The present invention relates to a method and a device for treating substrates as well as to a nozzle unit for this purpose. In particular, the present invention relates to a method and a device for the surface treatment of substrates and especially substrates in the semiconductor field using a liquid in combination with ultrasound, and in particular, megasound.
It is known to clean components using ultrasound in the most varied of technological fields. Hereby, the components to be cleaned are brought into contact with a liquid medium, usually being dipped therein, and are exposed to ultrasound for a certain period of time in order to detach the impurities. Ultrasonic cleaning is also a recognized technique in the field of wafer and mask production and is already used in very many different ways.
An ultrasound system generally consists of a generator and an ultrasonic transducer, wherein the generator converts an alternating voltage into an appropriate operating voltage for the ultrasonic transducer. In turn, the latter converts the electrical energy into mechanical vibrations which cause positive pressure and negative pressure phases to develop in a liquid medium in contact therewith. So-called cavitations bubbles are produced by the alternating positive pressure and negative pressure phases and as a result very high local pressures and temperatures are created for a brief period when they implode. The cavitations bubbles form the basis for the ultrasonic cleaning technique. At a frequency above 400 kHz one speaks of ultrasound, and from a frequency of 700 kHz upwards of megasound. In the range covered by the megasonic frequencies, the cavitations energy is comparatively small so that destruction of microstructures is avoided. At the same time however, the cleaning efficiency for the smallest size of particles is very high in the megasonic frequency range. In consequences, megasound is usually used when producing wafers and masks.
In one known ultrasonic cleaning system such as is described in DE-A-197 58 267 for example, semiconductor wafers are inserted as a batch into a treatment basin filled with liquid and then exposed to ultrasound. Hereby, the ultrasonic sound waves are directed substantially parallel to the surface of the wafer and the entire surface of the wafer should be treated substantially uniformly.
On the basis of such a state of the art, the object of the present invention is to optimize ultrasound and in particular megasound treatment processes.
For the achievement of this object the present invention provides a method for the treatment of substrates, wherein a liquid film is formed on a locally bounded surface area of the substrate requiring treatment by means of a nozzle unit which comprises at least one elongated nozzle arrangement and an ultrasonic transducer, and in particular a megasonic transducer, arrangement arranged adjacent thereto, wherein at least one part of the ultrasonic transducer arrangement is brought into contact with the liquid film and thereafter, ultrasound and in particular megasound is introduced into the so formed liquid film. The method in accordance with the invention is suitable for the employment of ultrasound, wherein it is preferred that sound in the megasonic frequency range be utilized. This method enables surface areas of a substrate requiring treatment to be treated in a locally limited manner using liquid and ultrasound so that the treatment can be optimized for this particular surface area. Furthermore, a treatment can be effected with just a small quantity of liquid due to the local application of a liquid film, wherein consumption of the medium can be minimized. It should be noted hereby, that the surface of the substrate can be at least partly moistened with a liquid even prior to the local application of the liquid film, and that additional liquid can be deposited on the substrate in addition to the formation of a local liquid film by the nozzle arrangement. Furthermore, it should also be mentioned that after the local formation thereof , the liquid film can spread out and thus cover larger partial areas and possibly the entire surface of the substrate. The liquid film can be formed by liquids in the classical sense thereof as well as by a medium in the supercritical state.
In a preferred embodiment of the invention, the liquid film is formed between a substantially closed base structure of the nozzle unit and the surface area of the substrate to be treated in order to enable a well defined homogeneous liquid film to be formed, and this in turn assists in the provision of a defined treatment with ultrasound.
Preferably, a relative movement between the nozzle unit and the substrate is produced in order to enable the liquid film to be deposited on different surface areas of the substrate and to introduce the ultrasound into the liquid film in these areas. This thereby enables a large area of the surface and possibly the entire surface area of the substrate to be treated, wherein it is possible to optimize the treatment with the liquid and the ultrasound for different surface areas. An optimization of this type is, for example, possible by varying the relative movement between the nozzle unit and the substrate, wherein the time period for which the liquid film and the ultrasound are effective is altered, and hereby, the speed of the relative movement is preferably altered in dependence on the position of the nozzle unit relative to the substrate.
As a further possibility for the optimization of the treatment, it is possible to vary the introduction of the ultrasound into the liquid film during the treatment. Hereby for example, the introduction of the ultrasound can be varied in dependence on the position of the nozzle unit relative to the substrate. Thus, in one embodiment of the invention, the intensity and/or the frequency of the ultrasound introduced into the liquid film can be altered in order to correspondingly change the effect of the ultrasound on the surface area. Here, what is meant by a change in frequency is a relatively small deviation with respect to the resonant frequency of a transducer in order to detune the latter and hence alter the effectiveness profile of the transducer.
In a further embodiment of the invention, the angle of incidence of the ultrasound on the substrate can preferably be varied by positioning the ultrasonic transducer arrangement at an angle with respect to a surface of the substrate. The angle of incidence of the ultrasound with respect to the surface of the substrate is preferably varied between 105° and 75°. Both the change in the intensity and/or the frequency of the ultrasound and also the change of the angle of incidence of the ultrasound can be utilized for deliberately producing cavitations directly on the surface of the substrate. Nevertheless, intentional detuning of the effectiveness profile is, for example, also possible in order to produce cavitations at a distance away from the surface of the substrate so as to protect sensitive surface structures for example. Optimization of the treatment can then be effected without destroying the structure.
In a particularly preferred embodiment of the invention, the ultrasonic transducer arrangement is built up from a plurality of ultrasonic transducers which are controlled individually and/or in groups in order to produce different amounts of ultrasonic sound and hence further locally optimized treatments within the locally bounded liquid film. This applies in particular when the liquid film extends over a larger surface area of the substrate, such as over the entire width of the substrate for example. The individual or group-wise control of the ultrasonic transducers then enables optimized treatment over the width of the substrate. Provision is preferably made for the transducers to have different resonant frequencies and to be arranged either in a row or in the form of a matrix in order to provide locally differing treatments. Hereby, the ultrasonic transducers are preferably controlled at different intensities and/or frequencies in order to enable individual optimization and/or matching of the transducers.
Preferably, the liquid film is formed substantially along a straight line over the entire width of the substrate and the ultrasound is introduced into the liquid film substantially along a straight line over the entire width of the substrate. This enables treatment to be effected over the entire surface of the substrate with highly localized optimization of the treatment process by means of a single movement of the nozzle unit over the substrate while appropriately controlling the nozzle unit arrangement(s) and the ultrasonic transducer arrangement. Hereby, the introduction of the ultrasound is preferably controlled in different manners over the width of the substrate so as to provide local optimization of the treatment process.
For a further matching or optimization of the treatment process, the composition of the liquid forming the liquid film is controlled. For the purposes of local optimization, the nozzle arrangement preferably comprises a plurality of nozzles which are controlled in different manners, this thereby enabling a local alteration of the treatment process to be effected along the nozzle arrangement. Hereby, different liquids and/or differing quantities of liquid are preferably applied locally to the substrate along the length of the nozzle arrangement for the purposes of forming the liquid film. Different liquids are also meant to include, in particular, liquids having different concentrations of a constituent.
In the preferred exemplary embodiment of the present invention, the liquid film is applied by means of at least two nozzle arrangements which are arranged on opposite sides of the transducer arrangement in order to ensure that the liquid film is formed very homogeneously in the vicinity of the transducer arrangement. In one embodiment of the invention, different liquids are supplied to the nozzles arranged on opposite sides of the transducer arrangement.
Preferably, an average spacing of from 0.2 to 2.0 mm and in particular of from 0.7 to 1.4 mm is maintained between the ultrasonic transducer arrangement and the surface of the substrate to be treated during the treatment process. Hereby for example, the spacing can be varied during the treatment in order to produce, in turn, a change of treatment, and in particular, local changes thereof.
In a particularly preferred embodiment of the invention, the liquid forming the liquid film contains a developer or an etching agent, wherein in this case the ultrasound ensures good contact between the surface of the substrate to be treated and the treatment medium so as to prevent particles being deposited on the surface. Furthermore, the ultrasound causes the developer to be well mixed so that local saturation of the liquid can be prevented.
In a further embodiment of the invention, the liquid forming the liquid film preferably contains a rinsing agent and/or a cleaning fluid, the ultrasound thereby assisting the efficiency of the cleaning process.
The object of the invention is also achieved by a device for treating substrates which comprises a nozzle unit including at least one elongated nozzle arrangement and an elongated ultrasonic transducer arrangement disposed adjacent to the nozzle arrangement, and in particular a megasonic transducer arrangement, wherein the at least one nozzle arrangement and the ultrasonic transducer arrangement point in substantially the same direction and wherein there is provided a moving device for the substrate and/or the nozzle unit for positioning them adjacent to a surface of the substrate in such a manner that the at least one nozzle arrangement and the ultrasonic transducer arrangement are directed toward the surface of the substrate at a defined distance therefrom. This device enables a liquid film to be produced locally on a surface area of a substrate to be treated and simultaneously enables subsequent treatment of the liquid film by means of ultrasound.
Preferably, the device comprises a control device for controlling a moving device in such a manner that the nozzle arrangement and the ultrasonic transducer arrangement are moved over the surface of the substrate at a defined distance therefrom in order to successively enable different surface areas of the substrate, and in particular to enable the entire surface of the substrate, to be treated successively, wherein the successive treatment can be locally adapted in each case by taking into consideration the surface structure of the substrate and/or the desired result of the treatment.
In a preferred embodiment of the invention, at least one further elongated nozzle arrangement is provided, wherein the ultrasonic transducer arrangement is arranged between at least two elongated nozzle arrangements. The provision of two elongated nozzle arrangements on opposite sides of the ultrasonic transducer arrangement assists in the formation of a defined liquid film in the region of the ultrasonic transducer arrangement. For the purposes of a well defined formation of such a liquid film, the at least two elongated nozzle arrangements are preferably directed towards a longitudinal central plane of the ultrasonic transducer arrangement.
For local optimization of the results of the treatment, the ultrasonic transducer arrangement is preferably formed from a plurality of ultrasonic transducers which are preferably arranged directly adjacent to one another in a row or in the form of a matrix. Furthermore, a control device is preferably provided for controlling the plurality of ultrasonic transducers individually and/or in groups in order to enable the treatment processes to be suitably adapted to local conditions. Preferably hereby, the frequency and/or the drive power or excitation power of the ultrasonic transducers is variable.
For setting the parameters of the treatment process, a device is preferably provided for adjusting the angle between a surface of the transducer arrangement and a surface of the substrate. The angle of incidence of the ultrasonic sound waves on the surface of the substrate can be adjusted thereby. The angle is preferably adjustable between 0° and 10°.
In one embodiment of the invention, the defined distance is adjustable to between 0.7 and 1.4 mm.
In a preferred embodiment of the invention a device is provided for supplying liquid to at least one nozzle arrangement for the purposes of forming a liquid film on a surface of a substrate to be treated. Preferably hereby, a control device is provided for supplying different liquids to different nozzle arrangements and/or different outlet nozzles of the nozzle arrangement(s), this thereby enabling local adjustment of the treatment over the entire length of the nozzle arrangement.
In a particularly preferred embodiment of the invention, the at least one nozzle arrangement and the ultrasonic transducer arrangement are provided in/on a common main body of the nozzle units and form a substantially closed base structure. This assists in the formation of a liquid film between two facing closed structures, i.e. the surface of the substrate and the closed base structure of the nozzle unit. Hereby, the substantially closed base structure protrudes relative to the remainder of the base structure in the region of the ultrasound arrangement, this thereby producing good contact between the ultrasound arrangement and a liquid film which is formed between a surface of the substrate being treated and the base structure.
The object of the invention is also achieved in the case of a nozzle unit including at least one elongated nozzle arrangement and an elongated ultrasonic transducer arrangement arranged adjacent to the nozzle arrangement, and in particular a megasonic transducer arrangement, wherein the nozzle arrangement and the ultrasonic transducer arrangement point in substantially the same direction and form a substantially closed base structure of the nozzle unit. A nozzle unit of this type enables a defined liquid film to be formed between a surface of the substrate and the closed base structure of the nozzle unit in a simple manner, and also enables selective and defined introduction of ultrasound into a liquid film formed in such a manner.
Preferably, at least one further elongated nozzle arrangement is provided, wherein the ultrasonic transducer arrangement is arranged between the at least two elongated nozzle arrangements so that a liquid may be supplied from both sides of the ultrasonic transducer arrangement, thereby assisting in the formation of a homogeneous liquid film. Hereby, the at least one elongated nozzle arrangement is directed towards a central plane of the ultrasonic transducer arrangement in order to assist in the selective and defined formation of a liquid film in the region of the ultrasonic transducer arrangement.
In a preferred embodiment of the invention, the ultrasonic transducer arrangement is formed from a plurality of ultrasonic transducers, wherein the transducers are preferably arranged directly adjacent to one another, in a row or in the form of a matrix. This enables the ultrasonic transducers to be separately controlled and thus allows local adjustment of the parameters of the treatment during a process of treating a substrate surface with a liquid and ultrasound.
The present invention is described in more detail hereinafter on the basis of an exemplary embodiment taken with reference to the drawings; in the drawings:
a and b schematic sectional views of a nozzle unit in accordance with the present invention having different alignments with respect to a substrate;
The nozzle unit 1 comprises a substantially parallelepipedal main body 4 having a lower surface or underside 6 (also called base hereinafter), in which a plurality of outlet nozzles is formed, as will be described in more detail hereinafter. On the upper face of the main body 4, there is provided a media supply unit 8 which is connected to a not illustrated media supply source, as will be described in more detail hereinafter. The nozzle unit 1 is adapted to be moved over the substrate 2 in the direction of the arrow A by a not illustrated moving device such as a linear moving device. An ultrasonic transducer arrangement 10, whose construction will be described in more detail hereinafter, is provided in or on the base 6.
The construction of the nozzle unit 1 will now be described in more detail with the aid of
The nozzle arrangements 24, 26 and the ultrasonic transducer arrangement 10 have a linear dimension which corresponds at least to the width of a substrate to be treated in order to enable the entire surface of the substrate to be treated in the course of just one pass over the substrate.
As is apparent from
As is further apparent from
a and 4b each show a different arrangement of the nozzle unit 1 with respect to a substrate 2.
In accordance with
Operation of the nozzle unit 7 is described hereinafter.
The nozzle unit is first moved over a surface area of a substrate to be treated, in this case, a semiconductor wafer that is being subjected to a development process. A distance of between 0.7 and 1.4 mm is set up between a lower surface of the nozzle unit 1 and an upper surface of the substrate 2. Subsequently, a developer liquid is introduced into the media distribution chamber 12 from the media supply unit and is then fed via the lines 14 and the supply lines 16 and 18 to the respective outlet bores 20 and 22 of the nozzle arrangements 24 and 26. Hereby, the developer is a developing solution having a predetermined concentration which is set by the media supply unit 8 in a known manner.
In the following description. we assume first of all that the lower surface of the transducer arrangement 10 is aligned parallel to the upper surface of the substrate 2. A liquid film is now formed between the closed base structure of the nozzle unit and the surface of the substrate by the liquid emerging from the nozzle arrangements 24, 26 which is directed towards a longitudinal central axis of the nozzle unit 1. The liquid film completely fills the space between the surface of the substrate 2 and the base structure of the nozzle unit 1. Due to the fact that the ultrasonic transducer arrangement 10 protrudes with respect to the remaining lower surface of the nozzle unit 1, full contact between the ultrasound arrangement 10 and the liquid film is achieved.
Subsequently the ultrasonic transducer arrangement 10 is excited in a controlled manner such that ultrasound which is directed perpendicularly onto the surface of the substrate 2 is introduced into the liquid film. Due to the cavitations effect described above, the ultrasonic sound waves now cause particles to be released from the surface of the substrate 2, thereby ensuring uniform development of the surface of the substrate 2. In particulars detached resist or coating particles are whirled up by the ultrasonic agitation so that good and uniform contact of the developing solution with undissolved resist or coating layers can be achieved. This leads to an improvement in the uniformity of the result of the process independently of the size of the structures and the density distributions of the structures on the substrate surface. Furthermore, the processing time can be shortened by the improved exposure of the developer, which also makes it possible to decrease consumption of the medium.
After a predetermined treatment time in this position, the nozzle unit 1 is now moved over the substrate 2 in order to allow the ultrasound assisted treatment with the developing solution to be applied successively over the entire surface of the substrate 2. Naturally, it is also possible for the ultrasound assisted treatment with developing solution to be effected only in selected surface areas of the substrate.
In order to produce a specific and differentiated control of the treatment process in different surface areas of the substrate, there are control methods of the most varied type which can be employed with the basic procedures described above. For example, it is possible to control the different ultrasonic transducers in the ultrasonic transducer arrangement 10 in differing manners, wherein the transducers may be arranged as in
Due to the different manners of controlling the ultrasonic transducers, differing results for the treatment can be obtained over the width of the substrate, It is possible hereby for control to be exercised by using different frequencies as well as exercising control by the use of different excitation or drive powers. Thus, for example, the individual ultrasonic transducers are controllable at a power level of 0% to 100% of their maximum power, and the ultrasonic frequency is preferably adjustable between one megahertz and five megahertz.
As further control parameters for the surface treatment, it is possible to supply different liquids and/or different quantities of liquid over the length of the nozzle arrangement(s) 24 and/or 26. For example, a developing solution can be used in boundary regions of the substrate which has a different concentration as compared with that in a central region of the substrate. It is also possible to change the applied liquid (the type, concentration or quantity thereof) when passing over the substrate. Completely different results for the treatment of the surface of the substrate can thus be obtained locally over the length of the substrate, In addition, there may be a complete change in the medium being used, for example it is possible to replace the developing solution by a rinsing agent.
A further control parameter in accordance with the present invention is the angle of incidence of the ultrasonic sound waves on the substrate, which, as is illustrated in
A further manner of control lies in the setting of the relative speed between the nozzle unit and the substrate during its passage over the substrate, wherein the dwell times of the liquid film and the time of exposure to the ultrasonic sound waves are locally adjustable.
All of these different manners of control enable a process of adaptation, and in particular optimization of the surface treatment of the substrate in dependence on the nature of the local surface of the substrate or in dependence on a desired result from the process.
The nozzle unit 1 shown in
The construction of a nozzle arrangement including a baffle plate is, for example, known from the not prior published DE-A-102 32 984 belonging to the present Applicant, and to this extent reference is made thereto in order to avoid repetition. The subject matter of DE-A-102 32 984 is incorporated herein by reference,
A nozzle unit of this type has the advantage that the liquid film applied to a substrate can be applied thereto without any substantial use of force and furthermore, it enables a liquid film to be applied evenly to the substrate to be treated.
Again, different liquids and in particular liquids having differing concentrations of a developer or an etching agent within a carrier liquid can be applied over the length of the baffle plate by the plurality of lines 30. Although only one baffle plate is shown in
The additional baffle plate could be supplied with a fluid via suitable lines corresponding to the lines 30. This enables the nozzle unit to be moved over the substrate in different directions by using an appropriate control scheme and hence it is possible to form a liquid film in both directions of movement. Furthermore, different liquids can be applied to a substrate via the nozzle arrangements. For example, a developing solution can be applied via a leading nozzle arrangement, which is located at the front in the direction of movement of the nozzle unit, while a neutralizing solution can be applied via a trailing nozzle arrangement, which is located at the rear in the direction of movement.
The nozzle unit 1 in accordance with
The different aspects of the invention mentioned above can be freely interchanged and combined with one another.
Although the present invention has been described on the basis of a specific embodiment, it is not limited to this specifically represented embodiment. For example, it is not necessary for the nozzle unit and in particular the nozzle arrangements 24, 26 and the ultrasonic transducer arrangement to extend over the entire width of a substrate to be treated. It is also possible for example, to have only one of the nozzle arrangements insofar as this is sufficient for forming a defined liquid film on a substrate to be treated. Instead of passing the arrangement linearly over the substrate, this could also be done in the course of a pivotal movement for example. Naturally, it is also possible to move the substrate past the nozzle unit. In addition, the use of the nozzle unit is not limited to a treatment involving a developer. The nozzle unit can also be used, in particular, for etching processes and rinsing and/or cleaning processes. It is also possible for such processes to be effected successively using one and the same nozzle unit. The method in accordance with the invention is particularly suitable for semiconductor wafers, masks for use in the manufacture of semiconductors, and LCD displays.
Number | Date | Country | Kind |
---|---|---|---|
10 2004 053 337.7 | Nov 2004 | DE | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/EP2005/011533 | 10/28/2005 | WO | 00 | 2/28/2008 |