1. Field of the Invention
The present invention relates to a method and system of forming semiconductor wiring, a method and system of fabricating a semiconductor device, and a wafer. More particularly, the invention relates to wiring formation in which wiring is formed so as to be embedded in grooves defined in a wafer.
2. Description of the Related Art
In the field of VLSI, the wiring forming method called “damascene process” has been well known. In the damascene process, wiring grooves, contact holes, through holes (via holes) and others are formed in an interlayer insulating film and then, they are filled with copper thereby forming a wiring system embedded in the interlayer insulating film. With this technique, ICs having a flat surface free from steps in the wiring can be produced and highly reliable, low-resistance metal wiring systems can be achieved.
Generally, the damascene process utilizes wet plating techniques for filling the wiring grooves etc. of the interlayer insulating film with copper. Wet plating is advantageous in that wiring grooves having a high aspect ratio can be filled with copper.
Wet plating, however, requires a seed film which, per se, is formed by other film deposition methods than wet plating and therefore, as the aspect ratio of a wiring trench increases, it becomes difficult to uniformly form the seed film in the wiring trench. If the seed film is non-uniform, thin parts of the film are melted and vanished by a plating current so that voids tend to be created. That is, in wet plating, as the aspect ratio increases, voids are more likely to be created. In the damascene process, the surface of the wafer is smoothed by CMP (chemical and mechanical polishing), subsequent to filling the wire grooves etc. with copper. However, the copper film formed by wet plating is too soft to directly polish and, therefore, polishing is carried out after curing the film by heat treatment and alleviating the steps on the surface of the film by reflow. This disadvantageously involves an excessive number of man hours. In the damascene process, a barrier layer is formed for preventing diffusion of copper into the interlayer insulating film, and this barrier layer is preferably narrow in width in order to reduce wiring resistance in wiring grooves which have a high aspect ratio and therefore narrow width. Wet plating however requires certain width and has the possibility that environmental contamination may be caused by waste solution.
Japanese Patent Publication (KOKAI) No. 2000-64028 discloses a copper film deposition method for filling grooves having a high aspect ratio with a wiring material through a dry process, utilizing ion plating in which an evaporative substance constituted by copper is evaporated by a plasma beam. Since this Cu film deposition technique is a dry process, it is thought that environmental pollution nor void creation which is a phenomenon inherent to wet plating is not caused.
However, since the energy of the evaporated substance (i.e., copper) in the copper film deposition method is almost the same as that of spattering, a remarkable improvement in the hardness of the copper film to be deposited on the wafer cannot be expected and therefore it remains uncertain whether or not the copper film deposition method can obviate the need for the thermal curing process and the surface planarization process by reflow and reduce the thickness of the barrier layer. In addition, the copper film deposition method carries out ionization of the evaporated substance by use of the plasma beam which is commonly used for evaporating the evaporative substance, so that the ionization of the evaporated substance cannot be controlled independently of the evaporation of the evaporative substance and, as a result, the film deposition cannot be always performed under the optimum condition.
The invention is directed to overcoming the foregoing shortcomings and a primary object of the invention is therefore to provide a method and system of forming semiconductor wiring, a method and system of fabricating a semiconductor device, and a wafer, which enable omission of the thermal curing process and the surface planarization process; a reduction in the thickness of the barrier layer; and formation of wiring in grooves having a high aspect ratio under the optimum condition.
This object can be accomplished by a method and system of forming semiconductor wiring according to the invention,
In this case, a gas containing hydrogen or an OH group may be supplied to the vacuum chamber (claims 2 and 18). This enables it to give the migration effect to the semiconductor wiring film material energized by the plasma, so that the semiconductor wiring film to be formed on the wafer can be made to have good density and low resistance.
In this case, the hydrogen content of the atmosphere within the vacuum chamber may be 4 to 20% by volume (claim 19). This makes it possible to effectively obtain the migration effect.
A d.c. electric field may be created in the vacuum chamber by a d.c. power source, using the substrate holder as a negative electrode (claims 3 and 20). With this arrangement, the semiconductor material which has been energized by the plasma can be further accelerated by the d.c. power source, so that the rectilinear elongation property of the semiconductor material can be more improved and the grooves of the wafer can be filled with the semiconductor wiring film material in a better condition.
The forming condition of the semiconductor wiring film may be controlled based on the result of monitoring the depositing condition of the semiconductor wiring film being formed on the wafer (claims 4 and 21). This enables desirable control of the deposition curve of the semiconductor wiring film. As a result, the semiconductor wiring film can be formed so as to have the optimum deposition curve.
In this case, the forming condition of the semiconductor wiring film may be at least one of the deposition rate of the semiconductor wiring film, the level of the high frequency electric power and the magnitude of the d.c. electric field (claims 5 and 22). This makes it possible to properly deposit the semiconductor wiring film material on the wafer.
The potential of the substrate holder may be temporarily changed to a positive potential (claims 6 and 23). Where the semiconductor wiring film is to be formed on an insulating material, the ionized semiconductor wiring film material is likely to be deposited in conical form with its ions repelling each other. With the above arrangement, the direction of the electric field in the vicinity of the wafer is temporarily reversed and the semiconductor wiring film material which has been once deposited is separated from the surface of the wafer and then adheres to the wafer surface again. At that time, the ions of the semiconductor wiring film material align again such that the material is deposited in layers substantially parallel with the surface of the wafer. Consequently, a more dense semiconductor wiring film can be attained.
The potential of the substrate holder may be temporarily changed to a positive potential by superimposing a pulse on the d.c. electric field, the pulse reversing the direction of the d.c. electric field in a predetermined cycle over a specified period of time (claims 7 and 24).
The semiconductor wiring film material evaporated from the evaporation source may be supplied by semiconductor wiring film material feeding means which can continuously feed the semiconductor wiring film material for 24 hours or more (claims 8 and 25). This eliminates the major bottleneck of continuous film deposition, by enabling continuous feeding of the semiconductor wiring film material (evaporative material) for 24 hours or more and therefore enables continuous operation for 24 hours or more which is required for the deposition of the semiconductor wiring film material on the wafer.
The evaporation source and the semiconductor wiring film material feeding means may be comprised of at least one of or a combination of techniques which are (1) a technique utilizing electron beam heating and a rotary-revolutionary multi-point crucible in combination; (2) a technique utilizing electron beam heating and an automatic wire-like semiconductor wiring film material feeding mechanism in combination; (3) a technique utilizing electron beam heating and an automatic pellet-like semiconductor wiring film material feeding mechanism in combination; (4) a technique utilizing resistive heating and a rotary-revolutionary multi-point boat in combination; (5) a technique utilizing resistive heating and an automatic wire-like semiconductor wiring film material feeding mechanism in combination; (6) a technique utilizing resistive heating and an automatic pellet-like semiconductor wiring film material feeding mechanism in combination; (7) arcing with an automatic semiconductor wiring film material feeding mechanism; (8) ion beam irradiation; and (9) DC spattering (claims 9 and 26). This easily actualizes an evaporation source and semiconductor wiring film material feeding means which are capable of continuously feeding the semiconductor wiring film material for 24 hours or more.
The semiconductor wiring film material evaporated from the evaporation source may be quantitatively supplied (claims 10 and 27). This enables accurate control of the thickness of the semiconductor wiring film to be formed on the wafer.
In addition, the gas pressure of the substantially vacuum condition may be in the order of 10−3 Pa (claims 11 and 28). This enables grooves having a high aspect ratio to be properly filled with the semiconductor wiring film material.
A matching unit for matching the impedance of the power source side to the impedance of the load side and a capacitor having specified capacitance are inserted in a circuit for supplying the high frequency electric power such that they are connected in series with the other electrode for supplying the high frequency electric power and the substrate holder (claims 12 and 29). With this arrangement, a plasma can be stably generated by the high frequency electric power within the vacuum chamber.
The semiconductor wiring film to be formed on the surface of the wafer held by the substrate holder may be irradiated with an energy beam (claims 13 and 30). With this arrangement, the energy of the semiconductor wiring film to be formed on the surface of the wafer is enhanced, with its molecules being aligned without gaps so that the density of the semiconductor wiring film is further increased.
The other electrode for supplying the high frequency electric power may be the vacuum chamber comprised of a conductive element (claims 14 and 31). This allows a comparatively wide distribution of plasma within the vacuum chamber so that the coverage of the semiconductor wiring film material with respect to the surface of the wafer is improved.
Wiring grooves may be formed on the surface of the wafer and the semiconductor wiring film material may be copper (claims 15 and 32). This enables it to form a copper wiring film in the grooves formed in the wafer and having a higher aspect ratio than the prior art.
In addition, the semiconductor wiring forming method of the invention may comprise the steps of forming a seed film on a wafer by the semiconductor wiring forming method of claim 17 and forming a semiconductor wiring film on the wafer from the seed film by wet plating (claim 33). With this arrangement, when the seed film is formed, a cloud of plasma is generated so as to enclose the surface of the wafer, so that the coverage of the evaporative material with respect to the surface of the wafer is improved and therefore the seed film has good step coverage. In consequence, copper wiring to be formed by wet plating has good step coverage, leading to a reduction in the number of voids to be created in the copper wiring.
In this case, a barrier layer may be formed as an underlayer for the seed film and copper may be used as the material of the seed film and the semiconductor wiring film (claim 34). With this arrangement, the seed film and the barrier layer become dense and hard, so that the copper of the seed film is unlikely to disperse into the barrier layer and at the same time, the copper dispersion blocking function of the barrier layer is improved. By virtue of these effects in combination, the barrier layer can be thinned compared to the prior art. As a result, wiring resistance can be reduced to a degree corresponding to the reduction in the thickness of the barrier layer.
According to the invention, there are provided a method and system of fabricating a semiconductor device,
According to the invention, there is provided a wafer wherein grooves having a width of about 0.35 μm and depth of about 1 μm are formed on the surface of the wafer or on the surface of a layer formed on the wafer and substantially 100 percent of the grooves is filled with a wiring film material comprised of copper by a dry process (claim 36). This provides semiconductor device wiring having high density and relatively low resistance.
The above and further objects and features of the invention will be more fully apparent from the following detailed description with accompanying drawings.
Referring now to the accompanying drawings, preferred embodiments of the invention will be described below.
In
An evaporation source 4 is disposed within the vacuum chamber 2 so as to face the substrate holder 3, for evaporating the material (i.e., semiconductor wiring film material which is hereinafter referred to as “wiring material”) of a wiring film to be formed on the wafer 201. The evaporation source 4 is connected to an evaporation power source 15 for supplying evaporation energy. The evaporation source 4 is supplied with the wiring material from an evaporative material feeding system (i.e., wiring material feeding means) 16. Although the evaporation power source 15 and the evaporative material feeding system 16 may be installed inside or outside the vacuum chamber 2, this embodiment is designed with the evaporation power source 15 being disposed outside the vacuum chamber 2 whereas the evaporative material feeding system 16 is disposed inside the vacuum chamber 2.
In the vicinity of the substrate holder 3 within the vacuum chamber 2, a film thickness monitor 19 is disposed.
A vacuum pump 17 and a gas supply source 18 are connected to the vacuum chamber 2, thereby maintaining the inside of the vacuum chamber 2 at a specified degree of vacuum and introducing a specified gas from the gas supply source 18 to the vacuum chamber 2. The gas introduced from the gas supply source 18 is hydrogen (H2) gas or OH group gas. Herein, hydrogen gas is employed.
The motor 7, the high frequency power source 10, the bias power source 12, a waveform generator 13, the evaporation power source 15, the evaporative material feeding system 16, the vacuum pump 17 and the gas supply source 18 are controlled by a controller 20 consisting of a computer. The output of the film thickness monitor 19 is input to the controller 20.
Next, the configuration of the parts of the semiconductor wiring forming system 1 will be described in detail.
The wafer 201 is finally processed to form a semiconductor device. The wafer 201 of the present embodiment is made of silicon (Si) and an insulating layer 202 made of silicon dioxide (SiO2) is formed on its surface, as shown in
In the present embodiment, the high frequency power source 10 outputs a high frequency electric power of 13.56 MHz. A known matching unit is used as the matching unit 9. The matching unit 9 matches the impedance of the load side to the impedance of the power source side, following changes in the impedance between the substrate holder 3 and the vacuum chamber 2. The matching capacitor C blocks a direct current and gives specified fixed capacitance to the impedance of the load side when viewing from the matching unit 9 to expand the applicable range of the matching unit 9. By properly selecting the capacitance of the matching capacitor C, the matching operation of the matching unit 9 can be soundly carried out even if the load, that is, the wafer 201 serving as a substrate and its film depositing condition vary, and as a result, a plasma can be stably generated even at a high degree of vacuum. Herein, the capacitance of the matching capacitor C is the same as that of the capacitor disposed in the matching unit 9, that is, about 1000 pF.
The bias power source unit 11 has the waveform generator 13 and the bias power source 12. The waveform generator 13 generates a voltage signal having a specified waveform and this generated voltage signal is amplified by the bias power source 12 to be output from the output terminal of the bias power source unit 11. As shown in
The evaporation source 4 and the evaporative material feeding system 16 are comprised of an electron beam generator 43 and a rotary-revolutionary multi-point crucible 40, as shown in
The film thickness monitor 19 is for monitoring the thickness of a wiring material layer 205 (see
Next, there will be explained the operation of the semiconductor wiring forming system having the configuration described above (semiconductor wiring forming method).
In FIGS. 1 to 4, the wafer 201 is mounted on the substrate holder 3 within the vacuum chamber 2 and when the semiconductor wiring forming system 1 is activated, the semiconductor wiring forming system 1 automatically performs the following operation, being controlled by the controller 20.
First, the motor 7 is operated to rotate the substrate holder 3, while the vacuum pump 17 is operated to evacuate air from the vacuum chamber 2 so that the vacuum chamber 2 has a specified degree of vacuum. Subsequently, hydrogen gas is introduced into the vacuum chamber 2 from the gas supply source 18. The degree of vacuum herein is 10−3 Pa. The hydrogen content of the atmosphere within the vacuum chamber 2 is constantly maintained within the range of from 4 to 20% by volume, for the reason that where the hydrogen content is 4% or more, the effective migration effect (described later) can be achieved and hydrogen contents of more than 20% are undesirable in view of explosion-protection.
Then, the high frequency power source 10 is operated, applying a high frequency voltage between the vacuum chamber 2 and the substrate holder 3, so that a plasma 301 is generated within the vacuum chamber 2. Thereafter, the bias power source unit 11 is operated, applying a bias voltage such as shown in
Thereafter, the electron beam generator 43 and rotary-revolutionary multi-point crucible 40 which serve as the evaporation source 4 and the evaporative material feeding system 16 are operated such that the electron beam generator 43 projects the electron beam 44 to the wiring material stored in the rotating and revolving crucibles 42a to 42d so that the wiring material evaporates from the crucibles 42a to 42d.
As shown in
With a lapse of time, the thickness of the layer 205 of the wiring material deposited on the wafer 201 increases. Meanwhile, the wiring material is also deposited on the film thickness monitor 19, forming a film. The oscillation frequency of the film thickness monitor 19 decreases with the increased deposit amount of the wiring material, so that the controller 20 changes film deposition parameters according to this. More specifically, the controller 20 changes the rate of film deposition by controlling the evaporation power source 15 according to the decreasing oscillation frequency of the film thickness monitor 19 or changes the condition of film deposition by controlling the high frequency power source 10 and the bias power source unit 11. The optimum film deposition rate and film deposition condition, i.e., the optimum film deposition parameters have been obtained beforehand according to the configuration of the wafer 201, and their characteristic curves which vary relative to a time axis are preset. The reason for this is that the quality of the wiring material layer 205 to be formed on the wafer 201 and the fill factor of the wiring material introduced into the wiring grooves 203 can be optimized only by optimally controlling the film deposition parameters.
Although the impedance between the substrate holder 3 and the vacuum chamber 2 varies during this time period, the provision of the matching capacitor C enables the matching unit 9 to perform proper matching between the impedance of the load side and the impedance of the power source side, so that a plasma can be stably maintained without causing abnormal electric discharging. Further, in the wiring material layer 205 deposited on the wafer 201 during the time period T1, due to the presence of the insulating layer 202, the electric charge of the wiring material ionized is unlikely to be relieved, so that the ions of the wiring material tend to repel one another, causing deposition of the wiring material in conical form. However, during the time period T2, the direction of the electric field in the vicinity of the wafer 201 is reversed and the wiring material which has once deposited is separated from the surface of the wafer 201 (more precisely, the surface of the deposit layer of the electrically discharged wiring material) so that the wiring material again adheres to the surface of the wafer 201 and realigns at that time. Therefore, the wiring material is deposited on the surface of the wafer 201, forming sequentially aligned layers substantially parallel with the surface of the wafer 201. As the result, the wiring material layer 205 has more density.
Since the multi-point crucibles 40 having the four crucibles 42a to 42d is used as the evaporative material feeding system 16, the evaporative material can be stored in the vacuum chamber 2 four times as much as that of the case where a single crucible is used, and as a result, continuous film deposition for 24 hours or more is enabled. It should be noted that continuous operation for 24 hours or more is required in order to obviate the need for halting the semiconductor wiring forming system 1 in the nighttime.
Referring to
Referring to
It is understood from the above result that the semiconductor wiring forming method and system according to the present embodiment is suited for use particularly in the formation of copper wiring for semiconductor devices.
Next, modifications of the first embodiment will be explained below.
In the first modification, as shown in
The second modification is similar to the first modification except that an automatic pellet feeding system 70 is used as the evaporative material feeding system 16 in place of the automatic wire feeding system 58, as shown in
The third modification is similar to the first modification except that a resistance heating system 75 is used as the evaporation source 4 in place of the electron beam generator 43, as shown in
The fourth modification is similar to the third modification except that the automatic pellet feeding system 70 is used as the evaporative material feeding system 16 in place of the automatic wire feeding system 58, as shown in
As shown in
The arc evaporation source comprises a cylindrical anode 83 disposed in a recess portion 2b formed in a wall portion 2a of the vacuum chamber 2 and a column-shaped cathode 82 passing a through hole 86 that is defined in the wall portion 2a of the vacuum chamber 2, leading to the recess portion 2b. The anode 83 is closed at its distal end face 83b, with a number of through holes 83c formed in a peripheral surface 83a at the distal end and is made from a heat-resistant conductive material such as tungsten. The cathode 82 is made from the wiring material and its distal end is positioned within the anode 83. The cathode 82 and the anode 83 have a common central axis 89. The cathode 82 is retained and allowed to move back and forth by the cathode conveying mechanism 401 (partially shown in
A driving motor (not shown) for the cathode conveying mechanism 401 is connected to the controller 20 shown in
According to the present modification thus arranged, arc discharge is caused between the anode 83 and the cathode 82 by an arc voltage applied by the d.c. arc power source 15, so that the wiring material constituting the cathode 82 evaporates, flowing outwardly from the through hole 83c of the anode 83. And, the cathode 82 is moved forward by the cathode conveying mechanism 401 according to the consumption of the cathode 82 due to the evaporation. Accordingly, continuous feeding of the evaporative material for 24 hours or more is enabled, by making the cathode 82 sufficiently long.
Instead of the rotating and revolving multi-point crucible 40, a resistance heating system including a plurality of similarly rotating and revolving boats may be used as the evaporation source 4 and the evaporative material feeding system 16. It is also possible to employ the known DC sputtering technique. Continuous feeding of the evaporative material for 24 hours or more is possible with these arrangements.
In the sixth modification, as shown in
In the seventh modification, an evaporative material quantitative feeding system 79 is provided for the automatic pellet feeding system 70 described in the second modification in place of the hopper, as shown in
As shown in
In the clean chamber 91, a rail 90 is disposed so as to extend in the direction X and a clean robot 97 moves on this rail 90. A transfer chamber 99 is disposed within the vacuum chamber 92, and a load lock chamber 98, a barrier chamber 102, a copper film deposition chamber 101 and an unload chamber 103 are respectively connected to the transfer chamber 99 through their respective gates 104. The inside of each of the chambers 98, 99, 101, 102 and 103 is maintained at a specified degree of vacuum. The load lock chamber 98 and the unload chamber 103 are respectively connected to the clean chamber 91 through their respective gates 104. The load lock chamber 98 is positioned upstream the unload chamber 103 when viewing in the direction X. The copper film deposition chamber 101 is comprised of the semiconductor wiring forming system 1 of the first embodiment and a vacuum robot 100 is disposed within the transfer chamber 99.
The operation of the semiconductor device fabricating system of the above-described configuration (semiconductor device fabrication method) will be explained with reference to
Referring to
Subsequently, the gate 104 is closed and the load lock chamber 98 is evacuated until it has a specified degree of vacuum. Then, the gate 104 between the load lock chamber 98 and the transfer chamber 99 is opened and closed, and during the opening of the gate 104, the vacuum robot 100 takes the unprocessed wafer 201 out of the load lock chamber 98. Thereafter, the gate 104 between the transfer chamber 99 and the barrier chamber 102 is opened and closed, and during the opening of the gate 104, the vacuum robot 100 puts the unprocessed wafer 201 in the barrier chamber 102.
Then, a barrier layer 204 is formed on the insulating layer 202 of the wafer 201 within the barrier chamber 102. The barrier layer 204 is formed from TaN, TiN or the like with ion plating, sputtering or similar techniques.
The gates 104 between the transfer chamber 99 and the barrier chamber 102 and between the transfer chamber 99 and the copper film deposition chamber 101 are sequentially opened and closed similarly to the above-described gates, and during the opening of the gates 104, the wafer 201 having the barrier layer 204 formed thereon is taken out of the barrier chamber 102 and then put in the copper film deposition chamber 101 by the vacuum robot 100.
Like the first embodiment, a wiring material layer 205 of copper is formed on the barrier layer 204 within the copper film deposition chamber 101, as shown in
Thereafter, the gates 104 between the transfer chamber 99 and the copper film deposition chamber 101 and between the transfer chamber 99 and the unload chamber 103 are sequentially opened and closed, and during the opening of the gates 104, the vacuum robot 100 takes the wafer 201 having the wiring material layer 205 formed thereon out of the copper film deposition chamber 101 and then puts it in the unload chamber 103.
After the unload chamber 103 has been brought back to atmospheric pressure, the gate 104 between the unload chamber 103 and the clean chamber 91 is opened and closed, and during the opening of the gate 104, the clean robot 97 takes the wafer 201 having the wiring material layer 205 formed thereon out of the unload chamber 103 and then puts it in the cassette 93 which has been waiting in the second yard 95. Thereafter, the cassette 93 proceeds to the next step. The surface of the wafer 201 having the wiring material layer 205 formed thereon is polished by CMP, and as shown in
As described earlier, according to the present embodiment, a semiconductor device including copper wiring embedded in wiring grooves having a high aspect ratio can be properly fabricated.
Next, a modification of the second embodiment will be described.
Referring to
While the etching chamber 105 is provided for the present modification, this may be eliminated and the removal of the wiring material 205 adhering to the inlets of the wiring grooves 203 may be carried out by reverse sputtering in the presence of argon gas within the copper film deposition chamber 101. With this arrangement, formation of the wiring material layer 205 and removal of specified part of it can be carried out within the same chamber 101, so that the configuration of the semiconductor device fabricating system can be simplified.
In the third embodiment, a barrier layer and a seed film made of copper are laminated on a wafer, using the semiconductor wiring forming system of the first embodiment, and then, copper wiring is formed on the seed film by the ordinary wet plating.
Referring to
In the present embodiment, since the barrier layer and seed film 206 formed by the semiconductor wiring forming system 1 of the first embodiment are dense and hard for the reason explained in the first embodiment, the copper of the seed film 206 is unlikely to disperse in the barrier layer and the copper dispersion blocking performance of the barrier layer is improved. By virtue of these effects in combination, the thickness of the barrier layer can be reduced, compared to the prior art. Actually, the thickness of an ordinary barrier layer is 300 to 500 angstrom, whereas a thickness of 150 to 200 angstrom was found to be enough for the barrier layer of the present embodiment when TaN was used as the material of the barrier layer. The thickness of the barrier layer and the seed layer 206 in total was found to be 1500 to 2000 angstrom. In the third embodiment, wiring resistance can be reduced to a degree corresponding to the reduction in the thickness of the barrier layer.
As shown in
As the energy beam projecting means, a laser for projecting a laser beam as an energy beam may be used in place of the ion gun. As such a laser, there may be used excimer lasers, YAG harmonic lasers, short-wavelength lasers or the like.
Although the bias power source unit 11 is used for superimposing a bias voltage on a high frequency voltage in the foregoing first and fourth embodiments, it may be omitted. Even if the bias power source unit 11 is excluded, the rectilinear elongation property of the wiring material in the form of energized atoms is increased and the density of the wiring material layer to be formed on the wafer is improved owing to the acceleration effect of the self bias electric field generated by the high frequency voltage.
The film thickness monitor 19 of the first embodiment may be designed to detect the resistance or dielectric constant of the wiring material layer to be formed on the wafer 201.
The first embodiment may be modified such that a gas containing an OH group may be supplied to the vacuum chamber 2 instead of hydrogen gas.
As these embodiments may be embodied in several forms without departing from the spirit of essential characteristics thereof, the present embodiments are therefore illustrative and not restrictive, since the scope of the invention is defined by the appended claims rather than by the description preceding them, and all changes that fall within metes and bounds of the claims, or equivalence of such metes and bounds thereof are therefore intended to be embraced by the claims.
Number | Date | Country | Kind |
---|---|---|---|
2001-383534 | Dec 2001 | JP | national |
Number | Date | Country | |
---|---|---|---|
Parent | 10320333 | Dec 2002 | US |
Child | 11100285 | Apr 2005 | US |