1. Field of the Invention
The invention relates to a method for fabricating semiconductor device, and more particularly, to a method of integrating gate structures of different pitches and a resistor on a substrate.
2. Description of the Prior Art
With the trend in the industry being towards scaling down the size of the metal oxide semiconductor transistors (MOS), three-dimensional or non-planar transistor technology, such as fin field effect transistor technology (FinFET) has been developed to replace planar MOS transistors. Since the three-dimensional structure of a FinFET increases the overlapping area between the gate and the fin-shaped structure of the silicon substrate, the channel region can therefore be more effectively controlled. This way, the drain-induced barrier lowering (DIBL) effect and the short channel effect are reduced. The channel region is also longer for an equivalent gate length, thus the current between the source and the drain is increased. In addition, the threshold voltage of the fin FET can be controlled by adjusting the work function of the gate.
However, the approach of using etching process to remove the hard mask from gate structure on the edge of fin-shaped structure in current FinFET process and also forming contact holes typically results in uneven openings affecting the formation of contact plugs thereafter and the performance of the device. Hence, how to improve the current process to resolve this issue has become an important task in this field.
According to a preferred embodiment of the present invention, a method for fabricating semiconductor device is disclosed. The method includes the steps of: providing a substrate having a first fin-shaped structure on a first region and a second fin-shaped structure on a second region; forming a plurality of first gate structures on the first fin-shaped structure, a plurality of second gate structures on the second fin-shaped structure, and an interlayer dielectric (ILD) layer around the first gate structures and the second gate structures; forming a patterned mask on the ILD layer; and using the patterned mask to remove all of the ILD layer from the first region and part of the ILD layer from the second region for forming a plurality of first contact holes in the first region and a plurality of second contact holes in the second region.
According to another aspect of the present invention, a semiconductor device is disclosed. The semiconductor device includes: a substrate; a resistor on the substrate; a first stop layer on the resistor; a first dielectric layer on the first stop layer; a second stop layer on the first dielectric layer; a second dielectric layer on the second stop layer; and a contact plug in the first stop layer, the first dielectric layer, the second stop layer, and the second dielectric layer and contacting the resistor.
These and other objectives of the present invention will no doubt become obvious to those of ordinary skill in the art after reading the following detailed description of the preferred embodiment that is illustrated in the various figures and drawings.
Referring to
The formation of the fin-shaped structures 14 could be accomplished by first forming a patterned mask (now shown) on the substrate, 12, and an etching process is performed to transfer the pattern of the patterned mask to the substrate 12. Next, depending on the structural difference of a tri-gate transistor or dual-gate fin-shaped transistor being fabricated, the patterned mask could be stripped selectively or retained, and deposition, chemical mechanical polishing (CMP), and etching back processes are carried out to form a STI 16 surrounding the bottom of the fin-shaped structures 14. Alternatively, the formation of the fin-shaped structures 14 could also be accomplished by first forming a patterned hard mask (not shown) on the substrate 12, and then performing an epitaxial process on the exposed substrate 12 through the patterned hard mask to grow a semiconductor layer. This semiconductor layer could then be used as the corresponding fin-shaped structures 14. Similarly, the patterned hard mask could be removed selectively or retained, and deposition, CMP, and then etching back could be used to form a STI 16 surrounding the bottom of the fin-shaped structures 14. Moreover, if the substrate 12 were a SOI substrate, a patterned mask could be used to etch a semiconductor layer on the substrate until reaching a bottom oxide layer underneath the semiconductor layer to form the corresponding fin-shaped structures 14. If this means were chosen the aforementioned steps for fabricating the STI 16 could be eliminated.
The fabrication of the gate structures 18, 20, 22, 23 could be accomplished by a gate first process, a high-k first approach from gate last process, or a high-k last approach from gate last process. Since this embodiment pertains to a high-k first approach, dummy gates (not shown) composed of high-k dielectric layer and polysilicon material could be first formed on the fin-shaped structures 14 and the STI 16, and a spacer 24 is formed on the sidewall of each dummy gate. A source/drain region 26 and epitaxial layer (not shown) are then formed in the fin-shaped structures 14 and/or substrate 12 adjacent to two sides of the spacer 24, a selective contact etch stop layer (CESL) (not shown) is formed on the dummy gates, and an interlayer dielectric (ILD) layer 32 composed of tetraethyl orthosilicate (TEOS) is formed on the CESL. In this embodiment, the spacer 24 is preferably a composite spacer composed of oxide-nitride-oxide, but not limited thereto.
Next, a replacement metal gate (RMG) process could be conducted to planarize part of the ILD layer 32 and then transforming the dummy gate into metal gates 18, 20, 22, and 23. The RMG process could be accomplished by first performing a selective dry etching or wet etching process, such as using etchants including ammonium hydroxide (NH4OH) or tetramethylammonium hydroxide (TMAH) to remove the polysilicon material from dummy gates for forming recesses (not shown) in the ILD layer 32. Next, a conductive layer including at least a U-shaped work function metal layer 34 and a low resistance metal layer 36 is formed in the recesses, and a planarizing process is conducted thereafter so that the surface of the U-shaped work function metal layer 34 and low resistance metal layer 36 is even with the surface of the ILD layer 32.
In this embodiment, the work function metal layer 34 is formed for tuning the work function of the later formed metal gates to be appropriate in an NMOS or a PMOS. For an NMOS transistor, the work function metal layer 34 having a work function ranging between 3.9 eV and 4.3 eV may include titanium aluminide (TiAl), zirconium aluminide (ZrAl), tungsten aluminide (WAl), tantalum aluminide (TaAl), hafnium aluminide (HfAl), or titanium aluminum carbide (TiAlC), but it is not limited thereto. For a PMOS transistor, the work function metal layer 34 having a work function ranging between 4.8 eV and 5.2 eV may include titanium nitride (TiN), tantalum nitride (TaN), tantalum carbide (TaC), but it is not limited thereto. An optional barrier layer (not shown) could be formed between the work function metal layer 34 and the low resistance metal layer 36, in which the material of the barrier layer may include titanium (Ti), titanium nitride (TiN), tantalum (Ta) or tantalum nitride (TaN). Furthermore, the material of the low-resistance metal layer 36 may include copper (Cu), aluminum (Al), titanium aluminum (TiAl), cobalt tungsten phosphide (CoWP) or any combination thereof. Since the process of using RMG process to transform dummy gate into metal gate is well known to those skilled in the art, the details of which are not explained herein for the sake of brevity.
Next, part of the work function metal layer 34 and low resistance metal layer 36 could be removed, and hard masks 38 are formed on the work function metal layer 34 and the low resistance metal layer 36 to form the gate structures 18, 20, 22, and 23. Each of the hard masks 38 could be a single material layer or composite material layer, such as a composite layer containing both silicon oxide and silicon nitride.
Next, a cap layer 46 is covered entirely on the gate structures 18, 20, 22, 23 and the ILD layer 32 and a mask layer 48 is formed on the cap layer 46 thereafter. In this embodiment, the cap layer 46 is preferably used as a pre-metal dielectric (PMD) layer, in which the cap layer 46 and the ILD layer 32 could be composed of same material or different material. The cap layer 46 is preferably composed of material such as silicon oxide. The mask layer 48 is preferably a metal mask composed of TiN.
Next, as shown in
Next, as shown in
Next, as shown in
Next, as shown in
Next, as shown in
Next, as shown in
Next, as shown in
Next, as shown in
Referring to
Preferably, the resistor 82 is composed of a conductive layer 84 and an insulating layer 86, in which the conductive layer 84 is a TiN layer and the insulating layer 86 is a SiN layer, but not limited thereto.
It should be noted that in contrast to the contact plug formed by conventional dual damascene process having trench conductor and via conductor, the contact plugs 96, 98, 100 of the present invention are not fabricated by dual damascene processes, hence each of the contact plugs 96, 98, 100 only contains one single conductor, such as either a trench conductor or a via conductor from typical dual damascene structure. In addition, each of the contact plugs 96, 98, 100 of the aforementioned embodiments preferably includes a U-shaped barrier layer 102 and a metal layer 104 formed atop, in which the top surfaces of the U-shaped barrier layers 102, the metal layers 104, and the dielectric layer 94 are coplanar. Similar to the structure of aforementioned contact plugs 76 and 78, the barrier layer 102 could be selected from the group consisting of Ti, TiN, Ta, and TaN, and the metal layer 104 could be selected from the group consisting of W, Cu, Al, TiAl, and CoWP
Those skilled in the art will readily observe that numerous modifications and alterations of the device and method may be made while retaining the teachings of the invention. Accordingly, the above disclosure should be construed as limited only by the metes and bounds of the appended claims.