Method for depositing polysilicon over TiO.sub.2

Information

  • Patent Grant
  • 4521446
  • Patent Number
    4,521,446
  • Date Filed
    Wednesday, November 30, 1983
    41 years ago
  • Date Issued
    Tuesday, June 4, 1985
    39 years ago
Abstract
Hydrogen annealing permits deposition of good quality polysilicon atop TiO.sub.2. Hydrogen annealing of TiO.sub.2 prevents the tremendous hydrogen affinity of as-deposited TiO.sub.2 from disrupting process reactions during deposition of polysilicon.
Description

BACKGROUND OF THE INVENTION
The present invention relates to a method for depositing polysilicon on TiO.sub.2.
TiO.sub.2 has highly desirable properties as an electronic material, particularly its large dielectric constant. The dielectric constant of crystalline rutile is approximately 125, and as -deposited polycrystalline TiO.sub.2 can reliably be formed with a dielectric constant of 100 or better. Moreover, polycrystalline TiO.sub.2 has high resistivity, which (for polycrystalline material) can be 10.sup.8 ohm-cm or better.
Thus, it would be highly desirable to be able to use TiO.sub.2 for compact capacitors in integrated circuits. For example, a capacitor one mil square, having a TiO.sub.2 dielectric 100 nm thick atop a 10 nm SiO.sub.2 layer, would theoretically have a capacitance of 2.2 pF. The advantages of such capacitors are particularly desirable in communications and signal processing IC's.
In addition, TiO.sub.2 has the very desirable property that, when applied over a very thin silicon dioxide gate dielectric, the TiO.sub.2 tends to "plug" pinhole defects in the oxide, so that the yield rate on, e.g., 10 nm gate dielectrics is greatly increased. Since the dielectric constant of TiO.sub.2 is so much larger than that of SiO.sub.2, TiO.sub.2 is electrically invisible, and the completed device behaves as if it had only a perfect 10 nm oxide in place. Thus, use of TiO.sub.2 as an extra layer in MIS gate dielectrics would permit very-high-yield fabrication of gate dielectrics which behaved as if they were very thin (10 nm or less).
For many of these applications, it is necessary or highly desirable to deposit polysilicon on TiO.sub.2. For example, the advantages of TiO.sub.2 as a gate dielectric are far less attractive if it can only be used with metal gates. However, a difficulty in the prior art has been that, for previously unknown reasons, the quality of polysilicon which is deposited atop TiO.sub.2 is very poor ("hazy poly").
It is thus an object of the present invention to provide a method for reliably depositing good-quality polysilicon atop TiO.sub.2.
It is a further object of the present invention to provide a method for reliably depositing good-quality polysilicon atop TiO.sub.2 without introducing additional layers of material to the device structure being formed.
SUMMARY OF THE INVENTION
The present invention uses hydrogen annealing of as-deposited TiO.sub.2 to sate the tremendous hydrogen affinity of the as-deposited material.
According to the present invention, there is provided
a method for depositing polysilicon on TiO.sub.2, comprising the steps of:
depositing a layer of TiO.sub.2 ;
annealing said TiO.sub.2 layer in hydrogen; and
depositing polysilicon on said annealed TiO.sub.2.





DESCRIPTION OF THE PREFERRED EMBODIMENTS
Deposition of TiO.sub.2, in the presently preferred embodiment, is performed by deposition of titanium metal (e.g. by evaporation), followed by oxidation of the titanium metal. This process reliably yields polycrystalline rutile. (TiO.sub.2 has multiple crystalline forms, and rutile is the most desirable, although the others are also useful.) Alternatively, if a high-temperature oxidation step must be avoided, CVD deposition of TiO.sub.2 may be used.
After the TiO.sub.2 has been formed, it is hydrogen annealed. Preferably, a one hour anneal in forming gas at 620.degree. C. is used. Alternatively, if permitted by safety considerations, a higher concentration of hydrogen would permit a shorter annealing time. Of course, higher temperatures permit shorter annealing times. Maximum temperature is limited by the thermal damage caused to the rest of the circuit elements, and is preferably not more than 1100.degree. C.
Since TiO.sub.2 has a tremendous affinity for hydrogen, this hydrogen annealing step saturates the TiO.sub.2 with molecular hydrogen, and the "hazy poly" problem is thus avoided. The hazy poly problem is believed to result from depletion of hydrogen from the process gas flow, during the reactions which participate in CVD deposition of polysilicon, by absorption into the TiO.sub.2.
The polysilicon is then deposited, doped, patterned, and etched, by conventional methods.
The annealing step can be performed at as low a temperature as 400.degree. C., and for as short a time as 30 minutes (in forming gas), although this is not the presently preferred embodiment, and will not partially attain the advantages discussed above.
Further discussion of the application of the present invention to fabrication of a nonvolatile information storage transistor is found in U.S. Application No. 344,339 filed Feb. 1, 1982 (TI-8830), CMOS Unipolar 4-Transistor 3-Control Line Nonvolatile Memory Cell, of common assignee and simultaneously filed, which is hereby incorporated by reference.
The polysilicon deposition, doping, patterning, and etching all take place according to conventional processes. The key feature of the present invention is the hydrogen anneal of the TiO.sub.2 before the polysilicon processing begins. As will be obvious to those skilled in the art, substantial variation in the annealing parameters is possible. In particular, very long annealing times may alternatively be used.
Claims
  • 1. A method for depositing polysilicon on TiO.sub.2, comprising the steps of:
  • depositing a layer of TiO.sub.2 ; annealing said TiO.sub.2 layer in hydrogen to provide an appropriate surface for the deposition of polysilicon; and
  • depositing polysilicon on said annealed TiO.sub.2,
  • thereby providing a polysilicon layer which is not hazy.
  • 2. The method of claim 1, wherein said hydrogen annealing step comprises annealing in forming gas.
  • 3. The method of claim 2, wherein said hydrogen annealing step comprises annealing in forming gas for 60 minutes at 620.degree. C.
  • 4. The method of claim 1, wherein said annealing step is performed at at least 400.degree. C.
  • 5. The method of claim 2, wherein said annealing step is performed for at least 30 minutes.
  • 6. The method of claim 4 wherein said annealing step is performed for not less than 60 minutes.
  • 7. The method of claim 5, wherein said annealing step is performed at at least 550.degree. C.
  • 8. The method of claim 1, wherein said annealing step is performed at a temperature between 400.degree. C. and 1100.degree. C.
  • 9. The method of claim 1, wherein said polysilicon deposition step comprises chemical vapor deposition.
Parent Case Info

This is a continuation of application Ser. No. 344,563, filed 2-1-82 abandoned.

US Referenced Citations (4)
Number Name Date Kind
3650815 Ghoshtagore Mar 1972
3916041 Chu Oct 1975
4200474 Morris Apr 1980
4250206 Bate Feb 1981
Continuations (1)
Number Date Country
Parent 344563 Feb 1982