Some embodiments of the invention include a thermal ground plane with a variable thickness vapor core. For example, a thermal ground plan may include a first casing and a second casing where the second casing and the first casing configured to enclose a working fluid. The thermal ground plane may also include an evaporator region disposed at least partially on at least one of the first casing and the second casing; a condenser region disposed at least partially on at least one of the first casing and the second casing; and a wicking layer disposed between the first casing and the second casing a vapor core defined at least partially by a gap between the first casing and the second casing. The thickness of the gap can vary across the first casing and the second casing.
In some embodiments, the gap may be optimally designed to provide space for enlarging the gap of the vapor core.
In some embodiments, a gap adjacent with the evaporator region has a thickness less than the average gap thickness.
In some embodiments, a gap nonadjacent to the evaporator region has a thickness greater than the average gap thickness.
In some embodiments, either or both the first casing and the second casing comprise a material that stretches and/or contracts enlarging the gap.
In some embodiments, the thermal ground plane may include a plurality of spacers disposed within the gap.
In some embodiments, the wicking layer may be in contact with either or both the first casing layer and/or the second casing.
In some embodiments, the thermal ground plane may include an additional wicking material in contact with wicking layer and the evaporator region.
In some embodiments, the plurality of spacers may comprise copper or a polymer encapsulated by a hermetic seal.
In some embodiments, the plurality of spacers may comprise springs.
In some embodiments, the plurality of spacers may comprise elastic material.
In some embodiments, the gap may have a thickness less than 50 μm.
In some embodiments, the gap may be defined by an internal pressure that is higher than an ambient pressure
These illustrative embodiments are mentioned not to limit or define the disclosure, but to provide examples to aid understanding thereof. Additional embodiments are discussed in the Detailed Description, and further description is provided there. Advantages offered by one or more of the various embodiments may be further understood by examining this specification or by practicing one or more embodiments presented.
These and other features, aspects, and advantages of the present disclosure are better understood when the following Detailed Description is read with reference to the accompanying drawings.
A thermal ground plane is disclosed that includes a variable thickness vapor core. In some embodiments, the thickness of the vapor core may correspond with three-dimensional shape of circuit elements and/or a device casing within which the thermal ground plane may be placed. A method for manufacturing a thermal ground plane with a variable thickness vapor core is also disclosed.
An example thermal ground plane is shown in
In some embodiments, there can be several thermal resistances associated with the operation of a thermal ground plane. For example, thermal resistances may include: a) thermal resistance (Re, cladding) through the casing of the thermal ground plane in the evaporator region; b) thermal resistance (Re, mesh) through the wicking structure, e.g. copper mesh, with water contained in the evaporator region; c) thermal resistance (Ra, vapor) of vapor transport from the evaporator to the condenser through the vapor core; d) thermal resistance (Rc, mesh) through the wicking structure with water contained in the condenser region; e) thermal resistance (Rc, cladding) through the casing of the thermal ground plane in the condenser region; f) thermal resistance (Ra, mesh) of heat conduction from the condenser to the evaporator along the wicking structure with water contained; and/or g) thermal resistance (Ra, cladding) of heat conduction from the condenser to the evaporator along the casing.
For a thick thermal ground plane (e.g., thicknesses greater than or equal to about 1 mm) the gap (or height) of the vapor core is large. As a result, vapor can be transported through the vapor core without much flow resistance and/or the thermal resistance (Ra, vapor) of the vapor transport may be negligible. However, for a thin thermal ground plane (e.g., thicknesses less than about 1 mm) (or, e.g., thicknesses 0.25 mm-0.35 mm) the gap (or height) of the vapor core is reduced substantially. Thermal resistance (Ra, vapor) of the vapor transport may, in some cases, play a dominant role. The total thermal performance of such a thin thermal ground plane can be dependent on the performance of the vapor transport.
The thermal performance of the vapor transport can be represented, for example, by an effective thermal conductivity of the vapor transport. As shown in
For mobile systems, e.g. smartphones, tablets, watches, wearable devices, and laptops, and/or wearable electronics, thickness can be important. Every 50 μm or 100 μm space has to be considered seriously during the design phase. Some embodiments of the invention may introduce a variable thickness vapor core for a thermal ground plane. In some embodiments, the variable thickness of the thermal ground plane may coincide with void spaces in the mobile system.
Void space exist in almost every smartphone, tablet, laptop or wearable electronics device. In some embodiments, the void spaces can be used to provide thicker vapor cores within a thermal ground plane that may be used to enhance vapor transport.
For example, shows a number of void spaces are created from the different heights of the components in an iPhone 4's circuit board. Such void space can be used to enhance vapor transport of a thermal ground plane to be used to spread heat from chips to the case of the phone. Similar void space also exists in other regions inside a mobile system.
In some embodiments, void space in the casing can also be used to optimize vapor transport of a thermal ground plane.
A typical thermal ground plane is shown in
The vapor core with varying gaps can be fabricated by using stamping or other shape forming processes. The varying gaps can also be formed by pressurizing the vapor core and deform the casing against the circuit board. In this embodiment, the casing may be compliant and/or plastic. After the shape forming process, the thermal ground plane casing(s) can be strengthened.
As shown in
In some embodiments, the thermal ground plane 500 may be disposed between circuit board 530 having circuit elements 525 and 540, and a device shell 505. In this example, the circuit board 530 with the circuit elements 525 and 540 has a variable height. The second casing 535 may have a variable shape that accommodates the variable shape of the circuit board 530 and the circuit elements 525 and 540 (e.g., a processor, memory, integrated circuit, etc. The variable shape of the second casing 535 products a vapor core 530 having a variable thickness. As shown in the figure, the thickness of the vapor core 530 varies whether the vapor core 520 is near a circuit element 525 or 540.
In some embodiments, the variable width vapor core may enhance vapor transport within the thermal ground plane 500.
In some embodiments, an evaporator region may be formed near the circuit element 525 or 540. In some embodiments, a condenser region may be formed nonadjacent from the circuit element 525 or 540.
As shown in
In some embodiments, an evaporator region may be disposed at least partially on either the first casing 510 and/or the second casing 535. An evaporator region, for example, may be designed within either the first casing 510 and/or the second casing 535 such that in use the evaporator region may be disposed near a heat source, for example, near one or more circuit elements 525 and 540.
In some embodiments, a condenser region may be disposed at least partially on either the first casing 510 and/or the second casing 535. A condenser region, for example, may be designed within either the first casing 510 and/or the second casing 535 such that in use the condenser region may be disposed near a region likely to be cooler than the heat source.
The vapor core 520 includes two thinner vapor core regions 520A and 520B; and three thicker vapor core regions 520C, 520D, and 520E. In some embodiments, the vapor core regions 520A and 520B may have a thickness that is less than the average vapor core thickness. In some embodiments, the vapor core regions 520C, 520D, and 520E may have a thickness that is more than the average vapor core thickness. In some embodiments, one or more of the vapor core regions 520A and 520B may have a thickness less than about 50-100 μm. In some embodiments, one or more of the vapor core regions 520C, 520D, and 520E may have a thickness greater than about 50-100 μm.
In
Various other techniques may be used to shape the height of the plurality of spacers 615. For example, some of the spacers of the plurality of spacers 615 may be etched away using photolithography techniques. In some embodiments, spacers can be fabricated with a non-uniform distribution of heights, so no deformations of the spacers are needed. In some embodiments, the second casing 535 may be formed with a required shape, followed by spacers fabricated on the second casing 535 formed. In some embodiments, the spacer layer can be a continuous mesh layer or a porous layer. This single layer can consist of two sublayers or multiple sublayers.
In some embodiments, the plurality of spacers 615 may comprise a copper or polymer material. In some embodiments, the plurality of spacers may include any type of metal.
In some embodiments, the mesh structure 515 may be disposed on the plurality of spacers 815A, 815B, and/or 915B, and/or in between the plurality of spacers 815A, 815B, and/or 915B and the first casing 510.
In some embodiments, the plurality of spacers may be elastic (e.g., have spring like qualities) may allow the thermal ground plane to self-adjust and/or morph into circuit board gaps. In some embodiments, the vapor core 520 can include elastic plurality of spacers that can vary in height. In some embodiments, elastic or spring-like spacers and the first casing 510 and/or the second casing 535 can be deformed according to the void space to be used for enhancing vapor transport. In some embodiments, a coolant can be selected to operate with positive pressure pushing the first casing 510 and/or the second casing 535 outward, so the coolant itself serves as the spring-like material.
In some embodiments, additional wicking structures 1320 may be connected to the wicking structure 515 such as, for example, in order to supply liquid water for continuous evaporation. Vapor temperatures in regions near hot chips (e.g., circuit elements) are high and the corresponding vapor transport may be good. This may allow a reduced thickness of the vapor core in such hot regions without performance degradation.
In some embodiments, thermal ground plane 1500 and/or thermal ground plane 1600 void space in the device shell 805 and/or the circuit board 530 (and/or the circuit elements 525 and/or 540) can be used to enhance vapor transport. In some embodiments, one or more wicking structures may be disposed near either the first casing 805 and/or the second casing 835 disposed near the circuit elements.
Some embodiments include a circuit board with one or more void spaces created, organized, designed, etc. to optimize vapor transport within an associated thermal ground plane. Typical circuit boards may be optimally designed with a consideration of electrical, mechanical, thermal, and/or other performance metrics. The void space may also be optimized. For example, a circuit board may be designed to enhance vapor transport within the associated vapor core of a thermal ground plane. There is always a void space; such space, for example, can be arranged optimally for the enhancement. Major considerations are the size including the gap of the void space and/or the vapor temperatures in the void space. The vapor transport may be less effective with lower vapor temperatures. It may, in some cases, be desirable to have an enlarged vapor core in regions away from heat sources such as, for example, circuit elements. In those regions, vapor temperatures are lower and need additional gap for effective transport.
Some embodiments may also include a device shell created, arranged, designed, organized, formed, etc. with void space to optimize vapor transport. Typical device shells may be designed with a consideration of electrical, mechanical, thermal and other performance metrics. The void space may also be optimized. In some embodiments, the void space can be used to enhance vapor transport and the associated thermal performance of a thermal ground plane. The circuit board and/or the casing (or shell), for example, may represent key components in a mobile system. There may always be void space; such space can be arranged optimally for the enhancement. Major considerations may include, for example, the size including the gap of the void space and the vapor temperatures in the void space.
The term “substantially” means within 5% or 10% of the value referred to or within manufacturing tolerances.
Various embodiments are disclosed. The various embodiments may be partially or completely combined to produce other embodiments.
Numerous specific details are set forth herein to provide a thorough understanding of the claimed subject matter. However, those skilled in the art will understand that the claimed subject matter may be practiced without these specific details. In other instances, methods, apparatuses, or systems that would be known by one of ordinary skill have not been described in detail so as not to obscure claimed subject matter.
Embodiments of the methods disclosed herein may be performed in the operation of such computing devices. The order of the blocks presented in the examples above can be varied—for example, blocks can be re-ordered, combined, and/or broken into sub-blocks. Certain blocks or processes can be performed in parallel.
The use of “adapted to” or “configured to” herein is meant as open and inclusive language that does not foreclose devices adapted to or configured to perform additional tasks or steps. Additionally, the use of “based on” is meant to be open and inclusive, in that a process, step, calculation, or other action “based on” one or more recited conditions or values may, in practice, be based on additional conditions or values beyond those recited. Headings, lists, and numbering included herein are for ease of explanation only and are not meant to be limiting.
While the present subject matter has been described in detail with respect to specific embodiments thereof, it will be appreciated that those skilled in the art, upon attaining an understanding of the foregoing, may readily produce alterations to, variations of, and equivalents to such embodiments. Accordingly, it should be understood that the present disclosure has been presented for-purposes of example rather than limitation, and does not preclude inclusion of such modifications, variations, and/or additions to the present subject matter as would be readily apparent to one of ordinary skill in the art.
Numerous specific details are set forth herein to provide a thorough understanding of the claimed subject matter. However, those skilled in the art will understand that the claimed subject matter may be practiced without these specific details. In other instances, methods, apparatuses or systems that would be known by one of ordinary skill have not been described in detail so as not to obscure claimed subject matter.
Embodiments of the methods disclosed herein may be performed in the operation of such computing devices. The order of the blocks presented in the examples above can be varied—for example, blocks can be re-ordered, combined, and/or broken into sub-blocks. Certain blocks or processes can be performed in parallel.
While the present subject matter has been described in detail with respect to specific embodiments thereof, it will be appreciated that those skilled in the art, upon attaining an understanding of the foregoing, may readily produce alterations to, variations of, and equivalents to such embodiments. Accordingly, it should be understood that the present disclosure has been presented for purposes of example rather than limitation, and does not preclude inclusion of such modifications, variations and/or additions to the present subject matter as would be readily apparent to one of ordinary skill in the art.
Number | Name | Date | Kind |
---|---|---|---|
4000776 | Kroebig et al. | Jan 1977 | A |
4274479 | Eastman | Jun 1981 | A |
4279294 | Fitzpatrick et al. | Jul 1981 | A |
4545799 | Rhodes et al. | Oct 1985 | A |
4854379 | Shaubach et al. | Aug 1989 | A |
5000256 | Tousignant | Mar 1991 | A |
5175975 | Benson et al. | Jan 1993 | A |
5343940 | Jean | Sep 1994 | A |
5360058 | Koeppl et al. | Nov 1994 | A |
5560423 | Larson et al. | Oct 1996 | A |
5735339 | Davenport et al. | Apr 1998 | A |
6056044 | Benson et al. | May 2000 | A |
6082443 | Yamamoto | Jul 2000 | A |
6158502 | Thomas | Dec 2000 | A |
6269866 | Yamamoto | Aug 2001 | B1 |
6446706 | Rosenfeld et al. | Sep 2002 | B1 |
6533029 | Phillips | Mar 2003 | B1 |
6561262 | Osakabe et al. | May 2003 | B1 |
6763671 | Klett et al. | Jul 2004 | B1 |
6896039 | Dussinger et al. | May 2005 | B2 |
6912130 | Osanai et al. | Jun 2005 | B2 |
6938481 | Paterek et al. | Sep 2005 | B2 |
6994151 | Zhou et al. | Feb 2006 | B2 |
7028713 | Koyama | Apr 2006 | B2 |
7037400 | Shaw | May 2006 | B1 |
7069978 | Rosenfeld et al. | Jul 2006 | B2 |
7100680 | Dussinger et al. | Sep 2006 | B2 |
7278469 | Sasaki et al. | Oct 2007 | B2 |
8018128 | Egawa et al. | Sep 2011 | B2 |
8069907 | Bryant et al. | Dec 2011 | B2 |
8579018 | Roper et al. | Nov 2013 | B1 |
8646281 | Lim | Feb 2014 | B2 |
8807203 | Macdonald et al. | Aug 2014 | B2 |
8921702 | Carter | Dec 2014 | B1 |
8985197 | Wang | Mar 2015 | B2 |
9136883 | Moher et al. | Sep 2015 | B1 |
9651312 | Yang et al. | May 2017 | B2 |
9700930 | Yang | Jul 2017 | B2 |
9835383 | Roper | Dec 2017 | B1 |
9909814 | Yang et al. | Mar 2018 | B2 |
9921004 | Lewis et al. | Mar 2018 | B2 |
10281220 | Lin et al. | May 2019 | B1 |
10458719 | Bozorgi | Oct 2019 | B2 |
10527358 | Yang et al. | Jan 2020 | B2 |
10571200 | Yang et al. | Feb 2020 | B2 |
20010054495 | Yevin et al. | Dec 2001 | A1 |
20030042009 | Phillips | Mar 2003 | A1 |
20030079863 | Sugito et al. | May 2003 | A1 |
20030102118 | Sagal et al. | Jun 2003 | A1 |
20030136547 | Gollan et al. | Jul 2003 | A1 |
20030136550 | Tung et al. | Jul 2003 | A1 |
20030136551 | Bakke | Jul 2003 | A1 |
20030159806 | Sehmbey et al. | Aug 2003 | A1 |
20040011509 | Siu | Jan 2004 | A1 |
20040050533 | Chesser et al. | Mar 2004 | A1 |
20040131877 | Hasz et al. | Jul 2004 | A1 |
20040134548 | Koyama | Jul 2004 | A1 |
20040244951 | Dussinger et al. | Dec 2004 | A1 |
20050059238 | Chen et al. | Mar 2005 | A1 |
20050126757 | Bennett et al. | Jun 2005 | A1 |
20050190810 | Butterworth et al. | Sep 2005 | A1 |
20050230085 | Valenzuela | Oct 2005 | A1 |
20050280128 | Mok et al. | Dec 2005 | A1 |
20050280162 | Mok et al. | Dec 2005 | A1 |
20060032615 | Dussinger et al. | Feb 2006 | A1 |
20060037737 | Chen et al. | Feb 2006 | A1 |
20060090882 | Sauciuc | May 2006 | A1 |
20060098411 | Lee | May 2006 | A1 |
20060124280 | Lee et al. | Jun 2006 | A1 |
20060131002 | Mochizuki et al. | Jun 2006 | A1 |
20060196640 | Siu | Sep 2006 | A1 |
20060196641 | Hong et al. | Sep 2006 | A1 |
20060213648 | Chen et al. | Sep 2006 | A1 |
20060283574 | Huang | Dec 2006 | A1 |
20060283576 | Lai et al. | Dec 2006 | A1 |
20070035927 | Erturk et al. | Feb 2007 | A1 |
20070056714 | Wong | Mar 2007 | A1 |
20070068657 | Yamamoto et al. | Mar 2007 | A1 |
20070077165 | Hou et al. | Apr 2007 | A1 |
20070089864 | Chang et al. | Apr 2007 | A1 |
20070107875 | Lee et al. | May 2007 | A1 |
20070107878 | Hou et al. | May 2007 | A1 |
20070158050 | Norley | Jul 2007 | A1 |
20080017356 | Gruss et al. | Jan 2008 | A1 |
20080029249 | Hsiao | Feb 2008 | A1 |
20080067502 | Chakrapani et al. | Mar 2008 | A1 |
20080111151 | Teraki et al. | May 2008 | A1 |
20080128116 | Dangelo et al. | Jun 2008 | A1 |
20080128898 | Henderson et al. | Jun 2008 | A1 |
20080210407 | Kim et al. | Sep 2008 | A1 |
20080224303 | Funakoshi et al. | Sep 2008 | A1 |
20080272482 | Jensen et al. | Nov 2008 | A1 |
20080283222 | Chang et al. | Nov 2008 | A1 |
20090020272 | Shimizu | Jan 2009 | A1 |
20090025910 | Hoffman et al. | Jan 2009 | A1 |
20090056917 | Majumdar et al. | Mar 2009 | A1 |
20090151906 | Lai et al. | Jun 2009 | A1 |
20090159242 | Zhao | Jun 2009 | A1 |
20090205812 | Meyer, IV et al. | Aug 2009 | A1 |
20090236080 | Lin et al. | Sep 2009 | A1 |
20090294104 | Lin et al. | Dec 2009 | A1 |
20090316335 | Simon et al. | Dec 2009 | A1 |
20100028604 | Bhushan et al. | Feb 2010 | A1 |
20100053899 | Hashimoto et al. | Mar 2010 | A1 |
20100071879 | Hou | Mar 2010 | A1 |
20100084113 | Lee | Apr 2010 | A1 |
20100139767 | Hsieh et al. | Jun 2010 | A1 |
20100157535 | Oniki et al. | Jun 2010 | A1 |
20100200199 | Habib et al. | Aug 2010 | A1 |
20100252237 | Hashimoto et al. | Oct 2010 | A1 |
20100254090 | Trautman | Oct 2010 | A1 |
20100290190 | Chester et al. | Nov 2010 | A1 |
20100294200 | Zhang et al. | Nov 2010 | A1 |
20100300656 | Lu | Dec 2010 | A1 |
20110017431 | Yang et al. | Jan 2011 | A1 |
20110027311 | Deng et al. | Feb 2011 | A1 |
20110083829 | Hung et al. | Apr 2011 | A1 |
20110088873 | Yang | Apr 2011 | A1 |
20110108142 | Liu et al. | May 2011 | A1 |
20110120674 | MacDonald et al. | May 2011 | A1 |
20110174474 | Liu | Jul 2011 | A1 |
20110198059 | Gavillet et al. | Aug 2011 | A1 |
20110205708 | Andry et al. | Aug 2011 | A1 |
20120037210 | Lim | Feb 2012 | A1 |
20120061127 | Fields et al. | Mar 2012 | A1 |
20120168435 | Chen et al. | Jul 2012 | A1 |
20120186784 | Yang et al. | Jul 2012 | A1 |
20120189839 | Aoki et al. | Jul 2012 | A1 |
20120241216 | Coppeta et al. | Sep 2012 | A1 |
20120312504 | Suzuki et al. | Dec 2012 | A1 |
20130043000 | Wang | Feb 2013 | A1 |
20130049018 | Ramer et al. | Feb 2013 | A1 |
20130168057 | Semenic | Jul 2013 | A1 |
20130199770 | Cherian | Aug 2013 | A1 |
20130269913 | Ueda et al. | Oct 2013 | A1 |
20130327504 | Bozorgi | Dec 2013 | A1 |
20140009883 | Fujiwara et al. | Jan 2014 | A1 |
20140017456 | Xiao et al. | Jan 2014 | A1 |
20140174700 | Lin et al. | Jun 2014 | A1 |
20140237823 | Yang | Aug 2014 | A1 |
20140238645 | Enright | Aug 2014 | A1 |
20140238646 | Enright | Aug 2014 | A1 |
20140247556 | Fid et al. | Sep 2014 | A1 |
20150181756 | Sato | Jun 2015 | A1 |
20150226493 | Yang et al. | Aug 2015 | A1 |
20150237762 | Holt | Aug 2015 | A1 |
20150289413 | Rush | Oct 2015 | A1 |
20160018165 | Ahamed | Jan 2016 | A1 |
20160076820 | Lewis | Mar 2016 | A1 |
20160081227 | Lee et al. | Mar 2016 | A1 |
20160123678 | Hulse | May 2016 | A1 |
20160131437 | Wu | May 2016 | A1 |
20160161193 | Lewis | Jun 2016 | A1 |
20160216042 | Bozorgi et al. | Jul 2016 | A1 |
20160343639 | Groothuis | Nov 2016 | A1 |
20170030654 | Yang et al. | Feb 2017 | A1 |
20170064868 | Rush | Mar 2017 | A1 |
20170122672 | Lin | May 2017 | A1 |
20170241717 | Sun et al. | Aug 2017 | A1 |
20170318702 | Basu et al. | Nov 2017 | A1 |
20170343293 | Urbi et al. | Nov 2017 | A1 |
20170350657 | Yeh et al. | Dec 2017 | A1 |
20180320984 | Lewis | Nov 2018 | A1 |
20190390919 | Lewis et al. | Dec 2019 | A1 |
20200003501 | Wakaoka | Jan 2020 | A1 |
Number | Date | Country |
---|---|---|
2522409 | Nov 2002 | CN |
2715467 | Aug 2005 | CN |
1877241 | Dec 2006 | CN |
1957221 | May 2007 | CN |
101022718 | Aug 2007 | CN |
101080359 | Nov 2007 | CN |
101151950 | Mar 2008 | CN |
100480611 | Apr 2009 | CN |
100508708 | Jul 2009 | CN |
101754656 | Jun 2010 | CN |
102019543 | Apr 2011 | CN |
102066864 | May 2011 | CN |
202928418 | May 2013 | CN |
103398613 | Nov 2013 | CN |
19729922 | Jan 1999 | DE |
202009016739 | Apr 2010 | DE |
1369918 | Dec 2003 | EP |
2713132 | Apr 2014 | EP |
2529512 | Feb 2016 | GB |
H1197871 | Apr 1999 | JP |
2011080679 | Apr 2011 | JP |
2013148289 | Aug 2013 | JP |
03103835 | Dec 2003 | WO |
2006052763 | May 2006 | WO |
2006115326 | Nov 2006 | WO |
2007124028 | Nov 2007 | WO |
2008044823 | Apr 2008 | WO |
2008044823 | Apr 2008 | WO |
2008045004 | Apr 2008 | WO |
2008146129 | Dec 2008 | WO |
2009079084 | Jun 2009 | WO |
2010036442 | Apr 2010 | WO |
2013144444 | Oct 2013 | WO |
2015172136 | Nov 2015 | WO |
WO 2016044180 | Mar 2016 | WO |
Entry |
---|
American Heritage Dictionary of the English Language, 5th ed. (2022) (definition of “gap”). |
International Search Report and Written Opinion dated Jan. 17, 2018 in related PCT Application No. PCT/US2017/060550 (11 pages). |
International Search Report and Written Opinion, as issued in connection with International Patent Application No. PCT/US2015/050031, dated Dec. 18, 2015, 10 pgs. |
International Search Report and Written Opinion, as issued in connection with International Patent Application No. PCT/US2015/050771, dated Dec. 18, 2015, 8 pgs. |
U.S. Office Action in U.S. Appl. No. 12/719,775, dated Nov. 9, 2012, 15 pgs. |
U.S. Office Action in U.S. Appl. No. 12/719,775, dated May 9, 2013, 15 pgs. |
U.S. Office Action in U.S. Appl. No. 12/719,775, dated Oct. 2, 2013, 15 pgs. |
U.S. Office Action in U.S. Appl. No. 12/719,775, dated Mar. 26, 2014, 23 pgs. |
U.S. Office Action in U.S. Appl. No. 12/719,775, dated Feb. 6, 2015, 24 pgs. |
U.S. Notice of Allowance in U.S. Appl. No. 12/719,775, dated Aug. 4, 2015, 8 pgs. |
U.S. Office Action in U.S. Appl. No. 14/681,624, dated Oct. 23, 2015, 11 pgs. |
International Search Report and Written Opinion dated Jul. 15, 2016 in related PCT Application No. PCT/US2015/57885 (11 pages). |
U.S. Office Action in U.S. Appl. No. 14/681,624, dated May 5, 2016, 10 pgs. |
U.S. Notice of Allowance in U.S. Appl. No. 14/681,624, dated Nov. 17, 2016, 7 pgs. |
U.S. Office Action in U.S. Appl. No. 14/925,787, dated Aug. 9, 2017, 15 pgs. |
U.S. Office Action in U.S. Appl. No. 14/925,787 dated Sep. 28, 2017, 9 pages. |
U.S. Restriction Requirement in U.S. Appl. No. 14/853,833 dated Aug. 30, 2017, 7 pages. |
International Search Report and Written Opinion dated Jul. 15, 2016 in related PCT Application No. PCT/US2015/057885 (11 pages). |
U.S. Notice of Allowance in U.S. Appl. No. 14/925,787, dated Nov. 9, 2017, 7 pgs. |
U.S. Office Action in U.S. Appl. No. 14/853,833 dated Oct. 6, 2017, 12 pages. |
U.S. Office Action in U.S. Appl. No. 14/857,567 dated Nov. 21, 2017, 11 pages. |
U.S. Office Action in U.S. Appl. No. 14/861,708 dated May 9, 2017, 8 pages. |
U.S. Notice of Allowance in U.S. Appl. No. 14/861,708 dated Oct. 25, 2017, 9 pages. |
U.S. Office Action in U.S. Appl. No. 15/292,932 dated Dec. 11, 2018, 12 pages. |
U.S. Office Action in U.S. Appl. No. 14/857,567 dated Aug. 2, 2018, 29 pages. |
U.S. Restriction Requirement in U.S. Appl. No. 15/436,632 dated Oct. 10, 2018, 5 pages. |
U.S. Restriction Requirement in U.S. Appl. No. 15/292,932 dated Aug. 30, 2018, 5 pages. |
U.S. Office Action in U.S. Appl. No. 14/857,567 dated Oct. 30, 2018, 27 pages. |
U.S. Office Action in U.S. Appl. No. 14/853,833 dated Nov. 19, 2018, 11 pages. |
U.S. Office Action in U.S. Appl. No. 14/853,833 dated Apr. 25, 2018, 11 pages. |
International Search Report and Written Opinion, as issued in connection with International Patent Application No. PCT/US2018/31632, dated Oct. 15, 2018, 16 pgs. |
U.S. Office Action in U.S. Appl. No. 15/806,723 dated Apr. 5, 2019, 11 pages. |
U.S. Office Action in U.S. Appl. No. 14/857,567 dated Mar. 21, 2019, 27 pages. |
U.S. Office Action in U.S. Appl. No. 14/853,833 dated Mar. 29, 2019, 27 pages. |
U.S. Office Action in U.S. Appl. No. 15/292,932 dated Mar. 29, 2019, 13 pages. |
U.S. Office Action in U.S. Appl. No. 15/436,632 dated Feb. 5, 2019, 9 pages. |
U.S. Office Action in U.S. Appl. No. 15/787,455 dated Apr. 1, 2019, 19 pages. |
Non-Final Office Action dated Oct. 5, 2021 in U.S. Appl. No. 16,680/480, 12 pages. |
Third Office Action mailed Apr. 19, 2021, as received in CN Application No. 201580049534, 7 pages. |
Non-Final Office Action dated May 11, 2021 in U.S. Appl. No. 16/539,848, 10 pages. |
Non-Final Office Action dated May 17, 2021 in U.S. Appl. No. 15/974,306, 9 pages. |
International Preliminary Report on Patentability dated Jun. 8, 2021 as received in PCT Application No. PCT/JS2019/065701, 7 pages. |
Restriction Requirement dated Jun. 9, 2021 in U.S. Appl. No. 16/680,480, 6 pages. |
Non-Final Office Action dated Jul. 9, 2021 in U.S. Appl. No. 15/930,016, 18 pages. |
Restriction Requirement dated Jul. 19, 2021 in U.S. Appl. No. 16/710,180, 7 pages. |
Restriction Requirement dated Aug. 30, 2021 in U.S. Appl. No. 17/352,250, 7 pages. |
Notice of Allowance dated Sep. 9, 2021 in U.S. Appl. No. 15/787,455, 8 pages. |
Restriction Requirement dated Jul. 23, 2012 in U.S. Appl. No. 12/719,775, 9 pages. |
Advisory Action dated Aug. 2, 2013 in U.S. Appl. No. 12/719,775, 4 pages. |
Advisory Action dated Jun. 20, 2014 in U.S. Appl. No. 12/719,775, 4 pages. |
Restriction Requirement dated Jul. 28, 2015 in U.S. Appl. No. 14/681,624, 5 pages. |
International Preliminary Report on Patentability dated Mar. 21, 2017 as received in PCT Application No. PCT/US2015/050031, 8 pages. |
International Preliminary Report on Patentability dated Mar. 21, 2017 as received in PCT Application No. PCT/JS2015/050771, 6 pages. |
International Preliminary Report on Patentability dated May 2, 2017 as received in PCT Application No. PCT/US2015/057885, 5 pages. |
Extended European search report Application mailed Feb. 22, 2018, as received in EP Application No. 15842101.6, 7 pages. |
Final Office Action dated Mar. 8, 2018 in U.S. Appl. No. 14/857,567, 25 pages. |
Extended European search report mailed Mar. 26, 2018, as received in EP Application No. 15841403.7, 10 pages. |
First Office Action mailed May 9, 2018, as received in CN Application No. 201580049534, 13 pages. |
Advisory Action dated May 30, 2018 in U.S. Appl. No. 14/857,567, 7 pages. |
First Office Action mailed Aug. 28, 2018, as received in CN Application No. 201580059333, 10 pages. |
Second Office Action mailed Dec. 29, 2018, as received in CN Application No. 201580049534, 14 pages. |
International Preliminary Report on Patentability dated May 14, 2019 as received in PCT Application No. PCT/JS2017/060550, 7 pages. |
Final Office Action dated May 28, 2019 in U.S. Appl. No. 15/436,632, 14 pages. |
Advisory Action dated Jul. 19, 2019 in U.S. Appl. No. 15/292,932, 4 pages. |
Final Office Action dated Aug. 26, 2019 in U.S. Appl. No. 14/857,567, 27 pages. |
Notice of Allowance dated Sep. 12, 2019 in U.S. Appl. No. 15/292,932, 7 pages. |
Notice of Allowance dated Oct. 10, 2019 in U.S. Appl. No. 15/436,632, 10 pages. |
Final Office Action dated Oct. 11, 2019 in U.S. Appl. No. 15/806,723, 18 pages. |
Advisory Action dated Nov. 7, 2019 in U.S. Appl. No. 14/857,567, 7 pages. |
International Preliminary Report on Patentability dated Nov. 12, 2019 received in PCT Application No. PCT/JS2018/031632, 7 pages. |
Non-Final Office Action dated Nov. 29, 2019 in U.S. Appl. No. 14/857,567, 32 pages. |
Advisory Action dated Feb. 3, 2020 in U.S. Appl. No. 15/806,723, 5 pages. |
Restriction Requirement dated Feb. 13, 2020 in U.S. Appl. No. 15/974,306, 5 pages. |
Office Action mailed Feb. 18, 2020, as received in EP Application No. 15841403.7, 4 pages. |
Non-Final Office Action dated Mar. 18, 2020 in U.S. Appl. No. 15/806,723, 6 pages. |
International Search Report and Written Opinion dated Apr. 8, 2020 as received in PCT Application No. PCT/US2019/065701, 16 pages. |
Office Action mailed Apr. 9, 2020, as received in EP Application No. 15842101.6, 7 pages. |
Notice of Allowance dated Apr. 15, 2020 in U.S. Appl. No. 14/857,567, 13 pages. |
Notice of Allowance dated Apr. 20, 2020 in U.S. Appl. No. 15/806,723, 8 pages. |
Non-Final Office Action dated May 29, 2020 in U.S. Appl. No. 15/974,306, 11 pages. |
First Office Action received Jun. 1, 2020, in related CN application No. 201910233277.1, 18 Pages. |
First Office Action mailed Jun. 4, 2020, as received in CN Application No. 201580050472, 15 pages. |
Extended European search report Application mailed Jun. 12, 2020, as received in EP Application No. 17870153.8, 9 pages. |
International Search Report and Written Opinion Application mailed Jul. 13, 2020, as received in PCT Application No. PCT/US2020/030911, 9 pages. |
First Office Action mailed Jul. 24, 2020, as received in CN Application No. 201910754250, 19 pages. |
First Office Action mailed Sep. 24, 2020, as received in CN Application No. 201880030856, 19 pages. |
Restriction Requirement dated Oct. 14, 2020 in U.S. Appl. No. 16/539,848, 8 pages. |
Non-Final Office Action dated Oct. 26, 2020 in U.S. Appl. No. 16/539,848, 13 pages. |
Office Action mailed Nov. 18, 2020, as received in EP Application No. 15841403.7, 5 pages. |
Office Action mailed Nov. 17, 2020, as received in EP Application No. 15842101.6, 5 pages. |
Extended European search report Application mailed Dec. 16, 2020, as received in EP Application No. 18798835.7, 8 pages. |
Final Office Action dated Jan. 11, 2021 in U.S. Appl. No. 15/974,306, 12 pages. |
Final Office Action dated Feb. 2, 2021 in U.S. Appl. No. 16/539,848, 10 pages. |
Second Office Action mailed Mar. 16, 2021, as received in CN Application No. 201910233277.1, 21 pages. |
Advisory Action dated Apr. 9, 2021 in U.S. Appl. No. 16/539,848, 4 pages. |
Restriction Requirement dated Apr. 9, 2021 in U.S. Appl. No. 16/710,180, 8 pages. |
Advisory Action dated Apr. 16, 2021 in U.S. Appl. No. 15/974,306, 4 pages. |
International Search Report and Written Opinion in PCT Application No. PCT/US2021/038152 mailed on Sep. 29, 2021, 14 pages. |
Non-Final Office Action in U.S. Appl. No. 16/710,180 dated Dec. 13, 2021, 14 pages. |
Number | Date | Country | |
---|---|---|---|
20180106554 A1 | Apr 2018 | US |
Number | Date | Country | |
---|---|---|---|
62410229 | Oct 2016 | US |