1. Field of the Invention
The invention relates to the fabrication of integrated circuit (IC) devices, particularly to dielectric materials, and more particularly to the fabrication of a low-k interlayer dielectric (ILD) layer.
2. Description of the Prior Art
Semiconductor devices are typically joined together to form useful circuits using interconnect structures comprising conductive materials (e.g., metal lines) such as copper (Cu) or aluminum (Al) and dielectric materials such as silicon dioxide (SiO2). The speed of these interconnects can be roughly assumed to be inversely proportional to the product of the line resistance (R), and the capacitance (C) between lines. To reduce the delay and increase the speed, it is desirable to reduce the capacitance (C). This can be done by reducing the dielectric constant k of the dielectric material in the interlayer dielectric (ILD) layers.
Conventional approach for fabricating ILD layer typically includes forming a single layer of silicon dioxide on a substrate. This design is particularly disadvantageous when planarizing process, such as chemical mechanical polishing (CMP) process is conducted to remove the contact metal along with the ILD layer, a major portion of the ILD is lost due to topography loading effect during process and the height of the ILD layer is affected substantially.
It is therefore an objective of the present invention to provide a method for resolving the aforementioned issues.
According to a preferred embodiment of the present invention, a method for fabricating interlayer dielectric (ILD) layer is disclosed. The method includes the steps of first forming a first tensile dielectric layer on a substrate, and then forming a second tensile dielectric layer on the first tensile dielectric layer.
These and other objectives of the present invention will no doubt become obvious to those of ordinary skill in the art after reading the following detailed description of the preferred embodiment that is illustrated in the various figures and drawings.
Referring to
Next, a first tensile dielectric layer 14 is deposited on the substrate 12, preferably covering the MOS transistor, and a second tensile dielectric layer 16 is formed on the first tensile dielectric layer 14 thereafter. The deposition of the first tensile dielectric layer 14 and the second tensile dielectric layer 16 could be accomplished by a plasma-enhanced chemical vapor deposition (PECVD) process, and according to a preferred embodiment of the present invention, each of the first tensile dielectric layer 14 and the second tensile dielectric layer 16 is composed of an ultra low-k dielectric material, such as a silicon dioxide (SiO2) layer doped with carbon.
Preferably, the first tensile dielectric layer 14 and the second tensile dielectric layer 16 are deposited such that a gradient of carbon content is established between the two dielectric layers 14 and 16, in which the carbon content of the second tensile dielectric layer 16 is substantially greater than the carbon content of the first tensile dielectric layer 14. It should also be noted that even though only two tensile dielectric layers 14 and 16 are disclosed in this embodiment, the quantity of the tensile dielectric layers is not limited to two, but could be any integer greater than or equal to two while the upper layers preferably contain carbon content higher than the lower layers.
According to an embodiment of the present invention, the carbon content of each of the tensile dielectric layers 14 and 16 could be adjusted by treatments such as a curing process and/or a helium treatment. For instance, a curing process and/or a helium treatment could be performed selectively on either one or both of the first tensile dielectric layer 14 and second tensile dielectric layer 16 after the two layers are deposited, and depending on the demand of the product, the two types of treatments could be conducted interchangeably or individually without one another.
By increasing the carbon content in the second tensile dielectric layer 16, the dielectric constant (k-value) of the two layers is reduced and the difficulty for removing the dielectric layer, or preferably the second tensile dielectric layers 16 during a chemical mechanical polishing (CMP) process also increases accordingly. As a result, only minimal amount of the dielectric layer is lost during CMP process and the height of the two dielectric layers 14 and 16 is also well maintained.
In addition to the aforementioned treatments, it would also be desirable to implant phosphorus ions into the first tensile dielectric layer 14 for preventing ions from diffusing from the device into the dielectric layers. Moreover, it should be noted that in addition to forming the second tensile dielectric layer 16 directly on top of the first tensile dielectric layer 14, it would also be desirable to conduct a planarizing process to partially remove the first tensile dielectric layer 14 before forming the second tensile dielectric layer 16, in which the planarizing process could be a chemical mechanical polishing (CMP) process. After forming the second tensile dielectric layer 16 atop the thinned first tensile dielectric layer 14, another CMP process could be carried out to remove part of the second tensile dielectric layer 16, which is also within the scope of the present invention.
After the first tensile dielectric layer 14 and second tensile dielectric layer 16 are deposited, as shown in
The barrier/adhesive layer may be consisted of tantalum (Ta), titanium (Ti), titanium nitride (TiN) or tantalum nitride (TaN), tungsten nitride (WN) or a suitable combination of metal layers such as Ti/TiN, but is not limited thereto. A material of the seed layer is preferably the same as a material of the conductive layer, and a material of the conductive layer may include a variety of low-resistance metal materials, such as aluminum (Al), titanium (Ti), tantalum (Ta), tungsten (W), niobium (Nb), molybdenum (Mo), copper (Cu) or the likes, preferably tungsten or copper, and more preferably tungsten
A planarization step, such as a CMP process, an etching back process, or a combination of both could be performed thereafter to remove the barrier/adhesive layer, the seed layer, and the conductive layer for forming the contact plugs 18 in the first tensile dielectric layer 14 and second tensile dielectric layer 16. Preferably, the top surface of the second tensile dielectric layer 16 is even with the top surface of the contact plugs 18. This completes the fabrication of an ILD according to a preferred embodiment of the present invention.
Referring to
Those skilled in the art will readily observe that numerous modifications and alterations of the device and method may be made while retaining the teachings of the invention. Accordingly, the above disclosure should be construed as limited only by the metes and bounds of the appended claims.
Number | Name | Date | Kind |
---|---|---|---|
5936304 | Lii | Aug 1999 | A |
6049124 | Raiser | Apr 2000 | A |
6049129 | Yew | Apr 2000 | A |
6075289 | Distefano | Jun 2000 | A |
6124191 | Bohr | Sep 2000 | A |
6184142 | Chung et al. | Feb 2001 | B1 |
6191952 | Jimarez | Feb 2001 | B1 |
7009280 | Angyal et al. | Mar 2006 | B2 |
7381451 | Lang et al. | Jun 2008 | B1 |
8278718 | Fischer et al. | Oct 2012 | B2 |
8389410 | Wu et al. | Mar 2013 | B2 |
20030232495 | Moghadam | Dec 2003 | A1 |
20040192032 | Ohmori | Sep 2004 | A1 |
20060014377 | Kim | Jan 2006 | A1 |
20060219174 | Nguyen | Oct 2006 | A1 |
20060226519 | Masonobu | Oct 2006 | A1 |
20080305625 | Jiang | Dec 2008 | A1 |
20090050604 | Jacques | Feb 2009 | A1 |
20090121313 | Hashimoto | May 2009 | A1 |
20100196806 | Bucchignano et al. | Aug 2010 | A1 |
20130072031 | Peng et al. | Mar 2013 | A1 |
20130189841 | Balseanu et al. | Jul 2013 | A1 |
Entry |
---|
M. Tagami et al., “Moisture Uptake Impact on Damage Layer of Porous Low-k Film in 80nm-pitched Cu interconnects”, Abstract #2138, 220th ECS Meeting, 2011 The Electrochemical Society. |
Number | Date | Country | |
---|---|---|---|
20160013098 A1 | Jan 2016 | US |