The present invention relates to bonding of two or more parts, and more particularly to bonding of two or more parts while maintaining a very small, nearly zero, gap between the surfaces of the bonded parts.
For many applications, achieving a nominally zero-gap between the bonded parts is critical for the proper functioning of the combined structure. For example, the gap defining the distance between the part forming an actuation element of a micro-electro mechanical systems (MEMS) device, and the part forming the element undergoing actuation is critical to the proper operation of the device.
Standard bonding techniques that can result in nominally zero-gap separation include, for example, fusion bonding, eutectic bonding, and anodic bonding. Fusion bonding is typically done at temperatures approaching 700° C. while eutectic bonding can be done at 300° C. Anodic bonding is limited to bonding semiconductor materials to glass. If the maximum temperature to which the parts can be exposed is less than 300° C., as for example if the parts consist of materials that degrade at temperatures above 300° C., or the materials are not compatible with anodic bonding, then an alternate technique must be used.
The use of adhesives or solder to bond parts together can be done at much lower temperatures than fusion or eutectic bonding. Adhesives or solders generally require elevated temperatures, but depending on the choice of materials can be done at temperatures below 100° C. The difficulty with adhesives or solders is achieving a controllable separation between the parts being bonded. If the bond material is applied between the two parts to be bonded, a nearly zero-gap separation is not possible because a finite amount of material is needed to maintain sufficient bond strength. Alternatively, if bond material is applied externally after the parts are mated (for example at the edges of the parts) the overall bond strength may not be sufficiently robust.
What is needed is a means of bonding parts together using adhesives or solder while achieving a nearly zero-gap separation between the parts. This would allow, for example, the manufacturing of the MEMS device, such as that shown in
In accordance with the present invention, the distance between the surfaces of one or more bonded parts is substantially reduced by forming one or more cavities in the bonding surfaces of one, all, or some of the mating elements to be bonded. These cavities serve as receptacles for the bonding material and are where the bonds are localized. The cavities are of sufficient size and shape so that their volume is greater than the volume of bonding material dispensed therein. This ensures that when the elements are brought into contact with one another to mate, the bonding material, which can flow prior to solidifying into a bond, will flow within the cavities and will not impede the separation of the parts. This allows the parts to be mated with nominally zero separation. Once solidified, the bonding material forms a localized bond inside each cavity.
A variety of cavity shapes, such as rectangular, circular, or any other shape that can be injected or filled with bonding material may be used. In some embodiments, the bonding surfaces may be parallel or perpendicular to the mating surfaces. In yet other embodiments, one or more protrusions may be included inside the cavities so as to increase the surface area of the bonds. Features may be incorporated in the cavities to accommodate an overflow of bonding material.
It is understood that the bonding material may be any type of adhesive or solder suitable for the bonded elements. Such materials can easily be inserted into the bonding cavities before the bonds are hardened. Furthermore, a variety of processes can be used to form the bonding cavities such as etching, electroplating, or injection molding in accordance with the present invention. For example, if one of the parts is a thin silicon wafer or chip, the cavities can be formed by a deep-reactive-ion-etching process. A photoresist or silicon dioxide layer can serve as a mask for the etching process. The cavities can be formed prior to or after the active devices are fabricated, or they can be integrated into the device fabrication process.
After the cavities have been formed and the parts are ready for bonding, a controlled volume of bonding material is introduced into the cavities. A needle-dispense process or screen-print process can be used. The dispensing process must satisfy two important conditions: 1) the volume of the bonding material must be less than the volume of the cavity into which it is injected, and 2) the bonding material must protrude from one of the mating surfaces sufficient to make contact with the mating part when they are pressed together.
After introduction of the bonding material into the cavities, pressure is applied between the parts until the mating surfaces make contact. The bond material is allowed to cure either at room temperature or at elevated temperatures, depending on the bonding material requirements. After curing, the combined structure is either completed or is ready for another part to be bonded. The invention is explained in greater detail in connection with the drawings.
In accordance with the present invention, the distance between the surfaces of one or more parts bonded together is substantially reduced to a point of substantially zero-gap. Although, the following description is provided with reference to MEMS devices, it is understood that the present invention is equally applicable to other microstructures such as, semiconductor chips, micro-fluidic devices, and other types of hybrid structures in which there is substantive gain or advantage in having the parts bonded with a nearly zero (e.g., a few atomic layers) separation between the mating surfaces and in having the bonds localized. For example, this technique can be applied to the bonding of a multitude of integrated circuit chips to form a hybrid chip stack. It is also understood that the bonding surfaces may or may not be co-planar. Accordingly, the present invention applies as long as the bonding surfaces have matching shapes and can be brought to proximity of one another.
To achieve near-zero gap bonding, one or more cavities are formed in the bonding surfaces of one, all, or some of the elements to be bonded. These cavities serve as receptacles for the bonding material and are where the bonds are localized, as described further below. The cavities are of sufficient size and appropriate shape so that their volume is greater than the volume of bonding material forming the bond. This ensures that when the elements are brought into contact with one another to mate, the bonding material, which can flow prior to solidifying into a bond, will flow into the cavities and will not impede the separation of the parts. This allows the parts to be mated with nominally zero separation. Once solidified, the bonding material forms a localized bond between the opposing surface and the walls inside each cavity.
As stated above, cavity 104 is of sufficient size and shape so as to have a volume greater than the volume of bonding material 106 forming the bond, thus ensuring that when elements 100, 102 are mated together, the bonding material, which can flow prior to solidifying into a bond, will flow into the cavity and will not impede the separation of elements 100, and 102.
Each cavity serves as a localized bond between the two bonded elements. As shown in
Active devices may be interlaced with the cavities or they may be located in concentrated areas encompassed by the cavities. Furthermore, active devices on one element could be electrically interconnected to the other element where the interconnection takes place on the bonded surfaces. For example, referring to
A variety of different cavity shapes, such as, rectangular, circular, or any other shape that can be injected or filled with bonding material may be used. In the embodiments shown in
In yet other embodiments, one of the elements to be bonded includes one or more protrusions provided in the cavities in order to increase the surface area of the bonds. For example, as shown in
It is understood that the bonding material may be any type of adhesive or solder suitable for use with the bonded parts. Such materials can easily be introduced into the bonding cavities before the bonds are hardened. Furthermore, a variety of processes can be used to form the bonding cavities such as etching, electroplating, or injection molding to bond two or more devices in accordance with the present invention. For example, if one of the parts is a thin silicon wafer or chip, the cavities can be formed by a deep-reactive-ion-etching process. A photoresist or silicon dioxide layer can serve as a mask for the etching process. The cavities can be formed prior to or after the active devices are fabricated or they can be integrated into the device fabrication process.
After the cavities have been formed and the parts are ready for bonding, a controlled volume of bonding material is injected into the cavities. A needle dispense process or screen-print process can be used. The dispensing process must satisfy two important conditions: 1) the volume of the bonding material must be less than the volume of the cavity it is injected into, and 2) the bonding material must protrude from the one of the mating surfaces so that the bonding material makes contact to the mating part when they are mated as depicted in
After dispensing the bonding material, pressure is applied between the parts until the mating surfaces make contact. The bond material is allowed to cure either at room temperature or at elevated temperature, depending on the material requirements. After curing, the combined structure is either completed or is ready for another part to be bonded.
The above embodiments of the present invention are illustrative and not limiting. Various alternatives and equivalents are possible. The invention is not limited by the height, width or shape of the cavities. Nor is the invention to be limited by the number of such cavities. The invention is not limited by any particular processing steps used to form the cavities. The invention is not limited by the bonding material used. The present invention may be used in MEMS or any other microstructures or devices. Other additions, subtractions or modifications are obvious in view of the present disclosure and are intended to fall within the scope of the appended claims.