1. Field of the Invention
The present invention relates generally to the field of semiconductor fabrication and, more particularly, to a method and related operation system for immersion lithography.
2. Description of the Prior Art
Photolithographic systems have been a mainstay of semiconductor device patterning for decades. In photolithographic systems, as known in the art, light is projected onto a photoresist for the purpose of patterning an electronic device on a semiconductor substrate or wafer.
The resolution (r0) of a photolithographic system having a given lithographic constant k1, is described by the equation
r0k1λ/NA (1)
where λ is the operational wavelength, and the numerical aperture (NA) is given by the equation
NA=n sin θ0 (2)
The angle θ0 is the angular semi-aperture of the system, and n is the index of the material filling the space between the system and the substrate to be patterned.
Conventional methods of resolution improvement have led to three trends in the photolithographic technology: (1) reduction in wavelength λ from mercury g-line (436 nm) to the 193 nm excimer laser, and further to 157 nm and the still developing extreme-ultraviolet (EUV) wavelengths; (2) implementation of resolution enhancement techniques such as phase-shifting masks, and off-axis illumination have led to a reduction in the lithographic constant k1 from 0.6 to values approaching 0.4; and (3) increases in the numerical aperture (NA) via improvements in optical designs, manufacturing techniques, and metrology. Such improvements have led to increases in NA from approximately 0.35 to greater than 0.7, with 0.8 expected in the next few years. However, as can be seen in Equation (2), for free-space optical systems (i.e., n=1), there is a theoretical limit bounding NA to values of one or less.
Immersion lithography provides another possibility for increasing the NA of an optical lithographic system. Immersion lithography is a technology in which lithographic exposure of a resist coated wafer is performed with immersion fluid such as purified water introduced between the projection lens of a stepper and the wafer. The light source of the leading-edge stepper currently used in production lines is the ArF 193 nm excimer laser, and its resolution is approximately 90 nm. 65 nm is said to be the limit even for a system for research and development. The idea behind immersion lithography is to use the same ArF light source and yet realize a semiconductor process technology that achieves a resolution higher than 65 nm.
Because immersion lithography utilizes immersion fluid such as purified water to increase the NA of an optical lithographic system, the exposed wafers are subjected to thermal treatment by post exposure baking (PEB) to evaporate the fluid on the photoresist so as to avoid watermarks. In addition, according to the result of experiments, the length of wires on the wafers is related to the length of the duration when the wafers are waiting for baking after exposure. In general, the longer the duration is, the narrower the length of wires on the wafers is. Therefore, if the duration when the wafers are waiting for baking after exposure is too long, the circuits on the wafers could be broken down.
It is therefore a primary objective of the present invention to provide a method and related operation system for immersion lithography to solve the prior art problems.
The method for immersion lithography comprises calculating a number of wafers beginning to undergo immersion lithography within a time interval, calculating a number of wafers finishing undergoing immersion lithography within a time interval; and adjusting a speed of inputting the wafers to undergo immersion lithography according to the calculated numbers.
In accordance with one preferred embodiment, the method for immersion lithography comprises adjusting a speed of inputting the wafers to undergo immersion lithography according to a status of wafers that have finished exposure and are waiting for baking.
In accordance with one preferred embodiment of the operation system for immersion lithography of semiconductor fabrication, the operation system comprises an exposure machine set for exposing wafers by processing immersion lithography to form a plurality of exposure patterns on the wafer, a baking machine set for baking the wafers after exposure, and a control device for adjusting a speed of inputting the wafers to undergo immersion lithography according to a number of wafers inputted into the exposure machine set within a time interval and a number of wafers baked by the baking machine set within a time interval.
In accordance with one preferred embodiment of the operation system for immersion lithography of semiconductor fabrication, the operation system comprises an exposure machine set for exposing wafers by processing immersion lithography to form a plurality of exposure patterns on the wafer, a baking machine set for baking the wafers after exposure, a waiting frame coupled between the exposure machine set and the baking machine set for placing the wafers waiting for baking after exposure, and a control device for adjusting a speed of inputting the wafers to undergo immersion lithography according to a status of wafers that have finished exposure and are waiting for baking.
These and other objectives of the present invention will no doubt become obvious to those of ordinary skill in the art after reading the following detailed description of the preferred embodiment that is illustrated in the various figures and drawings.
Please refer to
Please refer to
Please refer to
Please refer to
Please refer to
In contrast to the prior art, the present invention provides a method and related operation system for immersion lithography to adjust a speed of inputting the wafers to undergo immersion lithography according to a status of wafers that have finished exposure and are waiting for baking to prevent the yield of wafers that undergo immersion lithography from being influenced by a delay of post exposure baking (PEB). Therefore, the yield of wafers that undergo immersion lithography can be improved.
Those skilled in the art will readily observe that numerous modifications and alterations of the device and method may be made while retaining the teachings of the invention. Accordingly, the above disclosure should be construed as limited only by the metes and bounds of the appended claims.
Number | Name | Date | Kind |
---|---|---|---|
6099598 | Yokoyama et al. | Aug 2000 | A |
6746972 | Kim et al. | Jun 2004 | B1 |
7274429 | Paxton et al. | Sep 2007 | B2 |
20030083778 | Masotta | May 2003 | A1 |
20040229441 | Sugimoto | Nov 2004 | A1 |
20050046934 | Ho et al. | Mar 2005 | A1 |
20050266323 | Raulea | Dec 2005 | A1 |
20060246357 | Chen et al. | Nov 2006 | A1 |
20070122551 | Yamamoto et al. | May 2007 | A1 |
Number | Date | Country |
---|---|---|
P2005-197469 | Jul 2005 | JP |
Number | Date | Country | |
---|---|---|---|
20070215040 A1 | Sep 2007 | US |