Claims
- 1. A method for fabricating dielectric thin films formed of ABO.sub.3 perovskite type composite compounds, which are composed of the site A comprising at least one element from lead, barium, strontium and lanthanum, the site B comprising at least one element from titanium and zirconium, and oxygen, the method comprising the steps of:
- depositing thin films on a plurality of substrates with a deposition process using at least one multi-component material sputter target;
- stabilizing the crystal grains of said thin films with a stabilization process; and
- maintaining the temperature of said substrates at a temperature from about 550.degree. C. to about 650.degree. C.,
- wherein the steps of depositing the thin films and of stabilizing the crystal grains of said thin films are repetitively performed on said substrates in a periodic, and alternating manner.
- 2. The method according to claim 1, wherein a rate of deposition of said thin films is from about 0.5 .ANG./s to about 2.5 .ANG./s.
- 3. The method according to claim 1, wherein the deposition process includes a sputtering method which defines an atmosphere of Ar to O at the ratio of about 20 to about 5, and about 0.1 to about 5 Pa pressure.
- 4. The method according to claim 1,
- wherein said thin films are deposited by a sputtering method,
- said substrates being passed over sputter targets periodically, and
- the deposition process that is performed on the substrates and the stabilization process are periodically repeated.
- 5. The method according to claim 1 or claim 2,
- wherein the stabilization process is a process of treating the surface of deposited thin films in an atmosphere formed of a gas and a decomposition of the gas, which react with the raw material elements contained in the thin films, both being excited by plasma.
- 6. The method according to claim 1 or claim 2,
- wherein the stabilization process is a process of treating the surface of deposited thin films in an atmosphere comprising at least ozone (O.sub.3) to cause an oxidation reaction thereto.
- 7. The method according to claim 1 or claim 2,
- wherein the stabilization process is a process of irradiating short wave length on the surface of deposited thin films in a gaseous atmosphere comprising at least reactive elements.
- 8. The method according to claim 1,
- wherein the thin films formed of ABO.sub.3 pervoskite type composite compounds comprise AB having Pb.sub.0.9 La.sub.0.1 TiO.sub.0.975 O.sub.3.
- 9. The method according to claim 1,
- wherein said deposition process is performed by using a plurality of sputtering targets composed of a same composition.
- 10. A method for fabricating dielectric thin films formed of ABO.sub.3 perovskite type composite compounds, which are composed of the site A comprising at least one element from lead, barium, strontium and lanthanum, the site B comprising at least one element from titanium and zirconium, and oxygen, the method comprising the steps of:
- depositing thin films on a first plurality of substrates with a first deposition process using at least one multi-component material sputter target;
- stabilizing the crystal grains of said thin films with a stabilization process by a second deposition process having a speed of deposition less than the speed of said first deposition process; and
- maintaining the temperature of said substrates at a temperature from about 550.degree. C. to about 650.degree. C.,
- wherein the steps of depositing the thin films and of stabilizing the crystal grains of said thin films are repetitively performed on said substrates in a periodic and alternating manner.
- 11. The method according to claim 12,
- wherein a rate of deposition of said first deposition process of said thin films is from about 1.8 .ANG./s to about 2.5 .ANG./s and the rate of deposition of said second deposition process is from about 0.5 .ANG./s to about 1.8 .ANG./s.
- 12. A method for fabrication of dielectric thin films formed of multi-element oxides comprising the steps:
- providing a sputtering deposition process, using at least one multi-component sputter target, to deposit thin films on a plurality of substrates;
- providing a stabilization process to stabilize the crystal grains of said thin films, said deposition and stabilization steps repeated alternatingly on said substrates, while said substrates are maintained at a temperature for obtaining perovskite crystalline thin films;
- passing the substrates over targets periodically so that the deposition process that is performed on the targets and the stabilization process are periodically repeated.
- 13. A method for fabrication of dielectric thin films comprising the steps of:
- providing a sputtering chamber suitable for thin film deposition of a ferroelectric target onto a plurality of substrates as said substrates are passed over said target periodically,
- placing said ferroelectric target into said sputtering chamber in a manner allowing said ferroelectric target to be periodically passed over said substrates while maintaining the temperature of said substrates at a specified temperature suitable to form perovskite type crystalline thin films, said chamber defining a mixed atmosphere suitable to form perovskite type crystalline thin films; said ferroelectric target selected from the group ABO.sub.3 where A is selected from the group consisting of at least one element from lead, barium, strontium and lanthanum, B is selected from the group consisting of at least one element from titanium, zirconium and oxygen;
- depositing thin films on said substrates followed by a stabilization step to stabilize the crystal grains of said thin films, said depositing step and stabilization step repeated alternatingly on said substrates, while the temperature of said substrates is kept at said specified temperature in said mixed atmosphere wherein said thin films formed on the substrates are defined to comprise ABO.sub.3 perovskite type composite compounds.
Priority Claims (4)
Number |
Date |
Country |
Kind |
4-321570 |
Dec 1992 |
JPX |
|
4-321572 |
Dec 1992 |
JPX |
|
4-321573 |
Dec 1992 |
JPX |
|
4-330270 |
Dec 1992 |
JPX |
|
Parent Case Info
This is a continuation of application Ser. No. 08/159,522 filed Dec. 1, 1993.
US Referenced Citations (14)
Foreign Referenced Citations (1)
Number |
Date |
Country |
0364902 |
Apr 1990 |
EPX |
Non-Patent Literature Citations (1)
Entry |
Patent Abstracts of Japan, vol. 17, No. 683 (E-1477), 15 Dec. 1993 of JP-A-05 234809 (10 Sep. 1993) Abstract. |
Continuations (1)
|
Number |
Date |
Country |
Parent |
159522 |
Dec 1993 |
|