The present invention relates to measurement of surface etching depths, and more particularly to the etching of surfaces having at least two visibly distinguishable layers.
Integrated circuits typically comprise a substrate and one or more layers of material which form and electrically connect semiconductor devices formed on the substrate. These layers are first deposited uniformly on the substrate, and then patterned to form gates and other useful structures. This is done by forming a mask of photoresist material (which is eventually removed) over the layers, and etching away such regions of the layers as remain exposed. It is important in the formation of some semiconductor wafers that layers be entirely etched away in unmasked regions, without leaving any residue behind. Because of slight irregularities in the layers, such residue can seldom be completely removed without etching at least shallowly into an underlying layer or substrate. Etch depth is normally controlled by etching for a fixed time at a known rate, but etching is further complicated by the micro-loading effect, which slows etch rates on areas of the surface with a high local density of photoresist material.
Some popular etching methods exhibit poor selectivity between metallic layers and underlying substrate, and may easily over-etch deeply into the substrate. The target depth range for an etch, selected such that unprotected regions of the masked metallic layer are etched away while leaving the underlying substrate as undamaged as possible, is typically on the order of only 0.1 μm (micron). Measuring how deeply or quickly the substrate has been etched thus requires great precision.
Although it is usually possible to visually distinguish between etching on a masked layer and etching on the substrate, it is not possible to determine the depth of etching within a layer without more sophisticated techniques. A number of methods have been developed to measure etch depth. One common approach is to periodically sample wafers from production by splitting some wafers in cross-section, and directly measuring etch depth in the cross-section. This method gives a clear indication of etch depth, but requires the sacrifice of wafers to be cross-sectioned, and can therefore be costly. Another common technique is to fabricate simple test wafers, etch these wafers, and check the depth of this etching (by cross-sectioning or other means). This is less costly than cross-sectioning wafers from production, but only gives an approximation of the etch depth on actual production wafers, since test wafers and production wafers are not identical.
The present invention is directed towards methods and apparatus for determining etch depth of a material in a semiconductor wafer by forming a production region and a test region of the wafer, the test region having a test pattern for determining etch depth on a the wafer. The semiconductor wafer is comprised of a base layer, an intermediate layer above and visually distinguishable from the base layer, and a mask of photoresist material formed atop the intermediate layer. The mask of photoresist material has an areal photoresist coverage that varies across a horizontal axis. When the wafer is etched, a visible boundary can be seen between a region where the intermediate layer has been entirely etched away, and a region where at least some of the intermediate layer remains. The horizontal position of this visible boundary corresponds to the vertical etch depth in the production region., after etching of the semiconductor wafer.
Base layer 10 forms the lowest level of interest in the semiconductor wafer of
Target etch depth range 20 illustrates the range of acceptable etch depths (into which target etch line 18 falls). Target etch depth range 20 falls entirely, but shallowly, within base layer 10. Target etch depth range 20 will typically be quite narrow, on the order of 0.1 μm. Etching within this range requires precise control of etch depth.
Precise measurement of etch rate and depth by visual means (typically with a simple optical microscope) without cross-sectioning of a wafer is made possible by the inclusion of test pattern 22 on an unused portion of the wafer. Photoresist mask 14 is formed atop intermediate layer 12 in test pattern 22, such that when the wafer is etched, exposed regions of intermediate layer 12 will etch more rapidly on one side of the pattern than the other, due to the micro-loading effect. The micro-loading effect occurs when photoresist mixes with etchant, locally slowing the etching process approximately linearly with the local areal density of photoresist. Because photoresist mask 14 provides high photoresist density on one side of the test region, and low photoresist density on the other, etching will occur slowly on the first side of the test region relative to the second.
The example sawtooth embodiment of test pattern 22 shown in
Because of the linear variation in local photoresist density of test pattern 22 along cutaway line 26-26, the micro-loading effect retards etching strongly on the left side of the depicted example pattern, and very little on the right side of the pattern, such that exposed regions of intermediate layer 12 will be etched away first on the right side of the test region, and only later on the left side. Visible boundary 28 will develop between the region (to the right) where exposed regions of intermediate layer 12 will have been etched entirely away, exposing base layer 10, and the region (to the left) where some of unprotected masked layer 12 will remain. As etching continues, visible boundary 28 will move to the left, allowing etch depth at a region of interest on the wafer to be correlated with the location of visible boundary 28. This correlation between etch depth and visible boundary location enables horizontal range 24 to be defined to correspond to target etch depth range 20, such that whenever visible boundary 28 falls within horizontal range 24, the etch depth on the production wafer region will fall within target etch depth range 20 (see
There are multiple advantages of including test pattern 22 on an unused portion of the wafer. Since the horizontal position of visible boundary 28 is representative of the vertical etch depth on the production wafer region, direct measurement does not require cross-sectioning (and thereby destroying) the wafer. Also, in some embodiments, horizontal target range 24 can be on the order of 60 μm wide, 600 times the width of the vertical etch depth target range and therefore easier to measure with relative precision.
Test pattern 22 is sufficiently generic that it may be used for many different etches. Although changes in various parameters (such as the pattern of photoresist mask 14 over the production wafer region, materials, and target depth range) will affect the location of horizontal target range 24, the fundamental shape of test pattern 22 need not change. Although the embodiment of test pattern 22 depicted in
Step S1, “fabricating test pattern 22,” is accomplished as described above in the description of
The method and pattern herein described allow etch depth and to be measured precisely and nondestructively, with only simple equipment such as an optical microscope. Test pattern 22 is easily formed of photoresist mask layer 14, which is already used in the etching process, and correlating horizontal range 24 with target vertical etch depth 20 is simple.
While the invention has been described with reference to an exemplary embodiment(s), it will be understood by those skilled in the art that various changes may be made and equivalents may be substituted for elements thereof without departing from the scope of the invention. In addition, many modifications may be made to adapt a particular situation or material to the teachings of the invention without departing from the essential scope thereof. Therefore, it is intended that the invention not be limited to the particular embodiment(s) disclosed, but that the invention will include all embodiments falling within the scope of the appended claims.