The present invention relates generally to mass spectrometry, in particular to time-of-flight mass spectrometers.
Mass spectrometers are devices which vaporize and ionize a sample and then determine the mass to charge ratios of the collection of ions formed. One well known mass analyzer is the time-of-flight mass spectrometer (TOFMS), in which the mass to charge ratio of an ion is determined by the amount of time required for that ion to be transmitted under the influence of pulsed electric fields from the ion source to a detector. The spectral quality in TOFMS reflects the initial conditions of the ion beam prior to acceleration into a field free drift region. Specifically, any factor which results in ions of the same mass having different kinetic energies and/or being accelerated from different points in space will result in a degradation of spectral resolution, and thereby, a loss of mass accuracy. Matrix assisted laser desorption ionization (MALDI) is a well-known method to produce gas phase biomolecular ions for mass spectrometric analysis. The development of delayed extraction (DE) for MALDI-TOF has made high resolution routine for MALDI-based instruments. In DE-MALDI, a short delay is added between the ionization event, triggered by the laser, and the application of the accelerating pulse to the TOF source region. The fast (i.e., high-energy) ions will travel farther than the slow ions thereby transforming the energy distribution upon ionization to a spatial distribution upon acceleration (in the ionization region prior to the extraction pulse application).
See U.S. Pat. Nos. 5,625,184, 5,627,369 and 5,760,393. See also, Wiley et al., Time-of-flight mass spectrometer with improved resolution, Review of Scientific Instruments vol. 26, no. 12, pp. 1150-1157 (2004); M. L. Vestal, Modern MALDI time-of-flight mass spectrometry, Journal of Mass Spectrometry, vol. 44, no. 3, pp. 303-317 (2009); Vestal et al., Resolution and mass accuracy in matrix-assisted laser desorption ionization-time-of-flight, Journal of the American Society for Mass Spectrometry, vol. 9, no. 9, pp. 892-911 (1998); and Vestal et al., High Performance MALDI-TOF mass spectrometry for proteomics, International Journal of Mass Spectrometry, vol. 268, no. 2, pp. 83-92 (2007). The contents of these documents are hereby incorporated by reference as if recited in full herein.
Embodiments of the present invention are directed to DE-MALDI-TOF MS systems that can operate with successive automated varying delay times for extraction pulses to vary a focus mass for a given accelerating and extraction voltage for mass signal acquisition and analysis of a single sample.
Embodiments of the invention are directed to delayed extraction (DE) matrix assisted laser desorption ionization (MALDI) time-of-flight mass spectrometers (TOF MS). The DE-MALDI TOF MS includes: a housing enclosing an analysis flow path; a solid state laser in optical communication with the analysis flow path; a variable voltage input; a delayed extraction plate connected to the variable voltage input; a flight tube in the housing, residing upstream of the delayed extraction plate and defining a free drift portion of the analysis flow path; a detector in communication with the flight tube; and a variable delay time module in communication with the laser and the variable voltage input configured to operate the variable voltage input with a plurality of different successive delay times during signal acquisition of a single sample. Each respective delay time is increased or decreased from another delay time by between about 1 nanosecond to about 500 nanoseconds to thereby obtain signal with a plurality of different focus masses at the detector.
The flight tube can have a length that is between about 0.4 m and about 1 m. However, longer or shorter lengths may optionally be used.
The solid state laser can be an ultraviolet laser, an infrared laser or a visible light laser.
The solid state laser can be an ultraviolet laser is configured to transmit a laser beam with a wavelength between about 340 nm and 370 nm.
The DE-MALDI-TOF MS can include a delayed extraction pulse generator in communication with a voltage supply and the variable delay time module.
The plurality of different successive delay times can include between 3-10 different delay times of between 1 nanosecond and 2400 nanoseconds during a cumulative signal acquisition time of between about 20 to about 30 seconds for a respective single sample.
The plurality of different successive delay times can progressively increase in length.
The focus masses can be between 2000 and about 20,000 Dalton.
The laser can be configured to input an ultraviolet laser beam with an energy between about 1-10 microjoules measured at a target and a pulse width between about 2-5 nanoseconds.
The DE-MALDI-TOF MS can include an analysis module in communication with the detector and/or a controller of the MALDI-TOF MS. The analysis module can be configured to generate at least one of a superimposed spectrum or a composite spectrum of m/z peaks from signal obtained by the detector during different passes at different time delays of the MALDI TOF MS.
The variable delay time module can be in communication with or integrated into a delayed extraction pulse generator and is configured to select a subsequent delay time or delay times for respective samples based on sample specific spectrums from a prior pass of a known delay time to thereby have an adaptive delay time capability.
The DE-MALDI-TOF MS can include a digitizer in communication with the detector. The variable time delay module can be incorporated at least partially into a control circuit or component of a control circuit which is also configured to provide a trigger timing control for activating the digitizer in communication with the detector.
A method of analyzing a sample in a delayed extraction (DE) matrix assisted laser desorption ionization (MALDI) time-of-flight mass spectrometer (TOF MS) includes electronically automatically varying delay times between pulsed ionization and acceleration to collect signal of a single sample with different focus masses at a detector.
The electronically automatically varying delay times can be carried out to progressively increase delay times.
The delay times can be increased or decreased from another delay time by between 1-500 nanoseconds with a delay time of between 1 nanosecond and 2500 nanoseconds.
The different delay times can be between 3-10 different delay times for a respective single sample.
A cumulative signal acquisition time for a respective single sample can be under 60 seconds, typically between about 20 to about 30 seconds.
The method can include, before the electronically automatically varying delay times, obtaining a first baseline pass of signal at a first delay time, determining if peaks of interest reside outside a predetermined range on either side of a focus mass of the first baseline pass, and selecting different delay times for the electronically automatically varying step based on if peaks of interest reside outside the predetermined range.
The method can include electronically switching laser pulses on and off and controlling initiation of accelerating voltage to generate the varying delay times.
Respective delay times can change by between about 10 nanoseconds to about 300 nanoseconds.
The sample can be undergoing analysis to determine whether one or more microorganisms are present in a mass range between about 2000 to about 20,000 Dalton.
The sample can be undergoing analysis to determine if one or more different types of bacteria may be present in a mass range between about 2000-20,000 Dalton.
The method can include identifying a microorganism in the sample based on the signal.
The method can include electronically generating a composite spectrum based on the signal of the single sample at the different focus masses.
The composite spectrum can be an average of the signals of the single sample at two or more of the different focus masses.
The method can include electronically generating a superimposed spectrum based on the signal of the single sample at the different focus masses.
The method can include: conducting a pass at a known delay time and focus mass to generate a first spectrum; electronically analyzing a resolution of the first spectrum; and electronically determining a change to the delay time to increase the resolution of the signal. The respective different delay times can be increased or decreased from other delay times by between 50 nanoseconds and 300 nanoseconds, with a delay time in a range of between 50 nanoseconds and 2400 nanoseconds.
Still other embodiments are directed to computer program products for a delayed extraction (DE) matrix assisted laser desorption ionization (MALDI) time-of-flight mass spectrometer (TOF MS). The computer program product includes a non-transitory computer readable storage medium having computer readable program code embodied in the medium. The computer-readable program code including computer readable program code configured to operate the MALDI-TOF MS with a plurality of different delay times for a respective single sample. Respective different delay times are increased or decreased from other delay times by between 1 nanosecond and 500 nanoseconds.
The computer program products can include computer readable program code configured to generate a composite and/or superimposed signal from spectra collected over a plurality of passes by a detector of the MALDI-TOF MS at the different delay times for different focus masses and a cumulative signal acquisition time in under 60 seconds, typically between about 20-30 seconds.
The respective different delay times are increased or decreased from other delay times by between 50 nanoseconds and 300 nanoseconds:
Further features, advantages and details of the present invention will be appreciated by those of ordinary skill in the art from a reading of the figures and the detailed description of the preferred embodiments that follow, such description being merely illustrative of the present invention.
It is noted that aspects of the invention described with respect to one embodiment, may be incorporated in a different embodiment although not specifically described relative thereto. That is, all embodiments and/or features of any embodiment can be combined in any way and/or combination. Applicant reserves the right to change any originally filed claim or file any new claim accordingly, including the right to be able to amend any originally filed claim to depend from and/or incorporate any feature of any other claim although not originally claimed in that manner. These and other objects and/or aspects of the present invention are explained in detail in the specification set forth below.
The present invention now will be described more fully hereinafter with reference to the accompanying drawings, in which illustrative embodiments of the invention are shown. Like numbers refer to like elements and different embodiments of like elements can be designated using a different number of superscript indicator apostrophes (e.g., 10, 10′, 10″, 10′″).
In the figures, certain layers, components or features may be exaggerated for clarity, and broken lines illustrate optional features or operations unless specified otherwise. The terms “FIG.” and “Fig.” are used interchangeably with the word “Figure” in the application and/or drawings. This invention may, however, be embodied in many different forms and should not be construed as limited to the embodiments set forth herein; rather, these embodiments are provided so that this disclosure will be thorough and complete, and will fully convey the scope of the invention to those skilled in the art.
It will be understood that, although the terms first, second, etc. may be used herein to describe various elements, components, regions, layers and/or sections, these elements, components, regions, layers and/or sections should not be limited by these terms. These terms are only used to distinguish one element, component, region, layer or section from another region, layer or section. Thus, a first element, component, region, layer or section discussed below could be termed a second element, component, region, layer or section without departing from the teachings of the present invention.
Spatially relative terms, such as “beneath”, “below”, “bottom”, “lower”, “above”, “upper” and the like, may be used herein for ease of description to describe one element or feature's relationship to another element(s) or feature(s) as illustrated in the figures. It will be understood that the spatially relative terms are intended to encompass different orientations of the device in use or operation in addition to the orientation depicted in the figures. For example, if the device in the figures is turned over, elements described as “below” or “beneath” other elements or features would then be oriented “above” the other elements or features. Thus, the exemplary term “below” can encompass orientations of above, below and behind. The device may be otherwise oriented (rotated 90° or at other orientations) and the spatially relative descriptors used herein interpreted accordingly.
The term “about” refers to numbers in a range of +/−20% of the noted value.
As used herein, the singular forms “a”, “an” and “the” are intended to include the plural forms as well, unless expressly stated otherwise. It will be further understood that the terms “includes,” “comprises,” “including” and/or “comprising,” when used in this specification, specify the presence of stated features, integers, steps, operations, elements, and/or components, but do not preclude the presence or addition of one or more other features, integers, steps, operations, elements, components, and/or groups thereof. It will be understood that when an element is referred to as being “connected” or “coupled” to another element, it can be directly connected or coupled to the other element or intervening elements may be present. As used herein, the term “and/or” includes any and all combinations of one or more of the associated listed items.
Unless otherwise defined, all terms (including technical and scientific terms) used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. It will be further understood that terms, such as those defined in commonly used dictionaries, should be interpreted as having a meaning that is consistent with their meaning in the context of this specification and the relevant art and will not be interpreted in an idealized or overly formal sense unless expressly so defined herein.
The term “signal acquisition time” refers to the time that a digital signal of mass spectra of a single sample is collected or acquired from a detector of a mass spectrometer for analysis of the sample.
The terms “time delay” and “delay time” are used interchangeably and refer to a time between laser flash (firing/transmission) and ion extraction, i.e., between ionization and acceleration, for delayed extraction.
In some embodiments, the delay times can be used to obtain ion signal from a sample that is in the mass range between about 2,000 to about 20,000 Dalton.
The term “pass” refers to a single spectra collection, e.g., one full sweep across a spot. The term “shot” refers to the generation and collection of a single spectra.
The term “sample” refers to a substance undergoing analysis and can be any medium within a wide range of molecular weights. In some embodiments, the sample is being evaluated for the presence of microorganisms such as bacteria or fungi. However, the sample can be evaluated for the presence of other constituents including toxins or other chemicals.
The term “substantially the same” when referencing the peak resolution means that the spectra over a target range, typically between 2 kDa to 20 kDa, between 3 kDa to 18 kDa, and/or between about 4 kDa to 12 kDa, have a resolution that is within 10% of a defined focus mass peak resolution. Examples of focus masses are 4 kDa, 8 kDa, 12 kDa and 18 kDa.
The term “jitter” refers to deviation from true periodicity of a presumed periodic signal in electronics, often in relation to a reference clock source. In relation to MALDI-TOF, as is known to those of skill in the art, calibration or adjustment factors can be applied to power resolution calculations to account for jitter. For example, mass calibration can be used to compensate for timing jitter as can some protocols or methods in, for example, bacterial identification algorithms. It is noted that while compensations for jitter can help, it may be particularly suitable to reduce or minimize jitter to be as low as reasonably achievable to maximize resolving power.
The term “table top” refers to a relatively compact unit that can fit on a standard table top or counter top or occupy a footprint equivalent to a table top, such as a table top that has a width by length dimensions of about 1 foot by 6 foot, for example, and which typically has a height dimension that is between about 1-4 feet. In some embodiments, the system resides in an enclosure or housing of 28 inches (W)×28 inches (D)×38 inches (H).
Embodiments of the invention provide a varying time delay associated with respective delayed extractions that can generate spectra that have an extended resolution over a larger range compared to spectra collected from a sample using single fixed time delay.
The term “module” refers to hardware or firmware or hardware and firmware or hardware (e.g., computer hardware) and software components. The variable pulse delay module 15 can include at least one processor and/or electronic memory programmed with software or programmatic code with mathematical equations, look-up tables and/or defined algorithms that select/generate different delay times for a respective sample under analysis. The module 15 can be configured to direct a pulse generator 18 to (successively) operate at pre-defined delayed extraction times and/or adaptively select different delay times for different firings of the laser when analyzing a single sample. Thus, the module 15 is configured to select and/or change a delayed extraction pulse time for operation of the MS system 10 when analyzing respective single samples. The module 15 can be integrated into a single device, e.g., onboard the laser system 20, onboard the pulse generator 18, or in the controller 12. The module 15 can be a separate/discrete module such as a printed circuit board and/or processor in communication the laser 20 and/or the pulse generator 18, for example. The module 15 can be distributed in various components and may be local or remote to the MS system 10. The system 10 also includes a TOF tube 50 (
The delayed extraction plate 30p may be gridded or gridless. For example, as shown in
The circuit 10c may also optionally include an electronic (e.g., digital) delayed extraction pulse generator 18 for creating the variable delay times. The pulse generator 18 can be configured to communicate with the controller 12 and/or the at least one voltage source 25 and/or laser 20. The term “in communication with” refers to both wireless and wired electrical, optical, and/or electronic connections.
As shown in
The detector 35 can be in communication with a digitizer 37 that collects signal from the detector 35. The digitizer 37 can transmit the detector signal 35s (spectra) to the controller 12 and/or to an analysis module 40. The digitizer 37 can be a commercially available or custom digitizer. One commercially available digitizer is the Keysight U5309A digitizer from Keysight Technologies (a company originating from Agilent Technologies, Santa Rosa, Calif.).
The controller 12, the laser 20 and/or the delayed extraction pulse generator 18 can be in communication with the digitizer 37 so as to transmit a trigger signal 37s to the digitizer 37. The trigger signal 37s can be sent based on when the laser 20 is fired to collect signal 35s. That is, as shown in
As shown in
Again, generally stated, the laser 20 sends out a synchronization signal to the variable pulse delay circuitry/module 15 which communicates with the extraction delay generator 18G so that the delayed extraction pulse is synchronized with a time delay from the firing of the laser 20. The data acquisition by the digitizer 37′ can also be synchronized to the firing of the laser 20 and the extraction pulse generator 18 so that the digitizer 37′ will start acquiring signal from the detector 35 a certain time delay after the delayed extraction occurs.
The laser 20 can be configured to transmit a laser pulse to an ionization region I of the mass spectrometer 10 (e.g., for pulsed ionization) which can be proximate the target sample undergoing analysis, typically on a matrix on a sample plate 45 (
The detector 35 can be a linear detector 35l and/or a reflector detector 35r (
MALDI-TOF MS systems are well known. See, e.g., U.S. Pat. Nos. 5,625,184; 5,627,369; 5,760,393; 6,002,127; 6,057,543; 6,281,493; 6,541,765, and 5,969,348, the contents of which are hereby incorporated by reference as if recited in full herein. The majority of modern MALDI-TOF MS systems employ delayed extraction (e.g., time-lag focusing) to mitigate the negative spectral qualities of ion initial energy distribution. In the past, the MALDI-TOF MS systems provided optimal resolving power for a given delay time at only a single ion mass to charge ratio, known as the “focus mass.” Based on information and belief, in the past, the delay time was fixed for a given sample analysis and/or mass spectrometer design. Thus, in the past, the fixed delay time in DE-MALDI only optimized performance across a relatively narrow range of mass to charge ratios. Accordingly, resolution could unduly vary across the acquired or target spectrum and calibration may be non-linear.
In embodiments of the present invention, the system 10 can operate with different, typically rapidly successive and different, delay times for collecting spectra for analysis of a single sample.
The (at least one) controller 12 can determine when the laser 20 fires and direct the voltage source(s) 25 (typically through the delayed extraction pulse generator 18) to operate to provide the accelerating voltage input with a suitable delay time (“td2”). In some embodiments, a clock signal or other trigger signal from the laser 20 and/or pulse generator 18 can be used to identify the “firing” used to time (synch) a time used to identify/activate/generate and/or select desired delay times. The difference in different delay times can be between about 1 nanosecond to about 500 nanoseconds. Successively different delay times can be provided automatically as dynamically changed delay times that can provide pulsed extraction and which may provide rapid analysis (typically under 30 seconds per sample, for samples being analyzed for identification of biomolecules and/or microorganisms such as bacteria). The systems may have a high resolving power over a large range of mass-to-charge ratios.
In some embodiments, the MS systems 10 generate the different delay times to generate different focal masses that can be used to generate signal/mass spectra that can identify a sample or a constituent of a sample in a time frame that corresponds to that of a single focal mass in conventional MALDI-TOF MS systems. This operational protocol can allow the identification of samples and/or constituents of samples with a single mass spectrometer with a short signal acquisition time and in a manner that does not require a user to tune the mass spectrometer prior to sample signal collection. Tuning of focal mass can be automated. Tuning may be based on an electronic (e.g., computer program and/or software-directed) analysis of initial spectra acquired. One example for a use of a different focal mass is to better separate a wide peak in a low resolution region to better resolve a doublet peak.
In some embodiments, the resolving power can be between about 2000-3000 for mass to charge ratios of interest over a range that can be between about one or more of: 2 kDa to about 20 kDa, 3 kDa to 18 kDa, and/or 4 kDa-12 kDa.
As shown in
As schematically illustrated by timing diagrams in
Respective delayed extraction delay times are typically between about 1 nanosecond and 500 nanoseconds and can be in even or odd time increments, typically with between two (2) and ten (10) successive different delay times for a respective sample. More typically, the successive different delay times may be provided in between about 4-6 different delay times for a respective single sample and in between about 10-30 seconds of signal acquisition time. Extraction delay times may fall within a range of 100 ns to 3000 ns for typical sample analysis.
Temporally, sequential extraction delay times for the DE pulse generator 18 for laser pulse transmission for a respective sample can vary, typically by between 1-500 nanoseconds from one to another, more typically by between about 10-500 nanoseconds or 10-300 ns, such as between about 50 to about 300 nanoseconds, including 50 ns, 60 ns, 70 ns, 80 ns, 90 ns, 100 ns, 110 ns, 120 ns, 130 ns, 140 ns, 150 ns, 160 ns, 170 ns, 180 ns, 180 ns, 190 ns, 200 ns, 210 ns, 220 ns, 230 ns, 240 ns, 250 ns, 260 ns, 270 ns, 280 ns, 290 ns, and 300 ns.
In some embodiments, the laser 20 fires at a rate of about 1000 Hertz, so the process of firing the laser and acquiring the spectra should not be longer than 1 msec. On a 0.8 meter flight tube, it can take about 54 microseconds for a 17,000 Dalton ion to reach the detector 35. Thus, there is sufficient time available to increase delayed extraction and maintain a non-spectral overlap.
Typically, the detector 35 is operative to collect signal proximate in time to initiation of the acceleration voltage, e.g., with substantially the same delay time. The detector 35 can acquire signal over the course of a spectral acquisition (single firing of the laser). There is a gap where no ions strike the detector 35 that occurs between the laser firings.
Table 1 below provides examples of six, five and four successive delay times (in nanoseconds) t1 et seq. that can be used for respective TOF MALDI extraction pulse delay sequences t1-tn for a sequence of different delay times for a delayed extraction voltage pulse, e.g., td2, as shown in the timing diagram of
The solid state laser 20 can facilitate rapid successive delay times, typically between 2-10, more typically between 4-6 different delay times, for a single sample analysis. The single sample analysis can use the successive different delay times typically with cumulative or total signal acquisition time between about 10-30 seconds.
The solid state laser 20 can be an ultraviolet laser with a wavelength above 320 nm. The solid state laser 20 can generate a laser beam with a wavelength between about 347 nm to about 360 nm. The solid state laser 20 can alternatively be an infrared laser or a visible light laser.
An example of a suitable commercially available solid state laser is the Spectra-Physics Explorer® One™ series which has models available in the UV at 349 nm and 355 nm. The Explorer One 349 nm device is offered with pulse energies of 60 μJ and 120 μJ at 1 kHz, while the Explorer One 355 nm model produces over 300 mW of average power at a repetition rate of 50 kHz. A laser attenuator 20a (
The laser 20 can be capable of a repetition rate that is between 1 kHz and 2 kHz, typically up to about 10 kHz. A given repetition rate is for a given acquisition time.
The accelerating voltage Va can be any suitable voltage, but is typically between about 10 kV and 25 kV, more typically about 20 kV. The variable voltage Vv can be less than the accelerating voltage, typically between about 70-90% of Va. As discussed above, the system 10 can include a pulse generator 18 and/or electronic input/output or control device that can be used to control and/or generate the variable delay times. It is also contemplated that the voltage polarity can be changed as long as the electric field vector is the same.
The flight tube 50 can have any suitable length, typically between about 0.4 m and 2 m. In some embodiments, the flight tube 50 has a length that allows the system 10 to be a table top MS system. The system 10 is held in or by a housing 10h. In some embodiments, the flight tube 50 has a length that is about 0.5 m, about 0.6 m, about 0.7 m, about 0.8 m, about 0.9 m or about 1 m. The flight tube 50 may also be longer than 1 m and, to be clear, the DE-MALDI MS system is not required to be a benchtop system.
While shown in
The controller 12 can be and/or include at least one digital signal processor. The controller 12 can be and/or include an Application Specific Integrated Circuit (ASIC).
The circuit 10c may also include an analysis module 40. The multiple delay times can produce serial and separate spectra.
The controller 12 and/or analysis module 40 can generate a composite spectrum 90 (
The at least one web server 80 can include a single web server as a control node (hub) or may include a plurality of servers. The system 100 can also include routers (not shown). For example, a router can coordinate privacy rules on data exchange or access. Where more than one server is used, different servers (and/or routers) may execute different tasks or may share tasks or portions of tasks. For example, the system 100 can include one or combinations of more than one of the following: a security management server, a registered participant/user directory server, a patient record management server, and the like. The system 100 can include firewalls F and other secure connection and communication protocols. For Internet based applications, the server 80 and/or at least some of the associated web clients can be configured to operate using SSL (Secure Sockets Layer) and a high level of encryption. Additional security functionality may also be provided. For example, incorporation of a communication protocol stack at the client and the server supporting SSL communications or Virtual Private Network (VPN) technology such as Internet Protocol Security Architecture (IPSec) may provide for secure communications to further assure a patient's privacy.
The MALDI-TOF systems 10 and/or the networked system 100 can be provided using cloud computing which includes the provision of computational resources on demand via a computer network. The resources can be embodied as various infrastructure services (e.g., compute, storage, etc.) as well as applications, databases, file services, email, etc. In the traditional model of computing, both data and software are typically fully contained on the user's computer; in cloud computing, the user's computer may contain little software or data (perhaps an operating system and/or web browser), and may serve as little more than a display terminal for processes occurring on a network of external computers. A cloud computing service (or an aggregation of multiple cloud resources) may be generally referred to as the “Cloud.” Cloud storage may include a model of networked computer data storage where data is stored on multiple virtual servers, rather than being hosted on one or more dedicated servers.
Referring first to
The laser can output a laser pulse with between about 1-10 microjoules of energy (measured at the target) (block 203).
The laser pulse width can be between about 3-5 ns (block 204).
The TOF flight tube length can optionally be between about 0.4 m and about 1.0 m (block 205). However, longer or shorter flight tubes may be used in some embodiments.
The MS system can optionally be a table top unit with TOF flight tube length about 0.8 m (block 207).
Multiple signal acquisitions can be taken using varying delay times for generating spectra of a single sample in between about 20-30 seconds (block 215).
The sample can comprise a biosample from a patient and the identifying step can be carried out to identify if there is a defined microorganism such as bacteria in the sample for medical evaluation of the patient (block 235).
The analysis can identify whether any of about 150 (or more) different defined species of bacteria is in a respective sample based on the obtained spectra (block 236).
The solid state laser can be a UV solid state laser with a wavelength that is above about 320 nm, typically between about 347 nm to about 360 nm (block 202).
The delay times can vary between successive laser pulses or between one or more of the different laser pulses of a single sample by between about 1 ns to about 300 ns, and the total delay time for delayed extraction for a respective laser pulse is typically between 10 ns and 2500 ns (block 212).
The target mass range can be between about 2,000-20,000 Daltons (block 221).
The number of delay times can be between about 2-10, typically between 2-6 different delay times with a total cumulative signal acquisition time of between about 20-30 seconds, such as 2, 3, 4, 5 or 6 different delay times, for a single sample to thereby provide good resolution of the obtained spectra over the entire range (block 222).
The spectra can have a resolution, Δm, as low as 3.2 over a target range of 3-20 kDa and/or a resolution that is substantially the same as the peak resolution of a focus mass at a single mass weight. This is based on the theoretical minimum peak separation, Δm, in the range of 3-20 kDa. The spectra can have a resolution Δm, as low as 3.2, typically between 50 Da and 3.2 Da, over a target range of 3-20 kDa and/or a resolution that is substantially the same as the peak resolution of a focus mass at a single mass weight (block 233).
TOF systems do not operate based on a constant resolution over the m/z scale. See Introduction to Mass Spectrometry by Watson and Sparkman. It is important to note that lower resolution is better and “high resolution mass spectrometry” typically refers to maximizing resolving power. Actual measured Δm values in prototype systems using some td2 delay sequences were closer to 30 Da at an exemplary desired focus mass of 8 kDa.
Referring now to
The total passes can be, in some embodiments, between 4-6 passes with 4-6 different delay times in a range of 1 ns-2500 ns, with different time delays being increased or decreased by between 1 ns to 500 ns for a single sample (more typically between about 10 ns and 400 ns, such as 100 ns, 200 ns, 300 ns and 400 ns). The different delay times can be used for accumulating signal in less than 30 seconds for a respective sample, typically in 20-30 seconds total signal acquisition time (block 274).
The different delay times can be progressively increasing delay times that can increase or decrease by between 1 ns to 500 ns for a single sample in 20-30 seconds total signal acquisition time.
The different delay times can be progressively decreasing delay times can increase or decrease between 1 ns to 500 ns for a single sample in 20-30 seconds total signal acquisition time.
The acquired signal can be in the range of between 2,000-20,000 Dalton (block 262).
The defined range is one (1) standard deviation from the defined focus mass (block 276).
The defined range is two (2) standard deviations from the defined focus mass (block 277).
The microorganisms can be bacteria (block 282).
The solid state laser can be a UV laser with the laser pulse having an energy between about 1-10 microjoules (measured at the target) and the laser can have a repetition rate between 1 kHz to 2 kHz or more (block 252) (e.g., typically under 10k Hz).
Referring to
As will be appreciated by one of skill in the art, embodiments of the invention may be embodied as a method, system, data processing system, or computer program product. Furthermore, the present invention may take the form of a computer program product on a non-transient computer usable storage medium having computer usable program code embodied in the medium. Any suitable computer readable medium may be utilized including hard disks, CD-ROMs, optical storage devices, a transmission media such as those supporting the Internet or an intranet, or magnetic or other electronic storage devices.
Computer program code for carrying out operations of the present invention may be written in an object oriented programming language such as Java, Smalltalk, C # or C++. However, the computer program code for carrying out operations of the present invention may also be written in conventional procedural programming languages, such as the “C” programming language or in a visually oriented programming environment, such as Visual Basic.
Certain of the program code may execute entirely on one or more of a user's computer, partly on the user's computer, as a stand-alone software package, partly on the user's computer and partly on a remote computer or entirely on the remote computer. In the latter scenario, the remote computer may be connected to the user's computer through a local area network (LAN) or a wide area network (WAN), or the connection may be made to an external computer (for example, through the Internet using an Internet Service Provider). Typically, some program code executes on at least one web (hub) server and some may execute on at least one web client and with communication between the server(s) and clients using the Internet.
The invention is described in part below with reference to flowchart illustrations and/or block diagrams of methods, systems, computer program products and data and/or system architecture structures according to embodiments of the invention. It will be understood that each block of the illustrations, and/or combinations of blocks, can be implemented by computer program instructions. These computer program instructions may be provided to a processor of a general-purpose computer, special purpose computer, or other programmable data processing apparatus to produce a machine, such that the instructions, which execute via the processor of the computer or other programmable data processing apparatus, create means for implementing the functions/acts specified in the block or blocks.
These computer program instructions may also be stored in a computer-readable memory or storage that can direct a computer or other programmable data processing apparatus to function in a particular manner, such that the instructions stored in the computer-readable memory or storage produce an article of manufacture including instruction means which implement the function/act specified in the block or blocks.
The computer program instructions may also be loaded onto a computer or other programmable data processing apparatus to cause a series of operational steps to be performed on the computer or other programmable apparatus to produce a computer implemented process such that the instructions which execute on the computer or other programmable apparatus provide steps for implementing the functions/acts specified in the block or blocks.
The flowcharts and block diagrams of certain of the figures herein illustrate exemplary architecture, functionality, and operation of possible implementations of embodiments of the present invention. In this regard, each block in the flow charts or block diagrams represents a module, segment, or portion of code, which comprises one or more executable instructions for implementing the specified logical function(s). It should also be noted that in some alternative implementations, the functions noted in the blocks may occur out of the order noted in the figures. For example, two blocks shown in succession may in fact be executed substantially concurrently or the blocks may sometimes be executed in the reverse order or two or more blocks may be combined, depending upon the functionality involved.
As will be appreciated by those of skill in the art, the operating systems 449 may be any operating system suitable for use with a data processing system, such as OS/2, AIX, or zOS from International Business Machines Corporation, Armonk, N.Y., Windows CE, Windows NT, Windows95, Windows98, Windows2000, Windows XP, Windows Vista, Windows 7, Windows CE or other Windows versions from Microsoft Corporation, Redmond, Wash., Palm OS, Symbian OS, Cisco IOS, VxWorks, Unix or Linux, Mac OS from Apple Computer, LabView, or proprietary operating systems.
The I/O device drivers 458 typically include software routines accessed through the operating system 449 by the application programs 454 to communicate with devices such as I/O data port(s), data storage 455 and certain memory 414 components. The application programs 455 are illustrative of the programs that implement the various features of the data processing system and can include at least one application, which supports operations according to embodiments of the present invention. Finally, the data 455 represent the static and dynamic data used by the application programs 454, the operating system 449, the I/O device drivers 458, and other software programs that may reside in the memory 414.
While the present invention is illustrated, for example, with reference to the Successive Time Delay Module 450, the Adaptive Time Delay Module 451 and the Analysis Module 452 being application programs in
The I/O data port can be used to transfer information between the data processing system and another computer system or a network (e.g., the Internet) or to other devices controlled by the processor. These components may be conventional components such as those used in many conventional data processing systems, which may be configured in accordance with the present invention to operate as described herein.
The system 10 can include a patient record database and/or server that can include electronic medical records (EMR) with privacy access restrictions that are in compliance with HIPPA rules due to the client-server operation and privilege defined access for different users.
Having now described embodiments of the invention, the same will be illustrated with reference to certain examples, which are included herein for illustration purposes only, and which are not intended to be limiting of the invention.
The following equations/assumptions can be used to describe theoretical operation of an MS system for calculating resolving power such as shown in
do=5 mm
d1=10 mm
y=10
Va=20 kV
δx=0.025 mm
δvo=5×104 mm/ns
δt=4 ns
c1=1.38914×10−2 (for v in mm/ns, m in Da, t in ns, and din mm)
All particles are singly ionized
Higher order terms are neglected for resolution effects due initial position and velocity distributions
De≈D
Dv≈D
Fringe and penetrating electric field effects are neglected
Equations
The following equations can be used to calculate the theoretical resolving power based on the variables listed in Table 2. The ratio, y, can be used to adjust the “focal lengths,” Dv and Ds of the ion beam (see, S. R. Weinberger, E. P. Donlon, Y. Kaplun, T. C. Anderson, L. Li, L. Russon, and R. Whittal, “Devices for time lag focusing time-of-flight mass spectrometry,” U.S. Pat. No. 5,777,325 A, 7 Jul. 1998, and K. M. Hayden, M. Vestal, and J. M. Campbell, “Ion sources for mass spectrometry,” U.S. Pat. No. 7,176,454 B2, 13 Feb. 2007, the contents of which are hereby incorporated by reference as if recited in full herein).
“Focal lengths” refer to temporal focusing, not spatial focusing
The ion velocity can be expressed based on Newtonian physics (see S. R. Weinberger, E. P. Donlon, Y. Kaplun, T. C. Anderson, L. Li, L. Russon, and R. Whittal, “Devices for time lag focusing time-of-flight mass spectrometry,” U.S. Pat. No. 5,777,325 A, 7 Jul. 1998, the contents of which are hereby incorporated by reference as if recited in full herein).
The delay between ionization and application of extraction pulse can be shown as Δt (see M. Vestal and K. Hayden, “High performance MALDI-TOF mass spectrometry for proteomics,” International Journal of Mass Spectrometry, vol. 268, no. 2, pp. 83-92, 2007, the contents of which are hereby incorporated by reference as if recited in full herein).
The Rxx values can be the individual contributing factors to the overall resolution (see M. Vestal and K. Hayden, “High performance MALDI-TOF mass spectrometry for proteomics,” International Journal of Mass Spectrometry, vol. 268, no. 2, pp. 83-92, 2007, and F. H. Laukien and M. A. Park, “Kinetic energy focusing for pulsed ion desorption mass spectrometry,” U.S. Pat. No. 6,130,426 A, 10 Oct. 2000, the contents of which are hereby incorporated by reference as if recited in full herein).
The resolution, R, is the quadrature sum of the individual contributing factors (see K. M. Hayden, M. Vestal, and J. M. Campbell, “Ion sources for mass spectrometry,” U.S. Pat. No. 7,176,454 B2, 13 Feb. 2007, the contents of which are hereby incorporated by reference as if recited in full herein).
The resolving power is defined as R−1
R−1=[Rs12+Rv12+t2+RΔ2]−1/2
Theoretical Delay Time Vs. Focus Mass
Mass spectra were acquired on different samples for different extraction delay times. Mass spectra were acquired for sixteen samples (aka spots) of ATCC 8739 E. coli for each extraction delay time between 200 ns and 2,300 ns. The mass spectra for the individual spots were averaged together to generate the spectra shown in
The spectra for 200 ns, 800 ns, and 1,400 ns extraction delay times were zoomed to the 4-10 kDa range where the majority of the mass peaks reside for ATCC 8739 and are shown in
The spectra shown in
Esch. coli
Esch. coli
Esch. coli
The tested algorithm was only able to identify the spectra for 800 ns and 1,100 ns delay times, which are nearest to the theoretical desired extraction delay time of approximately 900 ns. However, when performing a simple average of the spectra corresponding to 200, 800, and 1,400 ns delay times, the algorithm was able to correctly identify the microorganism as E. coli. This indicates the potential usefulness of performing a variety of extraction delay time acquisitions for a single unknown sample to eliminate any dependence on the extraction delay time. By post-processing the spectra appropriately for such an acquisition, one could possibly eliminate the need to ensure that the extraction delay is suitably tuned prior to each acquisition. Additionally, more data is available to analyze in the mass regions corresponding to an increased resolution due to extraction delay time for research applications.
The foregoing is illustrative of the present invention and is not to be construed as limiting thereof. Although a few exemplary embodiments of this invention have been described, those skilled in the art will readily appreciate that many modifications are possible in the exemplary embodiments without materially departing from the novel teachings and advantages of this invention. Accordingly, all such modifications are intended to be included within the scope of this invention. Therefore, it is to be understood that the foregoing is illustrative of the present invention and is not to be construed as limited to the specific embodiments disclosed, and that modifications to the disclosed embodiments, as well as other embodiments, are intended to be included within the scope of the invention.
This application is a continuation application of U.S. application Ser. No. 16/058,016, filed Aug. 8, 2018, which is a continuation application of U.S. application Ser. No. 15/362,979, filed Nov. 29, 2016, now U.S. Pat. No. 10,068,760, issued Sep. 4, 2018, which is a continuation application of U.S. application Ser. No. 14/837,832, filed Aug. 27, 2015, now U.S. Pat. No. 9,536,726, issued Jan. 3, 2017, which claims the benefit of and priority to U.S. Provisional Application Ser. No. 62/043,533, filed Aug. 29, 2014, the contents of which are hereby incorporated by reference as if recited in full herein.
Number | Name | Date | Kind |
---|---|---|---|
5510613 | Reilly et al. | Apr 1996 | A |
5625184 | Vestal et al. | Apr 1997 | A |
5627369 | Vestal et al. | May 1997 | A |
5641959 | Holle et al. | Jun 1997 | A |
5712479 | Reilly et al. | Jan 1998 | A |
5742049 | Holle et al. | Apr 1998 | A |
5760393 | Vestal et al. | Jun 1998 | A |
5777325 | Weinberger et al. | Jul 1998 | A |
5905259 | Franzen | May 1999 | A |
5969348 | Franzen | Oct 1999 | A |
6002127 | Vestal et al. | Dec 1999 | A |
6057543 | Vestal et al. | May 2000 | A |
6130426 | Laukien et al. | Oct 2000 | A |
6281493 | Vestal et al. | Aug 2001 | B1 |
6518568 | Kovtoun et al. | Feb 2003 | B1 |
6541765 | Vestal | Apr 2003 | B1 |
6552335 | Guo et al. | Apr 2003 | B1 |
6717132 | Franzen | Apr 2004 | B2 |
6870158 | Blain | Mar 2005 | B1 |
7176454 | Hayden et al. | Feb 2007 | B2 |
7772552 | Gribb et al. | Aug 2010 | B2 |
9536726 | VanGordon | Jan 2017 | B2 |
10068760 | VanGordon | Sep 2018 | B2 |
10615023 | VanGordon | Apr 2020 | B2 |
20020145110 | Holle | Oct 2002 | A1 |
20050059013 | Chan et al. | Mar 2005 | A1 |
20060138316 | Seydoux et al. | Jun 2006 | A1 |
20060195271 | Park | Aug 2006 | A1 |
20120298855 | Satoh | Nov 2012 | A1 |
20160111271 | Bohm | Apr 2016 | A1 |
Number | Date | Country |
---|---|---|
200196000 | Dec 2001 | WO |
Entry |
---|
Brown et al. “Mass Resolution Improvement by Incorporation of Pulsed Ion Extraction in a Matrix-Assisted Laser Desorption/Ionization Linear Time-of-Flight Mass Spectrometer” Analytical Chemistry 67( 13): 1998-2003 ( 1995). |
Carvalho et al. “A New Gridless Ion Optics For High Resolution Time-of-Flight Mass Spectrometer” International Journal of Modern Physics B 19(15-17):2621-2626 (2005). |
Demirev et al. “Microorganism Identification by Mass Spectrometry and Protein Database Searches” Analytical Chemistry 71 (14):2732-2738 (1999). |
Erickson et al. “Mass Dependence of Time-Lag Focusing In Time-Of-Flight Mass Spectrometry—An Analysis” International Journal of Mass Spectrometry and Jon Processes 97:87-106 (1990). |
Explorer One, Compact and Lightweight UV NS Lasers, Spectra-Physics, product description, http://www.spectra-physics.com/products/q-switched-lasers/explorer-one, date unknown but before the priority date of the present application, printed from the Internet, 8 pages(Aug. 14, 2014). |
Garner et al. “Multi-Center Evaluation of the VITEK MS for the Mass Spectrometric Identification of Anaerobic Bacteria in the Clinical Microbiology Laboratory” UCLA Health Systems, Poster date unknown but believed to be before the priority date of the present application (1 page). |
International Preliminary Report on Patentability corresponding to International Patent Application No. PCT/US2015/047203 (12 pages) (dated Mar. 9, 2017). |
International Search Report and the Written Opinion of the International Searching Authority corresponding to International Patent Application No. PCT/US2015/047203 (17 pages) (dated Jan. 11, 2016). |
Ortec®, Research Applications, Timing, Specifications and Instructions Metek® Advanced Measurement Technology date unknown but believed to be before priority date of the present application (13 pages). |
Rychert et al. “Multicenter Evaluation of the Vitek MS Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry System for Identification of Gram-Positive Aerobic Bacteria” J Clin Microbial 51 (7):2225-2231 (2013). |
SimuiTOF 300 Tandem, SimuiTOF Systems, product description, http://www.simultof.com/content/simultof-300-tandem, date unknown but believed to be before the priority date of the present application, printed from the internet Aug. 25, 2015 (2 pages). |
Vestal “Modern MALDI time-of-flight mass spectrometry” J. Mass Spectrom. 44:303-317 (2009). |
Vestal et al. “High performance MALDI-TOF mass spectrometry for proteomics” International Journal of Mass Spectrometry 268(2):83-92 (2007) (Abstract Only). |
Vestal et al. “Resolution and Mass Accuracy in Matrix-Assisted Laser Desorption Ionization-Time-of-Flight” Journal of the American Society for Mass Spectrometry 9(9):892-911 (1998). |
Vitek® MS, MALDI-TOF Mass Spectrometry Identification, bioMerieux, product description, http://www.vitekms.com/technology.html, date unknown but believed to be before the priority date of the present application, printed from the internet Aug. 27, 2015, (1 page). |
Watson et al. “Time-Lag Focusing, Introduction to mass spectrometry instrumentation, applications, and strategies for data interpretation” John Wiley & Sons, Ltd., West Sussex, England (p. 66) (Dec. 4, 2007). |
Wiley et al. “Time-of-Flight Mass Spectrometer with Improved Resolution” Review of Scientific Instruments 26(12):1150-1157 (1955). |
Number | Date | Country | |
---|---|---|---|
20200350152 A1 | Nov 2020 | US |
Number | Date | Country | |
---|---|---|---|
62043533 | Aug 2014 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 16058016 | Aug 2018 | US |
Child | 16812883 | US | |
Parent | 15362979 | Nov 2016 | US |
Child | 16058016 | US | |
Parent | 14837832 | Aug 2015 | US |
Child | 15362979 | US |