The invention relates to the measurement of chemical spillage, by using one or more IR-lasers, necessary optics and optical sensors. The measurement is performed by that the emitted light from the laser(s) is reflected by the chemical and registered by optical sensors. To be able to detect the chemical, the system is using at least three different wavelengths, which are emitted from one or more lasers. The wavelengths are chosen such that the reflection from the chemical is different for at least three of these, and that it can be distinguished from the background. A chemical which can be detected is oil, where especially oil spillage on water is possible to distinguish from water without oil spillage, preferably within the wavelength range 1-10 μm.
The technique can also be used to form a spatial image of the spillage and/or depth information of the spillage by mapping an image of reflected light in one or more axes, and/or by moving the laser within the same area.
In connection with moving water, the technique can be used to see specular reflections, and/or diffuse reflections from the surface of the water. One can thus use it in a warning system for chemical and/or oil spillage on water. The same method will also be suitable for detecting chemical and/or oil spillage onshore.
The invention relates accordingly a method according to the preamble of claim 1 and a system for carrying out the method according to the preamble of claim 14.
Presently, different methods are being used for detecting and measuring oil, among others radar measurements and waste gas measurements of the spillage. One of the applications for this is surveillance of unloading of oil where it is important to detect possible leakages at an early stage. Equipments being used for this today often have weaknesses in that they are not accurate enough for the relevant environments. Among others, a lot of oil unloading is performed on ships, and often in weather conditions which is a challenge. In practice present equipment result in many false alarms which results in that the operators often turn off the measuring equipment, and with the subsequent risk for large spillage.
US2009039255A describes an invention for the detection of oil spillage by the use of an optical method. US2009039255A take basis in that one under certain circumstances has thermal and atmospheric infrared radiation. The reflected background and the thermal emission from the oil spillage is thought to be a source for the infrared light and one shall watch the difference between water and water with oil by collecting this light. US2009039255A is thus based on that a certain amount of infrared light is available from the environments, and will in practice get problems when that is not the case.
From US2007210262A it is known an apparatus for measuring hydrocarbons, such as oil, fuel and similar. It is used a lamp-like light source which must be filtrated to remove undesired wavelengths of the light. US2007210262A has the disadvantage that it does not have the possibility to scan the wavelength, and one must thus take basis in a fixed wavelength band.
US2007102333A describes a method for optical detection of oil spillage on a surface by using two wavelengths from an optical “echo”. The method describes no light source, but that the optical “echo” should come from an optical radiation in the measure area. Thermal radiation can be such radiation, and “echo” can be from thermal radiation which is scattered by oil spillage on the water.
In US2004257264A it is described a system which measures oil spillage by the use of radar in the microwave band (over 30 cm wavelength, ref. International Electrotechnical Commission). US2004257264A also describes wavelength of the source as a microwave radiometer.
US2003072004A describes a method for measuring oil spillage by measuring the interference pattern of oil drops on a surface. The method is thus not suitable for measuring oil films, but only for cases where the oil is as singular drops. The method in US2003072004A will not be able to distinguish between different chemical objects, and round objects of other materials could also scatter the light in a similar way.
US20041300713A describes a method which uses atmospheric reflection to measure the content of a chemical in water. It is described a method based on absorption of the water, which therefore means that it is used optical radiation which pass a certain length through water before it is reflected back to the instrument.
In U.S. Pat. No. 5,296,711A it is described a method for measuring oil spillage on water by the use of ultraviolet laser light. The method is based on Raman measurements of back-scattered light for finding chemical information.
From U.S. Pat. No. 5,281,826A, U.S. Pat. No. 3,899,213A, U.S. Pat. No. 3,806,727A and GB2129125A1 it is known fluorescence based systems for measuring spill of fluids with fluorescence properties, something which makes them dependent of fluorescence from a chemical to provide measurements.
U.S. Pat. No. 4,517,458A describes a method for measuring hydrocarbon spillage where one is analyzing aerosols in the air over this by using a laser. The method is thus based on gas absorptions.
From U.S. Pat. No. 3,783,284A it is known a system for detection of petroleum products in an area with water. It is used a broadbanded optical source (lamp or heating element) with two fixed optical filters, something which results in that it only can be measured at two wavelengths, which results in a reduced amount of data and a poor signal/noise ratio.
The object of the invention is to provide a novel method and system for measuring and detecting chemicals, such as oil, from a given distance with infrared light. The method is suitable for detecting chemical spillage, such as oil spillage, offshore, onshore or on stationary installations. It is also an object of the invention to provide a solution which improves the disadvantages of prior art and which provides a more accurate result than prior art solutions.
A method according to the invention is described in claim 1. Preferable features of the method are described in claims 2-13.
A system according to the invention is described in claim 14. Preferable features of the system are described in claims 15-29.
The present invention discloses a system which directly measures chemical and/or oil by considering reflected infrared light on three or more wavelengths. The system utilizes either one or more tunable lasers or several single lasers, preferably in the infrared range 1-10 μm. The radiation from the laser is utilized to measure one or more chemicals, where the response is given by which wavelengths the actual chemical reflects or absorbs. This response will be different from chemical to chemical, such that the system compares the different measuring points with a reference library to recognize the actual chemical. One thus gets a system which only provides a positive detection of a chemical if this is physically present at the reflecting surface.
The system can compare reflections from the surface/chemical with prior collected data to consider changes in reflection. This increases the accuracy of the system by that it is capable of considering minor differences in the reflection from a surface.
In comparison, radar based warning system for chemical spillage, such as oil spillage, uses reflected radio waves from water. The reflection in radio waves changes as a result of that the waves in the water changes characteristics. Such a system considers macroscopic changes at the water surface, in contradiction with the present system which considers changes in reflection of the fluid (water, chemical or oil) itself on basis of absorption of the chemical bonds in the different fluids. A radar based system will not be able to see this as the wavelengths exceed what is needed for the excitation of chemical bonds.
To provide a laser based system for remote measurement and detection of chemicals, such as oil, one collects spectral information from several wavelengths by either tuning an infrared laser and/or by using several fixed or tunable infrared lasers. The object is to acquire the amount of data points being necessary for recognizing the chemical in question.
The laser is focused or collimated, and next emitted against the point(s) desired to search. The surface which is hit by the laser light will emit a specular reflected and diffused reflected light, where some of this is emitted towards a receiver. The receiver can be provided with one or more lenses and/or mirrors for increasing the signal amount which the receiver registers. The system can have different embodiments for registering this reflected light:
The different solutions can be implemented so that laser and/or receiver can be moved for focusing, emitting or collecting light within an area.
A method for the measurement/detection of chemical spillage, such as oil spillage, in a defined area in the vicinity of an object onshore, offshore or in the air, can be summarized in the following steps:
a) tuning of the wavelength of a tunable laser by means of electrical and/or thermal control, and/or utilizing one or more fixed or tunable lasers,
b) illumination of the defined area to be searched,
c) measuring and registering of specular reflected and diffused light signal from the surface of the defined area by means of a receiver,
d) collecting and storing measurements in a control device,
e) analyzing the measurements by means of a control device or an external unit,
f) detecting a chemical by means of one or more reference libraries or algorithms arranged in the control device.
The method may further include forming a spatial image of the chemical spillage and/or depth information on the chemical spillage by mapping an image of reflected light in one or two axes, and/or moving the tunable laser source within the same area.
Results from the method can further be used in a warning system for chemical and/or oil spillage in the defined area, offshore or onshore.
The method can be used by objects moving offshore, onshore or in the air.
The present invention is distinguished from US2009039255A in that a laser source is not being used in US2009039255A but one takes basis in that one under certain circumstances have thermal and atmospheric infrared radiation. The reflected background and the thermal emission of the oil spillage is thought to be a source for the infrared light and one can consider the differences of water and water with oil by collecting this light. US2009039255A is thus based on that a certain amount of infrared light is available from the environments, and will in practice get problems when this is not the case. The present invention does not need such a thermal background, and can thus work independent of the environment submit low or high thermal or atmospheric radiation. As the signal level of the reflection also is proven to be low, one will with the present system be able to increase the signal/noise ratio by increasing the power of the laser (intensity of laser light), and pulse filtration of this laser light. The present invention is thus more robust than US2009039255A.
The present invention is distinguished from US2007210262A in that it in US2007210262A is used a high-power lamp-like light source which must be filtrated for removing undesired wavelengths of the light. The present invention does not use such optical filters since a laser source only emits a given wavelength. In the present invention the laser(s) is/are tuned in wavelength to increase the amount of collected data. US2007210262A does not have the opportunity to tune the wavelength and must thus take basis in a fixed wavelength band. As the signal/noise ratio is low it is important to increase the amount of data points from the measurement. In the present invention this is achieved by tuning the laser(s) over several wavelengths and collecting data from each wavelength, something which makes the accuracy of the present invention higher than for the system described in US2007210262A.
The present invention differs from US2007102333A in that the method in US2007102333A does not describe a light source, but that the optical “echo” should come from optical radiation from the measured area. Thermal radiation can be such radiation, and “echo” can be thermal radiation which is scattered by oil spillage on the water. The present invention distinguishes in that the measured optical radiation does not come from the chemical, but is reflected laser light through specular reflection or diffuse reflection. In the present invention it is also used more than two wavelengths as one tunes the laser to increase the amount of data, which is not an object of the invention in US2007102333A.
The present invention is distinguished from US20041300713A in that the present invention utilizes a laser source for the light and does not use atmospheric radiation. The method in the present invention is based on considering differences between reflections from an oil film which lies on water, and not on a chemical dissolved in the water, especially by that the present invention utilizes optical radiation in the range 1 μm to 10 μm which only goes a few millimeters in water, and is thus not suitable for measuring water absorption.
The present invention is distinguished from U.S. Pat. No. 3,783,284A in that it in U.S. Pat. No. 3,783,284A is used a broadbanded optical source (lamp or heating element) with two optical filters, whereas the present invention utilizes a laser which can change wavelength. U.S. Pat. No. 3,783,284A measures therefore only two wavelengths, while the present invention utilizes three or more wavelengths to increase the amount of collected data and improve the signal/noise ratio.
It is thus obvious that the present invention exhibits improved accuracy/reliability over prior systems through increased amount of collected data and an improved signal/noise ratio.
Further preferable features and embodiments of the invention will appear from the following example description.
The invention will below be described in detail with reference to the attached drawings, wherein
Reference is now made to
1) increased reflection to >150% at wavelengths of 1.4-1.7 μm.
2) reduced reflection in the range 1.7-1.8 μm.
3) increased reflection to 110-130% in the range 1.9-2.2 μm.
Reference is now made to
Reference is now made to
Reference is now made to
Reference is now made to
Reference is now made to
Reference is now made to
The system can be modified by using several lasers, tunable or fixed, for the collection of reflection data.
The system can increase the signal/noise ratio by making several subsequent measurements which provides time-averaged reflection data. This increases the time it takes before the system reacts but with more accuracy.
The system can use a pulsed laser source to reduce the signal/noise ratio by that the signal from the optical detector is pulse filtrated electronically or with a lock-in-amplifier.
The system can be provided with a narrow banded optical filter in front of the detector for reducing infrared radiation from background, atmosphere and/or sun.
The system can be provided with an aperture for reducing scattered light from other sources which is hitting the detector.
The system can utilize tiltable lenses and other optics for direction control of the laser beam out of the system.
The system can utilize tiltable elliptic mirrors for the measurement of incoming light in different directions.
The system can utilize temperature control of detector and/or laser to increase the accuracy of the signals and measurements.
The system can be provided with a diffractive grating or prism for frequency filtration of the light coming back on the detector, with the purpose of reducing infrared radiation from background, atmosphere and/or sun.
The system can be provided with one or more optical stabilizers for counteracting movements of structural components the system is arranged on.
The system can be provided with heat in lenses, windows or other components which are exposed to ice formation during use.
The system can be connected to a wireless sender/receiver for wireless communication and transfer of data.
The system can utilize a data processing unit with information from direction dependent recording for forming an image over the area which is exposed for oil and/or chemical spillage.
The system can be provided with an anti-adhesion coating on lenses, mirrors and/or windows for reducing dirt and collection of dust and similar on these.
The system can be provided with a direction control and a control device for aligning the system towards points/areas for monitoring of these, and/or forming an image by recording data from different directions.
The system can be provided with enlarging or decreasing optics for image creation with different optical enlargement.
The system can be provided with a rotating surface, or spherical, parabolic or elliptical mirrors for scanning emitting and incoming light in one or more axes.
Number | Date | Country | Kind |
---|---|---|---|
NO20091090 | Mar 2009 | NO | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/NO2010/000094 | 3/12/2010 | WO | 00 | 11/21/2011 |