The invention concerns a mass spectrometer for analysis of secondary ions and post-ionized neutral secondary particles with an ion source for creating a primary ion beam to irradiate a sample, and to produce secondary particles. The source possesses a heatable ion emitter that is coated in the area exposed to the field with a liquid-metal layer that contains an ionizable metal that is emitted and ionized as the primary ion beam. The primary ion beam contains metal ions with various stages of ionization and cluster statuses. In particular, the invention concerns a spectrometer unit for mass analysis of the secondary particles as well as the ion source of such a mass spectrometer.
In the description below, the conventional designation will be used for ions in clusters related to their mass and charge status, thus:
Binp+
wherein n=the quantity of atoms in a cluster, and p+=charge status.
It is known to use liquid metal sources in secondary-ion mass spectroscopy in particular when operated as time-of-flight secondary-ion mass spectroscopy (TOF-SIMS). Applicants have proposed a liquid metal gold-cluster ion source for a spectrometer (see prospectus: Liquid Metal Gold Cluster Ion Gun for Improved Molecular Spectroscopy and Imaging, published 2002) that represents the state of the art for the overall TOF-SIMS concept.
The efficiency of TOF-SIMS measurements with respect to primary ion beams from mono-atomic Gallium ions could be significantly increased using Gold Primary Clusters, e.g., of type Au3+. The disadvantage of the use of Gold as the material for the primary ion beam is that when Gold ions are created, those of type Au1+ predominate, while cluster formats such as Au2+ or Au3+ provide only low components of the overall ion current.
Bismuth has been used successfully during the intensive search for additional cluster-forming substances, containing only one natural isotope for secondary-ion mass spectroscopy. Bismuth is an an-isotopic element with a melting point of 271.3° C. Additionally, Bismuth alloys such as Bi+Pb, Bi+Sn, and Bi+Zn are known that possess lower melting points (46° C.-140° C.) than pure Bismuth. Pure Bismuth, however, is given preference for a liquid metal ion source.
In U.S. Pat. No. 6,002,128 it is noted that Bismuth is suited for the creation of charged particles. However, neither cluster formation nor the option of a liquid metal ion source with Bismuth is described. Also, the Japanese Patent No. 03-084435 proposes a calibration alloy for a secondary-ion mass spectrometer with which mass spectra with high resolution may be obtained. For this, the elements V, Ge, Cd, Os, and Bi are named as elements with high negative secondary ionization. The isotope patterns for the above-mentioned elements provide characteristic, repeatable spectra. However, this document does not mention cluster formation of a liquid metal ion source. Also, it is not indicated that Bismuth is well suited for cluster formation.
It is therefore an objective of the invention to develop an ion source for the operation of secondary-ion mass spectrometers with improved yield of cluster ions in order to achieve a high degree of efficiency of secondary ion formation with a simultaneous high data rate, and thereby short analysis times. The proposed improvement combines a high degree of efficiency E for secondary ion formation from unaltered sample surfaces with high cluster streams, and leads to a corresponding reduction of analysis times.
This objective is achieved by a secondary ion mass spectrometer, and by the concomitant ion source based on the above-mentioned overall concept, in which the liquid metal film consists of pure Bismuth, or of a Bismuth alloy with low melting point, whereby a Bismuth ion mixed beam is emittable from the ion emitter under the influence of an electric field. From this mixed beam, one of several types of Bismuth ions, whose mass comprises a multiple of the mono-atomic, singly- or multiply-charged Bismuth ions Bi1p+, may be filtered out using a filtering device as a mass-pure ion beam that consists exclusively of ions of the type Binp+ for which N≧2 and p≧1, and n and p are natural numbers.
Since secondary ion mass spectrometry involves the sputtering of a solid state surface to be analyzed, a portion of the surface is destroyed. Therefore, only a limited quantity of molecular secondary particles may be generated and determined from a given solid state surface. Particularly, the molecular components of the solid state surface decay from the primary ion irradiation, and therefore are not available to the analysis. Broader use of TOF-SIMS for analysis of molecular surfaces requires an increase in the previously achievable level of sensitivity determination for organic materials. Such a sensitivity increase requires efficient formation of secondary particles, particularly secondary ions, from thicker organic layers. The proposed improvement will increase the efficiency E of the secondary ion formation of unaltered sample surfaces.
The value E of the efficiency corresponds to the quantity of secondary particles determined by the spectrometer that may be determined per surface-area unit of a completely consumed monolayer. The quantity of secondary ions to be determined during small-surface chemical analysis under the selected irradiation conditions may resultantly be calculated from the efficiency.
It is particularly advantageous if the ions filtered out for a mass-pure ion beam belong to one of the following types: Bi2+, Bi3+, Bi32+, Bi4+, Bi5+, Bi6+, Bi52+, or Bi72+. One should preferably work with an ion type that comprises a relatively large component of the total quantity of ions.
The mass spectrometer is preferably operated as a time-of-flight secondary ion mass spectrometer, since much experience exists for this type, and experimental operations have shown that there is great application potential here.
For Bismuth coating, an ion emitter equipped with a nickel-chromium tip presents a favorable choice according to the current state of the art with respect to its wettability, stability under load, and capability of being machined.
Mean current strength for the emission beam in the operation of a secondary ion mass spectrometer is selected to be between 10−8 and 5×10−5 A.
For the case in which a metallic alloy of Bismuth is used instead of pure Bismuth, one with high Bismuth content and therefore low melting point is preferably selected. For example, this includes Bismuth alloys with one or several of the following metals as liquid metal coating: Ni, Ag, Pb, Hg, Cu, Sn, or Zn, whereby an alloy is preferably selected whose melting point lies below that of pure Bismuth.
For a full understanding of the present invention, reference should now be made to the following detailed description of the preferred embodiments of the invention as illustrated in the accompanying drawings.
DESCRIPTION OF THE PREFERRED EMBODIMENTS The preferred embodiments of the present invention will now be described with reference to
Identical elements in the various figures are designated with the same reference numerals.
The general structure of a TOF-SIMS is generally known, so that reference will be made here only to
The emitter needle 4 consists of a Nickel-Chromium alloy, and is moistened by liquid Bismuth to its tip. The emitter needle possesses a wire diameter of about 200 μm and a curvature radius at its tip of 2 to 4 μm. The emitter needle 4 is positioned at the center in front of an extraction screen 2, and is surrounded by a suppression unit 3.
If one applies high voltage between the extraction screen 2 and the moistened emitter needle 4, then a sharp cone of liquid Bismuth—the so-called “Taylor cone”—is formed on the needle tip beginning at a specific voltage. The taper of the tip connected with this leads to a clear increase in field strength. If the field strength is adequate for field desorption, the emission of metal ions begins at the tip of the Taylor cone. The emission current from the liquid metal ion source of the type shown lies approximately between 0.2 and 5 μA.
It must be recognized that the standardized relative emission components turn out better for Bismuth than for Gold. Another advantage with respect to Gold, for which alloy components are required in order to achieve lower melting points, is that Bismuth may be used as a non-alloyed (pure) metal. The melting point is relatively low at 271.3° C. Additionally, the vapor pressure for Bismuth prevailing at its melting temperature is lower than for Gold. An additional advantage for consideration is that the ion beam emitted for Gold is mixed with alloy components such as Germanium, so that a stronger requirement for mass filtering results.
The absolute emission beams of Au1+ and Bi1+ are approximately equal. Although the atomic, singly charged beam components Au1+ and Bi1+ are of comparable value, there is a significant difference in cluster yield. For singly charged ions, the advantage of Bin+ with respect to Aun+ increases linearly with cluster size. Doubly charged cluster ions are emitted only with Bismuth at the nominal intensity.
The cluster components shown in
In order to compare the invention with the state of the art, identical organic surfaces were analyzed using the same liquid metal ion mass spectrometer and with various types of primary ions (see
The series of images in
The very weak Au3+ cluster beams lead to relatively long measurement times. The use of Bi3+ clusters allows an increase by a factor of 4 or 5 in primary-ion currents with respect to Au3+ clusters. Because of the slightly increased yield, the increase in data rates may be even more than this. The 1/e-decrease in signal intensity is achieved with Au3+ primary ions per 750 s and with Bi3+ primary ions after a significantly reduced analysis time of 180 s. The reduction in measurement time may largely be traced to the increased Bi3+ cluster currents. The selection of Bi3++ also leads to similarly reduced measurement time. An increase in efficiency may be achieved by the use of larger clusters such as, for example, Bi7++, but these cluster currents are relatively small, so that analysis times increase overall.
Since the measurement time comprises a significant component of the analysis time, the increase in data rate because of the use of Bi3+ or Bi3++ leads to a corresponding increased output of samples.
In addition to the above-mentioned advantages as to measurement time, Bismuth emitters also possess advantages, as compared to Gold emitters, relative to emission stability at low emission currents and the mass separation of the types of ions emitted. These advantages lead to the conclusion that Bismuth emitters possess significant economical and technical advantages that might not otherwise be expected.
There has thus been shown and described a novel mass spectrometer and liquid-metal ion source for a mass spectrometer of this type which fulfills all the objects and advantages sought therefor. Many changes, modifications, variations and other uses and applications of the subject invention will, however, become apparent to those skilled in the art after considering this specification and the accompanying drawings which disclose the preferred embodiments thereof. All such changes, modifications, variations and other uses and applications which do not depart from the spirit and scope of the invention are deemed to be covered by the invention, which is to be limited only by the claims which follow.
Number | Date | Country | Kind |
---|---|---|---|
103 39 346 | Aug 2003 | DE | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/EP2004/007154 | 7/1/2004 | WO | 00 | 2/17/2006 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2005/029532 | 3/31/2005 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
3508045 | Liebl et al. | Apr 1970 | A |
4019989 | Hazewindus et al. | Apr 1977 | A |
4426582 | Orloff | Jan 1984 | A |
4686414 | McKenna et al. | Aug 1987 | A |
5633495 | Niehuis | May 1997 | A |
6002128 | Hill et al. | Dec 1999 | A |
6291820 | Hamza et al. | Sep 2001 | B1 |
6791078 | Giles et al. | Sep 2004 | B2 |
6989528 | Schultz | Jan 2006 | B2 |
20060183235 | Hashimoto et al. | Aug 2006 | A1 |
Number | Date | Country |
---|---|---|
03084435 | Apr 1991 | JP |
03155025 | Jul 1991 | JP |
11274255 | Oct 1999 | JP |
Entry |
---|
J. Van De Walle and P. Joyes, Study of Binp+ ions formed in liquid-metal ion sources, Apr. 15, 1987, Physical Review, v. 35, pp. 5509-5513. |
Barofsky, “Liquid Metal Ion Sources”, Desorption Mass Spectrometry; Lyon, P.; ACS Symposium Series; American Chemical Society: Washington, DC, 1985. |
Barofsky, “Liquid Metal Ion Sources”, Desorption Mass Spectrometry; Lyon, P.; ACS Symposium Series; American Chemical Society: Washington, DC, 1985, pp. 113-122. |
Liquid Metal Gold Cluster Ion Gun for Improved Molecular Spectroscopy and Imaging, published 2002. ION-TOF GmbH, Muenster Germany. |
Cluster Formation Under Bombardment with Polyatomic Projectiles, R. Heinrich, A. Wucher, Elsevier Science B.V., 2000, pp. 720-726. |
Cluster Impacts at keV and MeV Energies: Secondary Emission Phenomena, Yvon Le Beyec, Elsevier Science B.V., 1998, pp. 101-117. |
Study of BinP+ Ions Formed in Liquid-Metal Ion Sources, Physical Review B, XP-002366516, vol. 35, No. 11, Apr. 15, 1987, pp. 5509-5513. |
Spike Effects in Heavy-Ion Sputtering of Ag, Au and Pt Thin Films, S.S. Johar and D.A. Thompson, Surface Science XP-002366490 (1979) 319-330. |
L.W. Swanson, “Use of the liquid Metal Ion Source for Focused Beam Applications”, Appl., Surf. Sci., 76/77 (1994) 80-88, 1993; (D1). |
J. Schwieters, et al., “High Mass Resolution Surface Imaging With a Time-Of-Flight Secondary Ion Mass Spectroscopy Scanning Microprobe”, J. Vac. Sci. Technol. A (6) (Nov./Dec. 1. |
A. Walker, N. Winograd, “Prospects for Imaging withTOF-SIMS Using Gold Liquid Metal Ion Sources”, Applied Surface Science, 203•203 (2003) 198-200, Jan. 15, 2003; (D3). |
N. Davies, D.E. Weibel, P. Plenklnsopp, N. Lockyer, R. Hill, J.E. Vickerman, Development and Experimental Application of a Gold Liquid Metal Ion Source, Applied Surface Scien. |
“IONTOF Company History”, http://www.ion-tof.com/company-history-IONTOF-TOF-SIMS-TIME-OF-FLIGHT-SURFACE- ANALYSIS.htm, retrieved on Apr. 3, 2009. |
“Non-Linear Sputtering Effects in Thin Metal Films”; D.A. Thomson and S. S. Johar; Appl. Phys. Lett 34(5), Mar. 1, 1979; pp. 342-344. |
Iosif S. Bitensky and Douglas F. Barofsky, Nonlinear effects in sputtering of organic liquids by keV ions Physical Review B vol. 56, No. 21, pp. 13815-13825 (1997). |
FIB / Ion Milling technique Q&A for researchers of electronic microscope—a booster of nano-technology—Author name (Joint editor) : Masao Hirasaka and Kentaro Asakura, Publisher : Agne-Shofu-Sha. |
N. Davies et al., “Development and Experimental Application of a Gold Liquid Metal Ion Source”, Applied Surface Science 203-204 (2003), pp. 223-227. |
www.iontof.com/dual-source-column-o2-cs-depth-profiling.html, “High-End Depth Profiling”; Jul. 1, 2015. |
John C. Vickerman and David Briggs, “ToF-Sims: Surface Analysis by Mass Spectrometry”, IM Publications. |
A. Benninghoven, “Ion Formation from Organic Solids”; Proceedings of the Second International Conference, Muenster, Germany, Sep. 7-9, 1982, pp. 64-89. |
Yvon Ie Beyec, “Cluster Impacts at keV and meV Engergies: Secondary Emission Phenomena”, Elsevier Science B.V., International Journal of Mass Spectrometry and Ion Processes, 174 (1988) 101-117. |
Number | Date | Country | |
---|---|---|---|
20060202130 A1 | Sep 2006 | US |