Claims
- 1. A memory device comprising:a semiconductor substrate having a first surface; a first plurality of MTJ devices formed on the first surface of the semiconductor substrate, wherein the first plurality of MTJ devices are logically interconnected so as to form a memory array wherein logical data can be stored therein by selective magnetization of individual MTJ devices of the array; and at least one antifuse MTJ device formed on the semiconductor substrate, wherein the antifuse MTJ device is electrically interconnected to the memory device so as to permit selective application of a reduced voltage to the memory device.
- 2. The device of claim 1, wherein the at least one antifuse MTJ device comprises a device having at least a first layer of a magnetic material that is magnetized in a first fixed direction, a second layer of magnetic material that can be magnetized in either the first fixed direction or a second direction, and a tunnel dielectric layer interposed between the first layer and the second layer.
- 3. The device of claim 2, wherein the first layer comprises a layer of NiFe that is approximately 100-500 Å thick, the second layer comprises a layer of NiFe that is approximately 40-50 Å thick, and the dielectric layer comprises a layer of Al2O3 that is approximately 10-15 Å thick.
- 4. The device of claim 2, wherein the antifuse device has a resistance of greater than approximately 1 MΩ prior to application of a selected voltage and wherein the antifuse device, upon application of the selected voltage is shorted across the tunnel dielectric layer so as to have a resistance of less than approximately 1 kΩ.
- 5. The device of claim 4, wherein the selected voltage is approximately 1.8 volts.
- 6. The device of claim 5, wherein the at least one antifuse device comprises a plurality of antifuse devices.
- 7. The device of claim 6, further comprising a decoder circuit coupled to the plurality of antifuse devices such that application of a programmed voltage can result in selective application of the selective voltage of one or more of the plurality of antifuse devices thereby shorting one or more of the plurality of antifuse devices.
- 8. The device of claim 7, further comprising a logic circuit coupled to the plurality of antifuse devices that selectively disables or enables portions of the device based upon the shorting of one or more of the plurality of antifuse devices.
- 9. The device of claim 1, wherein the first plurality of MTJ devices comprise a plurality of MRAM cells.
- 10. The device of claim 1, wherein the at least one antifuse MTJ device comprises a device having a first barrier layer, a sense layer, a tunneling dielectric layer, a pinned layer, a pinning layer, and a second barrier layer.
- 11. The device of claim 10, wherein the first barrier layer comprises a layer of Ta that is approximately 50 Å thick, the sense layer comprises NiFe that is approximately 40 Å thick, the tunneling dielectric layer comprises Al2O3 that is approximately 10-15 Å thick, the pinned layer comprises NiFe that is approximately 40 Å thick, the pinning layer comprises IrMn that is approximately 100 Å thick, and the second barrier layer comprises Ta that is approximately 200 Å thick.
RELATED APPLICATIONS
This application claims the benefit of U.S. Provisional Application No. 60/367,673, filed on Mar. 22, 2002, entitled “MAGNETIC TUNNELING JUNCTION ANTIFUSE DEVICE”.
US Referenced Citations (11)
Provisional Applications (1)
|
Number |
Date |
Country |
|
60/367673 |
Mar 2002 |
US |