Manufacturing process for zero-capacitor random access memory circuits

Information

  • Patent Grant
  • 8518774
  • Patent Number
    8,518,774
  • Date Filed
    Friday, March 21, 2008
    16 years ago
  • Date Issued
    Tuesday, August 27, 2013
    11 years ago
Abstract
Embodiments of a manufacturing process flow for producing standalone memory devices that can achieve bit cell sizes on the order of 4F2 or 5F2, and that can be applied to common source/drain, separate source/drain, or common source only or common drain only transistor arrays. Active area and word line patterns are formed as perpendicularly-arranged straight lines on a Silicon-on-Insulator substrate. The intersections of the active area and spaces between word lines define contact areas for the connection of vias and metal line layers. Insulative spacers are used to provide an etch mask pattern that allows the selective etching of contact areas as a series of linear trenches, thus facilitating straight line lithography techniques. Embodiments of the manufacturing process remove first layer metal (metal-1) islands and form elongated vias, in a succession of processing steps to build dense memory arrays.
Description
FIELD

Embodiments of the invention relate generally to semiconductor manufacturing, and more specifically to manufacturing processes for memory cell circuits.


BACKGROUND

Many modem microprocessors incorporate significant amounts of on-chip memory (such as cache memory), and the present trend toward ever-increasing amounts of on-chip memory have led some industry analysts to forecast that up to 90% of the die area of future processors will be occupied by memory. Different types of memory devices are presently used for the various cache and on-board memory arrays. For example, L1 (Level 1) caches typically use SRAM (Static Random Access Memory) devices, while other caches may use eDRAM (Embedded Dynamic Random Access Memory). Still other memory arrays may use Flash memory, or similar devices. Each type of memory has certain performance, storage, power consumption, and cost characteristics that may be well-suited to one type of application, but not others. These different types of memory devices also often have different device geometries, and are fabricated by different manufacturing processes. For example, SRAM bit-cells require four to six transistors, and are thus relatively costly, but they scale readily to smaller fabrication processes. Flash memory has fewer transistors, but is relatively slow, while DRAM has only one transistor per bit-cell and is relatively fast. Because of size and performance characteristics, DRAM is a popular choice for wide-scale use as stand alone memory, however, these devices also require the use of a capacitor per bit-cell, and the deep trench or stacked structure required for the capacitor produces an aspect ratio that does not scale well to smaller fabrication processes (e.g., beyond 65 nm).



FIG. 1A illustrates an example of a standard DRAM cell with a trench capacitor structure. In FIG. 1A, the DRAM cell 100 comprises a transistor which has a gate 102 that is separated from the substrate 106 by a gate oxide layer 105. Source and drain junctions 104 are formed within silicon substrate 106. The DRAM cell 100 also includes a trench capacitor 110, which extends downward through substrate 106. The capacitor structure 110 can also be a stacked capacitor, which case it would protrude upwards from substrate 106. Although trench technology may provide favorable topographies above the silicon surface, it presents significant challenges below the transistor, and can produce an aspect ratio as large as 90 to 1. This limitation prevents current DRAM devices from exploiting production processes that are much smaller than the current 65 nm or 45 nm technologies. The capacitor structure also imposes significant cost and yield constraints on DRAM manufacturing processes.


One important parameter associated with transistor circuits, such as DRAMs is the feature size of the device. In general, the feature size of the transistor is denoted F, where F corresponds to the minimum gate length that can be produced in the manufacturing process for circuit 100. Thus, for the example circuit of FIG. 1A, the width of gate 102 would define the feature size, F, for circuit 100. Under present manufacturing systems, the bit-cell area for a one-transistor, one-capacitor DRAM device is typically on the order of 2F by 4F, which equals 8F2.


To overcome the fabrication disadvantages of traditional DRAM devices, a new DRAM technology for memory applications has been developed. This technology, referred to as “Z-RAM” consists of a single transistor per bit-cell, with zero capacitors, thus eliminating the deep trench or the complex stacked capacitor. Z-RAM® was developed by, and is a trademark of Innovative Silicon, Inc. of Switzerland. Z-RAM is built on Silicon-on-Insulator (SOI) wafers, and was initially developed for embedded memory applications. In general, various different manufacturing processes can be employed to produce Z-RAM devices. It is desirable to implement a manufacturing process that reduces the size of the memory bit cell, thereby increasing the density of memory cells beyond the current 8F2 DRAM density, and also extends Z-RAM manufacturing processes to standalone memory applications. It is further desirable to provide a manufacturing process that allows DRAM device technology to scale below current manufacturing feature size dimensions, such as 45 nm and below.


It is yet further desirable to utilize a manufacturing process flow for Z-RAM devices that does not affect or alter drastically existing process flows for stand alone memory production for applications in which Z-RAM is used as on-chip memory or other stand alone memory applications.


Disadvantages with present memory cell fabrication processes also extend to the layout of signal lines through arrays of memory cells. FIG. 1B illustrates the bit and word line routing in present capacitor-based DRAM arrays 150. As shown in FIG. 1B, in typical prior art semiconductor lithography systems, DRAM active areas 152 are formed as long rectangular areas that are separated by gaps and staggered from row to row. The active areas 152 comprise the source, drain and gates of the memory transistors, and are parallel to the bit lines 153 of the memory cells. The word lines 162 are polysilicon lines that intersect the active areas 152 to form the transistor gates. The polysilicon gates for the word lines 162 are separated from the active areas at the intersection by a gate oxide layer. The cell layout of FIG. 1B also illustrates capacitor contacts 163 and bit line contact 165. The bit cell area is illustrated by box 154. As shown in array 150, the routing word lines consist of straight line segments and angled segments 164. Such a routing scheme facilitates the staggered layout of the active areas, but imposes a complication on the lithography process through the requirement of relatively complicated line layouts. Such complications impose practical limits on the degree of scalability of present memory array designs.





BRIEF DESCRIPTION OF THE DRAWINGS

Embodiments of the present invention are illustrated by way of example and not limitation in the figures of the accompanying drawings, in which like references indicate similar elements and in which:



FIG. 1A illustrates an example of a standard DRAM cell with a trench capacitor structure.



FIG. 1B illustrates the bit and word line routing in present capacitor-based DRAM arrays.



FIG. 2 is a flowchart that illustrates a process flow for manufacture of Z-RAM memory arrays, under an embodiment.



FIG. 3 is a top view illustration of straight line active area patterns formed on a substrate, under an embodiment.



FIG. 4 is a side view illustration of an active area pattern such as illustrated in FIG. 3, under an embodiment.



FIG. 5 is a top view illustration of straight poly line patterns formed on a substrate, under an embodiment.



FIG. 6 is a side view illustration of a memory array produced by a fabrication process, under an embodiment.



FIG. 7 illustrates the top view of an array of formation of contact areas for the gates of transistor devices, under an embodiment.



FIG. 8 is a side view illustration of a memory array as viewed from a cross-section line of FIG. 7, under an embodiment.



FIG. 9 is a side view illustration of a memory array after a trench etch process, under an embodiment.



FIG. 10 is a side view illustration of a memory array after deposition of conductive material in the trench area formed by spacers, under an embodiment.



FIG. 11 illustrates a side view of a memory array after planarization of conductive material in the trench area, under an embodiment.



FIG. 12 is a top view of metal 1 lines formed on a memory array, under an embodiment.



FIG. 13 is a side-view of a memory array with the metal 1 lines of FIG. 12, under an embodiment.



FIG. 14 illustrates the formation of via patterns on a memory array, under an embodiment.



FIG. 15 is a side-view of a memory array with the vias of FIG. 14 under an embodiment.



FIG. 16 is a top view of metal 2 (M2) lines formed on a memory array, under an embodiment.



FIG. 17 is a side-view of a memory array with the metal 2 lines of FIG. 16, under an embodiment.



FIG. 18 is a top view of a memory array comprising M1 lines, M2 lines, and vias, under an embodiment.





DETAILED DESCRIPTION

Embodiments of a manufacturing process flow for producing standalone Z-RAM devices that can achieve bit cell sizes on the order of 4F2 or 5F2, and that can be applied to common gate, common source, common drain, or separate source or drain transistors, are described.


Active area and poly line patterns are formed as perpendicularly-arranged straight lines (for common source/drain transistors), or rectangular areas on a Silicon-on-Insulator substrate. The intersections of the active area and word lines define contact areas for the connection of vias and metal line layers. Insulative spacers are used to provide an etch mask pattern that allows the selective etching of contact areas as a series of linear trenches, thus facilitating straight line lithography techniques. Embodiments of the manufacturing process remove first layer metal (metal-1) islands and form elongated vias, in a succession of processing steps to build a dense stand-alone Z-RAM array or embedded DRAM arrays.


In the following description, numerous specific details are introduced to provide a thorough understanding of, and enabling description for, embodiments of a dense memory cell manufacturing process. One skilled in the relevant art, however, will recognize that these embodiments can be practiced without one or more of the specific details, or with other components, systems, and so on. In other instances, well-known structures or operations are not shown, or are not described in detail, to avoid obscuring aspects of the disclosed embodiments.


As shown in FIG. 1B, in typical prior art semiconductor lithography systems, DRAM active areas are formed as small rectangular areas that are staggered from row to row. Word lines running over the active areas require bends or turns in the traces to maintain isolation of individual active area cells. Embodiments of present manufacturing system and method employ straight line patterning of active areas, thus facilitating the use of manufacturing process that can be scaled to smaller feature sizes. FIG. 2 is a flowchart that illustrates a process flow for manufacture of Z-RAM memory arrays, under an embodiment. In general, a number of memory devices will be formed in an array that is produced by successive steps of patterning conductive and insulative layers in a grid pattern, and selectively etching these layers to produce the devices (bit cells). In general, each bit cell is built from an active layer that is patterned in straight lines. With reference to FIG. 2, the process starts in block 202, in which the straight line active area patterns are formed by the shallow trench isolation (STI) process known in the art. The active areas are formed as a series of lines or rectangles in a first direction (e.g., horizontally) on the substrate surface. The use of straight lines greatly facilitates these lithography processes and allows scaling to smaller process dimensions defined by the feature size, F.


In one embodiment, Silicon-on-Insulator (SOI) technology is used to make a simpler transistor structure that does not require a capacitor. In general, SOI was developed as an alternative to conventional CMOS (Complementary Metal Oxide Semiconductor) technology to provide improved processing performance and reduced current leakage. Unlike conventional CMOS chips, where a transistor is placed directly on the surface of a silicon substrate, an SOI device has a thick layer of oxide insulator (typically silicon dioxide) between the transistor and the silicon substrate to more efficiently isolate transistors from adjacent devices and from the substrate. On SOI wafers, there is a buried oxide layer that covers the complete surface of the wafer.



FIG. 3 is a top view illustration of straight line active area patterns formed on an SOI substrate, under an embodiment. As shown in FIG. 3, the active area lines 302 are formed as straight lines or rectangles in a horizontal (first) direction with a critical dimension of width F, and this defines the minimum size of the device formed by the active area. In one embodiment, the gap 304 or distance between the active area patterns is also F, so that the pattern pitch is 2F. Alternatively, the width 302 and the distance between the active area lines 304 can vary from F to any multiple of F depending on the constraints and requirements of the system.



FIG. 4 is a side view illustration of an active area pattern on an SOI substrate, such as illustrated in FIG. 3, under an embodiment. As shown in FIG. 4, an oxide layer 404 is formed on top of a substrate layer 402, which is typically a silicon (Si) substrate. On top of oxide lies a doped silicon layer 406. This silicon layer is doped to the proper level depending on critical parameters of the device, or the requirements of any particular application. In one embodiment, the dopant implanted dose is on the order of 1012 to 1014 dopant atoms/cm2. Layer 406 of FIG. 4 is a silicon layer that comprises the active layer in which the transistors will be formed. The gaps 304 of FIG. 3 are made by an STI process that removes layer 406 and replaces it with an oxide film so that adjacent active area are insulated. The STI process uses photolithography and etching techniques to define areas of active regions and areas of insulated regions. During this process, the silicon 406 in regions 304 is etched away and then an oxide is deposited in the holes and planarized by a planarization technique, such as CMP (Chemical Mechanical Planarization).


After the active area patterns are formed and the appropriate dopant atoms are introduced, known semiconductor fabrication steps are performed, such as the growth of gate oxide layers, and so on. In one embodiment, the gates of the circuit are formed by the patterning of straight conductive lines (word lines), in a direction perpendicular to the active area lines. Thus, with reference to FIG. 2, in block 204, a set of straight word lines is laid in a second direction (e.g., vertical) on the substrate. For an embodiment in which stand alone memory devices are fabricated, the word lines are made from a stack of three different materials: polysilicon, then a silicide material, then an insulator. These layers are typically polysilicon, tungsten silicide, and silicon nitride. In one embodiment, the word lines comprise poly/silicide/nitride traces that define the areas for self-aligned contacts.



FIG. 5 is a top view illustration of straight word line patterns formed on a substrate, under an embodiment. As shown in FIG. 5, the word lines 502 are formed as straight lines in a vertical (second) direction with a critical dimension of width 1.5F, and this defines a second dimension of the device formed by the active area 302 of FIG. 3. In one embodiment, the gap 504 or distance between the word line patterns is F, so that the pattern pitch for the word lines is 2.5F. Alternatively, the distance between the word lines 502 and 504 can be any multiple of F (e.g., 1.5F, 2F or 3F) depending on the constraints and requirements of the system.



FIG. 6 is a side view illustration of a memory array produced by a fabrication process, under an embodiment. As shown in FIG. 6, several layers 610, 612 and 614 forming the transistor device and the word lines are formed on the SOI substrate. A poly layer 610 is formed on top of a silicon substrate layer 602. The doped silicon layer 406 of FIG. 4 is patterned into separate contact and gap areas 606 and 608. A poly gate structure is created above this layer. In one embodiment, the poly gate comprises a polysilicon layer 610, a polycide layer 612, and an insulation layer 614. The structure comprising layers 610, 612, and 614 is alternatively referred to as a transistor or “poly gate.” The polycide of layer 612 is typically a silicide material (e.g., tungsten silicide, WSi), and the insulation layer 614 can be silicon nitride (Si3N4), or any similar insulative compound. The poly gate is formed by depositing the three layers 610, 612, and 614 on the oxide layer through deposition techniques, photolithography techniques, and then dry etching the areas between the gates to form the appropriate gate pattern. After etching, Halo implants and (Lightly Doped Drain) LDD implants are used to dope the source and drain contact regions 606. The doping step forms a channel region 608 between the source and drain of the transistor.


In one embodiment, a silicon nitride (or similar insulative) spacer 616 is formed to define an area around the poly gate with respect to the source and drain areas 606. After the spacer formation step, the source and drain regions are further doped. The gap 618 between the polysilicon layer 610 and the 608 region is formed by the gate oxide layer that was grown in a previous processing step. The thickness of gap 618 can be adjusted to optimize the operation of the memory cell, and can range anywhere from 1-10 nm, and is typically 5 nm, and can be reduced down to 3 nm or 2 nm.



FIG. 6 illustrates the formation of three separate transistor devices comprising the gates and source/drain regions 606. This is illustrated in FIG. 2 as block 206. One of the ultimate goals of the process according to embodiments, is the formation of contact areas that contact the source/drain areas 606 to allow connection of wires to the transistor devices. In general, present lithography systems are well suited to producing lines, however, making square contacts is typically more difficult. Embodiments of the fabrication method produce square contacts using line and space patterning techniques. In this manner, regular contact and plug patterns are formed using line lithography (lines intersection) methods. The lack of a capacitor in memory cells, as shown in FIG. 1A, and produced in accordance with embodiments, allows the formation of contact areas through line lithography, as opposed to forming or drilling of individual holes, which is generally, a much more costly and complicated process. FIG. 7 illustrates a top view of an array of contact areas for the gates of transistor devices, under an embodiment. Alternating rows of active area rows 706 separated by gaps 709, and word line columns 702 and the gaps 704 between these columns define the areas of the contacts 708. In one embodiment, the contact areas are squares of dimension 1F by 1F that are formed at the intersection of the active areas 706 and the gaps 704 between the word lines 702. The contacts ultimately connect the metal lines and vias of the circuit to the active areas of the memory cells.


In general terms, the contact areas 708 are formed by patterning the lines 706, etching grooves in between the spacers, filling the grooves with polysilicon or metal and polishing the layer down to the nitride cap. The grooves essentially comprise trenches that are etched in straight lines through the poly layers, thus allowing for creation of contacts through line lithography, rather than traditional drilling techniques, thus making contact creation a more cost effective process. The trenches are defined by nitride spacers placed on the sides of the poly gates, as shown in block 208 of FIG. 2.



FIG. 8 is a side view illustration of a memory array as viewed from cross-section line 720 of FIG. 7, prior to patterning and etching, under an embodiment. As shown in FIG. 8, area 804 defines the spacer area and, in one embodiment, comprises silicon nitride (Si3N4), as does the insulative layer 614 of the poly gate. The area 802 between the spacers contacts the source/drain areas 606, and is filled with a dielectric material, such as silicon dioxide (SiO2). Thus, for the process of FIG. 2, after the nitride spacers have been formed, the silicon dioxide layer is deposited and then polished to allow for straight line lithography on a planar surface, block 210. As shown in block 212 of FIG. 2, the elongated line defined by the spacers is etched using a selective etch process that removes the insulative material down to the silicon layer. The silicon nitride comprising the spacer region 804 and the film 614 on top of the conductive gate, act as an etch stop.


In one embodiment, silicon nitride and silicon dioxide are used as the spacer and insulative materials respectively, as shown in FIG. 8. Alternatively, any suitable materials that have high etch selectively may also be used, such as Tantalum Oxide (Ta2O5), Titanium Oxide (TiO2), Zirconium Oxide (ZrO2), Hafnium Oxide (HfO2), Aluminum Oxide (Al2O3), and other such insulators or combinations of insulators. Any of these insulative materials can be used in regions 802, 804, or 614 of the poly gate structure shown in FIG. 8. In general, the spacer region 804 and the top layer of the poly gate 614 are made of the same material, and the gap region 802 is filled with a different insulative or dielectric material.



FIG. 9 is a side view illustration of a memory array after a trench etch process, under an embodiment. As shown in FIG. 9, once the insulator/dielectric material has been etched away in step 212 of FIG. 2, the top surface 902 of the insulation layer 614 of the poly gate is exposed, and the gap area down to the active area 606 is left open. This area is then filled with deposition of a plug or conductive material, such as polysilicon, Tungsten (W), or other suitable conductive or semi-conductive material. This is illustrated as block 214 of FIG. 2. FIG. 10 is a side view illustration of a memory array after deposition of conductive material in the trench area formed by spacers, under an embodiment. As shown in FIG. 10, the conductive material 1002 fills the trench material down to the source/drain areas 606 and is insulated from the poly gate area by spacer area 804 and by insulative layer 614.


Once the conductive material has been deposited, it is planarized down to the nitride etch stop layer 614 by a CMP (Chemical Mechanical Planarization) or similar process. In general, CMP processes use a chemical slurry formulation and mechanical polishing to remove unwanted material and polish wafer material to a near-perfect flat and smooth surface for subsequent photolithography steps. After this planarization process, the contact (plug) material will reside only in the contact areas. FIG. 11 illustrates a side view of a memory array after planarization of conductive material in the trench area, under an embodiment. As shown in FIG. 11, the remaining conductive material 1102 forms a contact area path to the active area 606 that is flush with the top surface 902 of the insulation layer of the poly gates.


Once the conductive material is deposited and planarized in the trench areas, the array is ready for metal line formation. The conductive material forms contact areas that connect the metal lines of the circuit to the active areas of the memory cells. Any number, n, of metal lines can be used, for example, present stand alone memories have up to 5 metal lines that are numbered M1 to Mn from bottom to top. Each of the metal line layers is separated by insulative material, and the metal lines are connected to one another through vias. In one embodiment, every other contact area is connected to a metal line layer, and the remaining alternating contact areas are connected to vias. As shown as block 218 of FIG. 2, straight metal 1 (M1) line patterns are formed on alternating contact areas. FIG. 12 is a top view of metal 1 lines formed on a memory array, under an embodiment. As shown in FIG. 12, M1 lines 1202 are formed as straight lines that are separated by a gap 1204. The line pitch is defined by the width of the contact areas and the poly gates. As shown in FIG. 12, the pitch under an embodiment is 5F, as is the case when the contact area is F and the poly gate width is 1.5F, as shown in FIG. 7. Though the typical pitch for M1 lines in prior art processes is on the order of 2F, the use of 5F pitch for present embodiments greatly eases constrains associated with the lithography process.


In one embodiment, the M1 lines are formed by a Damascene process. In a Damascene process, a dielectric layer of “low-k” materials is deposited using chemical vapor or physical vapor deposition. A lithography step and etch step are then performed to create grooves to lower levels as well as to trenches where the copper or other conductive material will end up. A strong barrier layer is used to prevent migration of the copper. The metal layer is deposited through vapor deposition, and this layer serves as a seed layer for an electroplating step. This layer is then polished through a CMP step to produce a top surface that is ready for the deposition of the next layer of insulation. Other techniques, such as traditional etching processes can be used to form the metal layers, under alternative embodiments of the memory array fabrication process.



FIG. 13 is a side-view of a memory array with the metal 1 lines of FIG. 12, under an embodiment. The side-view of FIG. 13 represents the cross-section as viewed along cross-section line 1220 of FIG. 12. As shown in FIG. 13, the M1 lines 1302 are formed on the top surface of every other contact plug 1102 and are separated by a gap 1304 that consists of the width of an intermediate contact plug and two poly gates. In one embodiment, the M1 lines represent source lines (SL) that contact active areas 606 that represent the source regions of respective transistors. For purposes of illustration, the source lines run perpendicular to the plane of the drawing shown in FIG. 13.


In one embodiment, the remaining alternating contact areas in between the M1 lines are dedicated to vias. Thus, as shown in block 220 of FIG. 1, vias are formed on alternating contact areas between the M1 lines. FIG. 14 illustrates the formation of via patterns on a memory array, under an embodiment. A number of vias 1402 of dimension F by 1.5F are patterned in a rectangular array. The minimum pitch between the vias is 2F as defined by the critical width of the via 1403 and the minimum spacing 1404 between the vias 1402. As shown in FIG. 14, the vias are formed with elongated shapes, as opposed to square or round cross-sections, in order to ease lithographic constraints, and in one embodiment, the vias are overetched down to the contact surface.



FIG. 15 is a side-view of a memory array with the vias of FIG. 14 under an embodiment. The side-view of FIG. 15 represents the cross-section as viewed along cross-section line 1420 of FIG. 14. As shown in FIG. 15, the vias 1506 are formed on the top surface of every other contact plug 1102 and are separated from neighboring M1 lines 1302 by gaps 1502 that consist of the poly gates. The vias comprise connections between any two or more metal layers of the memory array, or between a metal line and the drain areas of respective transistors.


Subsequent metal line layers (M2 and above), as well as vias can be produced in subsequent process steps that employ straight line formation of conductive lines. FIG. 16 is a top view of metal 2 (M2) lines formed on a memory array, under an embodiment. As shown in FIG. 16, M2 lines 1602, 1606, and 1608 are formed as straight lines that are separated by gaps 1604. The line pitch between the M2 lines can be defined by the critical width, F, of the poly gates, thus producing a line pitch of 2F, as shown in FIG. 16.



FIG. 17 is a side-view of a memory array with the metal 2 lines of FIG. 16, under an embodiment. The side-view of FIG. 17 represents the cross-section as viewed along cross-section line 1620 of FIG. 16. As shown in FIG. 17, the M2 line 1702 is formed on the top surface of one or more via contact areas 1506 and on top of an insulative surface 1504 separating the M2 lines from the M1 lines 1302. This process is illustrated as block 222 of FIG. 2. In one embodiment, the M2 lines represent bit lines (BL) that run perpendicular to the M1 source lines, and the word lines (WL) that can be formed from other metal line layers. For purposes of illustration, the bit lines run parallel to the plane of the drawing shown in FIG. 17. Any additional metal line layers (M3 to Mn) can be formed by additional Damascene line deposition processes, as illustrated in block 224 of FIG. 2. Such additional metal lines can be used to connect to other peripheral devices or components, and can be arranged such that alternate additional metal layers can be arranged perpendicular to one another, such as shown for the M1 and M2 layers in FIG. 17.



FIG. 18 is a top view of a memory array comprising M1 lines, M2 lines, and vias, under an embodiment. As shown in FIG. 18, the M1 lines 1202 representing source lines are patterned between vias 1402. The M2 lines 1804 are laid on top of the active areas 302 of FIG. 3 and represent bit lines that run perpendicular to the source M1 lines. The poly line areas 1806 represent ground or write lines. A bit cell for a memory device generally comprises the intersection of an M1 line and an M2 line and a portion of the area 1808 around the intersection. The contact areas 708 shown in FIG. 7 reside underneath the vias 1402 and the M1/M2 intersections of FIG. 18.


For the memory array embodiment of FIG. 18, the pitch of the M2 lines is generally 2F, while the pitch of the M1 lines is generally 5F. The metal lines are advantageously laid in straight lines, thus optimizing the lithography process and eliminating the need for curved or bent contact lines, as shown in FIG. 1B. Various other constraints associated with present manufacturing processes are also optimized, such as the elimination of M1 islands and the relaxation of dimensions associated with at least the M1 lines, contact areas, and vias. The dimensions of the bit cells can be 5F2 with an active area of 2F pitch and 2.5F poly pitch. The bit cell dimension can be reduced to 4F2 if a poly gate of width 1F is used.


Embodiments of the memory array manufacturing process can be applied to various types of array arrangements. At least one embodiment described herein has been directed to arrays in which the drain junction of a bit cell is shared with a neighboring cell and the source junction of a bit cell is shared with a second neighboring cell, and such an embodiment may be referred to as a common drain-common source cell layout. However, embodiments of the described process can also be applied to other array arrangements. In one alternative embodiment, neither the source nor drain junction of a bit cell is shared with a neighboring cell (separated drain-separated source cell layout). In a further alternative embodiment, only the source junction is shared between two neighboring cells, and not the drain (common source-separated drain cell layout). In yet a further alternative embodiment, only the drain junction is shared between two neighboring cells, and not the source (common drain-separated source cell layout).


Aspects of the manufacturing process and process flow described herein may executed by a computer executing program instructions, or as functionality programmed into any of a variety of circuitry for semiconductor processing programs or equipment. Such programs and equipment can be embodied in various different circuits, components, or systems, including programmable logic devices (“PLDs”), such as field programmable gate arrays (“FPGAs”), programmable array logic (“PAL”) devices, electrically programmable logic and memory devices and standard cell-based devices, as well as application specific integrated circuits. Some other possibilities for implementing aspects of the semiconductor manufacturing system include: microcontrollers with memory (such as EEPROM), embedded microprocessors, firmware, software, etc. Furthermore, aspects of the described method may be embodied in microprocessors having software-based circuit emulation, discrete logic (sequential and combinatorial), custom devices, fuzzy (neural) logic, quantum devices, and hybrids of any of the above device types. The underlying device technologies may be provided in a variety of component types, e.g., metal-oxide semiconductor field-effect transistor (“MOSFET”) technologies like complementary metal-oxide semiconductor (“CMOS”), bipolar technologies like emitter-coupled logic (“ECL”), polymer technologies (e.g., silicon-conjugated polymer and metal-conjugated polymer-metal structures), mixed analog and digital, and so on.


It should also be noted that the various functions disclosed herein may be described using any number of combinations of hardware, firmware, and/or as data and/or instructions embodied in various machine-readable or computer-readable media, in terms of their behavioral, register transfer, logic component, and/or other characteristics. Computer-readable media in which such formatted data and/or instructions may be embodied include, but are not limited to, non-volatile storage media in various forms (e.g., optical, magnetic or semiconductor storage media) and carrier waves that may be used to transfer such formatted data and/or instructions through wireless, optical, or wired signaling media or any combination thereof. Examples of transfers of such formatted data and/or instructions by carrier waves include, but are not limited to, transfers (uploads, downloads, e-mail, etc.) over the Internet and/or other computer networks via one or more data transfer protocols (e.g., HTTP, FTP, SMTP, and so on).


Unless the context clearly requires otherwise, throughout the description and any present claims, the words “comprise,” “comprising,” and the like are to be construed in an inclusive sense as opposed to an exclusive or exhaustive sense; that is to say, in a sense of “including, but not limited to.” Words using the singular or plural number also include the plural or singular number respectively. Additionally, the words “herein,” “hereunder,” “above,” “below,” and words of similar import refer to this application as a whole and not to any particular portions of this application. When the word “or” is used in reference to a list of two or more items, that word covers all of the following interpretations of the word: any of the items in the list, all of the items in the list and any combination of the items in the list.


The above description of illustrated embodiments of the semiconductor manufacturing process and system is not intended to be exhaustive or to limit the embodiments to the precise form or instructions disclosed. While specific embodiments of, and examples are described herein for illustrative purposes, various equivalent modifications are possible within the scope of the described embodiments, as those skilled in the relevant art will recognize.


The elements and acts of the various embodiments described above can be combined to provide further embodiments. These and other changes can be made to the semiconductor manufacturing process in light of the above detailed description.


In general, in the following, the terms used should not be construed to limit the described system to the specific embodiments disclosed in the specification, but should be construed to include all operations or processes that operate thereunder.


While certain aspects of the disclosed method and system may be presented below in certain forms, the inventor contemplates the various aspects of the methodology in any number of forms. For example, while only one aspect of the describe process may be recited as embodied in machine-readable medium, other aspects may likewise be embodied in machine-readable medium.


Aspects of the embodiments described herein may include a method of fabricating semiconductor memory cells comprising: forming a plurality of parallel active area lines in a first direction on a substrate, each active area line of the plurality having a first predefined width and separated from a neighboring active area line by a first predefined gap; forming a plurality of parallel word lines in a second direction perpendicular to the first direction on the substrate, each word line of the plurality having a first predefined width and separated from a neighboring word line by a second predefined gap; defining the intersections of the active area lines and word lines to be active areas for gate, source and drain regions of each of a plurality of transistors formed by the active area lines and word lines; and layering polycide and insulative regions on the word lines. The substrate comprises a Silicon-on-Insulator substrate consisting of an oxide layer formed on a silicon substrate, the oxide layer covered by a doped silicon layer, and wherein the active area lines comprise substantially elongated rectangular areas. The method further comprises forming an insulative spacer region on either side of each gate region defined by the intersection areas of the word lines, the insulative spacer region defining a trench running parallel and in between the word lines, and proximate an upper surface of the source and drain regions of the plurality of transistors. The insulative spacer region consists of an insulative material that is identical to the material layered on the conductive region of the gate regions of each of the transistors. The insulative material is selected from the group consisting of: Si3N4, Ta2O5, TiO2, ZrO2, HfO2, and Al2O3.


The method further comprising depositing a dielectric material in the trench defined by the spacer region; etching the trench to the source and drain areas, wherein the insulative material of the spacer region acts as an etch stop; depositing a conductive material in the etched region of the trench; and planarizing the conductive material such that a top surface of the conductive material is flush with a top surface of the insulative region of the gate regions. The dielectric material comprises SiO2, and the conductive material comprises Tungsten. The method further comprises: forming a pattern of parallel straight first layer metal lines on alternate contact areas defined by the deposited conductive material; depositing a layer of insulative material over the first layer metal lines; depositing the conductive material in alternate contact areas not proximate the first layer metal lines, to form vias; and forming a pattern of parallel straight second layer metal lines perpendicular to the first layer metal lines, and in contact with at least one or more of the vias. The first layer metal lines comprise source lines for the transistors, and wherein the second layer metal lines comprise bit lines for the transistors, and the word lines comprise word lines for the transistors. The first pre-defined width is equal to the second pre-defined width, and corresponds to a feature size F of each transistor of the plurality of transistors. The first pre-defined width corresponds to a feature size F of each transistor of the plurality of transistors, and the second pre-defined width is larger than the first pre-defined width. The second pre-defined width may be in the range of 1.1F to 3F.


Embodiments may also include a method of manufacturing a plurality of memory cells on a substrate, comprising forming a substantially rectangular array of transistor gates through the deposition of parallel word lines on the substrate, the word lines separated by a first distance; forming a substantially rectangular array of contact areas on opposing sides of each transistor gate of the transistor gates through the formation of active area lines on the substrate in a direction perpendicular to the word lines, the active area lines separated by a second distance, wherein a first contact area corresponding to a source region of the transistor, and a second contact area corresponding to a drain region of the transistor; forming a parallel array of first metal lines connecting a first set of contact areas of the rectangular array of contact areas; and forming an array of vias corresponding to a second set of contact areas of the rectangular array of contact areas. The method further comprising: depositing an insulative layer over the array of first metal lines; and forming a parallel array of second metal lines connected to at least a portion of the vias, wherein the array of second metal lines is perpendicular to the array of first metal lines. The first layer metal lines comprise source lines for the transistors, and wherein the second layer metal lines comprise bit lines for the transistors, and further wherein the word lines comprise write lines for the transistors. The transistor gates are formed by depositing a polycide layer on the word lines, and depositing an insulative layer on the polycide layer.


The contact areas are formed by: defining an insulative spacer region on opposing sides of the transistor gate, the insulative spacer region defining a trench disposed between pairs of word lines; depositing a dielectric material in the trench defined by the spacer region; etching the trench to the source and drain areas, wherein the insulative material of the spacer region acts as an etch stop; depositing a conductive material in the etched region of the trench; and planarizing the conductive material such that a top surface of the conductive material is flush with a top surface of the insulative region of the poly gates. The substrate of this method comprises a Silicon-on-Insulator substrate consisting of an oxide layer formed on a silicon substrate, the oxide layer covered by a doped silicon layer.


Embodiments may also include a semiconductor processing system for producing an array of memory cells, the system comprising: a first circuit forming a plurality of parallel active area lines in a first direction on a substrate, each active area line of the plurality having a first predefined width and separated from a neighboring active area line by a first predefined gap; a second circuit forming a plurality of parallel word lines in a second direction perpendicular to the first direction on the substrate, each poly line of the plurality having a first predefined width and separated from a neighboring poly area line by a second predefined gap, wherein the intersections of the active area lines and word lines define active areas for gate, source and drain regions of each of a plurality of transistors formed by the active area lines and word lines; and a third circuit layering polycide and insulative regions on the word lines. The substrate comprises a Silicon-on-Insulator substrate consisting of an oxide layer formed on a silicon substrate, the oxide layer covered by a doped silicon layer. The system further comprises a circuit forming an insulative spacer region on either side of each gate region defined by the non-intersection areas of the word lines, the insulative spacer region defining a trench running parallel and in between the word lines, and proximate an upper surface of the source and drain regions of the plurality of transistors. The insulative spacer region consists of an insulative material that is identical to the material layered on the conductive region of the poly gate regions of each of the transistors, and wherein the insulative material is selected from the group consisting of: Si3N4, Ta2O5, TiO2, ZrO2, HfO2, and Al2O3.


The system further comprises a first lithography subsystem configured to: deposit a dielectric material in the trench defined by the spacer region; etch the trench to the source and drain areas, wherein the insulative material of the spacer region acts as an etch stop; deposit a conductive material in the etched region of the trench; and planarize the conductive material such that a top surface of the conductive material is flush with a top surface of the insulative region of the gate region. The dielectric material comprises SiO2, and the conductive material comprising Tungsten.


The system further comprises a second lithography subsystem configured to: form a pattern of parallel straight first layer metal lines on alternate contact areas defined by the deposited conductive material; deposit a layer of insulative material over the first layer metal lines; deposit the conductive material in alternate contact areas not proximate the first layer metal lines, to form vias; and form a pattern of parallel straight second layer metal lines perpendicular to the first layer metal lines, and in contact with at least one or more of the vias. The first layer metal lines and the second layer metal lines are formed through a Damascene process. The second lithography subsystem is configured to deposit additional insulative layers and subsequent layer metal lines in successive subsequent Damascene process steps.


Embodiments may further include an array of memory cells, comprising: a substantially rectangular array of transistor gates formed through the deposition of parallel word lines on the substrate, the word lines separated by a first distance; a substantially rectangular array of contact areas on opposing sides of each transistor gate of the transistor gates formed through the formation of active area lines on the substrate in a direction perpendicular to the word lines, the active area lines separated by a second distance, wherein a first contact area corresponding to a source region of the transistor, and a second contact area corresponding to a drain region of the transistor; a parallel array of first metal lines connecting a first set of contact areas of the rectangular array of contact areas; and an array of vias corresponding to a second set of contact areas of the rectangular array of contact areas. The array comprises a parallel array of second metal lines connected to at least a portion of the vias, wherein the array of second metal lines is perpendicular to the array of first metal lines and formed over an insulative layer deposited over the array of first metal lines. The first layer metal lines comprise source lines for the transistors, and wherein the second layer metal lines comprise bit lines for the transistors, and further wherein the word lines comprise word lines for the transistors. The transistor gates are formed by depositing a polycide layer on the word lines, and depositing an insulative layer on the polycide layer.


The contact areas are formed by a computer-controlled fabrication process executing instructions operable to: define an insulative spacer region on opposing sides of the transistor gate, the insulative spacer region defining a trench disposed between pairs of word lines; deposit a dielectric material in the trench defined by the spacer region; etch the trench to the source and drain areas, wherein the insulative material of the spacer region acts as an etch stop; deposit a conductive material in the etched region of the trench; and planarize the conductive material such that a top surface of the conductive material is flush with a top surface of the insulative region of the poly gates. The substrate comprises a Silicon-on-Insulator substrate consisting of an oxide layer formed on a silicon substrate, the oxide layer covered by a doped silicon layer. The array has a dimension of each bit cell of the array defined by the feature size, F, of the active area, and corresponds to 4F2. The array may further have a dimension of each bit cell of the array defined by a first multiple of the feature size, F, of the active area, and corresponds to a size of at least 5F2. The array comprises an array of dynamic random access memory cells, and wherein the dynamic random access memory cells may comprise Z-RAM cells, and wherein the memory cells may comprise standalone memory cells.

Claims
  • 1. A method of fabricating semiconductor memory cells comprising: forming a plurality of substantially parallel doped semiconductor active area lines in a first direction on and substantially parallel to a surface of a substrate, each active area line of the plurality having a first predefined width and separated from a neighboring active area line by a first predefined gap;forming a plurality of substantially parallel word lines in a second direction substantially perpendicular to the first direction above and substantially parallel to the surface of the substrate, each word line of the plurality having a second predefined width and separated from a neighboring word line by a second predefined gap;defining active areas in the active area lines for gate, source, and drain regions of each of a plurality of transistors formed by the active area lines and the word lines, wherein the active areas for gate regions are formed at spatially separated intersections of the active area lines and the word lines, wherein the active areas for source and drain regions are formed at spatially separated intersections of the active area lines and the second predefined gaps between neighboring word lines to provide substantially square contact areas for the active areas for source and drain regions, wherein the active areas for gate regions form channel regions in the active area lines, and wherein the active areas for gate regions are separated from respective word lines by insulative regions the thicknesses of which may be adjusted to optimize operation of the memory cells; andlayering polycide and insulative regions on the word lines.
  • 2. The method of claim 1 wherein the substrate comprises a Silicon-on-Insulator substrate consisting of an oxide layer formed on a silicon substrate, the oxide layer covered by a doped silicon layer, and wherein the active area lines comprise substantially elongated rectangular areas.
  • 3. The method of claim 1 further comprising forming an insulative spacer region on either side of each gate region defined by the intersections of the active area lines and word lines, the insulative spacer region defining a trench running substantially parallel and in between the word lines, and proximate an upper surface of the source and drain regions of the plurality of transistors.
  • 4. The method of claim 3 wherein the insulative spacer region consists of an insulative material that is identical to material layered on a conductive region of the gate regions of each of the transistors.
  • 5. The method of claim 4 wherein the insulative material is selected from the group consisting of: Si3N4, Ta2O5, TiO2, ZrO2, HfO2, and Al2O3.
  • 6. The method of claim 5 further comprising: depositing a dielectric material in the trench defined by the spacer region;etching the trench to the source and drain areas, wherein the insulative material of the spacer region acts as an etch stop;depositing a conductive material in the etched region of the trench; andplanarizing the conductive material such that a top surface of the conductive material is flush with a top surface of the insulative region of the gate regions.
  • 7. The method of claim 6 wherein the dielectric material comprises SiO2, and the conductive material comprises Tungsten.
  • 8. The method of claim 7 further comprising: forming a pattern of substantially parallel straight first layer metal lines on alternate contact areas defined by the deposited conductive material;depositing a layer of insulative material over the first layer metal lines;depositing the conductive material in alternate contact areas not proximate the first layer metal lines, to form vias; andforming a pattern of substantially parallel straight second layer metal lines substantially perpendicular to the first layer metal lines, and in contact with at least one or more of the vias.
  • 9. The method of claim 8 wherein the first layer metal lines comprise source lines for the transistors, and wherein the second layer metal lines comprise bit lines for the transistors, and the word lines comprise word lines for the transistors.
  • 10. The method of claim 9 wherein the first pre-defined width is equal to the second pre-defined width, and corresponds to a feature size F of each transistor of the plurality of transistors.
  • 11. The method of claim 10 wherein the first pre-defined width corresponds to a feature size F of each transistor of the plurality of transistors, and the second pre-defined width is larger than the first pre-defined width.
  • 12. The method of claim 11 wherein the second pre-defined width may be in the range of 1.1F to 3F.
  • 13. A method of manufacturing a plurality of memory cells on a substrate, the method comprising: forming an array of transistor gates through the deposition of substantially parallel word lines above and substantially parallel to a surface of the substrate, the word lines separated by a first distance;forming an array of substantially square contact areas through the formation of doped semiconductor active area lines on and substantially parallel to the surface of the substrate in a direction substantially perpendicular to the word lines such that active areas are formed in the active area lines for gate, source, and drain regions of each of a plurality of transistors formed by the active area lines and the word lines, the active area lines separated by a second distance, wherein first substantially square contact areas corresponding to source regions of the transistors and second substantially square contact areas corresponding to drain regions of the transistors are formed on opposing sides of each transistor gate of the transistor gates, wherein the active areas for gate regions are formed at spatially separated intersections of the active area lines and the word lines, wherein the active areas for source and drain regions are formed at spatially separated intersections of the active area lines and gaps of the first distance between neighboring word lines, wherein the active areas for gate regions form channel regions in the active area lines, and wherein the active areas for gate regions are separated from respective word lines by insulative regions the thicknesses of which may be adjusted to optimize operation of the memory cells;forming a substantially parallel array of first metal lines connecting a first set of substantially square contact areas of the array of substantially square contact areas; andforming an array of vias corresponding to a second set of substantially square contact areas of the array of substantially square contact areas.
  • 14. The method of claim 13 further comprising: depositing an insulative layer over the array of first metal lines; andforming a substantially parallel array of second metal lines connected to at least a portion of the vias, wherein the array of second metal lines is substantially perpendicular to the array of first metal lines.
  • 15. The method of claim 14 wherein the first layer metal lines comprise source lines for the transistors, and wherein the second layer metal lines comprise bit lines for the transistors, and further wherein the word lines comprise write lines for the transistors.
  • 16. The method of claim 15 wherein the transistor gates are formed by depositing a polycide layer on the word lines, and depositing an insulative layer on the polycide layer.
  • 17. The method of claim 16 wherein the substantially square contact areas are formed by: defining an insulative spacer region on opposing sides of the transistor gate, the insulative spacer region defining a trench disposed between pairs of word lines;depositing a dielectric material in the trench defined by the spacer region;etching the trench to the source and drain areas, wherein the insulative material of the spacer region acts as an etch stop;depositing a conductive material in the etched region of the trench; andplanarizing the conductive material such that a top surface of the conductive material is flush with a top surface of the insulative region of the poly gates.
  • 18. The method of claim 17 wherein the substrate comprises a Silicon-on-Insulator substrate consisting of an oxide layer formed on a silicon substrate, the oxide layer covered by a doped silicon layer.
  • 19. A method of fabricating an array of semiconductor memory cells comprising: forming a plurality of substantially parallel doped semiconductor active area lines in a first direction on and substantially parallel to a surface of a substrate, each active area line of the plurality having a first predefined width and separated from a neighboring active area line by a first predefined gap;forming a plurality of substantially parallel circuit lines in a second direction substantially perpendicular to the first direction above and substantially parallel to the surface of the substrate, each circuit line of the plurality having a second predefined width and separated from a neighboring circuit line by a second predefined gap;defining active areas in the active area lines for gate, source, and drain junctions of each of a plurality of transistors formed by the active area lines and the circuit lines, wherein the active areas for gate junctions are formed at spatially separated intersections of the active area lines and the circuit lines, wherein the active areas for source and drain junctions are formed at spatially separated intersections of the active area lines and the second predefined gaps between neighboring circuit lines to provide substantially square contact areas for the active areas for source and drain junctions, wherein the active areas for gate junctions form channel regions in the active area lines, and wherein the active areas for gate junctions are separated from respective circuit lines by insulative regions the thicknesses of which may be adjusted to optimize operation of the memory cells;defining shared junction areas between pairs of memory cells in the array; andlayering polycide and insulative regions on the circuit lines.
  • 20. The method of claim 19 wherein the shared junction areas comprise shared drain and source junctions between adjacent pairs of memory cells.
  • 21. The method of claim 20 wherein the shared junction areas comprise shared drain junctions between adjacent pairs of memory cells.
  • 22. The method of claim 21 wherein the shared junction areas comprise shared source junctions between adjacent pairs of memory cells.
CROSS-REFERENCE TO RELATED APPLICATIONS

The present application claims the benefit of the U.S. Provisional Application Ser. No. 60/921,151 entitled “Manufacturing Process for Zero-Capacitor Random Access Memory Circuits” and filed on Mar. 29, 2007, which is hereby incorporated by reference in its entirety.

US Referenced Citations (283)
Number Name Date Kind
3439214 Kabell Apr 1969 A
3997799 Baker Dec 1976 A
4032947 Kesel et al. Jun 1977 A
4250569 Sasaki et al. Feb 1981 A
4262340 Sasaki et al. Apr 1981 A
4298962 Hamano et al. Nov 1981 A
4371955 Sasaki Feb 1983 A
4527181 Sasaki Jul 1985 A
4630089 Sasaki et al. Dec 1986 A
4658377 McElroy Apr 1987 A
4791610 Takemae Dec 1988 A
4807195 Busch et al. Feb 1989 A
4954989 Auberton-Herve et al. Sep 1990 A
4979014 Hieda et al. Dec 1990 A
5010524 Fifield et al. Apr 1991 A
5144390 Matloubian Sep 1992 A
5164805 Lee Nov 1992 A
5258635 Nitayama et al. Nov 1993 A
5313432 Lin et al. May 1994 A
5315541 Harari et al. May 1994 A
5350938 Matsukawa Sep 1994 A
5355330 Hisamoto et al. Oct 1994 A
5388068 Ghoshal et al. Feb 1995 A
5397726 Bergemont et al. Mar 1995 A
5432730 Shubat et al. Jul 1995 A
5446299 Acovic et al. Aug 1995 A
5448513 Hu et al. Sep 1995 A
5466625 Hsieh et al. Nov 1995 A
5489792 Hu et al. Feb 1996 A
5506436 Hayashi et al. Apr 1996 A
5515383 Katoozi May 1996 A
5526307 Yiu et al. Jun 1996 A
5528062 Hsieh et al. Jun 1996 A
5568356 Schwartz Oct 1996 A
5583808 Brahmbhatt Dec 1996 A
5593912 Rajeevakumar Jan 1997 A
5606188 Bronner et al. Feb 1997 A
5608250 Kalnitsky Mar 1997 A
5627092 Alsmeier et al. May 1997 A
5631186 Park et al. May 1997 A
5677867 Hazani Oct 1997 A
5696718 Hartmann Dec 1997 A
5740099 Tanigawa Apr 1998 A
5754469 Hung et al. May 1998 A
5774411 Hsieh et al. Jun 1998 A
5778243 Aipperspach et al. Jul 1998 A
5780906 Wu et al. Jul 1998 A
5784311 Assaderaghi et al. Jul 1998 A
5798968 Lee et al. Aug 1998 A
5811283 Sun Sep 1998 A
5847411 Morii Dec 1998 A
5877978 Morishita et al. Mar 1999 A
5886376 Acovic et al. Mar 1999 A
5886385 Arisumi et al. Mar 1999 A
5897351 Forbes Apr 1999 A
5929479 Oyama Jul 1999 A
5930648 Yang Jul 1999 A
5936265 Koga Aug 1999 A
5939745 Park et al. Aug 1999 A
5943258 Houston et al. Aug 1999 A
5943581 Lu et al. Aug 1999 A
5960265 Acovic et al. Sep 1999 A
5968840 Park et al. Oct 1999 A
5977578 Tang Nov 1999 A
5982003 Hu et al. Nov 1999 A
5986914 McClure Nov 1999 A
6018172 Hidaka et al. Jan 2000 A
6048756 Lee et al. Apr 2000 A
6081443 Morishita Jun 2000 A
6096598 Furukawa et al. Aug 2000 A
6097056 Hsu et al. Aug 2000 A
6097624 Chung et al. Aug 2000 A
6111778 MacDonald et al. Aug 2000 A
6121077 Hu et al. Sep 2000 A
6133597 Li et al. Oct 2000 A
6157216 Lattimore et al. Dec 2000 A
6171923 Chi et al. Jan 2001 B1
6177300 Houston et al. Jan 2001 B1
6177698 Gruening et al. Jan 2001 B1
6177708 Kuang et al. Jan 2001 B1
6214694 Leobandung et al. Apr 2001 B1
6222217 Kunikiyo Apr 2001 B1
6225158 Furukawa et al. May 2001 B1
6245613 Hsu et al. Jun 2001 B1
6252281 Yamamoto et al. Jun 2001 B1
6262935 Parris et al. Jul 2001 B1
6292424 Ohsawa Sep 2001 B1
6297090 Kim Oct 2001 B1
6300649 Hu et al. Oct 2001 B1
6320227 Lee et al. Nov 2001 B1
6333532 Davari et al. Dec 2001 B1
6333866 Ogata Dec 2001 B1
6350653 Adkisson et al. Feb 2002 B1
6351426 Ohsawa Feb 2002 B1
6359802 Lu et al. Mar 2002 B1
6384445 Hidaka et al. May 2002 B1
6391658 Gates et al. May 2002 B1
6403435 Kang et al. Jun 2002 B1
6421269 Somasekhar et al. Jul 2002 B1
6424011 Assaderaghi et al. Jul 2002 B1
6424016 Houston Jul 2002 B1
6429477 Mandelman et al. Aug 2002 B1
6432769 Fukuda et al. Aug 2002 B1
6440872 Mandelman et al. Aug 2002 B1
6441435 Chan Aug 2002 B1
6441436 Wu et al. Aug 2002 B1
6466511 Fujita et al. Oct 2002 B2
6479862 King et al. Nov 2002 B1
6480407 Keeth Nov 2002 B1
6492211 Divakaruni et al. Dec 2002 B1
6518105 Yang et al. Feb 2003 B1
6531754 Nagano et al. Mar 2003 B1
6537871 Forbes Mar 2003 B2
6538916 Ohsawa Mar 2003 B2
6544837 Divakaruni et al. Apr 2003 B1
6548848 Horiguchi et al. Apr 2003 B2
6549450 Hsu et al. Apr 2003 B1
6552398 Hsu et al. Apr 2003 B2
6552932 Cernea Apr 2003 B1
6556477 Hsu et al. Apr 2003 B2
6560142 Ando May 2003 B1
6566177 Radens et al. May 2003 B1
6567330 Fujita et al. May 2003 B2
6573566 Ker et al. Jun 2003 B2
6574135 Komatsuzaki Jun 2003 B1
6590258 Divakauni et al. Jul 2003 B2
6590259 Adkisson et al. Jul 2003 B2
6617651 Ohsawa Sep 2003 B2
6621725 Ohsawa Sep 2003 B2
6632723 Watanabe et al. Oct 2003 B2
6650565 Ohsawa Nov 2003 B1
6653175 Nemati et al. Nov 2003 B1
6686624 Hsu Feb 2004 B2
6703673 Houston Mar 2004 B2
6707118 Muljono et al. Mar 2004 B2
6714436 Burnett et al. Mar 2004 B1
6721222 Somasekhar et al. Apr 2004 B2
6825524 Ikehashi et al. Nov 2004 B1
6861689 Burnett Mar 2005 B2
6870225 Bryant et al. Mar 2005 B2
6882566 Nejad et al. Apr 2005 B2
6888770 Ikehashi May 2005 B2
6894913 Yamauchi May 2005 B2
6897098 Hareland et al. May 2005 B2
6903984 Tang et al. Jun 2005 B1
6909151 Hareland et al. Jun 2005 B2
6912150 Portmann et al. Jun 2005 B2
6913964 Hsu Jul 2005 B2
6936508 Visokay et al. Aug 2005 B2
6969662 Fazan et al. Nov 2005 B2
6975536 Maayan et al. Dec 2005 B2
6982902 Gogl et al. Jan 2006 B2
6987041 Ohkawa Jan 2006 B2
7030436 Forbes Apr 2006 B2
7037790 Chang et al. May 2006 B2
7041538 Ieong et al. May 2006 B2
7042765 Sibigtroth et al. May 2006 B2
7061806 Tang et al. Jun 2006 B2
7085153 Ferrant et al. Aug 2006 B2
7085156 Ferrant et al. Aug 2006 B2
7170807 Fazan et al. Jan 2007 B2
7177175 Fazan et al. Feb 2007 B2
7187581 Ferrant et al. Mar 2007 B2
7230846 Keshavarzi Jun 2007 B2
7233024 Scheuerlein et al. Jun 2007 B2
7256459 Shino Aug 2007 B2
7301803 Okhonin et al. Nov 2007 B2
7301838 Waller Nov 2007 B2
7317641 Scheuerlein Jan 2008 B2
7324387 Bergemont et al. Jan 2008 B1
7335934 Fazan Feb 2008 B2
7341904 Willer Mar 2008 B2
7416943 Figura et al. Aug 2008 B2
7456439 Horch Nov 2008 B1
7477540 Okhonin et al. Jan 2009 B2
7492632 Carman Feb 2009 B2
7517744 Mathew et al. Apr 2009 B2
7539041 Kim et al. May 2009 B2
7542340 Fisch et al. Jun 2009 B2
7542345 Okhonin et al. Jun 2009 B2
7545694 Srinivasa Raghavan et al. Jun 2009 B2
7606066 Okhonin et al. Oct 2009 B2
7696032 Kim et al. Apr 2010 B2
20010055859 Yamada et al. Dec 2001 A1
20020030214 Horiguchi Mar 2002 A1
20020034855 Horiguchi et al. Mar 2002 A1
20020036322 Divakauni et al. Mar 2002 A1
20020051378 Ohsawa May 2002 A1
20020064913 Adkisson et al. May 2002 A1
20020070411 Vermandel et al. Jun 2002 A1
20020072155 Liu et al. Jun 2002 A1
20020076880 Yamada et al. Jun 2002 A1
20020086463 Houston et al. Jul 2002 A1
20020089038 Ning Jul 2002 A1
20020098643 Kawanaka et al. Jul 2002 A1
20020110018 Ohsawa Aug 2002 A1
20020114191 Iwata et al. Aug 2002 A1
20020130341 Horiguchi et al. Sep 2002 A1
20020158281 Goldbach et al. Oct 2002 A1
20020160581 Watanabe et al. Oct 2002 A1
20020180069 Houston Dec 2002 A1
20030003608 Arikado et al. Jan 2003 A1
20030015757 Ohsawa Jan 2003 A1
20030035324 Fujita et al. Feb 2003 A1
20030042516 Forbes et al. Mar 2003 A1
20030047784 Matsumoto et al. Mar 2003 A1
20030057487 Yamada et al. Mar 2003 A1
20030057490 Nagano et al. Mar 2003 A1
20030102497 Fried et al. Jun 2003 A1
20030112659 Ohsawa Jun 2003 A1
20030123279 Aipperspach et al. Jul 2003 A1
20030146474 Ker et al. Aug 2003 A1
20030146488 Nagano et al. Aug 2003 A1
20030151112 Yamada et al. Aug 2003 A1
20030231521 Ohsawa Dec 2003 A1
20040021137 Fazan et al. Feb 2004 A1
20040021179 Lee Feb 2004 A1
20040029335 Lee et al. Feb 2004 A1
20040075143 Bae et al. Apr 2004 A1
20040108532 Forbes et al. Jun 2004 A1
20040188714 Scheuerlein et al. Sep 2004 A1
20040217420 Yeo et al. Nov 2004 A1
20050001257 Schloesser et al. Jan 2005 A1
20050001269 Hayashi et al. Jan 2005 A1
20050017240 Fazan Jan 2005 A1
20050047240 Ikehashi et al. Mar 2005 A1
20050062088 Houston Mar 2005 A1
20050063224 Fazan et al. Mar 2005 A1
20050064659 Willer Mar 2005 A1
20050105342 Tang et al. May 2005 A1
20050111255 Tang et al. May 2005 A1
20050121710 Shino Jun 2005 A1
20050135169 Somasekhar et al. Jun 2005 A1
20050141262 Yamada et al. Jun 2005 A1
20050141290 Tang et al. Jun 2005 A1
20050145886 Keshavarzi et al. Jul 2005 A1
20050145935 Keshavarzi et al. Jul 2005 A1
20050167751 Nakajima et al. Aug 2005 A1
20050189576 Ohsawa Sep 2005 A1
20050208716 Takaura et al. Sep 2005 A1
20050226070 Ohsawa Oct 2005 A1
20050232043 Ohsawa Oct 2005 A1
20050242396 Park et al. Nov 2005 A1
20050265107 Tanaka Dec 2005 A1
20060043484 Cabral et al. Mar 2006 A1
20060084247 Liu Apr 2006 A1
20060091462 Okhonin et al. May 2006 A1
20060098481 Okhonin et al. May 2006 A1
20060126374 Waller et al. Jun 2006 A1
20060131650 Okhonin et al. Jun 2006 A1
20060223302 Chang et al. Oct 2006 A1
20070008811 Keeth et al. Jan 2007 A1
20070023833 Okhonin et al. Feb 2007 A1
20070045709 Yang Mar 2007 A1
20070058427 Okhonin et al. Mar 2007 A1
20070064489 Bauser Mar 2007 A1
20070085140 Bassin Apr 2007 A1
20070097751 Popoff et al. May 2007 A1
20070114599 Hshieh May 2007 A1
20070133330 Ohsawa Jun 2007 A1
20070138524 Kim et al. Jun 2007 A1
20070138530 Okhonin Jun 2007 A1
20070187751 Hu et al. Aug 2007 A1
20070187775 Okhonin et al. Aug 2007 A1
20070200176 Kammler et al. Aug 2007 A1
20070252205 Hoentschel et al. Nov 2007 A1
20070263466 Morishita et al. Nov 2007 A1
20070278578 Yoshida et al. Dec 2007 A1
20080049486 Gruening-von Schwerin Feb 2008 A1
20080083949 Zhu et al. Apr 2008 A1
20080099808 Burnett et al. May 2008 A1
20080130379 Ohsawa Jun 2008 A1
20080133849 Demi et al. Jun 2008 A1
20080165577 Fazan et al. Jul 2008 A1
20080253179 Slesazeck Oct 2008 A1
20080258206 Hofmann Oct 2008 A1
20090086535 Ferrant et al. Apr 2009 A1
20090121269 Caillat et al. May 2009 A1
20090127592 El-Kareh et al. May 2009 A1
20090201723 Okhonin et al. Aug 2009 A1
20100085813 Shino Apr 2010 A1
20100091586 Carman Apr 2010 A1
20100110816 Nautiyal et al. May 2010 A1
Foreign Referenced Citations (104)
Number Date Country
272437 Jul 1927 CA
0 030 856 Jun 1981 EP
0 350 057 Jan 1990 EP
0 354 348 Feb 1990 EP
0 202 515 Mar 1991 EP
0 207 619 Aug 1991 EP
0 175 378 Nov 1991 EP
0 253 631 Apr 1992 EP
0 513 923 Nov 1992 EP
0 300 157 May 1993 EP
0 564 204 Oct 1993 EP
0 579 566 Jan 1994 EP
0 362 961 Feb 1994 EP
0 599 506 Jun 1994 EP
0 359 551 Dec 1994 EP
0 366 882 May 1995 EP
0 465 961 Aug 1995 EP
0 694 977 Jan 1996 EP
0 333 426 Jul 1996 EP
0 727 820 Aug 1996 EP
0 739 097 Oct 1996 EP
0 245 515 Apr 1997 EP
0 788 165 Aug 1997 EP
0 801 427 Oct 1997 EP
0 510 607 Feb 1998 EP
0 537 677 Aug 1998 EP
0 858 109 Aug 1998 EP
0 860 878 Aug 1998 EP
0 869 511 Oct 1998 EP
0 878 804 Nov 1998 EP
0 920 059 Jun 1999 EP
0 924 766 Jun 1999 EP
0 642 173 Jul 1999 EP
0 727 822 Aug 1999 EP
0 933 820 Aug 1999 EP
0 951 072 Oct 1999 EP
0 971 360 Jan 2000 EP
0 980 101 Feb 2000 EP
0 601 590 Apr 2000 EP
0 993 037 Apr 2000 EP
0 836 194 May 2000 EP
0 599 388 Aug 2000 EP
0 689 252 Aug 2000 EP
0 606 758 Sep 2000 EP
0 682 370 Sep 2000 EP
1 073 121 Jan 2001 EP
0 726 601 Sep 2001 EP
0 731 972 Nov 2001 EP
1 162 663 Dec 2001 EP
1 162 744 Dec 2001 EP
1 179 850 Feb 2002 EP
1 180 799 Feb 2002 EP
1 191 596 Mar 2002 EP
1 204 146 May 2002 EP
1 204 147 May 2002 EP
1 209 747 May 2002 EP
0 744 772 Aug 2002 EP
1 233 454 Aug 2002 EP
0 725 402 Sep 2002 EP
1 237 193 Sep 2002 EP
1 241 708 Sep 2002 EP
1 253 634 Oct 2002 EP
0 844 671 Nov 2002 EP
1 280 205 Jan 2003 EP
1 288 955 Mar 2003 EP
2 197 494 Mar 1974 FR
1 414 228 Nov 1975 GB
H04-176163 Jun 1922 HK
H08-213624 Aug 1996 JO
S62-007149 Jan 1987 JP
S62-272561 Nov 1987 JP
02-294076 Dec 1990 JP
03-171768 Jul 1991 JP
05-347419 Dec 1993 JP
08-213624 Aug 1996 JP
08-274277 Oct 1996 JP
H08-316337 Nov 1996 JP
09-046688 Feb 1997 JP
09-082912 Mar 1997 JP
10-242470 Sep 1998 JP
11-087649 Mar 1999 JP
2000-247735 Aug 2000 JP
12-274221 Sep 2000 JP
12-389106 Dec 2000 JP
13-180633 Jun 2001 JP
2002-009081 Jan 2002 JP
2002-083945 Mar 2002 JP
2002-094027 Mar 2002 JP
2002-176154 Jun 2002 JP
2002-246571 Aug 2002 JP
2002-329795 Nov 2002 JP
2002-343886 Nov 2002 JP
2002-353080 Dec 2002 JP
2003-031693 Jan 2003 JP
2003-68877 Mar 2003 JP
2003-086712 Mar 2003 JP
2003-100641 Apr 2003 JP
2003-100900 Apr 2003 JP
2003-132682 May 2003 JP
2003-203967 Jul 2003 JP
2003-243528 Aug 2003 JP
2004-335553 Nov 2004 JP
WO 0124268 Apr 2001 WO
WO 2005008778 Jan 2005 WO
Non-Patent Literature Citations (175)
Entry
Hoon Jeong et al , A New capacitorless IT DRAM Cell; Surrounding Gate MOSFET with vertical channel, IEEE, May 2007.
Jeong et al , Capacitorless DRAM cell with Highly Scalable surrounding Gate Structure, Sep. 2006, International Conference on Solid State Devices and Materials.
Arimoto et al., A Configurable Enhanced T2RAM Macro for System-Level Power Management Unified Memory, 2006, VLSI Symposium.
Arimoto, A High-Density Scalable Twin Transistor RAM (TTRAM) With Verify Control for SOI Platform Memory IPs, Nov. 2007, Solid-State Circuits.
Asian Technology Information Program (ATIP) Scoops™, “Novel Capacitorless 1T-DRAM From Single-Gate PD-SOI to Double-Gate FinDRAM”, May 9, 2005, 9 pages.
Assaderaghi et al., “A Dynamic Threshold Voltage MOSFET (DTMOS) for Ultra-Low Voltage Operation”, IEEE IEDM, 1994, pp. 809-812.
Assaderaghi et al., “A Dynamic Threshold Voltage MOSFET (DTMOS) for Very Low Voltage Operation”, IEEE Electron Device Letters, vol. 15, No. 12, Dec. 1994, pp. 510-512.
Assaderaghi et al., “A Novel Silicon-On-Insulator (SOI) MOSFET for Ultra Low Voltage Operation”, 1994 IEEE Symposium on Low Power Electronics, pp. 58-59.
Assaderaghi et al., “Dynamic Threshold-Voltage MOSFET (DTMOS) for Ultra-Low Voltage VLSI”, IEEE Transactions on Electron Devices, vol. 44, No. 3, Mar. 1997, pp. 414-422.
Assaderaghi et al., “High-Field Transport of Inversion-Layer Electrons and Holes Including Velocity Overshoot”, IEEE Transactions on Electron Devices, vol. 44, No. 4, Apr. 1997, pp. 664-671.
Avci, Floating Body Cell (FBC) Memory for 16-nm Technology with Low Variation on Thin Silicon and 10-nm BOX, Oct. 2008, SOI Conference.
Bae, Evaluation of 1T RAM using Various Operation Methods with SOONO (Silicon-On-ONO) device, Dec. 2008, IEDM.
Ban, A Scaled Floating Body Cell (FBC) Memory with High-k+Metal Gate on Thin-Silicon and Thin-BOX for 16-nm Technology Node and Beyond, Jun. 2008, VLSI Symposium.
Ban, Ibrahim, et al., “Floating Body Cell with Independently-Controlled Double Gates for High Density Memory,” Electron Devices Meeting, 2006. IEDM '06. International, IEEE, Dec. 11-13, 2006.
Bawedin, Maryline, et al., A Capacitorless 1T Dram on SOI Based on Dynamic Coupling and Double-Gate Operation, IEEE Electron Device Letters, vol. 29, No. 7, Jul. 2008.
Blagojevic et al., Capacitorless 1T DRAM Sensing Scheme Automatice Reference Generation, 2006, IEEE J.Solid State Circuits.
Blalock, T., “A High-Speed Clamped Bit-Line Current-Mode Sense Amplifier”, IEEE Journal of Solid-State Circuits, vol. 26, No. 4, Apr. 1991, pp. 542-548.
Butt, Scaling Limits of Double Gate and Surround Gate Z-RAM Cells, 2007, IEEE Trans. On El. Dev.
Chan et al., “Effects of Floating Body on Double Polysilicon Partially Depleted SOI Nonvolatile Memory Cell”, IEEE Electron Device Letters, vol. 24, No. 2, Feb. 2003, pp. 75-77.
Chan, et al., “SOI MOSFET Design for All-Dimensional Scaling with Short Channel, Narrow Width and Ultra-thin Films”, IEEE IEDM, 1995, pp. 631-634.
Chi et al., “Programming and Erase with Floating-Body for High Density Low Voltage Flash EEPROM Fabricated on SOI Wafers”, Proceedings 1995 IEEE International SOI Conference, Oct. 1995, pp. 129-130.
Cho et al., “Novel DRAM Cell with Amplified Capacitor for Embedded Application”, IEEE, Jun. 2009.
Cho, A novel capacitor-less DRAM cell using Thin Capacitively-Coupled Thyristor (TCCT), 2005, IEDM.
Choi et al., Current Flow Mechanism in Schottky-Barrier MOSFET and Application to the 1T-DRAM, 2008, SSDM.
Choi, High Speed Flash Memory and 1T-DRAM on Dopant Segregated Schottky Barrier (DSSB) FinFET SONOS Device for Multi-functional SoC Applications, Dec. 2008, IEDM.
Clarke, Junctionless Transistors Could Simply Chip Making, Say Researchers, EE Times, Feb. 2010, www.eetimes.com/showArticle.jhtml?articleID=223100050.
Colinge, J.P., “An SOI voltage-controlled bipolar-MOS device”, IEEE Transactions on Electron Devices, vol. ED-34, No. 4, Apr. 1987, pp. 845-849.
Colinge, Nanowire Transistors Without Junctions, Nature NanoTechnology, vol. 5, 2010, pp. 225-229.
Collaert et al., Optimizing the Readout Bias for the Capacitorless 1T Bulk FinFET RAM Cell, 2009, IEEE EDL.
Collaert, Comparison of scaled floating body RAM architectures, Oct. 2008, SOI Conference.
Ershov, Optimization of Substrate Doping for Back-Gate Control in SOI T-RAM Memory Technology, 2005, SOI Conference.
Ertosun et al., A Highly Scalable Capacitorless Double Gate Quantum Well Single Transistor DRAM: 1T-QW DRAM, 2008, IEEE EDL.
Fazan et al., “A Simple 1-Transistor Capacitor-Less Memory Cell for High Performance Embedded DRAMs”, IEEE 2002 Custom Integrated Circuits, Jun. 2002, pp. 99-102.
Fazan, A Highly Manufacturable Capacitor-less 1T-DRAM Concept, 2002, SPIE.
Fazan, et al., “Capacitor-Less 1-Transistor DRAM”, 2002 IEEE International SOI Conference, Oct. 2002, pp. 10-13.
Fazan, P., “MOSFET Design Simplifies DRAM”, EE Times, May 14, 2002 (3 pages).
Fisch, Beffa, Bassin, Soft Error Performance of Z-RAM Floating Body Memory, 2006, SOI Conference.
Fisch, Carman, Customizing SOI Floating Body Memory Architecture for System Performance and Lower Cost, 2006, SAME.
Fisch, Z-RAM® Ultra-Dense Memory for 90nm and Below, 2006, Hot Chips.
Fossum et al., New Insights on Capacitorless Floating Body DRAM Cells, 2007, IEEE EDL.
Fujita, Array Architectureof Floating Body Cell (FBC) with Quasi-Shielded Open Bit Line Scheme for sub-40nm Node, 2008, SOI Conference.
Furuhashi, Scaling Scenario of Floating Body Cell (FBC) Suppressing Vth Variation Due to Random Dopant Fluctuation, Dec. 2008, SOI Conference.
Furuyama et al., “An Experimental 2-bit/Cell Storage DRAM for Macrocell or Memory-on-Logic Application”, IEEE Journal of Solid-State Circuits, vol. 24, No. 2, Apr. 1989, pp. 388-393.
Giffard et al., “Dynamic Effects in SOI MOSFET's”, IEEE, 1991, pp. 160-161.
Gupta et al., SPICE Modeling of Self Sustained Operation (SSO) to Program Sub-90nm Floating Body Cells, Oct. 2009, Conf on Simulation of Semiconductor Processes & Devices.
Han et al., Bulk FinFET Unified-RAM (URAM) Cell for Multifunctioning NVM and Capacitorless 1T-DRAM, 2008, IEEE EDL.
Han et al., Partially Depleted SONOS FinFET for Unified RAM (URAM) Unified Function for High-Speed 1T DRAM and Nonvolatile Memory, 2008, IEEE EDL.
Han, Energy Band Engineered Unified-RAM (URAM) for Multi-Functioning 1T-DRAM and NVM, Dec. 2008, IEDM.
Han, Parasitic BJT Read Method for High-Performance Capacitorless 1T-DRAM Mode in Unified RAM, Oct. 2009, IEEE EDL.
Hara, Y., “Toshiba's DRAM Cell Piggybacks on SOI Wafer”, EE Times, Jun. 2003.
Hu, C., “SOI (Silicon-on-Insulator) for High Speed Ultra Large Scale Integration”, Jpn. J. Appl. Phys. vol. 33 (1994) pp. 365-369, Part 1, No. 1B, Jan. 1994.
Idei et al., “Soft-Error Characteristics in Bipolar Memory Cells with Small Critical Charge”, IEEE Transactions on Electron Devices, vol. 38, No. 11, Nov. 1991, pp. 2465-2471.
Ikeda et al., “3-Dimensional Simulation of Turn-off Current in Partially Depleted SOI MOSFETs”, IEIC Technical Report, Institute of Electronics, Information and Communication Engineers, 1998, vol. 97, No. 557 (SDM97 186-198), pp. 27-34.
Inoh et al., “FBC (Floating Body Cell) for Embedded DRAM on SOI”, 2003 Symposium on VLSI Circuits Digest of Technical Papers, Jun. 2003 (2 pages).
Iyer et al., “SOI MOSFET on Low Cost SPIMOX Substrate”, IEEE IEDM, Sep. 1998, pp. 1001-1004.
Jang et al., Highly scalable Z-RAM with remarkably long data retention for DRAM application, Jun. 2009, VLSI.
Jeong et al., “A Capacitor-less 1T DRAM Cell Based on a Surrounding Gate MOSFET with Vertical Channel”, Technology Development Team, Technology Development Team, Samsung Electronics Co., Ltd., May 2007.
Jeong et al., “Capacitorless DRAM Cell with Highly Scalable Surrounding Gate Structure”, Extended Abstracts of the 2006 International Conference on Solid State Devices and Materials, pp. 574-575, Yokohama (2006).
Jeong et al., “Capacitorless Dynamic Random Access Memory Cell with Highly Scalable Surrounding Gate Structure”, Japanese Journal of Applied Physics, vol. 46, No. 4B, pp. 2143-2147 (2007).
Kedzierski, J.; “Design Analysis of Thin-Body Silicide Source/Drain Devices”, 2001 IEEE International SOI Conference, Oct. 2001, pp. 21-22.
Kim et al., “Chip Level Reliability on SOI Embedded Memory”, Proceedings 1998 IEEE International SOI Conference, Oct. 1998, pp. 135-139.
Kuo et al., “A Capacitorless Double-Gate DRAM Cell Design for High Density Applications”, IEEE IEDM, Feb. 2002, pp. 843-846.
Kuo et al., “A Capacitorless Double-Gate DRAM Cell”, IEEE Electron Device Letters, vol. 23, No. 6, Jun. 2002, pp. 345-347.
Kuo et al., A Capacitorless Double Gate DRAM Technology for Sub 100 nm Embedded and Stand Alone Memory Applications, 2003, IEEE Trans. On El. Dev.
Kwon et al., “A Highly Scalable 4F2 DRAm Cell Utilizing a Doubly Gated Vertical Channel”, Extended Abstracts of the 2009 International Conference on Solid State Devices and Materials, UC Berkley, pp. 142-143 Sendai (2009).
Lee et al., “A Novel Pattern Transfer Process for Bonded SOI Giga-bit DRAMs”, Proceedings 1996 IEEE International SOI Conference, Oct. 1996, pp. 114-115.
Leiss et al., dRAM Design Using the Taper-Isolated Dynamic RAM Cell, IEEE Transactions on Electron Devices, vol. ED-29, No. 4, Apr. 1982, pp. 707-714.
Lin et al., “Opposite Side Floating Gate SOI FLASH Memory Cell”, IEEE, Mar. 2000, pp. 12-15.
Liu et al., Surface Generation-Recombination Processes of Gate and STI Oxide Interfaces Responsible For Junction Leakage on SOI, Sep. 2009, ECS Transactions, vol. 25.
Liu, Surface Recombination-Generation Processes of Gate, STI and Buried Oxide Interfaces Responsible for Junction Leakage on SOI, May 2009, ICSI.
Lon{hacek over (c)}ar et al., “One of Application of SOI Memory Cell—Memory Array”, IEEE Proc. 22nd International Conference on Microelectronics (MIEL 2000), vol. 2, Ni{hacek over (s)}, Serbia, May 14-17, 2000, pp. 455-458.
Lu et al., A Novel Two-Transistor Floating Body/Gate Cell for Low Power Nanoscale Embedded DRAM, 2008, IEEE Trans. On El. Dev.
Ma, et al., “Hot-Carrier Effects in Thin-Film Fully Depleted SOI MOSFET's”, IEEE Electron Device Letters, vol. 15, No. 6, Jun. 1994, pp. 218-220.
Malhi et al., “Characteristics and Three-Dimensional Integration of MOSFET's in Small-Grain LPCVD Polycrystalline Silicon”, IEEE Transactions on Electron Devices, vol. ED-32, No. 2, Feb. 1985, pp. 258-281.
Malinge, An 8Mbit DRAM Design Using a 1TBulk Cell, 2005, VLSI Circuits.
Mandelman et al, “Floating-Body Concerns for SOI Dynamic Random Access Memory (DRAM)”, Proceedings 1996 IEEE International SOI Conference, Oct. 1996, pp. 136-137.
Matsuoka et al., FBC Potential of 6F2 Single Cell Operation in Multi Gbit Memories Confirmed by a Newly Developed Method for Measuring Signal Sense Margin, 2007, IEDM.
Minami, A Floating Body Cell (FBC) fully Compatible with 90nm CMOS Technology(CMOS IV) for 128Mb SOI DRAM, 2005, IEDM.
Mohapatra et al., Effect of Source/Drain Asymmetry on the Performance of Z-RAMÒ Devices, Oct. 2009, SOI conference.
Morishita, A Capacitorless Twin-Transistor Random Access Memory (TTRAM) on SOI, 2005, CICC.
Morishita, F. et al., “A Configurable Enhanced TTRAM Macro for System-Level Power Management Unified Memory”, IEEE Journal of Solid-State Circuits, vol. 42, No. 4, pp. 853, Apr. 2007.
Morishita, F., et al., “A 312-MHz 16-Mb Random-Cycle Embedded DRAM Macro With a Power-Down Data Retention Mode for Mobile Applications”, J. Solid-State Circuits, vol. 40, No. 1, pp. 204-212, 2005.
Morishita, F., et al., “Dynamic floating body control SOI CMOS for power managed multimedia ULSIs”, Proc. CICC, pp. 263-266, 1997.
Morishita, F., et al., “Leakage Mechanism due to Floating Body and Countermeasure on Dynamic Retention Mode of SOI-DRAM”, Symposium on VLSI Technology Digest of Technical Papers, pp. 141-142, 1995.
Nagoga, Studying of Hot Carrier Effect In Floating Body Soi Mosfets by the Transient Charge Pumping Technique, Switzerland 2003.
Nayfeh, A Leakage Current Model for SOI based Floating Body Memory that Includes the Poole-Frenkel Effect, 2008, SOI Conference.
Nemati, A Novel High Density, Low Voltage SRAM Cell with a Vertical NDR Device, 1998, VLSI Tech. Symp.
Nemati, A Novel Thyristor-based SRAM Cell (T-RAM) for High-Speed, Low-Voltage, Giga-scale Memories, 1999, IEDM Conference.
Nemati, Embedded Volatile Memories-Embedded Tutorial: The New Memory Revolution, New Drives Circuits and Systems, ICCAD 2008, Nov. 2008.
Nemati, Fully Planar 0.562μm2 T-RAM Cell in a 130nm SOI CMOS Logic Technology for High-Density High-Performance SRAMs, 2004, IEDM.
Nemati, The New Memory Revolution. New Devices, Circuits and Systems, 2008, ICCAD.
Nemati, Thyristor RAM (T-RAM): A High-Speed High-Density Embedded Memory Technology for Nano-scale CMOS, 2007, Hot Chips.
Nemati, Thyristor-RAM: A Novel Embedded Memory Technology that Outperforms Embedded S RAM/DRAM, 2008, Linley Tech Tour.
Nishiguchi et al., Long Retention of Gain-Cell Dynamic Random Access Memory with Undoped Memory Node, 2007, IEEE EDL.
Oh, Floating Body DRAM Characteristics of Silicon-On-ONO (SOONO) Devices for System-on-Chip (SoC) Applications, 2007, VLSI Symposium.
Ohno et al., “Suppression of Parasitic Bipolar Action in Ultra-Thin-Film Fully-Depleted CMOS/SIMOX Devices by Ar-Ion Implantation into Source/Drain Regions”, IEEE Transactions on Electron Devices, vol. 45, No. 5, May 1998, pp. 1071-1076.
Ohsawa et al., “A Memory Using One-Transistor Gain Cell on SOI (FBC) with Performance Suitable for Embedded DRAM's”, 2003 Symposium on VLSI Circuits Digest of Technical Papers, Jun. 2003 (4 pages).
Ohsawa et al., “Memory Design Using a One-Transistor Gain Cell on SOI”, IEEE Journal of Solid-State Circuits, vol. 37, No. 11, Nov. 2002, pp. 1510-1522.
Ohsawa, A 128Mb Floating Body RAM ,(FBRAM) on SOI with a Multi-Averaging Scheme of Dummy Cell, 2006 Symposium of VLSI Circuits Digest of Tech Papers, (2006).
Ohsawa, An 18.5ns 128Mb SOI DRAM with a Floating Body Cell, 2005, ISSCC.
Ohsawa, Autonomous Refresh of Floating Body Cell (FBC), Dec. 2008, IEDM.
Ohsawa, Design of a 128-Mb SOI DRAM Using the Floating Body Cell (FBC), Jan. 2006, Solid-State Circuits.
Okhonin, A Capacitor-Less 1T-DRAM Cell, Feb. 2002, Electron Device Letters.
Okhonin, A SOI Capacitor-less 1T-DRAM Concept, 2001, SOI Conference.
Okhonin, Charge Pumping Effects in Partially Depleted SOI MOSFETs, 2003, SOI Conference.
Okhonin, New characterization techniques for SOI and related devices, 2003, ECCTD.
Okhonin, New Generation of Z-RAM, 2007, IEDM.
Okhonin, Principles of Transient Charge Pumping on Partially Depleted SOI MOSFETs, May 2002, Electron Device Letters.
Okhonin, Transient Charge Pumping for Partially and Fully Depleted SOI MOSFETs, 2002, SOI Conference.
Okhonin, Transient effects in PD SOI MOSFETs and potential DRAM applications, 2002, Solid-State Electronics.
Okhonin, Ultra-scaled Z-RAM cell, 2008, SOI Conference.
Okhonin, Z-RAM® (Limits of DRAM), 2009, ESSDERC.
Padilla, Alvaro, et al., “Feedback FET: A Novel Transistor Exhibiting Steep Switching Behavior at Low Bias Voltages,” Electron Devices Meeting, 2008. IEDM 2008. IEEE International, Dec. 5-17, 2008.
Park, Fully Depleted Double-Gate 1T-DRAM Cell with NVM Function for High Performance and High Density Embedded DRAM, 2009, IMW.
Pelella et al., “Low-Voltage Transient Bipolar Effect Induced by Dynamic Floating-Body Charging in PD/SOI MOSFETs”, Final Camera Ready Art, SOI Conference, Oct. 1995, 2 pages.
Portmann et al., “A SOI Current Memory for Analog Signal Processing at High Temperature”, 1999 IEEE International SOI Conference, Oct. 1999, pp. 18-19.
Puget et al., 1T Bulk eDRAM using GIDL Current for High Speed and Low Power applications, 2008, SSDM.
Puget et al., Quantum effects influence on thin silicon film capacitor-less DRAM performance, 2006, SOI Conference.
Puget, FDSOI Floating Body Cell eDRAM Using Gate-Induced Drain-Leakage (GIDL) Write Current for High Speed and Low Power Applications, 2009, IMW.
Ranica et al., 1T-Bulk DRAM cell with improved performances: the way to scaling, 2005, ICMTD.
Ranica, A capacitor-less DRAM cell on 75nm gate length, 16nm thin Fully Depleted SOI device for high density embedded memories, 2004, IEDM.
Ranica, A One Transistor Cell on Bulk Substrate (1T-Bulk) for Low-Cost and High Density eDRAM, 2004, VLSI Symposium.
Rodder et al., “Silicon-On-Insulator Bipolar Transistors”, IEEE Electron Device Letters, vol. EDL-4, No. 6, Jun. 1983, pp. 193-195.
Rodriguez, Noel, et al., A-RAM Novel Capacitor-less Dram Memory, SOI Conference, 2009 IEEE International, Oct. 5-8, 2009 pp. 1-2.
Roy, Thyristor-Based Volatile Memory in Nano-Scale CMOS, 2006, ISSCC.
Salling et al., Reliability of Thyristor Based Memory Cells, 2009, IRPS.
Sasaki et al., Charge Pumping in SOS-MOS Transistors, 1981, IEEE Trans. On El. Dev.
Sasaki et al., Charge Pumping SOS-MOS Transistor Memory, 1978, IEDM.
Schloesser et al., “A 6F2 Buried Wordline DRAM Cell for 40nm and Beyond”, IEEE, Qimonda Dresden GmbH & Co., pp. 809-812 (2008).
Shino et al., Floating Body RAM technology and its scalability to 32 nm node and beyond, 2006, IEDM.
Shino et al., Operation Voltage Dependence of Memory Cell Characteristics in Fully Depleted FBC, 2005, IEEE Trans. On El. Dev.
Shino, Fully-Depleted FBC (Floating Body Cell) with Enlarged Signal Window and Excellent Logic Process Compatibility, 2004, IEDM.
Shino, Highly Scalable FBC (Floating Body Cell) with 25nm BOX Structure for Embedded DRAM Applications, 2004, VLSI Symposium.
Sim et al., “Source-Bias Dependent Charge Accumulation in P+ -Poly Gate SOI Dynamic Random Access Memory Cell Transistors”, Jpn. J. Appl. Phys. vol. 37 (1998) pp. 1260-1263, Part 1, No. 3B, Mar. 1998.
Singh, A 2ns-Read-Latency 4Mb Embedded Floating-Body Memory Macro in 45nm SOI Technology, Feb. 2009, ISSCC.
Sinha et al., “In-Depth Analysis of Opposite Channel Based Charge Injection in SOI MOSFETs and Related Defect Creation and Annihilation”, Elsevier Science, Microelectronic Engineering 28, 1995, pp. 383-386.
Song, 55 nm Capacitor-less 1T DRAM Cell Transistor with Non-Overlap Structure, Dec. 2008, IEDM.
Stanojevic et al., “Design of a SOI Memory Cell”, IEEE Proc. 21st International Conference on Microelectronics (MIEL '97), vol. 1, NIS, Yugoslavia, Sep. 14-17, 1997, pp. 297-300.
Su et al., “Studying the Impact of Gate Tunneling on Dynamic Behaviors of Partially-Depleted SOI CMOS Using BSIMPD”, IEEE Proceedings of the International Symposium on Quality Electronic Design (ISQED '02), Apr. 2002 (5 pages).
Suma et al., “An SOI-DRAM with Wide Operating Voltage Range by CMOS/SIMOX Technology”, 1994 IEEE International Solid-State Circuits Conference, pp. 138-139.
Tack et al., “The Multi-Stable Behaviour of SOI-NMOS Transistors at Low Temperatures”, Proc. 1988 SOS/SOI Technology Workshop (Sea Palms Resort, St. Simons Island, GA, Oct. 1988), p. 78.
Tack et al., “The Multistable Charge Controlled Memory Effect in SOI Transistors at Low Temperatures”, IEEE Workshop on Low Temperature Electronics, Aug. 7-8, 1989, University of Vermont, Burlington, pp. 137-141.
Tack et al., “The Multistable Charge-Controlled Memory Effect in SOI MOS Transistors at Low Temperatures”, IEEE Transactions on Electron Devices, vol. 37, No. 5, May 1990, pp. 1373-1382.
Tack, et al., “An Analytical Model for the Misis Structure in SOI MOS Devices”, Solid-State Electronics vol. 33, No. 3, 1990, pp. 357-364.
Tanaka et al., “Scalability Study on a Capacitorless 1T-DRAM: From Single-gate PD-SOI to Double-gate FINDRAM”, 2004 IEEE, 4 pages.
Tang, Poren, Highly Scalable Capacitorless DRAM Cell on Thin-Body with Band-gap Engineered Source and Drain, Extended Abstracts of the 2009 ICSSDM, Sendai, 2009, pp. 144-145.
Terauchi et al., “Analysis of Floating-Body-Induced Leakage Current in 0.15μ m SOI DRAM”, Proceedings 1996 IEEE International SOI Conference, Oct. 1996, pp. 138-139.
Thomas et al., “An SOI 4 Transistors Self-Refresh Ultra-Low-Voltage Memory Cell”, IEEE, Mar. 2003, pp. 401-404.
Tomishima, et al., “A Long Data Retention SOI DRAM with the Body Refresh Function”, IEICE Trans. Electron., vol. E80-C, No. 7, Jul. 1997, pp. 899-904.
Tsaur et al., “Fully Isolated Lateral Bipolar-MOS Transistors Fabricated in Zone-Melting-Recrystallized Si Films on SiO2”, IEEE Electron Device Letters, vol. EDL-4, No. 8, Aug. 1983, pp. 269-271.
Tu, et al., “Simulation of Floating Body Effect in SOI Circuits Using BSIM3SOI”, Proceedings of Technical Papers (IEEE Cat No. 97TH8303), Jun. 1997, pp. 339-342.
Villaret et al., “Mechanisms of Charge Modulation in the Floating Body of Triple-Well nMOSFET Capacitor-less DRAMs”, Proceedings of the INFOS 2003, Insulating Films on Semiconductors, 13th Bi-annual Conference, Jun. 18-20, 2003, Barcelona (Spain), (4 pages).
Villaret et al., “Triple-Well nMOSFET Evaluated as a Capacitor-Less DRAM Cell for Nanoscale Low-Cost & High Density Applications”, Handout at Proceedings of 2003 Silicon Nanoelectronics Workshop, Jun. 8-9, 2003, Kyoto, Japan (2 pages).
Villaret et al., Further Insight into the Physics and Modeling of Floating Body Capacitorless DRAMs, 2005, IEEE Trans. On El. Dev.
Wang et al., A Novel 4.5F2 Capacitorless Semiconductor Memory Device, 2008, IEEE EDL.
Wann et al., “A Capacitorless DRAM Cell on SOI Substrate”, IEEE IEDM, 1993, pp. 635-638.
Wann et al., “High-Endurance Ultra-Thin Tunnel Oxide in MONOS Device Structure for Dynamic Memory Application”, IEEE Electron Device Letters, vol. 16, No. 11, Nov. 1995, pp. 491-493.
Wei, A., “Measurement of Transient Effects in SOI DRAM/SRAM Access Transistors”, IEEE Electron Device Letters, vol. 17, No. 5, May 1996, pp. 193-195.
Wouters, et al., “Characterization of Front and Back Si-SiO2 Interfaces in Thick- and Thin-Film Silicon-on-Insulator MOS Structures by the Charge-Pumping Technique”, IEEE Transactions on Electron Devices, vol. 36, No. 9, Sep. 1989, pp. 1746-1750.
Wu, Dake, “Performance Improvement of the Capacitorless DRAM Cell with Quasi-SOI Structure Based on Bulk Substrate,” Extended Abstracts of the 2009 ICSSDM, Sendai, 2009, pp. 146-147.
Yamanaka et al., “Advanced TFT SRAM Cell Technology Using a Phase-Shift Lithography”, IEEE Transactions on Electron Devices, vol. 42, No. 7, Jul. 1995, pp. 1305-1313.
Yamauchi et al., “High-Performance Embedded SOI DRAM Architecture for the Low-Power Supply”, IEEE Journal of Solid-State Circuits, vol. 35, No. 8, Aug. 2000, pp. 1169-1178.
Yamawaki, M., “Embedded DRAM Process Technology”, Proceedings of the Symposium on Semiconductors and Integrated Circuits Technology, 1998, vol. 55, pp. 38-43.
Yang, Optimization of Nanoscale Thyristors on SOI for High-Performance High-Density Memories, 2006, SOI Conference.
Yoshida et al., “A Design of a Capacitorless 1-T-DRAM Cell Using Gate-induced Drain Leakage (GIDL) Current for Low-Power and High-speed Embedded Memory”, 2003 IEEE, 4 pages.
Yoshida et al., “A Study of High Scalable DG-FinDRAM”, IEEE Electron Device Letters, vol. 26, No. 9, Sep. 2005, pp. 655-657.
Yoshida et al., A Capacitorless 1T-DRAM Technology Using GIDL Current for Low Power and High Speed Embedded Memory, 2006, IEEE Trans. On El. Dev.
Yu et al., Hot-Carrier Effect in Ultra-Thin-Film (UTF) Fully-Depleted SOI MOSFET's, 54th Annual Device Research Conference Digest (Cat. No. 96TH8193), Jun. 1996, pp. 22-23.
Yu et al., “Hot-Carrier-Induced Degradation in Ultra-Thin-Film Fully-Depleted SOI MOSFETs”, Solid-State Electronics, vol. 39, No. 12, 1996, pp. 1791-1794.
Yu et al., “Interface Characterization of Fully-Depleted SOI MOSFET by a Subthreshold I-V Method”, Proceedings 1994 IEEE International SOI Conference, Oct. 1994, pp. 63-64.
Yun et al., Analysis of Sensing Margin in SOONO Device for the Capacitor-less RAM Applications, 2007, SOI Conference.
Zhou, Physical Insights on BJT-Based 1T DRAM Cells, IEEE Electron Device Letters, vol. 30, No. 5, May 2009.
International Search Report mailed Jun. 26, 2009 for International Patent Application No. PCT/IB2008/003284.
Tanabe et al., A 30-ns. 64-MB DRAM with Built-in-Self-Test and Self-Repair Function, IEEE Journal of Solid State Circuits, vol. 27, No. 11, pp. 1525-1533, Nov. 1992.
Ban et al., Integration of Back-Gate Doping for 15-nm Node Floating Body Cell (FBC) Memory, Components Research, Process Technology Modeling, presented in the 2010 VLSI Symposium on Jun. 17, 2010.
Related Publications (1)
Number Date Country
20080237714 A1 Oct 2008 US
Provisional Applications (1)
Number Date Country
60921151 Mar 2007 US