An integrated circuit (“IC”) includes one or more semiconductor devices. One way in which to represent a semiconductor device is with a plan view diagram referred to as a layout diagram. Layout diagrams are generated in a context of design rules. A set of design rules imposes constraints on the placement of corresponding patterns in a layout diagram, e.g., geographic/spatial restrictions, connectivity restrictions, or the like. Often, a set of design rules includes a subset of design rules pertaining to the spacing and other interactions between patterns in adjacent or abutting cells where the patterns represent conductors in a layer of metallization.
Typically, a set of design rules is specific to a process/technology node by which will be fabricated a semiconductor device based on a layout diagram. The design rule set compensates for variability of the corresponding process/technology node. Such compensation increases the likelihood that an actual semiconductor device resulting from a layout diagram will be an acceptable counterpart to the virtual device on which the layout diagram is based.
Aspects of the present disclosure are best understood from the following detailed description when read with the accompanying figures. It is noted that, in accordance with the standard practice in the industry, various features are not drawn to scale. In fact, the dimensions of the various features may be arbitrarily increased or reduced for clarity of discussion.
The following disclosure provides many different embodiments, or examples, for implementing different features of the provided subject matter. Specific examples of components, values, operations, materials, arrangements, or the like, are described below to simplify the present disclosure. These are, of course, merely examples and are not intended to be limiting. Other components, values, operations, materials, arrangements, or the like, are contemplated. For example, the formation of a first feature over or on a second feature in the description that follows may include embodiments in which the first and second features are formed in direct contact, and may also include embodiments in which additional features may be formed between the first and second features, such that the first and second features may not be in direct contact. In addition, the present disclosure may repeat reference numerals and/or letters in the various examples. This repetition is for the purpose of simplicity and clarity and does not in itself dictate a relationship between the various embodiments and/or configurations discussed.
Further, spatially relative terms, such as “beneath,” “below,” “lower,” “above,” “upper” and the like, may be used herein for ease of description to describe one element or feature's relationship to another element(s) or feature(s) as illustrated in the figures. The spatially relative terms are intended to encompass different orientations of the device in use or operation in addition to the orientation depicted in the figures. The apparatus may be otherwise oriented (rotated 90 degrees or at other orientations) and the spatially relative descriptors used herein may likewise be interpreted accordingly.
In some embodiments, buried contact-to-transistor-component structures (BVD structures) which are under and electrically coupled to corresponding portions of corresponding active regions; and buried conductive segments which are in a first buried layer of metallization (BM_1st layer), extend in the first direction, and are under and electrically coupled to corresponding ones of the BVD structures, and correspondingly provide a first reference voltage or a second reference voltage. According to another approach, a BM0 layer is not provided and instead some of the M0 patterns are used as power grid (PG) patterns and are designated to provide correspondingly VDD and VSS, and corresponding MD patterns are provided for coupling the M0 PG patterns to corresponding portions of the active area (AA) patterns and are aligned on track T6. However, where width is defined as being relative to a short axis of a metallization pattern, the width of the M0 PG patterns according to the other approach is substantially the same as the width of M0 routing patterns. By moving the PG patterns to the BM0 layer, at least some embodiments provide PG patterns that are relatively wider than (and so suffer significantly smaller resistive (Ohmic) losses than) the M0 PG patterns according to the other approach. In addition, by moving the PG patterns to the BM0 layer, at least some embodiments suffer reduced routing congestion as compared to the other approach.
Semiconductor device 100 includes a region 102 which is a memory cell region that has a width of four contacted poly pitch (4 CPP). In addition, memory cell region 102 has electrical couplings to a power grid (PG) which is buried (BPG). In some embodiments, relative to a footprint of memory cell region 102, the electrical couplings are centrally aligned.
Memory cell 204(1) includes a first memory latch. The first memory latch includes: a PMOS transistor P1 and an NMOS transistor N1 coupled in series between a first reference voltage and a second reference voltage; and a PMOS transistor P2 and an NMOS transistor N2 coupled in series between the first reference voltage and the second reference voltage. In some embodiments, the first reference voltage is VDD and the second reference voltage is VSS. In some embodiments, the first and second reference voltages are voltages correspondingly other than VDD and VSS. Gate electrodes of transistors P1 and N1 and drain electrodes of transistors P2 and N2 are coupled together. Gate electrodes of transistors P2 and N2 and drain electrodes of transistors P1 and N1 are coupled together.
Memory cell 204(1) includes: an NMOS write pass gate WPG1N coupled between the drain electrodes of transistors P1 and N1 and a bit line BL; and an NMOS write pass gate WPG2N coupled between the drain electrodes of transistors P2 and N2 and a bit_bar line BLB.
Gate electrodes of write pass gates WPG1N and WPG2N are coupled to a word line WL[1]. Accordingly, memory cell 204(1) is a six transistor (6T), single port (1P) type of memory cell (6T1P memory cell).
Memory cell 204(2) includes a second memory latch. The second memory latch includes: a PMOS transistor P3 and a NMOS transistor N3 coupled in series between VDD and VSS; and a PMOS transistor P4 and an NMOS transistor N4 coupled in series between VDD and VSS. Gate electrodes of transistors P3 and N3 and drain electrodes of transistors P4 and N4 are coupled together. Gate electrodes of transistors P4 and N4 and drain electrodes of transistors P3 and N3 are coupled together.
Memory cell 204(2) includes: an NMOS write pass gate WPG3N coupled between the drain electrodes of transistors P3 and N3 and bit line BL; and an NMOS write pass gate WPG4N coupled between the drain electrodes of transistors P4 and N4 and bit_bar line BLB. Gate electrodes of write pass gates WPG3N and WPG4N are coupled to a word line WL[0]. Accordingly, memory cell 204(2) is a 6T1P memory cell.
In
Layout diagram 206 represents a first portion of memory devices 204(1) and 204(2), the first portion corresponding to layers BM0 through M0 in
Layout diagram 206 includes cell boundaries 212(1) and 212(2) corresponding to memory cells 204(1) and 204(2) of
In
In some embodiments, relative to the X-axis, adjacent track lines are separated by one-half a unit of contacted poly pitch (CPP). Typically, the unit of CPP is specific to a corresponding process node by which will be fabricated a semiconductor device based on a corresponding layout diagram. For example, track lines T3 and T4 are separated by CPP/2, and track lines T3 and T5 are separated by 1*CPP.
Relative to the X-axis: a left edge of each of cell boundaries 212(1) and 212(2) is aligned with track T2; and a right edge of each of cell boundaries 212(1) and 212(2) is aligned with track T10. Also, relative to the X-axis, track T6 represents a midline of each of cell boundaries 212(1) and 212(2).
Relative to the X-axis, the gate patterns and MD patterns are interspersed and non-overlapping of each other. For example, one MD pattern which is located in cell boundary 212(1) and is aligned with track T4 is located between (A) two gate patterns which are located substantially in cell boundary 212(1) and are aligned on track T3, and (B) one gate pattern which is located substantially in cell boundary 212(1) is aligned on track T5.
Relative to the Y-axis, corresponding ones of the gate patterns are aligned to corresponding ones of the tracks, and corresponding ones of the MD patterns are aligned with corresponding ones of the MD patterns. In some embodiments, long axes of symmetry of the gate patterns are substantially collinear with corresponding ones of the tracks, and long axes of symmetry of the MD patterns are substantially collinear with corresponding ones of the tracks.
More particularly regarding the gate patterns, two gate patterns which are located substantially in cell boundary 212(1) and two gate patterns which are located substantially in cell boundary 212(2) are aligned on track T3. One gate pattern which is located substantially in cell boundary 212(1) and one gate pattern located substantially in cell boundary 212(2) are aligned on track T5. One gate pattern which is located substantially in cell boundary 212(1) and one gate pattern located substantially in cell boundary 212(2) are aligned on track T7. Two gate patterns which are located substantially in cell boundary 212(1) and two gate patterns which are located substantially in cell boundary 212(2) are aligned on track T9.
More particularly, regarding the MD patterns, one MD pattern which is partially in cell boundary 212(1) and partially in in cell boundary 212(2) is aligned on track T2. One MD pattern which is located in cell boundary 212(1) and one MD pattern which is located in cell boundary 212(2) are aligned on track T4. One MD pattern which is located in cell boundary 212(1) and one MD pattern which is located in cell boundary 212(2) are aligned on track T8. One MD pattern which is partially in cell boundary 212(1) and partially in in cell boundary 212(2) is aligned on track T10.
The MD pattern aligned on track T2 represents the shared BL of
In
In
In
In some embodiments, there are one or more additional BM0 patterns (not shown), e.g., routing patterns. Relative to the Y-axis, corresponding sizes of BM0 patterns 222(1)-222(3) are substantially larger than a size of a BM0 routing pattern (not shown). As a first example, in some embodiments, relative to the Y-axis, where a size of a first gap between BM0 pattern 222(1) and 222(2) and/or a size of a second gap between BM0 pattern 222(2) and 222(3) is sufficiently large, then a first and/or second routing type BM0 pattern (not shown) (having a long axis extending in the direction of the X-axis) is inserted correspondingly in the first and/or second gap. In some embodiments, the first routing pattern transmits a signal which is correspondingly external to cell 204(1) across the region occupied by cell 204(1). In some embodiments, the second routing pattern transmits a signal which is correspondingly external to cell 204(2) across the region occupied by cell 204(2). As a second example, in some embodiments, routing-type M0 patterns 226(1) and 226(2) are relocated to the first buried layer of metallization as corresponding routing-type BM0 patterns (not shown), e.g., and interconnection patterns for coupling to the corresponding gate patterns are accordingly added.
In layout diagram 206, each of BVD patterns 220(1)-220(4) is rectangular with corresponding long axes which extend in the direction of the Y-axis. In some embodiments, one or more of the BVD patterns are substantially square (not shown). In some embodiments, relative to the X-axis, a width of each of BVD patterns 220(1)-220(4) is substantially the same as a width of each of the MD patterns.
Relative to the X-axis, a midline of each of cell boundaries 212(1) and 212(2) is substantially collinear with track T6. Also relative to the X-axis: a long axis of symmetry of each of BVD patterns 220(1)-220(2) is substantially centered on the midline of cell boundary 212(1); and a long axis of symmetry of each of BVD patterns 220(3)-220(4) is substantially centered on the midline of cell boundary 212(2). As such, a long axis of each of BVD patterns 220(1)-220(4) is substantially collinear with track T6. Also, track T6 represents an axis of mirror symmetry relative to the arrangement of the MD patterns. Track T6 represents an axis of mirror symmetry relative to the arrangement of the gate patterns. Overall, track T6 represents an axis of mirror symmetry relative to each of cells 204(1) and 204(2).
Relative to the Y-axis: BVD pattern 220(1) is substantially centered over an uppermost AA pattern in cell boundary 212(1); BVD pattern 220(2) is substantially centered over a lowermost AA pattern in cell boundary 212(1); BVD pattern 220(3) is substantially centered over an uppermost AA pattern in cell boundary 212(2); and BVD pattern 220(4) is substantially centered over a lowermost AA pattern in cell boundary 212(2). In some embodiments, relative to the Y-axis, a size of a smallest one of BM0 patterns 222(1)-222(3) is equal to or greater than about twice the size of an AA pattern.
According to another approach, a BM0 layer is not provided and instead some of the M0 patterns are used as power grid (PG) patterns and are designated to provide correspondingly VDD and VSS, and corresponding MD patterns are provided for coupling the M0 PG patterns to corresponding portions of the AA patterns and are aligned on track T6. However, where width is defined as being relative to a short axis of a metallization pattern, the width of the M0 PG patterns according to the other approach is substantially the same as the width of M0 routing patterns. By moving the PG patterns to the BM0 layer, at least some embodiments provide PG patterns that are relatively wider than (and so suffer significantly smaller resistive (Ohmic) losses than) the M0 PG patterns according to the other approach. In addition, by moving the PG patterns to the BM0 layer, at least some embodiments suffer reduced routing congestion as compared to the other approach.
As noted, layout diagram 206 of
Recalling that layout diagram 208C represents a second portion of memory cells 204(1) and 204(2), the second portion corresponding to layers M0 through M2 in
In a stacked metallization architecture, which includes multiple layers of metallization such as in
According to another approach, the long-line layer for each of the electrical coupling paths representing bit line BL and bit_bar line BLB is the M0 layer. For at least some embodiments, the long-line layer for each of the electrical coupling paths representing bit line BL and bit_bar line BLB of
Cross-section 214 is for a device which corresponds to layout diagrams 206 of
Layers in cross-section 214 include: a buried M0 (BM0) layer which includes a conductive segment 222(1)′; a buried VD (BVD) layer which includes a BVD structure 220(1)′; an active region layer which includes an active region AR(1); an MD/MG layer which includes gate conductors G1, G2 and G3, and MD contact structures MD(1) and MD(2); a VGD layer including a VGD structures VGD(1) and VGD(2); an M0 layer including a conductive segment M0(1) and M0(2); a VIA0 layer; an M1 layer which includes a conductive segment M1(1); a VIA1 layer; and an M2 layer which includes a conductive segment M2(1).
As noted above, no MD patterns are aligned on track T6 in layout diagram 206 of
Layout diagram 208E is an alternative to layout diagram 208C. As such, layout diagram 208E of
In layout diagram 208E, corresponding long axes of the M1 patterns representing write line WL[0](M1 pattern WL[0]) and WL[1](M1 pattern WL[1]) are reduced in length. In some embodiments, because of the reduced lengths of the M1 WL[0]) pattern and the M1 WL[1] pattern, each of the M1 WL[0]) pattern and the M1 WL[1] pattern are referred to as island patterns. As such, M1 pattern WL[0] does not overlap the M2 pattern representing the bit_bar line BLB, and M1 pattern WL[1] does not over the M2 pattern representing the bit line BL. A benefit of layout diagram 208E as compared to layout diagram 208C of
Whereas each of memory cells 204(1) and 204(2) of
Whereas layout diagram 206 of
As compared to memory cell 204(1) of
Gate electrodes of transistors P2, N2 and RPU1, and drain electrodes of transistors P1 and N1, are coupled together. Gate electrodes of transistors P4, N4 and RPU2, and drain electrodes of transistors P3 and N3, are coupled together. Gate electrodes of transistors RPG1P and RPG2P are coupled correspondingly to read word lines RWL[1] and RWL[0]. Whereas bit line BL and bit_bar line BLB are shared in
Layout diagram 306 of
In
Whereas write pass gates WPG1N-WPG4N are NMOS in
Whereas read pass gates RPG1P and RPG2P are PMOS in
Whereas
Layout diagram 406 of
Whereas write pass gates WPG1P WPG4P are PMOS in
Whereas write pass gates WPG1N WPG4N are NMOS in
Layout diagram 606 of
Whereas each of memory cells 304(1) and 304(2) of
Whereas layout diagram 206 of
As compared to memory cell 304(1) of
Gate electrodes of transistors P1, N1 and RPU3, and drain electrodes of transistors P1 and N1, are coupled together. Gate electrodes of transistors P3, N3 and RPU4, and drain electrodes of transistors P4 and N4, are coupled together. Gate electrodes of transistors RPG3P and RPG4P are coupled correspondingly to read word lines RWL[3] and RWL[4]. Whereas bit line BL and bit_bar line BLB are shared in
Layout diagram 706 of
Method 800 is implementable, for example, using EDA system 1000 (
In
At block 804, based on the layout diagram, at least one of (A) one or more photolithographic exposures are made or (B) one or more semiconductor masks are fabricated or (C) one or more components in a layer of a semiconductor device are fabricated. See discussion below of
More particularly, the flowchart of
In
At block 904, gate patterns are generated which are substantially aligned with four track lines. Examples of the gate patterns are shown in
At block 906, the gate patterns are aligned over corresponding first portions of corresponding ones of the AA patterns. Examples of aligning the gate patterns over corresponding first portions of corresponding ones of the AA patterns are shown in
At block 908, contact-to-transistor-component patterns (MD patterns) are generated. Examples of MD patterns are shown in
At block 910, the MD patterns are interspersed among the gate patterns and over corresponding second portions of corresponding ones of the AA patterns. Examples of aligning the MD patterns over corresponding second portions of corresponding ones of the AA patterns are shown in
At block 912, VGD patterns are generated. Examples of the VGD patterns are shown in
At block 914, the VGD patterns are arranged over corresponding ones of the gate patterns and the MD patterns. An example of an arrangement of VGD patterns arranged over corresponding ones of the gate patterns and the MD pattern is the arrangement of VGD patterns in
At block 916, M_1st patterns are generated. Examples of the M_1st patterns are the M0 patterns in
At block 918, the M_1st patterns are arranged over corresponding ones of the VGD patterns. An example of an arrangement of M_1st patterns over corresponding ones of the VGD patterns is the arrangement of M0 patterns over corresponding VGD patterns in
At block 920, BVD patterns are generated. Examples of the BVD patterns are BVD patterns 220(1)-220(4) of
At block 922, the BVD patterns are arranged over corresponding third portions of corresponding ones of the AA patterns. An example of an arrangement of BVD patterns over corresponding third portions of corresponding ones of the AA patterns is the arrangement of BVD patterns 220(1)-220(4) in
At block 924, the BVD patterns are configured to be rectangular. Examples of rectangular BVD patterns are BVD patterns 220(1)-220(4) of
At block 926, BM_1st patterns are generated which are correspondingly designated to provide a first or second reference voltage. Examples of BM_1st patterns which are correspondingly designated to provide a first or second reference voltage are BM0 patterns 222(1) and 222(3) of
At block 928, the BM_1st patterns are arranged under corresponding ones of the BVD patterns. An example of an arrangement of BM_1st patterns under corresponding ones of the BVD patterns is the arrangement of BM0 patterns 222(1)-222(3) in
In some embodiments, EDA system 1000 includes an APR system. Methods described herein of designing layout diagrams, in accordance with one or more embodiments, are implementable, for example, using EDA system 1000, in accordance with some embodiments.
In some embodiments, EDA system 1000 is a general purpose computing device including a hardware processor 1002 and a non-transitory, computer-readable storage medium 1004. Storage medium 1004, amongst other things, is encoded with, i.e., stores, computer program code 1006, i.e., a set of executable instructions. Execution of instructions 1006 by hardware processor 1002 represents (at least in part) an EDA tool which implements a portion or all of the methods described herein in accordance with one or more embodiments (hereinafter, the noted processes and/or methods).
Processor 1002 is electrically coupled to computer-readable storage medium 1004 via a bus 1008. Processor 1002 is also electrically coupled to an I/O interface 1010 by bus 1008. A network interface 1012 is also electrically connected to processor 1002 via bus 1008. Network interface 1012 is connected to a network 1014, so that processor 1002 and computer-readable storage medium 1004 are capable of connecting to external elements via network 1014. Processor 1002 is configured to execute computer program code 1006 encoded in computer-readable storage medium 1004 in order to cause system 1000 to be usable for performing a portion or all of the noted processes and/or methods. In one or more embodiments, processor 1002 is a central processing unit (CPU), a multi-processor, a distributed processing system, an application specific integrated circuit (ASIC), and/or a suitable processing unit.
In one or more embodiments, computer-readable storage medium 1004 is an electronic, magnetic, optical, electromagnetic, infrared, and/or a semiconductor system (or apparatus or device). For example, computer-readable storage medium 1004 includes a semiconductor or solid-state memory, a magnetic tape, a removable computer diskette, a random access memory (RAM), a read-only memory (ROM), a rigid magnetic disk, and/or an optical disk. In one or more embodiments using optical disks, computer-readable storage medium 1004 includes a compact disk-read only memory (CD-ROM), a compact disk-read/write (CD-R/W), and/or a digital video disc (DVD).
In one or more embodiments, storage medium 1004 stores computer program code 1006 configured to cause system 1000 (where such execution represents (at least in part) the EDA tool) to be usable for performing a portion or all of the noted processes and/or methods. In one or more embodiments, storage medium 1004 also stores information which facilitates performing a portion or all of the noted processes and/or methods. In one or more embodiments, storage medium 1004 stores library 1007 of standard cells including such standard cells as disclosed herein. In one or more embodiments, storage medium 1004 stores one or more layout diagrams 1009 corresponding to one or more layouts disclosed herein.
EDA system 1000 includes I/O interface 1010. I/O interface 1010 is coupled to external circuitry. In one or more embodiments, I/O interface 1010 includes a keyboard, keypad, mouse, trackball, trackpad, touchscreen, and/or cursor direction keys for communicating information and commands to processor 1002.
EDA system 1000 also includes network interface 1012 coupled to processor 1002. Network interface 1012 allows system 1000 to communicate with network 1014, to which one or more other computer systems are connected. Network interface 1012 includes wireless network interfaces such as BLUETOOTH, WIFI, WIMAX, GPRS, or WCDMA; or wired network interfaces such as ETHERNET, USB, or IEEE-1364. In one or more embodiments, a portion or all of noted processes and/or methods, is implemented in two or more systems 1000.
System 1000 is configured to receive information through I/O interface 1010. The information received through I/O interface 1010 includes one or more of instructions, data, design rules, libraries of standard cells, and/or other parameters for processing by processor 1002. The information is transferred to processor 1002 via bus 1008. EDA system 1000 is configured to receive information related to a UI through I/O interface 1010. The information is stored in computer-readable medium 1004 as user interface (UI) 1042.
In some embodiments, a portion or all of the noted processes and/or methods is implemented as a standalone software application for execution by a processor. In some embodiments, a portion or all of the noted processes and/or methods is implemented as a software application that is a part of an additional software application. In some embodiments, a portion or all of the noted processes and/or methods is implemented as a plug-in to a software application. In some embodiments, at least one of the noted processes and/or methods is implemented as a software application that is a portion of an EDA tool. In some embodiments, a portion or all of the noted processes and/or methods is implemented as a software application that is used by EDA system 1000. In some embodiments, a layout diagram which includes standard cells is generated using a tool such as VIRTUOSO® available from CADENCE DESIGN SYSTEMS, Inc., or another suitable layout generating tool.
In some embodiments, the processes are realized as functions of a program stored in a non-transitory computer readable recording medium. Examples of a non-transitory computer readable recording medium include, but are not limited to, external/removable and/or internal/built-in storage or memory unit, e.g., one or more of an optical disk, such as a DVD, a magnetic disk, such as a hard disk, a semiconductor memory, such as a ROM, a RAM, a memory card, and the like.
In
Design house (or design team) 1120 generates an IC design layout diagram 1122. IC design layout diagram 1122 includes various geometrical patterns designed for an IC device 1160. The geometrical patterns correspond to patterns of metal, oxide, or semiconductor layers that make up the various components of IC device 1160 to be fabricated. The various layers combine to form various IC features. For example, a portion of IC design layout diagram 1122 includes various IC features, such as an active region, gate electrode, source and drain, metal lines or vias of an interlayer interconnection, and openings for bonding pads, to be formed in a semiconductor substrate (such as a silicon wafer) and various material layers disposed on the semiconductor substrate. Design house 1120 implements a proper design procedure to form IC design layout diagram 1122. The design procedure includes one or more of logic design, physical design or place and route. IC design layout diagram 1122 is presented in one or more data files having information of the geometrical patterns. For example, IC design layout diagram 1122 can be expressed in a GDSII file format or DFII file format.
Mask house 1130 includes data preparation 1132 and mask fabrication 1144. Mask house 1130 uses IC design layout diagram 1122 to manufacture one or more masks 1145 to be used for fabricating the various layers of IC device 1160 according to IC design layout diagram 1122. Mask house 1130 performs mask data preparation 1132, where IC design layout diagram 1122 is translated into a representative data file (“RDF”). Mask data preparation 1132 provides the RDF to mask fabrication 1144. Mask fabrication 1144 includes a mask writer. A mask writer converts the RDF to an image on a substrate, such as a mask (reticle) 1145 or a semiconductor wafer 1153. The design layout diagram 1122 is manipulated by mask data preparation 1132 to comply with particular characteristics of the mask writer and/or requirements of IC fab 1150. In
In some embodiments, mask data preparation 1132 includes optical proximity correction (OPC) which uses lithography enhancement techniques to compensate for image errors, such as those that can arise from diffraction, interference, other process effects and the like. OPC adjusts IC design layout diagram 1122. In some embodiments, mask data preparation 1132 includes further resolution enhancement techniques (RET), such as off-axis illumination, sub-resolution assist features, phase-shifting masks, other suitable techniques, and the like or combinations thereof. In some embodiments, inverse lithography technology (ILT) is also used, which treats OPC as an inverse imaging problem.
In some embodiments, mask data preparation 1132 includes a mask rule checker (MRC) that checks the IC design layout diagram 1122 that has undergone processes in OPC with a set of mask creation rules which contain certain geometric and/or connectivity restrictions to ensure sufficient margins, to account for variability in semiconductor manufacturing processes, and the like. In some embodiments, the MRC modifies the IC design layout diagram 1122 to compensate for limitations during mask fabrication 1144, which may undo part of the modifications performed by OPC in order to meet mask creation rules.
In some embodiments, mask data preparation 1132 includes lithography process checking (LPC) that simulates processing that will be implemented by IC fab 1150 to fabricate IC device 1160. LPC simulates this processing based on IC design layout diagram 1122 to create a simulated manufactured device, such as IC device 1160. The processing parameters in LPC simulation can include parameters associated with various processes of the IC manufacturing cycle, parameters associated with tools used for manufacturing the IC, and/or other aspects of the manufacturing process. LPC takes into account various factors, such as aerial image contrast, depth of focus (“DOF”), mask error enhancement factor (“MEEF”), other suitable factors, and the like or combinations thereof. In some embodiments, after a simulated manufactured device has been created by LPC, if the simulated device is not close enough in shape to satisfy design rules, OPC and/or MRC are be repeated to further refine IC design layout diagram 1122.
It should be understood that the above description of mask data preparation 1132 has been simplified for the purposes of clarity. In some embodiments, data preparation 1132 includes additional features such as a logic operation (LOP) to modify the IC design layout diagram 1122 according to manufacturing rules. Additionally, the processes applied to IC design layout diagram 1122 during data preparation 1132 may be executed in a variety of different orders.
After mask data preparation 1132 and during mask fabrication 1144, a mask 1145 or a group of masks 1145 are fabricated based on the modified IC design layout diagram 1122. In some embodiments, mask fabrication 1144 includes performing one or more lithographic exposures based on IC design layout diagram 1122. In some embodiments, an electron-beam (e-beam) or a mechanism of multiple e-beams is used to form a pattern on a mask (photomask or reticle) 1145 based on the modified IC design layout diagram 1122. Mask 1145 can be formed in various technologies. In some embodiments, mask 1145 is formed using binary technology. In some embodiments, a mask pattern includes opaque regions and transparent regions. A radiation beam, such as an ultraviolet (UV) beam, used to expose the image sensitive material layer (e.g., photoresist) which has been coated on a wafer, is blocked by the opaque region and transmits through the transparent regions. In one example, a binary mask version of mask 1145 includes a transparent substrate (e.g., fused quartz) and an opaque material (e.g., chromium) coated in the opaque regions of the binary mask. In another example, mask 1145 is formed using a phase shift technology. In a phase shift mask (PSM) version of mask 1145, various features in the pattern formed on the phase shift mask are configured to have proper phase difference to enhance the resolution and imaging quality. In various examples, the phase shift mask can be attenuated PSM or alternating PSM. The mask(s) generated by mask fabrication 1144 is used in a variety of processes. For example, such a mask(s) is used in an ion implantation process to form various doped regions in semiconductor wafer 1153, in an etching process to form various etching regions in semiconductor wafer 1153, and/or in other suitable processes.
IC fab 1150 includes fabrication tools 1152 configured to execute various manufacturing operations on semiconductor wafer 1153 such that IC device 1160 is fabricated in accordance with the mask(s), e.g., mask 1145. In various embodiments, fabrication tools 1152 include one or more of a wafer stepper, an ion implanter, a photoresist coater, a process chamber, e.g., a CVD chamber or LPCVD furnace, a CMP system, a plasma etch system, a wafer cleaning system, or other manufacturing equipment capable of performing one or more suitable manufacturing processes as discussed herein.
IC fab 1150 uses mask(s) 1145 fabricated by mask house 1130 to fabricate IC device 1160. Thus, IC fab 1150 at least indirectly uses IC design layout diagram 1122 to fabricate IC device 1160. In some embodiments, semiconductor wafer 1153 is fabricated by IC fab 1150 using mask(s) 1145 to form IC device 1160. In some embodiments, the IC fabrication includes performing one or more lithographic exposures based at least indirectly on IC design layout diagram 1122. Semiconductor wafer 1153 includes a silicon substrate or other proper substrate having material layers formed thereon. Semiconductor wafer 1153 further includes one or more of various doped regions, dielectric features, multilevel interconnects, and the like (formed at subsequent manufacturing steps).
Details regarding an integrated circuit (IC) manufacturing system (e.g., system 1100 of
In some embodiments, a method (of manufacturing a device) includes: forming active regions extending in a first direction; over the active regions, doing as follows including, forming gate structures extending in a second direction perpendicular to the first direction, and forming contact-to-source/drain structures (MD structures) which extend in the second direction and are interspersed among corresponding ones of the gate structures; forming via-to-gate/MD (VGD) structures over corresponding ones of the gate structures and the MD structures; in a first metallization layer over the VGD structures, forming first front-side segments extending in the first direction and including one or more front-side routing (FRTE) segments; under the active regions, forming buried segment-to-source/drain structures (BVD structures); and in a first buried metallization layer under the BVD structures, forming first back-side segments extending in the first direction and including one or more first back-side power grid (BPG) segments.
In some embodiments, the forming first front-side segments includes substantially aligning the first front-side segments relative to four corresponding track lines that extend in the second direction such that the device has a width of four contacted poly pitch (4 CPP) relative to the first direction.
In some embodiments, the forming first back-side segments includes: configuring a first one of the first back-side segments as a first back-side power grid (BS_PG) segment for providing a first reference voltage; and configuring a second one of the first back-side segments as a second BS_PG segment for providing a second reference voltage.
In some embodiments, the forming gate structures includes: aligning a first set of the gate structures along a same first track line such that each member of the first set of the gate structures extends over a corresponding single one of the active regions.
In some embodiments, the forming buried segment-to-source/drain structures (BVD structures) includes: locating the BVD structures to underlap and be electrically coupled to the active regions on a one-to-one (1:1) basis.
In some embodiments, the forming gate structures includes: relative to the first direction, locating the gate structures so that a central region of the device is free of the gate structures.
In some embodiments, the forming contact-to-source/drain structures (MD structures) includes: relative to the first direction, locating the MD structures so that a central region of the device is free of the MD structures.
In some embodiments, the device substantially has a midline which extends parallel to the second direction; and the forming buried segment-to-source/drain structures (BVD structures) includes aligning the BVD structures to the midline.
In some embodiments, the forming buried segment-to-source/drain structures (BVD structures) includes, relative to the first direction, locating the BVD structures between adjacent ones of the gate structures.
In some embodiments, the device substantially has a midline which extends parallel to the second direction; and the forming gate structures includes, relative to the first direction, arranging the gate structures so that the midline represents an axis of mirror symmetry for the gate structures.
In some embodiments, the device substantially has a midline which extends parallel to the second direction; and the forming contact-to-source/drain structures (MD structures) includes, relative to the first direction, arranging the MD structures so that the midline represents an axis of mirror symmetry for the MD structures.
In some embodiments, a device includes: active regions extending in a first direction; gate structures over the active regions and extending in a second direction perpendicular to the first direction; contact-to-source/drain structures (MD structures) which are over the active regions, extend in the second direction and are interspersed among corresponding ones of the gate structures; via-to-gate/MD (VGD) structures over corresponding one of the gate structures or the MD structures; in a first metallization layer over the VGD structures, first front-side segments extending in the first direction and including one or more front-side routing (FRTE) segments; buried segment-to-source/drain structures (BVD structures) under the active regions; and in a first buried metallization layer under the BVD structures, first back-side segments extending in the first direction and including one or more first back-side power grid (BPG) segments.
In some embodiments, a first one of the first back-side segments is configured as a first back-side power grid (BS_PG) segment for providing a first reference voltage; and a second one of the first back-side segments is configured as a second BS_PG segment for providing a second reference voltage.
In some embodiments, the BVD structures underlap and are electrically coupled to the active regions on a one-to-one (1:1) basis.
In some embodiments, relative to the first direction, the gate structures are located so that a central region of the device is free of the gate structures.
In some embodiments, relative to the first direction, locating the MD structures so that a central region of the device is free of the MD structures.
In some embodiments, relative to the first direction, the BVD structures are between adjacent ones of the gate structures.
In some embodiments, a device includes: active regions extending in a first direction; gate structures over the active regions and extending in a second direction perpendicular to the first direction; contact-to-source/drain structures (MD structures) which are over the active regions, extend in the second direction and are interspersed among corresponding ones of the gate structures; via-to-gate/MD (VGD) structures over corresponding one of the gate structures or the MD structures; in a first metallization layer over the VGD structures, first front-side segments extending in the first direction and including one or more front-side routing (FRTE) segments; buried segment-to-source/drain structures (BVD structures) under the active regions; and in a first buried metallization layer under the BVD structures, first back-side segments extending in the first direction and including one or more first back-side power grid (BPG) segments; and the device substantially having a midline which extends parallel to the second direction; and the BVD structures being substantially aligned to the midline.
In some embodiments, relative to the first direction, a central region of the device is free of the gate structures.
In some embodiments, relative to the first direction, a central region of the device is free of the MD structures.
The foregoing outlines features of several embodiments so that those skilled in the art may better understand the aspects of the present disclosure. Those skilled in the art should appreciate that they may readily use the present disclosure as a basis for designing or modifying other processes and structures for carrying out the same purposes and/or achieving the same advantages of the embodiments introduced herein. Those skilled in the art should also realize that such equivalent constructions do not depart from the spirit and scope of the present disclosure, and that they may make various changes, substitutions, and alterations herein without departing from the spirit and scope of the present disclosure.
The present application is a continuation of U.S. application Ser. No. 18/155,932, filed Jan. 18, 2023, which is a continuation of U.S. application Ser. No. 17/225,627, filed Apr. 8, 2021, now U.S. Pat. No. 11,569,246, issued Jan. 31, 2023, which claims the priority of U.S. Provisional Application No. 63/045,483, filed Jun. 29, 2020, and each being incorporated herein by reference in its entirety.
Number | Date | Country | |
---|---|---|---|
63045483 | Jun 2020 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 18155932 | Jan 2023 | US |
Child | 18937539 | US | |
Parent | 17225627 | Apr 2021 | US |
Child | 18155932 | US |