Method for copper damascence fill for forming an interconnect

Abstract
Methods of fabricating an interconnect, which fundamentally comprises etching back on an overhang section formed over a portion of an opening formed in a dielectric layer, said etching back is selected from one of an electropolishing process and chemical etching process, and said etching back removes the overhang section at a controlled etch rate of about 10 Å/sec to 70 Å/sec; and depositing a conductive material into the opening so as to fill the opening and form an interconnect.
Description

BRIEF DESCRIPTION OF THE DRAWINGS

While the specification concludes with claims particularly pointing out and distinctly claiming that which is regarded as the present invention, the advantages of this invention can be more readily ascertained from the following description of the invention when read in conjunction with the accompanying drawings in which:



FIG. 1 illustrates a side cross-sectional view of a high aspect ratio opening having a build-up of conductive material at the mouth of an opening in a dielectric material during deposition of the conductive material, as known in the art;



FIG. 2 is a micrograph showing the build-up of conductive material as illustrated in FIG. 1, as known in the art;



FIG. 3 illustrates a side cross-sectional view of a void within an interconnect, as known in the art;



FIG. 4 illustrates a side cross-sectional view of an opening formed in a dielectric material, according to the present invention;



FIG. 5 illustrates a side cross-sectional view of an ultra-thin barrier material lining the opening of FIG. 1, according to the present invention;



FIG. 6 illustrates a side cross-sectional view of a seed layer abutting the barrier material of FIG. 5, according to a conventional method with an overhang;



FIG. 7 illustrates a side cross-sectional view of a seed layer abutting the barrier material of FIG. 6, according to an embodiment of the present invention with the overhang etched back;



FIG. 8 illustrates a side cross-sectional view of the opening of FIG. 7 filled with a conductive material by an electroplating process;



FIG. 9 illustrates a side cross-sectional view of an interconnect formed after removing excess conductive material and the barrier layer (FIG. 8) which does not reside within the filled opening, according to the present invention; and



FIG. 10 illustrates an exemplary method of forming an interconnect according to the present invention.





DETAILED DESCRIPTION OF THE ILLUSTRATED EMBODIMENT

In the following detailed description, reference is made to the accompanying drawings that show, by way of illustration, specific embodiments in which the invention may be practiced. These embodiments are described in sufficient detail to enable those skilled in the art to practice the invention. It is to be understood that the various embodiments of the invention, although different, are not necessarily mutually exclusive. For example, a particular feature, structure, or characteristic described herein, in connection with one embodiment, may be implemented within other embodiments without departing from the spirit and scope of the invention. In addition, it is to be understood that the location or arrangement of individual elements within each disclosed embodiment may be modified without departing from the spirit and scope of the invention. The following detailed description is, therefore, not to be taken in a limiting sense, and the scope of the present invention is defined only by the appended claims, appropriately interpreted, along with the full range of equivalents to which the claims are entitled. In the drawings, like numerals refer to the same or similar functionality throughout the several views.


Embodiments of the present invention relate to the fabrication of interconnect structures in microelectronic devices. The interconnect structures are fabricated by forming at least one opening (e.g., a trench or via) in a dielectric material and filling the opening(s) utilizing a deposition technique such as electroplating or electroless plating.


In one embodiment of the present invention as shown in FIG. 4, an opening 102 is formed in a dielectric material layer 104, extending into the dielectric material layer 104 from a first surface 106 thereof. The dielectric material layer 104 may include, but is not limited to, silicon oxide, silicon nitride, carbon doped oxide, fluorinated silicon oxide, boron/phosphorous doped oxide, and the like. In one embodiment, the dielectric material layer 104 is a low-k dielectric layer. The dielectric material layer 104 is typically formed on a substrate (not shown) that may comprise various features, components, micro devices, or layers formed therein or thereon as is known in the art. The opening 102 may be formed by any technique known in the art, including but not limited to, lithography, ion milling, laser ablation, and the like. As shown in the FIG. 5, a barrier material layer 108 is deposited in the opening 102 to substantially and conformally abut (on top of) the dielectric material layer 104. Such, barrier material layers 108 are used when a material which will be subsequently deposited in the opening 102 is susceptible to diffusion into the dielectric material layer 104, such as copper and copper alloys. Such diffusion can adversely affect the quality of microelectronic device through increased leakage current and/or decreased reliability between interconnects.


Referring to FIG. 4, the dielectric layer 104 is typically an interlayer dielectric, which may be any one of a plurality of known dielectric layers. Conductors are typically formed in the layer 104 which provide conductive paths with vias extending to conductors lying below the layer 104 and vias lying above the layer 104. For purposes of the description below, only the formation of a conductor is described within the layer 104 using a damascene process. It will be apparent that contacts to underlying structures are formed simultaneously with the formation of the conductors, as is well-known in the art. The processing described below is used to simultaneously form not only the conductors in the layer 104, but also the vias which contact structures below the layer 104.


The layer 104 may be formed from any one of a plurality of known dielectric materials. In one embodiment of the present invention, the layer 104 is formed from a low-k dielectric such as a polymer based dielectric. In another embodiment, an inorganic material such as a carbon-doped oxide is used.


One category of low k materials, the organic polymers, are typically spun-on. A discussion of perfluorocyclobutane (PFCB) organic polymers is found in “Integration of Perfluorocyclobutane (PFCB)”, by C. B. Case, C. J. Case, A. Komblit, M. E. Mills, D. Castillo, R. Liu, Conference Proceedings, ULSI XII.COPYRGT. 1997, Materials Research Society, beginning at page 449. These polymers are available from companies such as Dupont, Allied Signal, Dow Chemical, Dow Corning, and others.


Another category of low-k materials that may be used in the present invention are silica-based such as the nanoporous silica aerogel and xerogel. These dielectrics are discussed in “Nanoporous Silica for Dielectric Constant Less than 2”, by Ramos, Roderick, Maskara and Smith, Conference Proceedings ULSI XII.COPYRGT. 1997, Materials Research Society, beginning at page 455 and “Porous Xerogel Films as Ultra-Low Permittivity Dielectrics for ULSI Interconnect Applications”, by Jin, List, Lee, Lee, Luttmer and Havermann, Conference Proceedings ULSI XII.COPYRGT. 1997, Materials Research Society, beginning at page 463.


The barrier layer 108 is thin and in one embodiment, generally less than 150 Å thick. In other embodiments, barrier layer 108 is less than 20 Å, less than 15 Å, and even less than 10 Å along the sidewalls of the opening 102 and optionally, along a surface 106 of that dielectric material layer 104. Physical vapor deposition (PVD), chemical vapor deposition (CVD) or other deposition method can be used to form the barrier layer 108.


A typical material can also be used for the barrier material layer 108, particularly for copper interconnects, may also include tantalum (Ta), tantalum nitride (TaN), bi-layers of TaN and Ta, tantalum silicon nitride (TaSiN), tantalum carbonate nitride (TaCN), tantalum carbonate (TaC), titanium (Ti), tintanium nitride (TiN), titanium silicon nitride (TiSiN), tungsten (W), tungsten nitride (WN), tungsten carbonate nitride (WCN), etc., and nitrides, oxides, and alloys thereof. A portion of the barrier material layer 108 may also extend over and abut the dielectric material first surface 106. In many embodiments, an ultra-thin seed layer may be formed on top of the barrier layer 108.


A conductive seed material or layer 112 is deposited on the barrier layer 106. FIG. 6 shows an overhang portion 113 being formed as the seed material 112 is formed using current technologies, e.g., PVD, CVD, or ALD. As mentioned, the overhang 113 formation is typical in forming the seed layer 112 to line an opening. For example, current technology deposit a copper seed layer with such overhang portion due to the non-conformality characteristic of the copper seed layer as it is being deposited. As can be seen, depositing copper (or other conductive material) to fill the opening 102 tends to lead to void formation. In one embodiment of the present invention, at least a portion of the seed material 112 (after deposited) is etched back or removed at a controlled rate, preferably at a slow etch rate, prior to filling the opening 102.


In FIG. 7, the etch back process removes the overhang 113 resulting in the structure shown. After the etch back process, the seed layer 112 which lines the opening 102 (and over the barrier layer 108) yields the opening 102 with an entrance or mouth 115 or 117 leading into the opening 102. After the etch back process, the entrance 115 or 117 is generally wider or at least as wide as the opening 102. In one embodiment, the entrance 115 or 117 has as width W101 or W103 whereas the opening 102 has a width W201. In the present embodiment, the width W101 and/or W103 of the entrance 115 is generally wider or larger than the width W201 of the opening 102. In other embodiment, the width W101 and//or W103 is at least the same as the width W201 and not smaller than the width W201. Such entrance facilitates uniform deposition or filling of the opening 102 with minimal or no incidence of void formation in the fill material. On the other hand, as can be seen from FIG. 6, the opening entrance into the opening generally has a smaller width than the opening due to the overhang 113 formation.


In one embodiment, the seed layer 112 has a thickness of less than 60 Å, optimally, less than 45 Å, and even less than 20 Å along the sidewalls of the opening 102 (that is lined with the barrier layer 108) and optionally, along all surfaces of the barrier layer 108 that reside within the opening 102. The seed material 112 may be deposited in a chemical vapor deposition (CVD) process, an atomic layer deposition (ALD) process or a physical vapor deposition (PVD) process, such as magnetron sputtering, but is not so limited. In one embodiment, the seed material 112 provides a nucleation site for a subsequent electroless plating process. The seed material 112 may include, but is not limited to, copper (Cu), palladium (Pd), cobalt (Co), nickel (Ni), ruthenium (Ru), platinum (Pt), alloys thereof, and the like. In one embodiment, the solution used to deposit the seed material 112 may comprise palladium chloride or silver chloride (less than about 5 gm/liter), ethylenediamine tetraacetic acid (less than about 3 gm/liter), hydrochloric acid (of a suitable concentration), glacial acetic acid (less than about 100 ml/liter), and the balance de-ionized water.


In one embodiment, the seed layer 112 is etched back to remove at least the overhang 113 using electropolishing. Etch back thus removes some portion, section, or thickness of the seed layer 112 after it is formed. The etch rate is controlled so as to etch the seed layer 112, at least at the overhang section 115 at a rate ranging from 20Å/second to 70 Å/second, in one embodiment. An optimal etch back rate may be about 20 Å/second. Electropolishing is performed by placing the structure with the seed layer 112 in an electrolyte solution that etches at a non-aggressive rate and that etches the seed layer 112 without damaging other layers or features such as the dielectric layer. A conventional electroplating apparatus can be used for the electropolishing (except with using reversed current polarity and a different electrolyte designed to remove the material as opposed to plating to form the material). A current density is applied to the electrolyte solution to begin etching the seed layer 112. Current density ranging from 5-5.5 mA/cm2 can be used to apply to the electrolyte solution. In one embodiment, the electrolyte is mixed or made to be relatively viscous, e.g., with a viscosity ranging from 100-300 cP. The viscous electrolyte enables a slow rate etching, controlled etching, and removal of only a thin section or layer sufficiently to remove the overhang 115, or sufficiently to provide a wide entrance 115 into the opening 102. The etch back can occur at a temperature ranging from 15-30° C. In one embodiment, the barrier material layer 108 is made of a conductive material that is sufficiently conductive for the chosen electrolyte solution.


The removed thickness of the overhanging 115 depends on various factors such as the seed layer 112 original thickness, the applied current density, the electrolyte viscosity, and polishing time. Any of these parameters can be controlled to obtain the desired etched back thickness to remove the overhang as shown in FIG. 7. In one embodiment, the electrolyte solution comprises phosphoric acid (about 50%), glycerin (about 39.5%), and water (about 10.5%). The exemplary electrolyte solution has a viscosity of about 220 cP. Any of the components can, of course, be varied to obtain a desired etched thickness depending on the seed material layer's original thickness and the material itself.


In one embodiment, the seed layer 112 comprises copper. The electrolyte and the electropolishing process parameters are chosen to be suitable for a slow and controlled etching of copper, e.g., to etch the copper at a rate of about 10-70 Å/sec. The etch back rate for the seed layer 112 and the etching duration are chosen to remove the overhang 113 so that the entrance into the opening is at least as wide or preferably wider than the remaining of opening itself (e.g., as shown in FIG. 7). The entrance into the opening is preferably as wide as possible so that depositing or forming of copper into the opening is optimal and uniform.


In one embodiment, the etch back process is performed by a conventional chemical etching process. A suitable etching solution can be a nitric acid containing solution, an ammonium therasulfate (or persulfate) containing solution,or any combination thereof. The chemical etching solution can also include a mineral acid (e.g., phosphoric or sulfuric acid), an organic acid (citric or acetic acid), an oxidizer (e.g., hydrogen peroxide) and surfactant (PEG or PPE). The concentration and component concentration of the etching solution can be controlled to provide a desired or suitable etch rate, e.g., of about 10-70 Å/sec. As before, the etch back rate for the seed layer 112 and the etching duration are chosen to remove the overhang 113 so that the entrance into the opening is at least as wide or preferably wider than the remaining of the opening itself (e.g., as shown in FIG. 7). The entrance into the opening is preferably as wide as possible so that depositing or forming of copper into the opening is optimal and uniform.


In one embodiment, the conductive material for the seed layer 112 is copper or copper alloy. The seed layer is deposited to carry the electrical current for the electroplating of the copper. The seed layer can also be formed from nickel, gold, or other materials.


A conductive material layer 114 is next deposited within the opening 102 (see FIG. 8). In one embodiment, a conventional electroplating process is used to fill the opening 102 with the conductive material, e.g., copper. Electroless deposition process can also be used and may include any autocatalytic (e.g., no external power supply is applied) deposition of the conductive material layer 114 through the interaction of a metal salt and a chemical reducing agent. As is known in the art, preparing or treating a surface, may be necessary in order to produce an activated surface so that the surface that is receptive to the electroless deposition process. The electroplating or electroless plating process can be performed using the same tool used for the etch back process. The electrolyte would be different from that used in the etch back process and would be used to plate the material as opposed to etch the material.


In one embodiment, the electroless plating bath or deposition solution may comprise cobalt and alloys thereof (such as cobalt alloyed with tungsten, boron, phosphorus, molybdenum, and/or the like), nickel and alloys thereof (such as nickel alloyed with tungsten, boron, phosphorus, molybdenum, and/or the like), copper, palladium, silver, gold, platinum metals and their selective alloys to fill narrow and high aspect ratio trenches and via holes. It is, of course, understood that the electroless deposition solution may also include additives (such as suppressors, polyethylene glycol, and anti-suppressors, di-sulfide) and complexing agents (such as thiosulfate and peroxodisulfate). Although a few examples of materials that may comprise the electroless deposition solution are described here, the solution may comprise other materials that serve to deposit the conductive material electrolessly. The technique of electrolessly depositing a metal or metal alloy is known to those skilled in the art, and may be performed either by immersing the substrate in an electroless deposition solution, by semi-immersion, or by spraying the electroless deposition solution onto the substrate or target (e.g., the dielectric material layer 104). It is well known to those skilled in the art that the seed material 112 may be subsumed during the electroless deposition process, such that the seed material 112 may become continuous with or blend into the conductive material layer 114.


In FIG. 9, the resulting structure 116 of FIG. 8 is planarized, usually by a technique called chemical mechanical polish (CMP) or by an etching process, which removes the conductive material layer 114, which is not within the opening 102, from the dielectric material first surface 106 to form an interconnect 120. In one embodiment, the opening 102 has an aspect ratio of greater than about 5, filled with copper and lined with the seed layer 102 and the thin barrier layer 108. The seed layer 112 may have been subsumed into the conductive material 114. The barrier layer 108 is removed using a conventional process such as CMP, or dry etching with Freon or SF6 based plasma to remove the barrier layer 108 for the field area or the surface 106.



FIG. 10 illustrates an exemplary method 1000 of forming an interconnect (such as the interconnect 120 above or a copper interconnect) in according to embodiments of the present invention. The method 1000 can be readily and easily incorporated into many fabrication processes used to make microelectronic devices. At 1002, a substrate is provided and the substrate has a dielectric layer formed thereon. The dielectric layer can be as previously described and can be a low-k dielectric layer. An opening is also formed in the dielectric using a suitable method, e.g., damascene. At 1004, a barrier layer is formed to line the opening using a conventional method such as CVD or PVD. In some embodiment, the barrier layer also cover a top surface of the dielectric layer or the field area of the device. At 1006, a conductive seed layer (e.g., a copper seed layer) is formed over the barrier layer to line the opening, and optionally, the top surface of the dielectric layer or the field area. The seed layer is formed using a conventional method such as CVD, PVD, or ALD. At 1008, etch back is performed to remove at least a portion of the seed layer to remove overhang(s) at the entrance of the opening. The etch rate is preferred to be at 10-70 Å/sec. The etch back is performed, in one embodiment, so as to remove the overhang, build up, or to make the entrance into the opening as wide as the opening, or more preferably, wider than the width of the opening. This minimize void formation in the interconnect and facilitate uniform deposition or plating of the conductive material to form the interconnect.


Two exemplary methods can be used for the etch back of the seed layer. At 1010, electropolishing is used. In electropolishing, an exemplary electrolyte comprises phosphoric acid-glycerin solution mixture (in water). The viscosity of the electrolyte is preferred to be 90-300 cP. The etch back operating temperature can be between about 10-30° C. A current density of about 5-60 mA/cm2 can be used for the electropolishing. At 1012, chemical etching is used. In one embodiment, the chemical etching solution comprises a nitric acid or ammonium persulfate solution.


At 1014, a conductive material (e.g., copper) is deposited or plated into the opening. The conductive material can be deposited using electroplating or electroless plating as is known in the art. At 1016, the conductive material is planarized, e.g., using CMP, to form the interconnect. The conductive material and the barrier layer not formed in the opening (or formed in the field area) are removed. The barrier layer can be removed using a dry etching process with Freon, CMP or other suitable etch methods.


Although the description of the present invention is primarily focused on forming an interconnect with metals and their alloys, the teachings and principles of the present invention are not so limited and can be applied to any material (including plastics), any metal compounds or alloys, to any barrier materials, to nanotech devices, and the like, as will be understood to those skilled in the art. It is also understood that the present invention may be used at any metallization/interconnect layer in the fabrication of a microelectronic device from the transistor level through the packaging process. Embodiments of the present invention enable uniformly filling the small features such as high aspect ratio trenches or vias with dimension less than 50 nm or even less than 32 nm.


Having thus described in detail embodiments of the present invention, it is understood that the invention defined by the appended claims is not to be limited by particular details set forth in the above description, as many apparent variations thereof are possible without departing from the spirit or scope thereof.

Claims
  • 1. A method of forming a damascene interconnect layer comprising: etching back on an overhang section formed over a portion of an opening formed in a dielectric layer, said etching back is selected from one of an electropolishing process and chemical etching process, and said etching back removes the overhang section at a controlled etch rate of about 10 Å/sec to 70 Å/sec; anddepositing a conductive material into the opening so as to fill the opening and form an interconnect.
  • 2. The method of claim 1 further comprising: etching back the overhang section until an entrance into the opening has a width that larger than or at least as wide as a width of the opening.
  • 3. The method of claim 1 wherein the overhang section is formed by one or both of a deposition of a conductive seed layer.
  • 4. The method of claim 1 wherein the seed layer comprises copper.
  • 5. The method of claim 1 wherein the conductive material fills the opening with no void.
  • 6. The method of claim 1 further comprising: forming a copper seed layer to cover the opening and at least a portion of the dielectric layer using one of chemical vapor deposition, physical vapor deposition, and atomic layer deposition, the copper seed layer lines the opening surface and causing the overhang at the opening entrance; andelectroplating copper to fill the opening in forming the interconnect.
  • 7. The method of claim 6 further comprising: forming a barrier layer below the copper seed layer and prior to forming the copper seed layer.
  • 8. The method of claim 1 further comprising: planarizing the interconnect.
  • 9. The method of claim 1, wherein etching back is performed by and electropolishing process and wherein a phosphoric acid glycerin mixture with a viscosity less than 300 cp is used for the electropolishing process.
  • 10. The method of claim 1, wherein etching back is performed by an electropolishing process with an electrolyte solution having a predetermined viscosity to work in conjunction with a predetermined current density to control the etch rate.
  • 11. The method of claim 10, wherein the predetermined viscosity ranges from 70-300 cP and the predetermined current ranges from 5-60 mA/cm .
  • 12. A method comprising: providing a substrate having formed thereon a dielectric layer, an opening is provided in the dielectric layer;forming a conductive seed layer to line the opening;etching at least a portion of the conductive seed layer at a controlled etch rate of about 10 Å/sec to about 70 Å/sec; anddepositing a conductive material into the opening, wherein the conductive seed layer acts as a nucleation surface for the conductive material, wherein the conductive material is deposited to formed an interconnect feature and;planarizing the interconnect feature.
  • 13. The method of claim 12 wherein the dielectric layer is a low-k dielectric.
  • 14. The method of claim 12 wherein the opening is a small feature with a dimension less than 50 nm.
  • 15. The method of claim 12 further comprising; forming a barrier layer below the seed layer and prior to forming the seed layer.
  • 16. The method of claim 12 wherein the conductive seed layer is formed with an overhang at the entrance of the opening and wherein the etching process removes the overhang.
  • 17. The method of claim 16 wherein after the overhang is etched, the entrance of the opening has a width that is larger or at least as wide as the width of the opening.
  • 18. The method of claim 12 wherein the conductive material comprises copper.
  • 19. The method of claim 12 wherein etching is performed by electropolishing or chemical etching.
  • 20. The method of claim 12 wherein the interconnect feature has no void.
  • 21. The method of claim 12 wherein etching is performed by an electropolishing process and wherein a phosphoric acid glycerin mixture with a viscosity less than 300 cP is used for the electropolishing process.
  • 22. The method of claim 12 wherein etching is performed by an electropolishing process with an electrolyte solution having a predetermined viscosity to work in conjunction with a predetermined current to control the etch rate, and wherein the predetermined viscosity ranges from 70-300 cP and the predetermined current ranges from 5-60 mA/cm .
  • 23-25. (canceled)