The present invention relates to methods and solutions for cleaning. More specifically, the present invention relates to methods and solutions for cleaning metal residues.
During semiconductor wafer processing, the processing of metal containing layer may cause metal residue. It is desirable to remove such metal residue.
To achieve the foregoing and in accordance with the purpose of the present invention, a solution for processing devices is provided, comprising an activator comprising at least one of pyridine, pyrrole, pyrrolidine, pyrimidine, N,N-dimethylformamide, tetraethylamine chloride, 4 pyridinethiol, or other organic compounds with a single N with a lone pair electron activator and an etchant comprising at least one of thionyl chloride (SOCl2), Cl2, Br2, I2, SOF2, SOF4, SO2Cl2, SOBr2, or C2Cl4O2.
In another manifestation of the invention, a method for forming semiconductor devices on a substrate with at least one metal layer is provided. The at least one metal layer is exposed to a solution. The solution comprises an activator comprising at least one of pyridine, pyrole, pyrrolidine, pyrimidine, N,N-dimethylformamide, tetraethylamine chloride, 4 pyridinethiol, or other organic compounds with a single N lone pair electron activator and an etchant comprising at least one of thionyl chloride (SOCl2), Cl2, Br2, I2, SOF2, SOF4, SO2Cl2, SOBr2, or C2Cl4O2.
In another manifestation of the invention, a solution for processing semiconductor devices is provided, comprising a nonaqueous solvent and an acid precursor.
In another manifestation of the invention, a method for forming semiconductor devices on a substrate with at least one metal layer is provided. The at least one metal layer is exposed to a solution, comprising a nonaqueous solvent and an acid precursor.
These and other features of the present invention will be described in more detail below in the detailed description of the invention and in conjunction with the following figures.
The present invention is illustrated by way of example, and not by way of limitation, in the figures of the accompanying drawings and in which like reference numerals refer to similar elements and in which:
The present invention will now be described in detail with reference to a few preferred embodiments thereof as illustrated in the accompanying drawings. In the following description, numerous specific details are set forth in order to provide a thorough understanding of the present invention. It will be apparent, however, to one skilled in the art, that the present invention may be practiced without some or all of these specific details. In other instances, well known process steps and/or structures have not been described in detail in order to not unnecessarily obscure the present invention.
To facilitate understanding,
In an embodiment, a metal containing stack is formed (step 104).
The stack 200 is cleaned using a solution (step 108). In this embodiment, the solution is a nonaqueous solution of pyridine and SOCl2. The ratio of pyridine and SOCL2 is 1:1 at room temperature. The stacks 216 are exposed to the solution for 30 seconds.
In this embodiment, a subsequent wet process is provided (step 112). The wet process is used to rinse off the cleaning solution and to stop the reaction.
The combination of an activator and an etchant improves the etching ability of the solution. However, a diluent is also needed to provide selectivity. The ratio of the activator and etchant and the diluent may be used to tune selectivity and activity. It has found in embodiments that pyridine may act as both an activator and buffer.
In an example of this embodiment of the invention, the same metal stack is provided below a photoresist mask (step 304).
In some embodiments, the nonaqueous solution comprises an activator comprising at least one of pyridine, pyrole, pyrrolidine, pyrimidine, N,N-dimethylformamide (DMF), tetraethylamine chloride, 4 pyridinethiol, or other organic compounds with a single N lone pair activator and an etchant comprising at least one of thionyl chloride, Cl2, Br2, I2, SOF2, SOF4, SO2Cl2, SOBr2, or C2Cl4O2. Some embodiments of the invention further comprise a diluent. In an embodiment of the invention, the diluents comprise at least one of acetonitrile, dimethyl sulphoxide (DMSO), sulfolane, halogenated hydrocarbon solvents, or alcohols. In some embodiments, the solution is in liquid phase. In other embodiments, the solution is in vapor phase. In embodiments of the invention, the activator comprises at least one of pyrrole, pyrrolidine, pyrimidine, N,N-dimethylformamide, tetraethylamine chloride, or 4 pyridinethiol. In embodiments of the invention, the etchant comprises at least one of Cl2, Br2, I2, SOF2, SOF4, SO2Cl2, SOBr2, or C2Cl4O2. Embodiments of the invention expose the stacks to the solution in a moisture free environment.
In some embodiments, the concentration of activator to the concentration of the etchant is from 0.1:99.9 to 99.9:0.1. More preferably, the concentration of activator to the concentration of etchant is from 10:90 to 90:10. More preferably, the concentration of activator to the concentration of etchant is from 30:70 to 70:30. Most preferably, the concentration of the etchant to the concentration of the activator is 1:1. Preferably, the concentration of diluent to remaining solution is from 0:100 to 70:30. More preferably, the concentration of diluent to remaining solution is from 20:80 to 50:50.
The combination of the active etchant with an activator provides a solution with improved etching abilities over the separate components. The ratio of the components provides control over the etching abilities. The addition of a diluent provides selectivity. Control of the diluent concentration provides a control over selectivity.
In another embodiment of the invention the solution comprises a nonaqueous solvent and an acid precursor. Preferably the acid precursor comprises at least one of organic acids such as HCO2H, CH3COOH, oxalic acid, malonic acid or other acid precursors such as HNO3, HCl, H3PO4, SO2, SO3, Cl2 or NO/NO2. Preferably the nonaqueous solvent comprises at least one of ethylene glycol, acetonitrile, IPA, choline chloride, choline, urea, DMSO, DMF, or CCl4. For example, the solution in one embodiment is acetic acid dissolved in ethylene glycol. By providing a nonaqueous solution metal residue may be removed or metal layers may be etched, while corrosion and other damage is reduced or minimized. It has been found that an aqueous solvent causes corrosion of the metal layers. In addition, an aqueous solvent may attack magnesium oxide dielectric barrier layers.
While this invention has been described in terms of several preferred embodiments, there are alterations, permutations, modifications, and various substitute equivalents, which fall within the scope of this invention. It should also be noted that there are many alternative ways of implementing the methods and apparatuses of the present invention. It is therefore intended that the following appended claims be interpreted as including all such alterations, permutations, and various substitute equivalents as fall within the true spirit and scope of the present invention.