The present invention relates generally to semiconductor devices and methods, and more particularly, to a metal interconnect structure and method.
Semiconductors are widely used for integrated circuits for electronic applications, including radios, televisions, and personal computing devices, as examples. Such integrated circuits typically use multiple transistors fabricated in single crystal silicon. It is common for there to be millions of semiconductor devices on a single semiconductor product. To provide the necessary signal and power interconnections for the multiplicity of semiconductor devices, many integrated circuits now include multiple levels of metallization.
The semiconductor industry continuously strives to decrease the size of the semiconductor devices located on integrated circuits. Miniaturization is generally needed to accommodate the increasing density of the circuits necessary for today's advanced semiconductor products. The increasing density has led to the need for more metallic layers, typically of aluminum and more recently of copper, to provide the circuit interconnections. For CMOS ICs with 250 nm feature size, four metallic layers for interconnections were sufficient. Below 100 nm, nine or more metallic layers are often used. With the increasing number of metallic interconnection layers, more manufacturing steps and cost are required to form the interconnections than the transistors and other semiconductor components in the semiconductor device. For high complexity, high density chips with six or more layers of metallization, the total length of the layered interconnect wiring in the chip can be of the order of a mile. The signaling speed among on-chip devices provided by these interconnections has become a significant factor in chip performance. The resistance of the interconnecting wiring generally increases as a consequence of its width-height product being reduced faster than its length is shortened, which further aggravates the signaling-speed problem.
One solution to the problem of line resistance is by using copper interconnects. While copper has the desirable property of low resistivity, it has the problem of being difficult to etch as well as having the propensity of drifting and diffusing into any surrounding interlevel dielectric exposed to the surface of the copper.
To address the issue of copper being difficult to etch, a layered and patterned metal interconnect structure is conventionally formed in the upper layers of an integrated circuit to provide the necessary circuit connections for the various semiconductor devices in the integrated circuit such as transistors and diodes. In high-density integrated circuits, damascene techniques are used to form and deposit metal lines and vias for the desired interconnections in a surrounding dielectric layer.
In ordinary damascene processes, trenches and vias are patterned and dry-etched during BEOL processing (“back end of line” processing, which is the processing performed after the first metallic contacts are formed on the die), typically to a depth of about 0.2 to 0.5 μm, in a dielectric layer using lithographic techniques. A trench and/or a via is first lined with a thin liner material such as tantalum, and then entirely filled with a metal, preferably copper in advanced processes. Excess metal deposited outside the trench is removed by a CMP (chemical-mechanical polishing) process, leaving a clean metal line or via substantially planarized with the surrounding dielectric. The via- and trench-forming steps are repeated to produce a number of layers of interconnected metallic lines for the underlying semiconductor devices.
In one embodiment, a sputtering apparatus comprises a target electrode, a bias source electrically coupled to the target electrode, a wafer chuck situated beneath the target electrode, the wafer chuck comprising a perimeter, a substantially flat surface and plurality of electrodes, and a plurality of RF coils positioned at or beyond the perimeter of the wafer chuck between the target electrode and the wafer.
The foregoing has outlined rather broadly the features and technical advantages of the present invention in order that the detailed description of the invention that follows may be better understood. Additional features and advantages of the invention will be described hereinafter which form the subject of the claims of the invention. It should be appreciated by those skilled in the art that the conception and specific embodiment disclosed may be readily utilized as a basis for modifying or designing other structures or processes for carrying out the same purposes of the present invention. It should also be realized by those skilled in the art that such equivalent constructions do not depart from the spirit and scope of the invention as set forth in the appended claims.
For a more complete understanding of the present invention, and the advantages thereof, reference is now made to the following descriptions taken in conjunction with the accompanying drawings, in which:
a-2b illustrate a sputtering apparatus of one embodiment of the present invention;
a-4b illustrate a sputtering apparatus of one embodiment of the present invention;
a-6f contain cross-sectional views of the fabrication of a the barrier layer and copper interconnect in a damascene trench and via;
Corresponding numerals and symbols in different figures generally refer to corresponding parts unless otherwise indicated. The figures are drawn to clearly illustrate the relevant aspects of the preferred embodiments and are not necessarily drawn to scale. To more clearly illustrate certain embodiments, a letter indicating variations of the same structure, material, or process step may follow a figure number.
The making and using of the presently preferred embodiments are discussed in detail below. It should be appreciated, however, that the invention provides many applicable inventive concepts that can be embodied in a wide variety of specific contexts. The specific embodiments discussed are merely illustrative of specific ways to make and use the invention, and do not limit the scope of the invention.
The invention will be described with respect to preferred embodiments in a specific context, namely a method and apparatus for reverse sputtering to back etch a liner for a copper interconnect structure. The invention may also be applied, however, to other semiconductor structures.
Various embodiments of a manufacturing apparatus that incorporates features of the present invention will now be discussed with respect to
A DC bias, typically between 100 V and 100 kV, is applied to the target 202 in order to ionize gas, e.g., argon gas, introduced into the vacuum chamber. RF coils 210, to which a 13.56 MHz source 212 is typically connected, orient the argon ions 208 so that they achieve a vertical directionality. An RF source 214 is coupled to the chuck 204. The RF source 214 attached to the chuck 204 is a plasma generating source, while the source 212 attached to the coils 210 is used to steer the argon ions.
When a single source 214 is attached to the chuck 214, the distribution of argon across the wafer tends to be unevenly distributed, as illustrated by line 250 of
In one embodiment of the present invention, which is illustrated in
b shows a top view of the wafer chuck. In this example, the inner zone 220 comprises a circular region of the wafer chuck 204 while the outer zone 222 comprises an annular region that surrounds the inner zone 220. In one embodiment, the radius r of the inner zone 220 is between about 75 mm and about 125 mm and the width w of the outer zone 222 is between about 75 mm and about 125 mm. These values generally apply to 200 mm and 300 mm wafers, but may be applicable to other wafer diameters, especially larger diameters. It is understood that wafers of differing sizes would require a chuck proportioned accordingly. In typical embodiments the ratio of the radius r to the width w (r:w) is about 0.5 to about 2. In other embodiments, however, these dimensions and ratios may be outside of the ranges stated herein.
Inner zone 220 is separated from outer zone 222 by an insulating region 205. In embodiments of the present invention, insulating region 205 may consist of a physical gap or an insulating material. In embodiments of the present invention, the wafer chuck 204 is formed from a conductive material such as AlN or other conductive materials.
Turning to
The uniformity of the argon intensity can be further improved by adding additional zones. To illustrate this point, an additional embodiment of the present invention is shown in
b shows a top view of the wafer chuck. In this embodiment, the inner zone 220 is a circular region, the middle zone 224 is a first annular region surrounding the inner zone and the outer zone 222 is a second annular region surrounding the middle zone (and the inner zone). In one embodiment which is designed for a 300 mm wafer 206, the radius r of the inner zone 220 is between about 60 mm and about 100 mm, width w1 of the middle zone 224 is between about 60 mm and about 100 mm and the width w2 of the outer zone 222 is between about 60 mm and about 100 mm. Once again, wafers of differing sizes would require a chuck proportioned accordingly.
The uniformity of the argon intensity across the wafer can be further improved as shown in the graph in
In other embodiments, more zones can be included. For example, one embodiment can include two inner zones and another embodiment three or more inner zones. In theory, there is no limit to the number of concentric zones that are included.
In each of the embodiments discussed to this point, the zones have been arranged concentrically around one another. This configuration is not a requirement. For example, the zones can be arranged radially adjacent to one another (like slices of a pie). Further, a combination of concentric rings and radially adjacent “slices” can be implemented.
In other embodiments of the present invention, other material besides argon, such as N2 or a mixture of N2 and Ar gases can be used to perform a reverse etch. In yet other embodiments of the present invention, the sputtering apparatus described herein can also be used in sputtering material onto a semiconductor wafer.
a-6d illustrates one process that can be implemented in the apparatus of the present invention. In the embodiment of
Referring first to
A dielectric layer 100 is formed over the wafer 116. The dielectric layer 100 can be any interlevel dielectric such as silicon dioxide or doped glass, e.g., borophosphosilicate glass (BPSG) or fluorinated silicate glass (FSG). Alternatively, a porous low-k material can be used for the dielectric layer.
A recess is formed in the dielectric layer 100. In this particular example, a dual damascene process is being implemented so that the recess will include contact hole or via 103 and trench 102. The recess can be formed using either a trench first or via first process. In a single damascene process the contact hole or via 103 would be formed first, followed by formation of the trench 102. For example, in a single damascene process the trench 102 would expose a conductor within the via 103.
Referring next to
In order to keep the resistance of the via 103 low, the bottom portion of via 103 is etched back as shown in
One problem that can be solved by various embodiments of the invention is illustrated in
By adjusting parameters related to the sputtering along various portions of the wafer, this overetch can be avoided. For example, as discussed above, peripheral portions are more likely to be overetched and experience defects as shown in
Turning to
While this invention has been described with reference to illustrative embodiments, this description is not intended to be construed in a limiting sense. Various modifications and combinations of the illustrative embodiments, as well as other embodiments of the invention, will be apparent to persons skilled in the art upon reference to the description. It is therefore intended that the appended claims encompass any such modifications or embodiments.