. In one exemplary implementation, instructions or directions associated with the methods, processes, operations etc. can be stored in a memory and cause a processor to implement the operations, functions, actions, etc.


The foregoing descriptions of specific embodiments of the present invention have been presented for purposes of illustration and description. They are not intended to be exhaustive or to limit the invention to the precise forms disclosed, and obviously many modifications and variations are possible in light of the above teaching. The embodiments were chosen and described in order to best explain the principles of the invention and its practical application, to thereby enable others skilled in the art to best utilize the invention and various embodiments with various modifications as are suited to the particular use contemplated. It is intended that the scope of the invention be defined by the Claims appended hereto and their equivalents. The listing of steps within method claims do not imply any particular order to performing the steps, unless explicitly stated in the claim.

Claims
  • 1. A method comprising: forming a first pitch reference component;forming a second pitch reference component;forming a first pillar magnetic tunnel junction (pMTJ) located in a first level in the semiconductor device using a first run lithographic process; andforming a second pillar magnetic tunnel junction (pMTJ) located in a second level in the semiconductor device using a second run lithographic process;wherein the location of the second pMTJ with respect to the first pMTJ is coordinated based upon a reference pitch distance between the first pitch reference component and second pitch reference component.
  • 2. The method of claim 1, wherein the first pitch reference component is a first switch coupled to the first pMTJ and the second pitch reference component is a second switch coupled to the second pMTJ.
  • 3. The method of claim 2, wherein the first reference component is a first switch and the second reference component is a second switches.
  • 4. The method of claim 1, wherein the reference component size is based upon a minimum lithographic processing dimension.
  • 5. The method of claim 1, wherein the reference component size is based upon a minimum trimming processing dimension.
  • 6. The method of claim 1, wherein a minimum lithographic processing dimension associated with the first pitch reference component and the second pitch reference component is less than a minimum lithographic processing dimension associated with the first pMTJ and the second pMTJ.
  • 7. The method of claim 1, wherein the smallest dimension corresponds to a conductive line trace.
  • 8. The method of claim 1, wherein the pMTJs are formed using a hard mask and ion beam etch.
  • 9. The method of claim 1, wherein the first pMTJ and the second pMTJ overlap each other.
  • 10. A method comprising: forming a first pillar magnetic tunnel junction (pMTJ) located in a first level in the semiconductor device, wherein the first pMTJ is associated with a first memory cell; andforming a second pillar magnetic tunnel junction (pMTJ) located in a second level in the semiconductor device, wherein the second pMTJ is associated with a second memory cell;wherein the location of the second pMTJ with respect to the first pMTJ is coordinated based upon a reference pitch distance.
  • 11. The method of claim 10, further comprising; forming a first pitch reference component, wherein the first pitch reference component is associated with the pMTJ memory cell, andforming a second pitch reference component, wherein the second pitch reference component is associated with the second pMTJ memory cell, wherein a pitch between the first pitch reference component and the second pitch reference component is used to determine the reference pitch.
  • 12. The method of claim 11, wherein fabrication processes utilized to form the first pitch reference component and the second pitch reference have a greater resolution than fabrication processes utilized to form the first pMTJ and second pMTJ.
  • 13. The method of claim 10, wherein a portion of the second pMTJ overlaps a portion of the first pMTJ and the overlap is coordinated to comply with a reference pitch associated with other components, and an offset in pattern difference between the first level and the second level corresponds to the offset.
  • 14. The method of claim 10, wherein a first lithographic mask is utilized to form the first pMTJ and a second lithographic mask is utilized to form the second pMTJ, wherein lithographic patterns for forming the first pMTJ and second pMTJ are the same except they are offset from one another to correspond to the overlap.
  • 15. The method of claim 10, wherein the lithographic printing capabilities with respect to the first pitch reference component and the second pitch reference component is used to set the reference pitch.
  • 16. The method of claim 10, wherein the first pitch reference component is a first switch coupled to the first pMTJ and the second pitch reference component is a second switch coupled to the second pMTJ.
  • 17. A method of forming a memory cell array in a memory device, the method comprising: forming a first memory cell with a first magnetic tunnel junction (MTJ) located in a first level; andforming a second memory cell with a second magnetic tunnel junction (MTJ) located in a second level, wherein a pitch between the second pMTJ and first pMTJ is based upon a reference pitch.
  • 18. The method of claim 17, wherein a third component is included in the first memory cell and a fourth component is included in the second memory cell, wherein the reference pitch is based upon a pitch between the third component and fourth component.
  • 19. The method of claim 17, wherein respective edges of the first pMTJ and second pMTJ are located with respect to a plane perpendicular to the first and second level.
  • 20. The method of claim 19, wherein a portion of the first pMTJ and a portion of the second pMTJ overlap each other and the plane perpendicular to the first and second level traverses the overlap.
  • 21. The method of claim 19, wherein a portion of the first pMTJ and a portion of the second pMTJ have a space between each other and the plane perpendicular to the first and second level, and the plane perpendicular to the first and second level traverses the space.
  • 22. The method of claim 19, wherein respective edges of the first pMTJ and the second pMTJ are aligned with the plane perpendicular to the first and second level.
  • 23. A method of claim 17 wherein the memory device is a magnoresistive random access memory (MRAM).
US Referenced Citations (491)
Number Name Date Kind
4597487 Crosby et al. Jul 1986 A
5541868 Prinz Jul 1996 A
5559952 Fujimoto Sep 1996 A
5629549 Johnson May 1997 A
5640343 Gallagher et al. Jun 1997 A
5654566 Johnson Aug 1997 A
5691936 Sakakima et al. Nov 1997 A
5695846 Lange et al. Dec 1997 A
5695864 Slonczewski Dec 1997 A
5732016 Chen et al. Mar 1998 A
5751647 O'Toole May 1998 A
5856897 Mauri Jan 1999 A
5896252 Kanai Apr 1999 A
5966323 Chen et al. Oct 1999 A
6016269 Peterson et al. Jan 2000 A
6055179 Koganei et al. Apr 2000 A
6064948 West May 2000 A
6075941 Itoh Jun 2000 A
6097579 Gill Aug 2000 A
6112295 Bhamidipati et al. Aug 2000 A
6124711 Tanaka et al. Sep 2000 A
6134138 Lu et al. Oct 2000 A
6140838 Johnson Oct 2000 A
6154139 Kanai et al. Nov 2000 A
6154349 Kanai et al. Nov 2000 A
6172902 Wegrowe et al. Jan 2001 B1
6233172 Chen et al. May 2001 B1
6233690 Choi et al. May 2001 B1
6243288 Ishikawa et al. Jun 2001 B1
6252798 Satoh et al. Jun 2001 B1
6256223 Sun Jul 2001 B1
6292389 Chen et al. Sep 2001 B1
6347049 Childress et al. Feb 2002 B1
6376260 Chen et al. Apr 2002 B1
6385082 Abraham et al. May 2002 B1
6436526 Odagawa et al. Aug 2002 B1
6442681 Ryan et al. Aug 2002 B1
6447935 Zhang et al. Sep 2002 B1
6458603 Kersch et al. Oct 2002 B1
6493197 Ito et al. Dec 2002 B2
6522137 Sun et al. Feb 2003 B1
6532164 Redon et al. Mar 2003 B2
6538918 Swanson et al. Mar 2003 B2
6545903 Savtchenko et al. Apr 2003 B1
6545906 Savtchenko et al. Apr 2003 B1
6563681 Sasaki et al. May 2003 B1
6566246 deFelipe et al. May 2003 B1
6603677 Redon et al. Aug 2003 B2
6608776 Hidaka Aug 2003 B2
6635367 Igarashi et al. Oct 2003 B2
6653153 Doan et al. Nov 2003 B2
6654278 Engel et al. Nov 2003 B1
6677165 Lu et al. Jan 2004 B1
6710984 Yuasa et al. Mar 2004 B1
6713195 Wang et al. Mar 2004 B2
6714444 Huai et al. Mar 2004 B2
6731537 Kanamori May 2004 B2
6744086 Daughton et al. Jun 2004 B2
6750491 Sharma et al. Jun 2004 B2
6751074 Inomata et al. Jun 2004 B2
6765824 Kishi et al. Jul 2004 B2
6772036 Eryurek et al. Aug 2004 B2
6773515 Li et al. Aug 2004 B2
6777730 Daughton et al. Aug 2004 B2
6785159 Tuttle Aug 2004 B2
6807091 Saito Oct 2004 B2
6812437 Levy et al. Nov 2004 B2
6829161 Huai et al. Dec 2004 B2
6835423 Chen et al. Dec 2004 B2
6838740 Huai et al. Jan 2005 B2
6839821 Estakhri Jan 2005 B2
6842317 Sugita et al. Jan 2005 B2
6842366 Chan Jan 2005 B2
6847547 Albert et al. Jan 2005 B2
6879512 Luo Apr 2005 B2
6887719 Lu et al. May 2005 B2
6888742 Nguyen et al. May 2005 B1
6902807 Argoitia et al. Jun 2005 B1
6906369 Ross et al. Jun 2005 B2
6920063 Huai et al. Jul 2005 B2
6933155 Albert et al. Aug 2005 B2
6936479 Sharma Aug 2005 B2
6938142 Pawlowski Aug 2005 B2
6956257 Zhu et al. Oct 2005 B2
6958507 Atwood et al. Oct 2005 B2
6958927 Nguyen et al. Oct 2005 B1
6967863 Huai Nov 2005 B2
6980469 Kent et al. Dec 2005 B2
6984529 Stojakovic et al. Jan 2006 B2
6985385 Nguyen et al. Jan 2006 B2
6992359 Nguyen et al. Jan 2006 B2
6995962 Saito et al. Feb 2006 B2
7002339 Kawabata et al. Feb 2006 B2
7002839 Kawabata et al. Feb 2006 B2
7005958 Wan Feb 2006 B2
7006371 Matsuoka Feb 2006 B2
7006375 Covington Feb 2006 B2
7009877 Huai et al. Mar 2006 B1
7033126 Van Den Berg Apr 2006 B2
7041598 Sharma May 2006 B2
7045368 Hong et al. May 2006 B2
7054119 Sharma et al. May 2006 B2
7057922 Fukumoto Jun 2006 B2
7095646 Slaughter et al. Aug 2006 B2
7098494 Pakala et al. Aug 2006 B2
7106624 Huai et al. Sep 2006 B2
7110287 Huai et al. Sep 2006 B2
7149106 Mancoff et al. Dec 2006 B2
7161829 Huai et al. Jan 2007 B2
7170778 Kent et al. Jan 2007 B2
7187577 Wang Mar 2007 B1
7190611 Nguyen et al. Mar 2007 B2
7203129 Lin et al. Apr 2007 B2
7203802 Huras Apr 2007 B2
7227773 Nguyen et al. Jun 2007 B1
7233039 Huai et al. Jun 2007 B2
7242045 Nguyen et al. Jul 2007 B2
7245462 Huai et al. Jul 2007 B2
7262941 Li et al. Aug 2007 B2
7273780 Kim Sep 2007 B2
7283333 Gill Oct 2007 B2
7307876 Kent et al. Dec 2007 B2
7313015 Bessho Dec 2007 B2
7324387 Bergemont et al. Jan 2008 B1
7324389 Cernea Jan 2008 B2
7335960 Han et al. Feb 2008 B2
7351594 Bae et al. Apr 2008 B2
7352021 Bae et al. Apr 2008 B2
7369427 Dia et al. May 2008 B2
7372722 Jeong May 2008 B2
7376006 Bednorz et al. May 2008 B2
7386765 Ellis Jun 2008 B2
7404017 Kuo Jul 2008 B2
7421535 Jarvis et al. Sep 2008 B2
7436699 Tanizaki Oct 2008 B2
7449345 Horng et al. Nov 2008 B2
7453719 Sakimura Nov 2008 B2
7476919 Hong et al. Jan 2009 B2
7502249 Ding Mar 2009 B1
7502253 Rizzo Mar 2009 B2
7508042 Gun Mar 2009 B2
7511985 Horii Mar 2009 B2
7515458 Hung et al. Apr 2009 B2
7515485 Lee Apr 2009 B2
7532503 Morise et al. May 2009 B2
7541117 Ogawa Jun 2009 B2
7542326 Yoshimura Jun 2009 B2
7573737 Kent et al. Aug 2009 B2
7576956 Huai Aug 2009 B2
7582166 Lampe Sep 2009 B2
7598555 Papworth Parkin Oct 2009 B1
7602000 Sun et al. Oct 2009 B2
7619431 DeWilde et al. Nov 2009 B2
7633800 Adusumilli et al. Dec 2009 B2
7642612 Intili et al. Jan 2010 B2
7660161 Van Tran Feb 2010 B2
7663171 Inokuchi et al. Feb 2010 B2
7675792 Bedeschi Mar 2010 B2
7696551 Xiao Apr 2010 B2
7733699 Roohparvar Jun 2010 B2
7739559 Suzuki et al. Jun 2010 B2
7773439 Do et al. Aug 2010 B2
7776665 Izumi et al. Aug 2010 B2
7796439 Arai Sep 2010 B2
7810017 Radke Oct 2010 B2
7821818 Dieny et al. Oct 2010 B2
7852662 Yang Dec 2010 B2
7861141 Chen Dec 2010 B2
7881095 Lu Feb 2011 B2
7911832 Kent et al. Mar 2011 B2
7916515 Li Mar 2011 B2
7936595 Han et al. May 2011 B2
7936598 Zheng et al. May 2011 B2
7983077 Park Jul 2011 B2
7986544 Kent et al. Jul 2011 B2
8008095 Assefa et al. Aug 2011 B2
8028119 Miura Sep 2011 B2
8041879 Erez Oct 2011 B2
8055957 Kondo Nov 2011 B2
8058925 Rasmussen Nov 2011 B2
8059460 Jeong et al. Nov 2011 B2
8072821 Arai Dec 2011 B2
8077496 Choi Dec 2011 B2
8080365 Nozaki Dec 2011 B2
8088556 Nozaki Jan 2012 B2
8094480 Tonomura Jan 2012 B2
8102701 Prejbeanu et al. Jan 2012 B2
8105948 Zhong et al. Jan 2012 B2
8120949 Ranjan et al. Feb 2012 B2
8143683 Wang et al. Mar 2012 B2
8144509 Jung Mar 2012 B2
8148970 Fuse Apr 2012 B2
8159867 Cho et al. Apr 2012 B2
8201024 Burger Jun 2012 B2
8223534 Chung Jul 2012 B2
8255742 Ipek Aug 2012 B2
8278996 Miki Oct 2012 B2
8279666 Dieny et al. Oct 2012 B2
8295073 Norman Oct 2012 B2
8295082 Chua-Eoan Oct 2012 B2
8334213 Mao Dec 2012 B2
8345474 Oh Jan 2013 B2
8349536 Nozaki Jan 2013 B2
8362580 Chen et al. Jan 2013 B2
8363465 Kent et al. Jan 2013 B2
8374050 Zhou et al. Feb 2013 B2
8386836 Burger Feb 2013 B2
8415650 Greene Apr 2013 B2
8416620 Zheng et al. Apr 2013 B2
8422286 Ranjan et al. Apr 2013 B2
8422330 Hatano et al. Apr 2013 B2
8432727 Ryu Apr 2013 B2
8441844 El Baraji May 2013 B2
8456883 Liu Jun 2013 B1
8456926 Ong et al. Jun 2013 B2
8477530 Ranjan et al. Jul 2013 B2
8492381 Kuroiwa et al. Jul 2013 B2
8492881 Kuroiwa et al. Jul 2013 B2
8495432 Dickens Jul 2013 B2
8535952 Ranjan et al. Sep 2013 B2
8539303 Lu Sep 2013 B2
8542524 Keshtbod et al. Sep 2013 B2
8549303 Fifield et al. Oct 2013 B2
8558334 Ueki et al. Oct 2013 B2
8559215 Zhou et al. Oct 2013 B2
8574928 Satoh et al. Nov 2013 B2
8582353 Lee Nov 2013 B2
8590139 Op DeBeeck et al. Nov 2013 B2
8592927 Jan Nov 2013 B2
8593868 Park Nov 2013 B2
8609439 Prejbeanu et al. Dec 2013 B2
8617408 Balamane Dec 2013 B2
8625339 Ong Jan 2014 B2
8634232 Oh Jan 2014 B2
8667331 Hori Mar 2014 B2
8687415 Parkin et al. Apr 2014 B2
8705279 Kim Apr 2014 B2
8716817 Saida May 2014 B2
8716818 Yoshikawa et al. May 2014 B2
8722543 Belen May 2014 B2
8737137 Choy et al. May 2014 B1
8755222 Kent et al. Jun 2014 B2
8779410 Sato et al. Jul 2014 B2
8780617 Kang Jul 2014 B2
8792269 Abedifard Jul 2014 B1
8802451 Malmhall Aug 2014 B2
8810974 Noel et al. Aug 2014 B2
8817525 Ishihara Aug 2014 B2
8832530 Pangal et al. Sep 2014 B2
8852760 Wang et al. Oct 2014 B2
8853807 Son et al. Oct 2014 B2
8860156 Beach et al. Oct 2014 B2
8862808 Tsukamoto et al. Oct 2014 B2
8867258 Rao Oct 2014 B2
8883520 Satoh et al. Nov 2014 B2
8902628 Ha Dec 2014 B2
8966345 Wilkerson Feb 2015 B2
8987849 Jan Mar 2015 B2
9019754 Bedeschi Apr 2015 B1
9025378 Tokiwa May 2015 B2
9026888 Kwok May 2015 B2
9030899 Lee May 2015 B2
9036407 Wang et al. May 2015 B2
9037812 Chew May 2015 B2
9043674 Wu May 2015 B2
9070441 Otsuka et al. Jun 2015 B2
9070855 Gan et al. Jun 2015 B2
9076530 Gomez et al. Jul 2015 B2
9082888 Kent et al. Jul 2015 B2
9104581 Fee et al. Aug 2015 B2
9104595 Sah Aug 2015 B2
9130155 Chepulskyy et al. Sep 2015 B2
9136463 Li Sep 2015 B2
9140247 Kim Sep 2015 B2
9165629 Chih Oct 2015 B2
9165787 Kang Oct 2015 B2
9166155 Deshpande Oct 2015 B2
9178958 Lindamood Nov 2015 B2
9189326 Kalamatianos Nov 2015 B2
9190471 Yi et al. Nov 2015 B2
9196332 Zhang et al. Nov 2015 B2
9229306 Mekhanik et al. Jan 2016 B2
9229853 Khan Jan 2016 B2
9231191 Huang et al. Jan 2016 B2
9245608 Chen et al. Jan 2016 B2
9250990 Motwani Feb 2016 B2
9250997 Kim et al. Feb 2016 B2
9251896 Ikeda Feb 2016 B2
9257483 Ishigaki Feb 2016 B2
9263667 Pinarbasi Feb 2016 B1
9286186 Weiss Mar 2016 B2
9298552 Leem Mar 2016 B2
9299412 Naelmi Mar 2016 B2
9317429 Ramanujan Apr 2016 B2
9324457 Takizawa Apr 2016 B2
9337412 Pinarbasi et al. May 2016 B2
9341939 Yu et al. May 2016 B1
9342403 Keppel et al. May 2016 B2
9349482 Kim et al. May 2016 B2
9351899 Bose et al. May 2016 B2
9362486 Kim et al. Jun 2016 B2
9378817 Kawai Jun 2016 B2
9379314 Park et al. Jun 2016 B2
9389954 Pelley et al. Jul 2016 B2
9396065 Webb et al. Jul 2016 B2
9396991 Arvin et al. Jul 2016 B2
9401336 Arvin et al. Jul 2016 B2
9406876 Pinarbasi Aug 2016 B2
9418721 Bose Aug 2016 B2
9431084 Bose et al. Aug 2016 B2
9449720 Lung Sep 2016 B1
9450180 Annunziata Sep 2016 B1
9455013 Kim Sep 2016 B2
9466789 Wang et al. Oct 2016 B2
9472282 Lee Oct 2016 B2
9472748 Kuo et al. Oct 2016 B2
9484527 Han et al. Nov 2016 B2
9488416 Fujita et al. Nov 2016 B2
9490054 Jan Nov 2016 B2
9508456 Shim Nov 2016 B1
9520128 Bauer et al. Dec 2016 B2
9520192 Naeimi et al. Dec 2016 B2
9548116 Roy Jan 2017 B2
9548445 Lee et al. Jan 2017 B2
9553102 Wang Jan 2017 B2
9583167 Chung Feb 2017 B2
9594683 Dittrich Mar 2017 B2
9600183 Tomishima et al. Mar 2017 B2
9608038 Wang et al. Mar 2017 B2
9614007 Boniardi Apr 2017 B2
9634237 Lee et al. Apr 2017 B2
9640267 Tani May 2017 B2
9646701 Lee May 2017 B2
9652321 Motwani May 2017 B2
9662925 Raksha et al. May 2017 B2
9697140 Kwok Jul 2017 B2
9720616 Yu Aug 2017 B2
9728712 Kardasz et al. Aug 2017 B2
9741926 Pinarbasi et al. Aug 2017 B1
9772555 Park et al. Sep 2017 B2
9773974 Pinarbasi et al. Sep 2017 B2
9780300 Zhou et al. Oct 2017 B2
9793319 Gan et al. Oct 2017 B2
9853006 Arvin et al. Dec 2017 B2
9853206 Pinarbasi et al. Dec 2017 B2
9853292 Loveridge et al. Dec 2017 B2
9858976 Ikegami Jan 2018 B2
9859333 Kim et al. Jan 2018 B2
9865806 Choi et al. Jan 2018 B2
9935258 Chen et al. Apr 2018 B2
10008662 You Jun 2018 B2
10026609 Sreenivasan et al. Jul 2018 B2
10038137 Chuang Jul 2018 B2
10042588 Kang Aug 2018 B2
10043851 Shen Aug 2018 B1
10043967 Chen Aug 2018 B2
10062837 Kim et al. Aug 2018 B2
10115446 Louie et al. Oct 2018 B1
10134988 Fennimore et al. Nov 2018 B2
10163479 Berger et al. Dec 2018 B2
10186614 Asami Jan 2019 B2
20020090533 Zhang et al. Jul 2002 A1
20020105823 Redon et al. Aug 2002 A1
20030085186 Fujioka May 2003 A1
20030117840 Sharma et al. Jun 2003 A1
20030151944 Saito Aug 2003 A1
20030197984 Inomata et al. Oct 2003 A1
20030218903 Luo Nov 2003 A1
20040012994 Slaughter et al. Jan 2004 A1
20040026369 Ying Feb 2004 A1
20040061154 Huai et al. Apr 2004 A1
20040094785 Zhu et al. May 2004 A1
20040130936 Nguyen et al. Jul 2004 A1
20040173315 Leung Sep 2004 A1
20040257717 Sharma et al. Dec 2004 A1
20050041342 Huai et al. Feb 2005 A1
20050051820 Stojakovic et al. Mar 2005 A1
20050063222 Huai et al. Mar 2005 A1
20050104101 Sun et al. May 2005 A1
20050128842 Wei Jun 2005 A1
20050136600 Huai Jun 2005 A1
20050158881 Sharma Jul 2005 A1
20050180202 Huai et al. Aug 2005 A1
20050184839 Nguyen et al. Aug 2005 A1
20050201023 Huai et al. Sep 2005 A1
20050237787 Huai et al. Oct 2005 A1
20050280058 Pakala et al. Dec 2005 A1
20060018057 Huai Jan 2006 A1
20060049472 Diao et al. Mar 2006 A1
20060077734 Fong Apr 2006 A1
20060087880 Mancoff et al. Apr 2006 A1
20060092696 Bessho May 2006 A1
20060132990 Morise et al. Jun 2006 A1
20060227465 Inokuchi et al. Oct 2006 A1
20070019337 Apalkov et al. Jan 2007 A1
20070096229 Yoshikawa May 2007 A1
20070242501 Hung et al. Oct 2007 A1
20080049488 Rizzo Feb 2008 A1
20080079530 Weidman et al. Apr 2008 A1
20080112094 Kent et al. May 2008 A1
20080151614 Guo Jun 2008 A1
20080259508 Kent et al. Oct 2008 A2
20080297292 Viala et al. Dec 2008 A1
20090046501 Ranjan et al. Feb 2009 A1
20090072185 Raksha et al. Mar 2009 A1
20090091037 Assefa et al. Apr 2009 A1
20090098413 Kanegae Apr 2009 A1
20090146231 Kuper et al. Jun 2009 A1
20090161421 Cho et al. Jun 2009 A1
20090209102 Zhong et al. Aug 2009 A1
20090231909 Dieny et al. Sep 2009 A1
20100019297 Hwang Jan 2010 A1
20100124091 Cowburn May 2010 A1
20100162065 Norman Jun 2010 A1
20100193891 Wang et al. Aug 2010 A1
20100246254 Prejbeanu et al. Sep 2010 A1
20100271870 Zheng et al. Oct 2010 A1
20100290275 Park et al. Nov 2010 A1
20110032645 Noel et al. Feb 2011 A1
20110058412 Zheng et al. Mar 2011 A1
20110061786 Mason Mar 2011 A1
20110089511 Keshtbod et al. Apr 2011 A1
20110133298 Chen et al. Jun 2011 A1
20120052258 Op DeBeeck et al. Mar 2012 A1
20120069649 Ranjan et al. Mar 2012 A1
20120155156 Watts Jun 2012 A1
20120155158 Higo Jun 2012 A1
20120181642 Prejbeanu et al. Jul 2012 A1
20120188818 Ranjan et al. Jul 2012 A1
20120280336 Jan et al. Nov 2012 A1
20120280339 Zhang et al. Nov 2012 A1
20120294078 Kent et al. Nov 2012 A1
20120299133 Son et al. Nov 2012 A1
20130001506 Sato et al. Jan 2013 A1
20130001652 Yoshikawa et al. Jan 2013 A1
20130021841 Zhou et al. Jan 2013 A1
20130244344 Malmhall et al. Sep 2013 A1
20130267042 Satoh et al. Oct 2013 A1
20130270661 Yi et al. Oct 2013 A1
20130307097 Yi et al. Nov 2013 A1
20130341801 Satoh et al. Dec 2013 A1
20140009994 Parkin et al. Jan 2014 A1
20140042571 Gan et al. Feb 2014 A1
20140070341 Beach et al. Mar 2014 A1
20140103472 Kent et al. Apr 2014 A1
20140136870 Breternitz et al. May 2014 A1
20140151837 Ryu Jun 2014 A1
20140169085 Wang et al. Jun 2014 A1
20140175583 Doyle Jun 2014 A1
20140177316 Otsuka et al. Jun 2014 A1
20140217531 Jan Aug 2014 A1
20140252439 Guo Sep 2014 A1
20140264671 Chepulskyy et al. Sep 2014 A1
20140281284 Block et al. Sep 2014 A1
20150056368 Wang et al. Feb 2015 A1
20150279904 Pinarbasi et al. Oct 2015 A1
20160087193 Pinarbasi et al. Mar 2016 A1
20160163973 Pinarbasi Jun 2016 A1
20160218278 Pinarbasi et al. Jul 2016 A1
20160283385 Boyd et al. Sep 2016 A1
20160315118 Kardasz et al. Oct 2016 A1
20160378592 Ikegami et al. Dec 2016 A1
20170062712 Choi et al. Mar 2017 A1
20170123991 Sela et al. May 2017 A1
20170133104 Darbari et al. May 2017 A1
20170199459 Ryu et al. Jul 2017 A1
20170256584 Sanuki Sep 2017 A1
20180033957 Zhang Feb 2018 A1
20180097006 Kim et al. Apr 2018 A1
20180114589 El-Baraji et al. Apr 2018 A1
20180119278 Kornmeyer May 2018 A1
20180121117 Berger et al. May 2018 A1
20180121355 Berger et al. May 2018 A1
20180121361 Berger et al. May 2018 A1
20180122446 Berger et al. May 2018 A1
20180122447 Berger et al. May 2018 A1
20180122448 Berger et al. May 2018 A1
20180122449 Berger et al. May 2018 A1
20180122450 Berger et al. May 2018 A1
20180130945 Choi et al. May 2018 A1
20180211821 Kogler Jul 2018 A1
20180233362 Glodde Aug 2018 A1
20180233363 Glodde Aug 2018 A1
20180248110 Kardasz et al. Aug 2018 A1
20180248113 Pinarbasi et al. Aug 2018 A1
20180269254 Sugioka Sep 2018 A1
20180285714 Torng Oct 2018 A1
20180286916 Wang Oct 2018 A1
20180331279 Shen Nov 2018 A1
20190067566 Nagel Feb 2019 A1
20190206936 Pinarbasi Jul 2019 A1
Foreign Referenced Citations (27)
Number Date Country
2766141 Jan 2011 CA
105706259 Jun 2016 CN
1345277 Sep 2003 EP
2817998 Jun 2002 FR
2832542 May 2003 FR
2910716 Jun 2008 FR
H10-004012 Jan 1998 JP
H11-120758 Apr 1999 JP
H11-352867 Dec 1999 JP
2001-195878 Jul 2001 JP
2002-261352 Sep 2002 JP
2002-357489 Dec 2002 JP
2003-318461 Nov 2003 JP
2005-044848 Feb 2005 JP
2005-150482 Jun 2005 JP
2005-535111 Nov 2005 JP
2006128579 May 2006 JP
2008-524830 Jul 2008 JP
2009-027177 Feb 2009 JP
2013-012546 Jan 2013 JP
2014-039061 Feb 2014 JP
5635666 Dec 2014 JP
2015-002352 Jan 2015 JP
10-2014-015246 Sep 2014 KR
2014-062681 Apr 2014 NO
2009-080636 Jul 2009 WO
2011-005484 Jan 2011 WO
Non-Patent Literature Citations (10)
Entry
US 7,026,672 B2, 04/2006, Grandis (withdrawn)
Bhatti Sabpreet et al., “Spintronics Based Random Access Memory: a Review,” Material Today, Nov. 2107, pp. 530-548, vol. 20, No. 9, Elsevier.
Helia Naeimi, et al., “STTRAM Scaling and Retention Failure,” Intel Technology Journal, vol. 17, Issue 1, 2013, pp. 54-75 (22 pages).
S. Ikeda, et al, “A Perpendicular-Anisotropy CoFeB—MgO Magnetic Tunnel Junction”, Nature Materials, vol. 9, Sep. 2010, pp. 721-724 (4 pages).
R.H. Kock, et al., “Thermally Assisted Magnetization Reversal in Submicron-Sized Magnetic Thin Films”, Physical Review Letters, The American Physical Society, vol. 84, No. 23, Jun. 5, 2000, pp. 5419-5422 (4 pages).
K.J. Lee, et al., “Analytical Investigation of Spin-Transfer Dynamics Using Perpendicular-to-Plane Polarizer”, Applied Physics Letters, American Insitute of Physics, vol. 86, (2005), pp. 022505-1 to 022505-3 (3 pages).
Kirsten Martens, et al., “Thermally Induced Magnetic Switching in Thin Ferromagnetic Annuli”, NSF grants PHY-0351964 (DLS), 2005, 11 pages.
Kristen Martens, et al., “Magnetic Reversal in Nanoscropic Ferromagnetic Rings”, NSF grants PHY-0351964 (DLS) 2005, 23 pages.
“Magnetic Technology Spintronics, Media and Interface”, Data Storage Institute, R&D Highlights, Sep. 2010, 3 pages.
Daniel Scott Matic, “A Magnetic Tunnel Junction Compact Model for STT-RAM and MeRAM”, Master Thesis University of California, Los Angeles, 2013, pp. 43.
Related Publications (1)
Number Date Country
20190207103 A1 Jul 2019 US