This invention relates to a method for operating an ion trap mass spectrometer system.
The mass assignment accuracy of an ion trap mass spectrometer system can be enhanced through internal calibration, in which both the ions of interest and the calibrants are admitted to, and subsequently transmitted from, the linear ion trap. The measured spectra for the calibrants can then be compared to their previously-known exact theoretical values to provide calibrated values for the measured spectra of the ions of interest.
In accordance with an aspect of an embodiment of the invention, there is provided a method of operating an ion trap spectrometer system having an ion trap. The method comprises a) providing a group of ions for analysis, wherein the group of ions includes a first analyte; b) providing a filtered first analyte having a first mass-to-charge ratio by filtering out ions other than the first analyte; c) storing the filtered first analyte in the ion trap; d) storing a first set of calibrant ions in the ion trap with the filtered first analyte, wherein the first set of calibrant ions has at least one calibrant ion and each calibrant ion in the first set of calibrant ions has a known mass-to-charge ratio; e) transmitting the filtered first analyte and the first set of calibrant ions from the ion trap for detection; f) detecting the filtered first analyte to generate a first analyte mass signal peak representing the filtered first analyte, and detecting each calibrant ion in the first set of calibrant ions to generate an associated calibrant mass signal peak for each calibrant ion in the first set of calibrant ions; and, g) calibrating a first mass signal derived from the first analyte mass signal peak by comparing the known mass-to-charge ratio and the associated calibrant mass signal peak for each calibrant ion in the first set of calibrant ions.
These and other features of the applicant's teachings are set forth herein
The skilled person in the art will understand that the drawings, described below, are for illustration purposes only. The drawings are not intended to limit the scope of the applicant's teachings in any way.
Referring to
In some cases, fringing fields between neighboring pairs of rod sets may distort the flow of ions. Stubby rods Q1a are provided between orifice plate IQ1 and elongated rod set Q1 to focus the flow of ions into the elongated rod set Q1.
Ions can be collisionally cooled in Q0, which may be maintained at a pressure of approximately 8×10−3 torr. Both the transmission mass spectrometer Q1 and the downstream linear ion trap mass spectrometer Q3 are capable of operation as conventional transmission RF/DC multipole mass spectrometers. Q2 is a collision cell in which ions collide with a collision gas to be fragmented into products of lesser mass. Typically, ions may be trapped in the linear ion trap mass spectrometer Q3 using RF voltages applied to the multiple rods, and barrier voltages applied to the end aperture lenses 18. Q3 can operate at pressures of around 3×10−5 torr, as well as at other pressures in the range of 10−5 torr to 10−4 torr.
Referring to
The linear ion trap mass spectrometer system of
Many methods of internal calibration involve sequential measurements of calibrant ions followed by sequential measurements of analyte ions. This approach can have limitations for ion trapping devices since mass assignment accuracy can be influenced by the number and nature of the trapped ion population. These factors will usually be different for the calibrant and analyte ions when a sequential approach is used limiting mass assignment accuracy.
One of the limitations of ion trap mass spectrometers in terms of achieving high mass assignment accuracy is that the reported mass-to-charge ratio of such devices often depends on the number and nature of the trapped ion population due to the effects of space charge. The lowest m/z range of the ion trap may suffer more from space charge than the upper range because the number of trapped ions is typically greater during the mass scan of the lowest m/z ions (assuming the mass scans begins with the ions of lower m/z and proceeds to those of higher m/z). By the time the higher m/z ions are scanned the number of trapped ions has usually been reduced considerably. Space charge can affect the apparent m/z assignment of an ion trap as well as the width of the peak in the resulting spectrum. Ion traps are also susceptible to changes in mass calibration due to changes in temperature that have occurred between the time of external mass calibration and the time of the analytical scan.
This method can be implemented using, but is not limited to, linear ion traps, especially those of the QqQLIT such as the linear ion trap mass spectrometer of
The advantage of such a process is that, with properly chosen calibrant ions, the analyte ions and the calibrant ions experience approximately the same amount of space charge force allowing enhanced mass assignment accuracy. The co-trapped internal calibrant ions also allow compensation for systematic errors which may have affected the external mass calibration, such as changes in room and instrument temperatures.
Table 1 is an example of a simplified scan sheet used to implement the method is presented. Here, a single calibrant ion is mass filtered by Q1 using a narrow transmission window such that all other ions in the sample are rejected, transmitted through Q2 at low translational energy to minimize fragmentation, and admitted into the Q3 LIT. Additional calibrant ions can also be provided in the same manner. The settings of Q1 can then be immediately changed to transmit the precursor m/z of an analyte ion, which can be fragmented via collisional activation in Q2. The fragments and residual analyte precursor ion are then admitted into the Q3 LIT. The Q3 LIT now contains both calibrant ions and fragment analyte ions. All of the trapped ions can then be cooled for several tens of milliseconds and a mass scan carried out by axially ejecting the trapped ions for detection by detector 30. The resulting mass spectrum will have contributions from the fragmented analyte ion as well as from the un-fragmented calibrant ions. The apparent m/z value of the co-trapped calibrant ion can be used to adjust the mass calibration for the analyte fragment ions. One can add several calibrant ions prior to the cooling and mass scanning steps to further enhance mass assignment accuracy.
The resulting mass spectrum is shown in
The utility of this method for improved mass assignment accuracy is illustrated in Table 2. Here, the analyte ion of interest is reserpine with a protonated precursor ion molecular mass of 609.281. The reserpine major fragment ions are at m/z˜174, 195, 397, and 448. The re-calibrated mass assignments were obtained by comparing the known mass-to-charge ratio and the associated calibrant mass signal peak for each of the calibrants. Specifically, re-calibrated mass assignments were obtained by using a simple linear interpolation between the theoretical calibrant ion m/z values.
This method is generally applicable to all ion trapping mass spectrometers, including RF ion traps, electrostatic ion traps, and Penning ion traps. It is not, however, necessary, to have the capability for m/z selection prior to, or upstream of, the ion trapping device. If there is no upstream mass analyzer, such as in the case of the linear ion trap mass spectrometer system of
That is, say that a group of ions including the particular analyte of interest, as well as the calibrant ions selected for that analyte of interest, are being stored in a linear ion trap Q1 of the linear ion trap mass spectrometer system 10 of
It is not necessary that the ion trap be operated as a mass spectrometer. The ion trap may be used to accumulate the calibrant and analyte ions and then transmit the contents of the ion trap to a downstream mass analyzer such as a time-of-flight (ToF) mass spectrometer. An instrument such as QqToF in which the collision cell is operated as an accumulating linear ion trap could be operated in this fashion in order to achieve enhanced mass assignment accuracy.
According to further aspects of different embodiments of the present invention, multiple analytes may be processed in a similar manner to the reserpine ion described above. That is, in the case of methods in accordance with aspects of the present invention implemented using the mass spectrometer system 10 of
The criteria used to select calibrant ions may differ for different analytes of interest. Specifically, calibrant ions can be selected to “bracket” the particular anaylte, as well as any of its fragments that are of interest. To bracket a particular analyte ion, the set of calibrant ions selected for that analyte ion could include a upper bracket calibrant ion having a mass-to-charge ratio slightly higher than the mass to charge ratio of the analyte. The set of calibrant ions for this analyte could also include a lower bracket calibrant ion having a mass to charge ratio slightly lower than the mass to charge ratio of the analyte. Of course, where fragments of the analyte are also of interest, calibrants should also be selected with the fragments in mind. In the example described above, the first analyte of interest is reserpine, having an m/z of approximately 609, and the reserpine ions were also fragmented in Q2. The resulting major fragment ions have mass to charge ratios of approximately 174, 195, 397 and 448. Accordingly, the first set of calibrant ions were selected to bracket not only the reserpine ion itself, but also the fragment ions. Specifically, the first set of calibrant ions selected for the analyte reserpine had mass to charge ratios of 118, 322 and 622. Thus, the reserpine ion itself, as well as its two larger mass fragments—397 and 448—would be bracketed by the calibrant ions having mass to charge ratios of approximately 322 and 622. Similarly, the small fragment ions having mass to charge ratios of approximately 174 and 195 would be bracketed by the calibrant ions having mass to charge ratios of approximately 118 and 322.
In the case of the second analyte of interest selected, this analyte would probably have a mass to charge ratio higher than that of reserpine, and thus might well have a mass to charge ratio higher than 622, which was the highest mass to charge ratio of all of the calibrant ions in the first set of calibrant ions selected for the first analyte reserpine. Accordingly, the second set of calibrant ions selected for the second analyte, could include a calibrant ion having a mass to charge ratio that is higher than 622, and indeed higher than the mass to charge ratio of the second analyte of interest. The remaining calibrants would be selected based on the mass to charge ratios of the major fragments of the second analyte of interest. That is, in the case of each of these fragments, the second set of calibrant ions could be selected to include an upper bracket calibrant ion having a mass to charge ratio slightly higher than the second analyte mass to charge ratio or fragment mass to charge ratio, and a lower bracket calibrant ion having a mass to charge ratio lower than the mass to charge ratio of the second analyte or fragment.
In addition to choosing calibrant ions to bracket the analyte of interest, the calibrant ions should also be selected to have the same or similar physical and chemical properties, as described, for example, in J. Wells, W. Plass and R. Cooks, “Control of Chemical Mass Shifts in the Quadrupole Ion Trap through Selection of Resonance Ejection Working Point and rf Scan Direction”, Analytical Chemistry, 2000, Vol. 72, No. 13, 2677-2683.
Other variations and modifications of the invention are possible. For example, although the foregoing description refers to linear ion traps, it will be appreciated that the ion trap used to implement some aspects of some embodiments of the present invention need not be linear ion traps. In addition, while the foregoing description, as well as